
A Design of a System developed on the
Blockchain-based EV Sharing Management

Model, its Simulation and Use in Evaluation of
Different Consensus Mechanisms

Ian Sinegubko

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Computer Science and Mathematics

School of Informatics
University of Edinburgh

2023

Abstract
In combination, car sharing systems and the use of Electric Vehicles (EVs) provide a
sustainable solution to transportation. However, there is a lack of trust, security, privacy
and transparency in suggested EV sharing platforms. In this project, a blockchain-based
EV sharing management model was introduced in order to address that challenge by
using the advantages of the blockchain technology. Based on the proposed model, a full
system was then designed.

In order to simulate and demonstrate the functionality of the designed system, a sim-
plified tool was implemented and tested under the three Byzantine Fault Tolerant
consensus mechanisms, namely BFT-SMaRt, Linear BFT-SMaRt and Hotstuff-inspired
BFT-SMaRt. Then, different experiments were designed in order to analyse and com-
pare the performance of the algorithms. Various observations were made and interesting
results were obtained.

i

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Ian Sinegubko)

ii

Acknowledgements
I would like to thank my supervisor, professor Xiao Chen, for his guidance throughout
the project, and Mr Meng Kun for his technical support with the setup of the consensus
libraries. I would also like to thank my family and my friends for all the love and
support during these difficult times.

iii

Table of Contents

1 Introduction 1
1.1 Background of EV Sharing . 1
1.2 Key Challenges in the Current Use Case 2
1.3 Project objective . 2

2 Background 4
2.1 Blockchain . 4

2.1.1 Blockchain Essentials . 4
2.1.2 Classification . 5
2.1.3 Hyperledger Fabric . 6

2.2 BFT Protocols . 6
2.2.1 Byzantine Generals Problem 6
2.2.2 PBFT . 7
2.2.3 BFT-SMaRt . 9
2.2.4 Basic HotStuff . 11

2.3 Internet of Things . 13

3 Related Work 15

4 System Model 17
4.1 Scenario and Requirements . 17
4.2 Design Principles . 17
4.3 Use Case of the Model . 18

5 System Design 20
5.1 System Architecture Overview . 20
5.2 Application Design . 20
5.3 Blockchain Design . 20
5.4 Consensus Design . 21

5.4.1 Linear BFT-SMaRt . 22
5.4.2 Hotstuff-inspired Linear BFT-SMaRt 22
5.4.3 Comparison of the Consensus Mechanisms 22

6 Implementation 24
6.1 Overview of the Implementation . 24
6.2 Implementation of the Use Case . 26

iv

6.3 Running and Testing the Tool . 28

7 Performance Evaluation 29
7.1 Experiment Design . 29
7.2 Measurements and Analysis . 30

7.2.1 Measurement Plan and Expectations 30
7.2.2 Results . 31

8 Conclusion and Future Work 34
8.1 Achievements . 34
8.2 Limitations . 34
8.3 Future Work . 35

Bibliography 36

v

Chapter 1

Introduction

1.1 Background of EV Sharing

The need for an improvement in resource utilization, as well as the social demand
for making various aspects of human life easier and more convenient, have lead to an
emergence of sharing economy [14]. In recent decades, a lot of sub-economies have
formed within the sharing economy, each of which correspond to a certain aspect of
human life - from housing to dog kennels. Car sharing industry have emerged as one of
such sub-economies.

Car sharing was proposed in the 1980s for the first time in Berlin, Germany [20]. It
was presented as a solution to sustainable transportation development, a topic that
has drawn a lot of attention due to a growth in public awareness of environmental
issues. Another advantage of a car sharing solution that has drawn attention of the
experts is its convenience. It could become a solution that would be a balance between
private and public transports, since on the one hand it is more attractive in terms of user
experience, yet on the other hand less emissions are produced. Therefore, car sharing
could reduce both costs on new public transport infrastructure and a negative impact on
the environment.

Electric vehicle sharing has emerged as an extension to the car sharing industry with an
aim to improve fuel economy [14]. It was proposed as a more sustainable solution as
opposed to vehicle sharing, since EVs produce no tailpipe emissions.

Electric vehicle sharing platforms are designed to allow users to book electric vehicles
by using software such as a mobile app or website. The vehicles are placed at various
locations throughout the area, such as parking lots or designated charging stations. The
users pay for the time they use the vehicle, typically on an hourly basis, and then return
it to the required location when finished.

1

Chapter 1. Introduction 2

1.2 Key Challenges in the Current Use Case

As with any emerging technology, even though EV sharing gains popularity and is a
promising model, there are challenges to address.

One of the major challenges is the lack of infrastructure. This includes the lack of
charging stations in many areas, as well as their accessibility. The standards for
manufacturing charging equipment vary with different countries [10]. For instance,
USA, Europe and Japan use separate charging connector standards. Also, charging
stations that work on renewable energy are expensive to design and implement, and they
require a lot of space. It is also worth noting that there is a lack of charging stations on
the highways.

A lot of challenges are related to electric vehicle batteries. Even though the charge of
some electric vehicles can last for up to 500 km, the driving range of most of the EVs
is typically limited from 250 km to 350 km [24]. Also, it normally takes quite long
to charge an EV. To fully charge an EV’s battery, it typically takes from four to eight
hours. It is also worth noting that the batteries for electric vehicles are expensive, heavy
and take up considerable vehicle space.

There are problems that EV sharing industry have inherited from a car sharing industry.
This includes challenges related to user behavior, such as the potential for users to
damage the vehicles or not properly charge them. If a lot of customers act immature
and do not take the proper care of the vehicles while using them, this could result in
significant costs and make a bad impression on future customers. Even though big
damages can be detected with more ease, small damages can stay unnoticed for a while,
which, considering the cumulative effect, can still result in significant problems.

Another inherited challenge are the regulations. The regulatory environment around
EV sharing is still evolving, and companies may face challenges related to obtaining
permits, complying with regulations, and ensuring the safety of their vehicles and users.

Finally, a significant challenge is a lack of trust, privacy and security. Users do not trust
vehicle sharing companies, as they are afraid that their personal details can be stolen
and used for malicious purposes. Users also fear unfair scenarios in case of a dispute,
a possibility of being disadvantaged by EV sharing companies. If the system is not
transparent, it is easy to take advantage of the user.

1.3 Project objective

The aim of this project was to propose a solution to the problem of lack of trust, privacy,
security and transparency in EV sharing systems by using the advantages of blockchain
technology. Namely, to introduce a blockchain-based EV sharing management model
and describe a design of a potential system that can be based on that model. Then,
implement a tool that simulates the functionality of the system within the three different
testbeds, which are the original BFT SMaRt library, the Linear BFT SMaRt with the use
of threshold signatures, and the updated version of the BFT SMaRt that simulates the
behaviour of the Hotstuff consensus algorithm. Lastly, run different tests, experiments

Chapter 1. Introduction 3

and measurements in order to observe how the tool behaves under different consensus
mechanisms and present the results.

The rest of the report is organised as follows. Chapter 2 provides the background
knowledge required to understand the further parts of the report. Chapter 3 describes
the current challenges and blockchain-based solutions to EV sharing management.
Chapter 4 is focused on describing the proposed EV sharing model. The focus of
Chapter 5 is to specify the design of the whole system, as well as the blockchain and the
consensus designs. Chapter 6 explains how the simulation tool was implemented and
how the testbeds were tested. Chapter 7 is about the performance evaluation, namely
how testbeds were deployed and configured, how experiments were designed and what
measurements and analysis were carried out. Finally, Chapter 8 concludes the report
with discussing the achievements and limitations of this project, as well as what could
be done in order to extend this work.

Chapter 2

Background

2.1 Blockchain

2.1.1 Blockchain Essentials

Blockchain technology is a decentralized system that allows for secure, transparent,
and tamper-proof transactions. It enables parties to transact with each other directly
without the involvement from such intermediaries as banks, government institutions,
or other third parties. At its core, a blockchain can be described a digital ledger that is
represented as a sequence of blocks and records transactions in a chronological order.
Each block contains a cryptographic hash of the previous block, creating a chain of
blocks that cannot be changed without altering every subsequent block. This makes it
virtually impossible to forge the ledger without being detected. Figure 2.1 shows how
the blockchain system can be represented as a generic chain of blocks.

Figure 2.1: Generic chain of blocks [Figure 3, [30]].

Every blockchain runs under a consensus mechanism, which is often referred to as
a blockchain protocol. It ensures that all parties in a blockchain network agree on
the validity of the transactions being recorded and hence a consensus is reached. A
blockchain protocol is a crucial notion for this project that is further explained in section
2.2.

The first blockchain was created in 2008 by an individual or group of individuals under
the pseudonym Satoshi Nakamoto in the famous Bitcoin Whitepaper [21]. Nakamoto’s

4

Chapter 2. Background 5

creation was the Bitcoin blockchain, which was designed to provide a decentralised
solution to a long-lasting financial problem called a double spending problem. The
blockchain system proposed by Nakamoto run under the consensus mechanism that was
called Proof of Work (PoW) algorithm. In PoW, blocks are appended to the blockchain
by the actors in a network that are called miners, who compete to create new blocks by
solving a hard mathematical problem that requires big computational power. A miner
that solves the problem first and whose block gets validated receives a reward paid in
Bitcoins, which is a cryptocurrency of the Bitcoin blockchain.

The rise of Bitcoin blockchain has lead to an emergence of other blockchain platforms,
which have extended the capabilities of blockchain beyond just financial transactions,
as well as have proposed new rules for their blockchain systems and come up with
new consensus mechanisms. Some of the most known examples of such platforms are
Ethereum [5], Ripple [25], Hyperledger Fabric [2], R3 Corda [15] and Tendermint [18].

2.1.2 Classification

There exists a blockchain classification that consists of 4 categories: public, private,
permissionless and permissioned.

• A public blockchain is a blockchain that anyone can get an access to. Public
blockchains are best suited for use cases that require transparency and account-
ability, such as digital currencies or voting systems. Bitcoin and Ethereum are
examples of public blockchains.

• A private blockchain is a blockchain that is operated by a single organisation or
consortium of organisations. These blockchains have restricted access, which
means that an organisation that operates the blockchain determines if someone is
allowed to join. Private blockchains are best suited for use cases that require pri-
vacy and confidentiality, such as enterprise supply chain management or medical
records.

• A permissionless blockchain is a blockchain in which everyone who has joined a
network is alloed to participate, meaning that anyone can validate transactions and
create new blocks. Permissionless blockchains are best suited for use cases that
require censorship resistance and decentralization, such as digital currencies or
decentralized applications (dapps). Besides being public, Bitcoin and Ethereum
are also examples of permissionless blockchains.

• A permissioned blockchain is a blockchain in which only a limited group of
participants have been granted a permission to act in the network, which means
that only approved nodes are allowed to validate transactions and create new
blocks. Permissioned blockchains are best suited for use cases that require
a balance between transparency and privacy, such as government records or
financial transactions. Examples of such are R3 Corda and Ripple.

A blockchain is always either public or private and either permissioned or permissionless.
For example, Bitcoin blockchain is public and permissionless, while Hyperledger Fabric
is private and permissioned. In some papers, terms public and permissionless are used

Chapter 2. Background 6

interchangeably, as well as terms private and permissioned, since public-permissioned
or private-permissionless are a very untypical setups for a blockchain. However, it is
important to note that in this report they are being distinguished, as in some cases there
is a need to draw a line between the authentication and authorisation, for instance, in
applications in the internet of things [12].

At first, all blockchains were permissionless, as Bitcoin blockchain. However, as the
number of users has grown, so has the amount of data that needs to be processed. This
has led to delays in transaction processing and higher transaction fees, as users compete
to have their transactions validated first. In other words, the scalability problem has
occured. Permissioned blockchains were created in part as a response to the scalability
problem of permissionless blockchains. By limiting the number of nodes that are
allowed to participate in the validation of transactions and the creation of new blocks,
permissioned blockchains are able to process transactions more quickly and efficiently.
In addition, permissioned blockchains are often designed with specific use cases in
mind, which allows them to optimize their architecture for those use cases. This can
lead to better performance and scalability than permissionless blockchains, which need
to be more generalized in order to support a wide range of use cases. In this report, the
focus is on permissioned blockchains.

2.1.3 Hyperledger Fabric

Fabric is a modular and extensible open-source system for deploying and operating
permissioned blockchains and one of the Hyperledger projects hosted by the Linux
Foundation [2]. The platform was designed for use in enterprise settings and is suitable
for various applications such as supply chain management, asset tracking and identity
management. Its modular architecture makes Fabric flexible and customisable. This
means that a company or an organisation which uses the platform is able to adjust the
components, such as consensus mechanism or chaincodes, based on the user’s needs.

An interesting property of Fabric that comes from its modular architecture is that it
supports pluggable consensus mechanisms, which means that it allows the users to
choose the most suitable consensus algorithm for their needs and purposes. Because of
that property, Hyperledger Fabric blockchain was used for the purposes of this project.

2.2 BFT Protocols

A Byzantine Fault Tolerant (BFT) protocol is a protocol for which is able to solve
Byzantine generals problem. This section starts with an explanation of the Byzantine
generals problem, and then focuses on the description of several BFT protocols that are
relevant for this project.

2.2.1 Byzantine Generals Problem

Byzantine generals problem is a famous problem in distributive computing introduced
by Robert Shostak, Marshall Pease and Leslie Lamport [19]. The overview of the
problem is as follows. Let there be n armies, each commanded by a general, that have

Chapter 2. Background 7

surrounded the enemy castle. Each army has two options: attack or retreat. The generals
have to coordinate their armies’ actions in order to succeed, as the success is achieved if
all the armies perform the same action. One of the generals (let’s call them commander)
is the head of all the other generals which sends order to all other generals, namely
which action other generals have to perform. The question is how can the generals
coordinate their actions considering that some of them (including the commander) may
be traitors?

The first solution, proposed in the same paper, was called Oral Message algorithm, for
which it was considered that the sent messages are oral messages, which means that
they are fully controlled by the sender. For this type of messages, if there are m traitors,
there must be at least 3m+1 honest generals. As it can be seen in Figure 2.2, on the left
the winning scenario is displayed, as there are no traitors. However, on the right, two of
the six generals are traitors and, since 3∗2+1 = 7 ̸= 6, this scenario is a losing one.

Later in the paper, another algorithm was proposed as a more effective solution to
the problem, which was called Signed Message algorithm, in which messages were
considered to be unforgeable signed messages. Since the messages could not be forged,
the validity of the exchanged messages was ensured.

Figure 2.2: The winning scenario (on the left) and the losing scenario (on the right) [8].

Substituting generals with nodes in a network, a crucial problem in the field of dis-
tributive computing is obtained. The notion of Byzantine Fault Tolerance was later
introduced to describe a system that tolerates Byzantine faults, which are the most
difficult faults to deal with as there are no restrictions or assumptions to be made about
the behaviour of such a node. Being Byzantine Fault Tolerant has become an essential
condition for any distributive system.

2.2.2 PBFT

Practical Byzantine Fault Tolerance (PBFT) consensus algorithm was published in
1999 by Miguel Castro and Barbara Liskov [6]. It has provided high-performance
Byzantine State Machine Replication (SMR), processing thousands of requests per
second with sub-millisecond increases in latency. It is assumed that the algorithm acts
in an asynchronous distributive system, which is a system in which there are no fixed
bounds on the time it takes for messages to be transmitted between nodes or the time it
takes for a node to process a message. Nodes in a system are assumed to be connected

Chapter 2. Background 8

by a network. In this subsection, some of the key characteristics of the algorithm are
described.

2.2.2.1 BFT

The algorithm provides both safety and liveness if at most n−1
3 nodes are faulty, where

n is the total number of nodes in the network. This means that in terms of BFT, PBFT
performs equivalently to Oral Message algorithm explained in 2.2.1 earlier.

2.2.2.2 SMR

PBFT follows a state machine replication approach, where each node maintains a
deterministic state machine and is called a replica. In other words, the algorithm
implements a deterministic replicated service with a state and operations. The state of
every replica contains the state of the service, the message log of messages that were
accepted by the replica and an integer value which indicates the number of the current
view, where view is a period during which the consensus is run under the same leader
node. All replicas process requests from clients and produce a result, ensuring that the
system remains consistent despite faulty nodes.

2.2.2.3 The Normal Case Operation and its Phases

Normal case operation is a state of the algorithm during which it is run under the same
leader node that is called primary (other nodes are called backup nodes). In short, the
algorithm can be described as follows.

1. A client sends a request to the primary node to start a service operation.

2. The primary node then sends the request to all the backup nodes.

3. All the replicas process the request and send their reply to the client.

4. Once the client receives replies from f + 1 different replicas, where f is the
number of faulty replicas, the consensus is reached.

In PBFT, this algorithm is split on three phases, which are pre-prepare, prepare and
commit.

Pre-prepare phase: The primary node sends the pre-prepare message to the backups.
Then each backup replica checks the received data and if it is correct, it accepts the
message and hence enters the prepare phase.

Prepare phase: Each replica that has received a pre-prepare message, sends a prepare
message to all other replicas. If that prepare message is valid, replicas accept it and
enter the commit phase.

Commit phase: Each replica that has received a prepare message, sends a commit
message. If that commit message is valid, replicas execute the operation mentioned in
message m and send the response to the client.

The Figure 2.3 displays the whole normal case operation of PBFT. Note that in this
example, replica 0 acts as the primary node, while replica 3 is being a faulty node.

Chapter 2. Background 9

Figure 2.3: Normal Case Operation of PBFT [Figure 1, [6]]

2.2.2.4 View-Change Phase

View-change phase is the state of the algorithm during which the role of the primary
node is assigned to a former backup node. This mechanism is executed in order to
guarantee liveness in case the previous primary node fails.

The view-change process is triggered by the timeouts. If a timer run by a backup replica
detects a timeout, this replica broadcasts the view-change message to all other replicas,
which initiates the view-change process. Then the new primary node is determined.

2.2.2.5 Communication Complexity

PBFT has a communication complexity of O(n2), where n is the number of nodes in the
network. This is because each node has to communicate with every other node during
the prepare and commit phases. This makes the algorithm not highly scalable, since its
performance can degrade with an increase in the number of nodes.

2.2.2.6 Heritage

The hype around the blockchain technology has increased the demand for consensus
algorithms, as they could be used as blockchain protocols. Hence, a lot of consensus
algorithms have emerged under PBFT’s influence in the recent years, such as BFT-
SMaRt[3], HotStuff[31], SBFT[13], Tendermint[4] and others. In this project, the focus
is on BFT-SMaRt and HotStuff.

2.2.3 BFT-SMaRt

BFT-SMaRt is an open-source Java-based library implementing robust BFT SMR that
was introduced by Alysson Bessani, João Sousa and Eduardo E. P. Alchieri in 2014
[3]. The library was introduced to provide an improved SMR-based solution with the
aim to outperform the existing solutions such as PBFT algorithm described in 2.2.2.
Similarly to PBFT, the algorithm implemented by the library follows a SMR approach
and provides both safety and liveness if at most n−1

3 nodes are faulty, where n is the
total number of nodes in the network.

The algorithm assumes a partially synchronous network model, which means that the
system transitions from an asynchronous phase, where there are no bounds on message
delays or processing times, to a synchronous phase, where messages are delivered

Chapter 2. Background 10

within known time bounds. The transition happens at an unknown point in time called
Global Stabilization Time (GST). In this subsection, some of the key characteristics of
the algorithm are described.

2.2.3.1 Modularity

While PBFT implements a monolithic protocol by embedding the consensus algorithm
inside the SMR, BFT-SMaRt implements a modular SMR protocol. Modular protocols
are easier to implement and reason about and this approach does not affect the perfor-
mance in any way. Figure 2.4 shows how the functionality of the library can be divided
on modules, where modules that are relevant to each other communicate.

Figure 2.4: The modularity of BFT-SMaRt [Figure 1, [3]]

2.2.3.2 Mod-SMaRt

Mod-SMaRt is a modular protocol that implements BFT SMR using underlying consen-
sus primitive in order to achieve total order multicast, which means it is ensured that
messages are delivered to all nodes in the same order. Total order is achieved through a
sequence of consensus instances, which are implemented in a way similar to PBFT. The
normal case operation consists of three communication steps that are called propose,
write and accept, which correspond to the three phases in PBFT: pre-prepare, prepare
and commit respectively. Figure 2.5 displays the normal case operation of Mod-SMaRt.

Figure 2.5: Normal Case Operation of BFT-SMaRt [Figure 2, [3]]

Chapter 2. Background 11

The view-change phase is implemented within Mod-SMaRt and is called a synchronisa-
tion phase. During this phase, besides the change of the leader node, the replicas are
forced to switch to the same consensus instance, which can make some replicas trigger
the state transfer protocol.

2.2.3.3 The State Transfer Protocol

The state transfer protocol makes sure that the replicas get repaired and reintegrated
into the system without restarting the whole replicated service, in order to implement
a practical state machine replication. It also recovers the whole system in case more
than f replicas became faulty due to a sequence of correlated failures. The protocol is
implemented in a separate module between the replication protocol and the application,
without making any impact on the consensus protocol.

2.2.3.4 Reconfiguration

Unlike PBFT, BFT SMaRt provides an additional protocol that that enables replicas to
be added or removed from the system during the execution. The protocol is implemented
in a separate module that is denoted as Reconfig in Figure 2.4. The process can only be
started by system administrators running a View Manager client. The protocol improves
the flexibility and adaptability of the system to Byzantine faults.

2.2.3.5 Evaluation

The communication complexity of BFT-SMaRt is the same as of PBFT. Namely, it is
O(n2), where n is the number of nodes in the network. This is because, in terms of
communication, BFT-SMaRt follows the same steps as PBFT. However, it is worth
noting that BFT-SMaRt uses such concept as Multi-core awareness, which means that a
multi-core architecture of servers is used to scale the throughput of the system. This
optimisation, combined with the use of the reconfiguration protocol, improves the
overall performance of BFT-SMaRt in comparison to PBFT.

2.2.4 Basic HotStuff

Basic HotStuff is a consensus algorithm proposed by Maofan Yin, Dahlia Malkhi,
Michael K. Reiter, Guy Golan-Gueta, and Ittai Abraham in 2018 [31]. The introduced
algorithm was the first consensus algorithm to provide linear view change and optimistic
responsiveness. Similarly to PBFT and BFT-SMaRt, the algorithm follows a SMR
approach and provides both safety and liveness if at most n−1

3 nodes are faulty, where
n is the total number of nodes in the network. Similarly to BFT-SMaRt, Hotstuff
assumes a partially synchronous network model. In this subsection, some of the key
characteristics of the algorithm are provided and described.

2.2.4.1 Cryptographic Primitives

Basic Hotstuff makes use of such concept as threshold signatures [26]. A threshold
signature is a type of digital signature scheme that allows a group of participants, or

Chapter 2. Background 12

nodes, to generate a single signature for a given message. A (k,n)-threshold signature
scheme is used by the algorithm, where k = 2 f +1 for f faulty replicas and n is the total
number of replicas in the network. Each replica in the network holds the same public
key and a private key, that is unique for each replica. If there are at least k replicas, each
of which contribute a partial signature, then these k partial signatures can generate a
complete signature that can be verified by using a public key.

2.2.4.2 Communication Network

Unlike in PBFT or BFT-SMaRt, where each replica has to communicate to every other
replica in the network, in Basic Hotstuff every node communicates with other replicas
only through the leader node. In other words, the algorithm uses a star network setup
instead of the mesh network setup, used by previously mentioned algorithms.

2.2.4.3 Linear view change

In Basic Hotstuff, the view change is merged into the normal case operation in order
to reduce the communication complexity. Instead of changing the leader node in the
case of its failure, as it happens in PBFT and BFT-SMaRt, the algorithm uses a rotating
leader paradigm, which means that the leader replica is changed every three rounds.
This allows to achieve a linear view change.

2.2.4.4 Optimistic Responsiveness

Another innovation introduced by Basic Hotstuff is the optimistic responsiveness. Once
the new leader replica is determined, it has to wait for only n− f responses to be able
to guarantee that its proposal will progress after GST, where n is the total number of
nodes and f is the number of faulty nodes.

2.2.4.5 Communication Operation

The communication of Basic Hotstuff consists of four phases, which are prepare,
pre-commit, commit and decide.

Prepare phase. First, each replica sends a new-view message with the highest prepare
Quarum Certificate (QC) that it has received. A Quarum Certificate is a collection of
(n− f) votes over the leader proposal. The leader receives the messages and chooses
prepare QC with the biggest view number. Then, the leader node attaches the data
received from the chosen QC to the prepare message and send it to other replicas.
Replicas then check received messages and if the safety requirements are met, they send
their prepare votes with partial signatures to the leader.

Pre-commit phase. Once the leader replica receives the prepare votes, it combines them
into a prepare QC and then broadcasts it to all other replicas in pre-commit messages.
Replicas then check received messages and if the safety requirements are met, they send
their pre-commit votes with partial signatures to the leader.

Commit phase. Once the leader replica receives the pre-commit votes, it combines them
into a pre-commit QC and then broadcasts it to all other replicas in commit messages.

Chapter 2. Background 13

Replicas then check received messages and if the safety requirements are met, they send
their commit votes with partial signatures to the leader.

Decide phase. Once the leader replica receives the commit votes, it combines them into
a commit QC and then broadcasts it to all other replicas in decide messages. This starts
the next view.

It is worth noting that there is also a Next view interrupt, which forces the system to
start the new view in case of a timeout.

2.2.4.6 Evaluation

The use of threshold signature scheme and rotating leader paradigm allows Basic
Hotstuff to reduce its complexity to O(n), which is a better performance in comarison
to PBFT and BFT-SMaRt. However, it is important to note that in order to simplify the
leader replacement process, another phase had to be added to each view. Therefore, the
best-case latency, which is the number of round trips needed to commit a transaction
after GST assuming an honest leader node, has been increased to three round trips. In
comparison, the best-case latency for both PBFT and BFT-SMaRt is two round trips.
However, as claimed in [31], Basic Hotstuff is able to achieve comparable latency and
much higher throughput than BFT-SMaRt.

2.3 Internet of Things

The term “Internet of Things” (IoT) was first used in 1999 by British technology
pioneer Kevin Ashton to describe a system in which objects in the physical world
could be connected to the Internet by sensors[22]. Since then, the term generally
refers to scenarios where network connectivity and computing capability extends to
objects, sensors and everyday items not normally considered computers, allowing these
devices to generate, exchange and consume data with minimal human intervention [IoT
Definitions, [22]].

Nowadays, most of the IoT solutions rely on a server-client paradigm[12]. However,
new challenges that are arising with the IoT growth increase the demand for the new,
alternative paradigms. Some experts claim that the most promising paradigm would
be the one where decentralized architectures are involved. For instance, there was a
proposal to use decentralized architectures in order to create large Peer-to-Peer Wireless
Sensor Networks [27, 1, 17]. Figure 2.6 shows the evolution of IoT from centralized
mainframe architectures to open-access cloud-centered architectures, also proposing
the model for the future - decentralized architectures, where the cloud functionality is
distributed among multiple peers.

An IoT solution must be reliable in terms of privacy and security, which was not the
case with the Peer-to-Peer Wireless Sensor Networks. It was then realized that the
blockchain technology could be used to improve those factors and, hence, perfect the
potential future model for IoT. Then, the Blockchain-based IoT (BIoT) architectures
were introduced.

Chapter 2. Background 14

Figure 2.6: Past, present and future IoT architectures. [Figure 1, [12]]

Blockchain-based IoT can be applied in many areas [12]. Figure 2.7 shows some of the
most relevant fields. In this project, the focus is on BIoT application in management of
EV sharing systems.

Figure 2.7: BIoT applications. [Figure 4, [12]]

Chapter 3

Related Work

Currently, there exists a number of blockchain-based solutions for sharing management
of vehicles of different kinds. Some of the solutions specialise on EV sharing in
particular. In this chapter, a collection of a few projects is described.

Helbiz is an Italian-American company that provides an EV-sharing platform. The
platform mostly provides electric bicyles and scooters and works very similar to such
EV-sharing platforms as Lime, Voi or Bird, except that it uses blockchain technology.
The idea behind the platform was to create a sustainable transportation ecosystem, in
which users pay using a platform’s own ERC-20 [29] called HBZ. It is also worth
mentioning that users get rewarded with HBZ tokens if they provide the data about their
driving, which is then passed to insurance companies.

Another interesting project introduced in 2017 is DAV (Decentralized Autonomous
Vehicles) [9]. DAV is a blockchain-based platform that connects autonomous vehicles,
potential users and service providers, such as owners of charging stations. The plat-
form operates on Ethereum blockchain, which uses Proof of Stake (PoS) consensus
mechanism [23]. Transactions in the system are made with DAV token, however some
services in the network can be purchased with virtual Ethereum-based tokens. When
users that own a vehicle or a charging station get rewarded with DAV tokens if they
provide it to other users in the network.

Also it is worth mentioning a project that is called HireGo [16]. HireGo provides a
decentralised, peer-to-peer marketplace that allows its users to lease their vehicles. The
application is built on Ethereum and uses its own HGO tokens, which are ERC-20
standard tokens. The application consists of three smart contracts, the first of which is
used to get HGO tokens, the second one is used to get a ERC-721 token [11] which is
a token needed to unlock the vehicle, and the last one is a rental contract. The rental
contract acts as a middle man between users and vehicle owners. The HGO tokens
sent by a user and the unlocking token sent by the vehicle owner get locked until for
a certain period of time. This is done to ensure that the exchange is made at the same
time and hence makes the process more secure.

A good example of a blockchain-based car-sharing platform is proposed in a paper
published by Viktor Valaštı́n, Kristián Košt’ál, Rastislav Bencel and Ivan Kotuliak

15

Chapter 3. Related Work 16

in 2019 [28]. The application is built on top of Ethereum blockchain and uses two
different tokens, a fungible ERC-20 token and a non-fungible ERC-721 token, where
the first token represents car asset and second is the Unlock token that will be needed to
unlock the car. The platform provides client-to-client, business-to-client and business-to-
business solutions. Figure 3.1 shows the user interaction with the system. First, the user
chooses the car, rental period and the preferred currency. The application exchanges the
money of the user to ETH and then the user gets an Unlock token through an interaction
with the smart contract. When user requests an access to the car by providing the
Unlock token, the IoT device in the car validates the token by communicating with the
blockchain network.

Figure 3.1: Graphic representation of our solution [Figure 4, [28]].

In 2020, Qihao Zhou, Zhe Yang, Kuan Zhang, Kan Zheng and Jie Liu proposed a
decentralized car-sharing control scheme [32] that is based on blockchain and smart
contracts. The proposed decentralised architecture consists of three components, which
are terminals, base stations and a cloud server. Terminals consist of three types of
entities, such as owner, tenant and vehicle. Base stations represent an Ethereum private
chain that replaces a centralized third-party server. The cloud server is responsible for
application operations, mainly user registration and management. Figure 3.2 displays
the architecture of the system.

Figure 3.2: System architecture with the proposed control scheme for car sharing [Figure
2, [32]].

Chapter 4

System Model

4.1 Scenario and Requirements

In this chapter, a blockchain-based electric vehicle (EV) sharing model designed to
address the challenges of sustainable urban transportation, is described. The model was
designed to provide a Business-to-Consumer (B2C) solution. Therefore, the entities
involved are EV sharing companies and its customers. The software platform connects
companies that own electric vehicles with individuals who need access to a vehicle. A
user can book a vehicle through the platform, then get an access to the vehicle and then
leave it at one of the offices of the company.

It is important that the designed model meets certain requirements. Firstly, since the
platform is blockchain-based, it is expected to be secure, transparent and decentralised.
Using the advantages of a blockchain system, the platform must ensure secure and
transparent transactions, protecting user data and preventing fraud or malicious activities.
Secondly, the model must show good scalability. The platform must be able to handle
an increasing number of users and transactions, as the system grows.

Thirdly, the platform must be accessible and easy to use. Anyone should be able to get
an access to it through the internet or by downloading a certain software. The GUI of
the system must be intuitive and clear to any potential user.

Also it is important that the interoperability requirement is met. Since it is assumed that
the platform operates in an areas with all the necessary infrastructure, it must be ensured
that the platform is aware of and is compatible with various types of electric vehicles,
as well as it keeps track of the charging stations in the areas and can communicate with
them.

4.2 Design Principles

In order to make the system secure, transparent and decentralised, it was connected to
a Fabric blockchain described in Section 2.1.3. The fact that Fabric is a permissioned
blockchain makes the system more scalable. Since the number of nodes required to

17

Chapter 4. System Model 18

maintain consensus is reduced, transactions can be executed faster and the throughput
increases. Also, the system was developed to run on three different consensus mecha-
nisms, which are BFT-SMaRt, Linear BFT-SMaRt and the Hotstuff-inspired version
of BFT SMaRt, which also improves the scalability and efficiency of the system since
those mechanisms can be optimised for specific needs of the platform. The use of a
permissioned blockchain also allows to optimise the performance of the system by
tuning such blockchain parameters as block size and transaction fees. Also it is worth
noting that in a permissioned blockchain it is possible to control data visibility and
implements privacy features. This makes the data processing more efficient, as well as
it allows a better managing of sensitive data, which results in a better user experience.

4.3 Use Case of the Model

The workflow of the model can be described in the following steps.

1. Vehicle registration and identity verification. Vehicle owners register their
EVs on the Fabric-based platform, providing vehicle information and proof of
ownership. The platform verifies the vehicle identity and ownership using smart
contracts and stores the vehicle information on the distributed ledger.

2. User registration and verification. Users register on the platform and undergo
identity verification to ensure they meet the minimum age and driving license
requirements. The platform also verifies user identity using smart contracts and
stores the user information on the distributed ledger.

3. Vehicle booking and payment. Users can browse available vehicles on the
platform, select a vehicle, and make a deposit payment using fiat currency or
cryptocurrency. The payment is processed through a payment gateway integrated
with the Fabric platform, and the payment information is stored on the distributed
ledger using smart contracts.

4. Vehicle access and usage. Vehicle access is managed through a secure mobile
app provided by the platform. The app grants the user access to the vehicle and
provides information about status, location, and battery level of the vehicle. The
vehicle usage information is stored on the distributed ledger using smart contracts,
which also record the time and location of vehicle usage.

5. Payment and settlement. At the end of the rental period, the platform automat-
ically calculates the rental fee based on the usage time and distance. Payment
is executed using fiat currency or cryptocurrency, and the payment information
is stored on the distributed ledger using smart contracts. A portion of the fee is
automatically deducted for maintenance and repair services.

6. Maintenance and repair. The platform manages maintenance and repair services
for the shared vehicles, including battery replacement, tire replacement, and
general maintenance. Funds for maintenance and repair are managed through a
common pool, with vehicle owners and users contributing based on usage time
and vehicle performance. The maintenance and repair information is stored on
the distributed ledger using smart contracts.

Chapter 4. System Model 19

EV sharing application

Customer EV sharing company

Vehicle
registration

User
registration

User
verification

<<include>>

<<extend>>

Vehicle
booking and

payment

Vehicle
access and

usage

Payment and
settlement

Maintenance
and repair

Dispute
resolution

Reporting
and analytics

<<include>>

Vehicle
identity

verification

Figure 4.1: The model’s use case diagram

7. Dispute resolution. In case of disputes, the platform provides a transparent
and decentralized mechanism for dispute resolution, using smart contracts to
enforce dispute resolution rules. The dispute resolution information is stored on
the distributed ledger for transparency and auditability.

8. Reporting and analytics. The platform generates reports and analytics on
vehicle usage, maintenance and repair costs, and revenue generated from rental
fees. These reports and analytics are available to all stakeholders on the platform
for transparency and decision-making.

Figure 4.1 shows the use case diagram for the model.

Chapter 5

System Design

5.1 System Architecture Overview

The designed system can be divided on four components - communicators, which are
users, vehicles and an EV sharing company, an application which provides a User
Interface (UI) such that communicators can send requests, a blockchain network which
stores the logged data, and a consensus mechanism under which the blockchain network
runs. Note that an EV is also a communicator in the system, since it has a built-in IoT
device which sends data to an application backend.

After an application backend receives and processes a request sent from communicators
through the UI (or directly in case it is EV), it creates a transaction and sends it to the
blockchain network. The blockchain then validates the transaction and executes a smart
contract that corresponds to the request. Then, the transaction is added to the candidate
block which is then validated with the use of a consensus mechanism, which makes
sure that the nodes in the network agree on accepting the block. Eventually, if the block
is valid, it is appended to the blockchain. The blockchain network also sends updates
to the application backend, which is then passed to communicators through the UI or
directly to the EV. Figure 5.1 illustrates the operation flow within the system.

5.2 Application Design

The application for the system consists of two parts - backend/API and UI. Through UI
users and vehicle owners send their requests, that are later processed by the backend.
The backend processes requests from UI or from IoT devices in the EVs and sends them
to smart contracts. It also provides feedback from the blockchain to the EVs and to UI,
so that users could see it.

5.3 Blockchain Design

It was chosen to use the Hyperledger Fabric blockchain network, since it is a private
permissioned blockchain, which means only the users who has a special permission

20

Chapter 5. System Design 21

Request/UpdateReq
uest

/Up
date

Request/Update

UserEV
company

Transaction

Block
Consensus
Mechanism

Block
FormationSmart

Contracts

Validation
Request

Outcome

Update

Blockchain

Update

Figure 5.1: Operation flow in system architecture

would be able to join and act in it. A potential user would first need to register and buy
a custom token to be able to interact with the system further.

Also, Fabric is a suitable choice since it allows any consensus mechanism to be plugged
into it (Figure 5.2), and three consensus mechanisms are considered for the use. A cer-
tain algorithm might be chosen to be plugged based on the current needs for the system.
Generally, modular architecture of Fabric allows to configure various components such
as smart contracts and consensus mechanisms, which is a useful feature.

5.4 Consensus Design

As mentioned earlier, the system is meant to function under the three different consensus
mechanisms, which are BFT-SMaRt, Linear BFT-SMaRt and the Hotstuff-inspired
version of the BFT-SMaRt. An overview of the BFT-SMaRt has already been given in
Subsection 2.2.3. In this section, the other two consensus mechanisms are described.
The implementations of both Linear BFT-SMaRt and the Hotstuff-inspired version of
the BFT-SMaRt were provided as testbeds for this project.

Chapter 5. System Design 22

Consensus
Spot

Linear BFT-
SMaRt BFT-

SMaRt

Hotstuff-
inspired BFT-

SMaRt

Figure 5.2: Pluggable Consensus in Fabric Blockchain

5.4.1 Linear BFT-SMaRt

Linear BFT-SMaRt was implemented by Meng Kun in his Master’s Thesis. The goal
was to modify the original BFT-SMaRt library by mainly integrating the Practical
Threshold Signatures scheme [26] into the consensus mechanism in order to achieve
linearity in normal case operation.

5.4.2 Hotstuff-inspired Linear BFT-SMaRt

A consensus mechanism that in this report is referred to as Hotstuff-inspired BFT-
SMaRt is a modification of BFT-SMaRt described in [7]. The key difference is that in
Hotstuff-inspired BFT-SMaRt the view-change operation is merged with the normal
case operation in the same way it is done in Basic Hotstuff, a consensus mechanism
described in Subsection 2.2.4.

It is important to note that Hotstuff-inspired BFT-SMaRt is not completely equivalent
to the Basic Hotstuff, since it is built on and hence inherits some features of the original
BFT-SMaRt. However, the difference is not significant and the performance of the
algorithm is not affected.

5.4.3 Comparison of the Consensus Mechanisms

Consensus Best-case Normal-case View-Change View-Change
Mechanisms Latency Communication Communication Responsive

BFT-SMaRt 2 O(n2) O(n2) yes
Linear BFT-SMaRt 2 O(n) O(n2) yes

Hotstuff-inspired BFT-SMaRt 3 O(n) O(n) yes

Table 5.1: Performance comparison of the three consensus mechanisms

Table 5.1 displays the comparison of the three mentioned consensus mechanisms based
on different performance characteristics. As illustrated, Linear BFT-SMaRt improves

Chapter 5. System Design 23

the performance of the original BFT-SMaRt achieving linear complexity in the normal-
case operation, however the view-change process is still O(n2). Hotstuff-inspired BFT-
SMaRt achieves a linear complexity for both normal-case and view-change processes,
however it pays for that the same price that Basic Hotstuff does, which is having
one more round trip than previously described consensus algorithms, which worsens
the best-case latency. It is also worth noting that all the algorithms are view-change
responsive.

Chapter 6

Implementation

The tool described in this section was implemented in order to simulate the system
proposed in chapters 4 and 5.

6.1 Overview of the Implementation

The tool was implemented as a package which was added into three libraries that
implement the three consensus mechanisms, which are original BFT-SMaRt, Linear
BFT-SMaRt and Hotstuff-inspired BFT-SMaRt. For each of the three consensus mecha-
nisms, separate GitHub repositories were created. It is important to note that for the
original BFT-SMaRt, the stable branch 1.2 was downloaded from the official github
repository cite repo instead of the master branch, since Gradle was not required to build
the project when using the code from the stable branch, which means that the configu-
ration for the original BFT-SMaRt library is the same as for the other two consensus
libraries.

The package, in which the tool was implemented, was placed into the demo folder,
alongside with other programs that demonstrate how a consensus mechanism is run.
The design of the tool inherited the key design features of the other programs in the
demo folder. The tool partially consists of four java files, which are responsible for
client-server communication. These files are EVInteractiveClient, EVclient, EVserver
and EVRequestType. The functionality of these files can be described as follows.

The EVInteractiveClient file implements a class of the same name which is responsible
for interaction with the user of the tool. It presents options to the user and, based on the
choice of the user, takes all the necessary input from the user and calls a function from
the EVclient file that matches the request of the user.

The EVclient file implements an eponymous class which contains functions that corre-
spond to options in the EVINTERACTIVECLIENT class. The constructor of the class
takes the current client id and creates an object of SERVICEPROXY class from the tom
package, that is responsible for total order multicast. In every function, BYTEARRAY-
OUTPUTSTREAM and OBJECTOUTPUT objects are created (except the CLOSE function
which is responsible for terminating the execution if such option was chosen in the

24

Chapter 6. Implementation 25

EVINTERACTIVECLIENT). The OBJECTOUTPUTSTREAM was used to write in and
then flush the request type that corresponds to the function and parameters that were
passed to the function. It is worth mentioning that all the request types are listed in the
enum EVREQUESTTYPE that is implemented in a file of the same name, where each
request type correspond to an option in the EVINTERACTIVECLIENT. Then, a function
calls the INVOKEORDERED function of SERVICEPROXY class. This function takes a
byte array and sends ordered requests to all replicas, hence starts interacting with the
EVSERVER class.

The EVSERVER file implements the class EVSERVER that extends the DEFAULTSIN-
GLERECOVERABLE class, which is a class that provides a basic state transfer protocol.
The constructor of the class initialises a replica based on the passed ID value and a
logger that is used to log messages, as well as creates two HASHMAP objects that
store information about registered users and registered vehicles using user or vehicle
ID as a key. It then creates an EVSERVER object in the MAIN function. The class also
overrides two methods of the DEFAULTSINGLERECOVERABLE class. The APPEXECU-
TEORDERED function executes operations which have to be ordered first or, in other
words, that require a consensus to be reached prior to their execution. The APPEXE-
CUTEUNORDERED function executes operations which do not require consensus to be
reached. Since all the functionality of the tool require a consensus to be reached, all
the operations were implemented in the APPEXECUTEORDERED function while the
APPEXECUTEUNORDERED function was not used and returns null. In the APPEXE-
CUTEORDERED function, the request type and other data received from a client, and
then a certain option is executed based on the request type. After processing one of the
options, the function returns a reply, which is a byte array message.

Eventually, a function in EVCLIENT class receives the reply and if it is empty returns
null. Otherwise, it creates an object of BYTEARRAYINPUTSTREAM based on the reply
and an object of OBJECTINPUTSTREAM, that are used to read out what was returned
by replicas and then pass the reply to the EVINTERACTIVECLIENT. The result is then
printed in EVINTERACTIVECLIENT.

The tool also contains other three files, namely User, Vehicle and Quartet. User
and Vehicle files implement eponymous classes that contain parameters and methods
necessary to represent users and vehicles in the system.

The USER class contains such fields as USERID, USERBALANCE, IDSOFVEHICLE-
SUSED and CURRENTVEHICLEACCESSCODE. USERID stores an ID of the user, which
is a 9 digit numerical String value, and USERBALANCE stores a float value that repre-
sents the balance of the user. IDSOFVEHICLESUSED is an ArrayList that stores vehicle
IDs of all the vehicles used by the user and is initially empty. CURRENTVEHICLEAC-
CESSCODE stores an access code to the vehicle that is currently booked or used by the
user, initially it is an empty String. All the fields are initialised in a constructor and
have corresponding getter and setter methods.

The VEHICLE class contains such fields as VEHICLEID, VEHICLEACCESSCODE, VE-
HICLEOWNERBALANCE, ISAVAILABLE, CURRENTUSERID, DEPOSITPRICE, VEHI-
CLEPRICEPERHOUR, VEHICLEPRICEPERKM, VEHICLEREPAIRPERCENTAGEOFFEE

and IDSOFUSERSTHATUSEDVEHICLE. VEHICLEID and CURRENTUSERID store an

Chapter 6. Implementation 26

ID of the vehicle and an ID of the user that is currently using the vehicle respectively,
which are 9-digit numerical String values. VEHICLEACCESSCODE stores an access
code for the vehicle that is randomly generated. ISAVAILABLE stores a boolean value
that indicates if a vehicle is currently available and is initially true. VEHICLEOWNER-
BALANCE and DEPOSITPRICE store float value for the balance of the owner of the
vehicle and an integer value to indicate the deposit price to be paid when the vehicle
is booked, respectively. VEHICLEPRICEPERHOUR and VEHICLEPRICEPERKM store
integer values that indicate a price per each hour and a price per each kilometer respec-
tively. IDSOFUSERSTHATUSEDVEHICLE is an ArrayList that stores user IDs of all the
users that have used the vehicle and is initially empty. Finally, VEHICLEREPAIRPER-
CENTAGEOFFEE stores an integer value that represents a percentage of deposit price
that is automatically deducted for maintenance and repair services when a vehicle gets
booked. All the fields are initialised in a constructor and have corresponding getter and
setter methods.

The file Quartet implements an eponymous helper-class that creates a tuple of four
elements, each of which can be of any data type. It was chosen to implement this class
from scratch, since surprisingly it was hard to find a java library that implements such a
data structure. Considering the fact that the class has a very basic functionality, it was
faster to implement it from scratch rather than importing third-party libraries.

It is also worth mentioning that the User, Vehicle and Quartet files were serialized, which
has solved a problem with getting IOEXCEPTION and CLASSNOTFOUNDEXCEPTION.
Since functions in EVCLIENT has used byte streams and had to deal with objects of
custom classes, these classes had to be serialized to convert states of the objects into
byte streams.

An important note to add is that all random numbers were generated using a RANDOM

object from JAVA.UTIL.RANDOM library, since it allows to create random seeds when
generating random numbers. Hence, the same random numbers will be generated within
each seed in every program execution. This was very important for the evaluation part
of the project, since it has allowed to use the same numbers when the tool was tested
under different consensus mechanisms.

6.2 Implementation of the Use Case

The eight procedures described in the Section 4.3 were compressed into five commands
that could be inputted through the console. A user of the tool can pick one of those
commands or options, which are register a vehicle, register a user, book a vehicle,
return a vehicle, and dispute.

If register a vehicle option is chosen, the program asks to provide the ID of the vehicle,
the balance of the owner of the vehicle, the deposit price, price per hour, price per
kilometer and a percentage of the deposit price, which is a maintenance and repair
fee. Based on those values, a Vehicle object is created which is then passed to the
REGISTERVEHICLE function of EVCLIENT class, from where it is passed to the servers,
as described in the previous section. If the vehicle is already registered, a server decines

Chapter 6. Implementation 27

this operation by sending a negative reply. Otherwise, the reply is positive and the
Vehicle object gets appended to the VEHICLESREGISTERED HashMap.

An option register a user is executed in an almost identical fashion to register a vehicle
option. The only difference is that the tool user is asked to input the User ID and the
initial account balance of the user, after which a User object is created and is passed to
the REGISTERUSER function of EVCLIENT class. Then it is passed to servers, and if the
reply is positive, this User object gets appended to the USERSREGISTERED HashMap.

If book a vehicle option is chosen, the program ask to provide a user ID and a vehicle ID
of the vehicle to book, and passes them to the BOOKVEHICLE function of EVCLIENT

class, where an ABSTRACTMAP.SIMPLEENTRY object is created to represent a pair of
the two ID values and is passed to the servers. If both user and vehicle are registered and
the vehicle is available, a server updates the details of both user and vehicle by changing
the appropriate values of the fields in the objects stored in VEHICLESREGISTERED and
USERSREGISTERED that correspond to the passed IDs. A transaction is simulated by
subtracting the deposit price value from the user balance and adding that value to the
balance of the owner of the vehicle. Then a positive reply is returned by servers.

In case of return a vehicle option, a tool user is asked to provide a user ID, a Vehicle
ID, the time in hours for how long the vehicle was used and the distance that the user
drove for in kilometers. Both time and distance are represented by float variables. The
four values are passed to the RETURNVEHICLE function of EVCLIENT class, where
an object of QUARTET class is created to store the values. This object is then passed
to the servers. If a vehicle with such vehicle ID is registered and the user ID provided
corresponds to the user ID of the current vehicle user, the vehicle price is calculated by
the following formula:

price = pricePerHour ∗ time+ pricePerKm∗distance−depositPrice+

+
percentageFee∗ (pricePerHour ∗ time+ pricePerKm∗distance−depositPrice)

100
Then, it is randomly determined if the vehicle needs repair. If it does, an additional
repair cost, which is also randomly generated, is added to the final price. For simplicity,
it was decided to generate an additional repair cost such that it lies in a range between
the deposit price of the vehicle and that price multiplied by two. After the final price
is determined, it is subtracted from the balance of the user and added to the balance
of the vehicle owner, which simulates a transaction. Then, all the necessary fields of
vehicle and user objects are updated or initialised, and re-stored in the corresponding
HashMaps. Then, servers return a positive reply.

If dispute option is chosen, a tool user is asked to provide a user ID and a Vehicle ID
of the vehicle that was used, and passes them to the DISPUTE function of EVCLIENT

class, where an ABSTRACTMAP.SIMPLEENTRY object is created to represent a pair of
the two ID values and is passed to the servers. If both user and vehicle are registered,
as well as the user ID is stored in the history of users of the vehicle and vice versa, an
outcome of the dispute is randomly generated. If the outcome is positive, the user gets
a compensation. For simplicity, it was assumed that the compensation is a refund that is
equal to the deposit price of the vehicle. Then the compensation is subtracted from the

Chapter 6. Implementation 28

balance of the owner of the vehicle and added to the balance of the user. Then, objects
and the corresponding HashMaps are updated. If the outcome of the dispute is negative,
there are no changes made. Eventually, a positive reply is returned by servers.

It is important to note that several major assumptions were made for the sake of
simplicity of the simulation. Firstly, it was assumed that users of the system is honest.
For instance, it is assumed that users inputs true values for usage distance and time
when returning a vehicle or that a user does not select the dispute option if they already
got the compensation. Secondly, it was assumed that both users and owners of vehicles
have enough money to make transactions, since it would have required a lot of extra
functionality to be implemented, while making a tool more complex was not the goal of
the project. Thirdly, the program does not handle all the cases of an incorrect input to
the console, since the goal was to simulate the system and hence it was expected that a
user knows the format of the input and does not make mistakes. Lastly, the prices are
given in pounds, hence it is assumed that the system uses fiat currency for transactions,
however the choice of currency is purely conditional and can be substituted with any
other currency, since this is just a simulation and no real transactions take place. As a
potential extension, a token could be introduced, as well as functionality to enable users
buy these tokens to then use them as an internal currency.

6.3 Running and Testing the Tool

As metioned earlier, the tool was designed to be plugged into each of the consensus
libraries. In order to run the tool within each consensus library locally, configurations
in the Intellij IDE were edited as follows. Firstly, four configurations were added as
applications, each of which ran an EVSERVER class and hence simulated the behaviour
of replicas. It is important to note that the tool can be run on a bigger number of replicas,
and hence more applcications could be added. Each EVSERVER application was given
a number from 0 to 3 as a program argument. Then, a compound was also added as a
configuration to run all EVservers one after another with just one click. Finally, another
application was added as a configuration to run the EVINTERACTIVECLIENT class,
which was given a nominal client ID 1001.

Since the tool is not complex, it was not hard to test all the possible scenarios by
interacting with the tool. It was made sure that during the interaction that all the IF

statements were triggered and that the program handles all the edge cases that it was
designed to handle.

Chapter 7

Performance Evaluation

7.1 Experiment Design

The design of the experiments was inspired by the code written in the benchmark pack-
age, which was used to measure the latency of the consensus algorithm when two trivial
operations, put or get, are executed. All the necessary experiment functionality was
implemented in EVThroughputLatencyClient and EVThroughputLatencyServer files,
which were placed into the EVsharing folder along with the tool implementation files.
The idea can be explained as follows. The implemented EVTHROUGHPUTLATENCY-
CLIENT class was designed to substitute EVINTERACTIVECLIENT and EVCLIENT

classes by generating random data and randomly choosing an option instead of asking
a user to provide an input, and then to take latency measurements. The EVThrough-
putLatencyServer class was designed to follow almost the same functionality as the
EVSERVER class, but also to have some extra functionality to make throughput mea-
surements.

The EVTHROUGHPUTLATENCYCLIENT class consists of the public MAIN function
and a private helper class CLIENT. The MAIN function takes in the parameters of
the class, namely the number of clients, number of operations per client and the
size of the request, and then creates a Client object for each client and processes
each client in a separate thread. It also generates a random seed, such that in every
execution generated random values are the same, so that there is no bias when testing
for different consensus algorithms. The helper CLIENT class consists of a constructor,
the RUN function and the same functions that were implemented in the EVCLIENT

class which correspond to use-case options. The constructor of the class initialises
the fields using the passed parameters, as well as creating a new SERVICEREPLICA

object and setting the timeout to 100 seconds. The RUN function generates a random
option number and executes it for every operation. It also times each option execution
using SYSTEM.NANOTIME() method and then calculates the average latency once
all operations were processed. Every option follows the same functionality as in
EVINTERACTIVECLIENT and EVCLIENT classes for the tool implementation described
in Section 6.1, except that the values are randomly generated instead of being inputted
by a user.

29

Chapter 7. Performance Evaluation 30

The EVTHROUGHPUTLATENCYSERVER class was implemented in an almost identical
way to the EVSERVER class, except that it keeps track of message senders and the
number of requests in the beginning of the APPEXECUTEORDERED function, as well
as times the execution of the function body. Those values are then used in the function
PRINTMEASUREMENT, which is called at the end of the APPEXECUTEORDERED

function. The PRINTMEASUREMENT function calculates an average and a maximum
throughput for every two seconds of the execution and prints a corresponding message.

Values for both vehicle and user IDs were generated as 9-digit numerical values. Values
for the balances of both users and owners of vehicles were generated in the range from
100 million to a billion to ensure that they have enough balance to make transactions.
The deposit price of a vehicle was generated in the range from a thousand to 10
thousands pounds. Both vehicle price per hour and vehicle price per distance were
generated in the range from 5 to 50 pounds. It was chosen to generate a percentage for
repair services of a vehicle in the range between 1 and 5 percent. Lastly, both the time
spent using a vehicle and distance driven using a vehicle were generated in the range
between 1 to 100 hours and kilometers, respectively.

7.2 Measurements and Analysis

7.2.1 Measurement Plan and Expectations

The aim was to observe how average throughput and latency of the three consensus
algorithms change with an increase in the amount of nodes in the network, as well
as for different request sizes, and compare the results. It was chosen to have three
options for the request size, which are 0, 128 and 1024 bytes, and the maximum
number of faulty replicas was set to 1, both as in the evaluation part in [31]. The
number of clients was chosen to be 1 and the number of operations per client was set
to 1000, making it 1000 operations in total. The number of clients, the number of
operations per client and a value for the request size were passed as arguments to a
created EVTHROUGHPUTLATENCYCLIENT application, which was run to simulate a
client and to measure average latency in milliseconds.

It was chosen to take the measurements for 4, 8, 16, 32 and 64 nodes. The replicas were
run by executing several compound configurations in Intellij, each of which consisted of
an amount of EVTHROUGHPUTLATENCYSERVER applications which corresponded to
one of the chosen number of nodes and measured the average throughput in operations
per second. It is worth noting that every time the tool was tested on different number of
nodes, the currentview file had to be deleted to refresh current view and the number of
servers had to be updated, as well as their IDs had to be re-listed in the system.config
file.

It was expected that latency would increase and the throughput would decrease with
an increase in the number of nodes, as well as with an increase in the request size,
for all the consensus algorithms. It was also expected that Linear BFT-SMaRt would
outperform the original BFT-SMaRt, while the Hotstuff-inspired version of BFT-SMaRt
was expected to outperform both Linear BFT-SMaRt and the original BFT-SMaRt in

Chapter 7. Performance Evaluation 31

terms of throughput. It was interesting to determine whether the Hotstuff-inspired
version of BFT-SMaRt would outperform the other two consensus mechanisms in terms
of latency too, even though its best-case latency parameter is equal to three round trips
(as it was shown in Table 5.1) which is bigger than in other algorithms.

7.2.2 Results

Since the laptop on which the experiments were run locally has appeared to be not
powerful enough to run experiments for 32 and 64 nodes, it was decided to take
measurements for 4, 8, 16 and 24 nodes. The results are presented in Figures 7.1, 7.2,
7.3 and 7.4.

As it was expected, the average throughput is decreasing and the average latency
is increasing with the increase in the number of nodes for all the algorithms and
request sizes. Also, at some point, Hotstuff-inspired BFT-SMaRt outperforms both
the original BFT-SMaRt and Linear BFT-SMaRt, even in terms of latency. Linear
BFT-SMaRt outperforms the original BFT-SMaRt in terms of latency for bigger number
of nodes, which also was expected; however, in terms of throughput, the two consensus
mechanisms perform roughly the same for a bigger number of nodes, which was not
expected. It is also remarkable how the original BFT-SMaRt outperforms the other two
algorithms for 4 nodes but then its performance worsens with an increase in the number
of nodes.

When the performance of each algorithm was tested for different request sizes, the most
interesting outcome to observe was that in almost all the cases algorithms performed
better with a non-zero request size, which was not expected. A potential explanation
to this is that the process of handling empty messages or requests consumes more
resources than normal processing of a non-zero requests. However, for very big request
sizes, algorithms would still be expected to perform less efficiently than for a 0 bytes
request size.

Chapter 7. Performance Evaluation 32

Figure 7.1: Performance comparison of the three consensus algorithms for different
request sizes.

Chapter 7. Performance Evaluation 33

Figure 7.2: How different request sizes affect the performance of BFT-SMaRt.

Figure 7.3: How different request sizes affect the performance of Linear BFT-SMaRt.

Figure 7.4: How different request sizes affect the performance of Hotstuff-inspired BFT-
SMaRt.

Chapter 8

Conclusion and Future Work

8.1 Achievements

In this project, a blockchain-based EV sharing management model was proposed and a
potential design of a system based on the model was introduced. A proposed system
provides a solution to EV sharing management which uses various advantages of
blockchain technology, which are decentralized architecture and transparency of the
system. A tool was then successfully designed and implemented in order to simulate
the functionality of the designed system. Lastly, several experiments were designed
and implemented to test the produced tool under the three consensus mechanisms: the
original BFT-SMaRt, Linear BFT-SMaRt and Hotstuff-inspired BFT-SMaRt.

During the execution of experiments, several results were obtained. It was determined
that Hotstuff-inspired BFT-SMaRt outperforms the other two algorithms for a bigger
number of nodes in terms of both average throughput and latency, as well as for various
request sizes. Also, it could be observed that the original BFT-SMaRt outperforms
Linear BFT-SMaRt for a smaller number of nodes, however, after roughly 16 nodes,
they perform similarly in terms of throughput and Linear BFT-SMaRt performs better
than the original BFT-SMaRt in terms of latency. Lastly, it could be seen that all three
algorithms overall perform better when the request size is non-zero but not very large,
than when the request size is zero.

8.2 Limitations

Most of the limitations of this project come from the time constraint. Too much time
was spent on a research of the consensus libraries. As a result, there was no time
to implement a more advanced version of the developed tool. For instance, if there
was more time available, a more complex backend could be developed and linked to
an existing blockchain, as well as some frontend could be implemented. Also, an
evaluation part of the project is limited to testing the overall operation in terms of
throughput and latency with only one varying parameter, which is request size. More
testing based on more different metrics could be produced.

34

Chapter 8. Conclusion and Future Work 35

Another limitation is the lack of resources. It would not be possible to fully implement
and test the designed system without the use of EVs with IoT devices or a collaboration
with some EV companies.

8.3 Future Work

Most of the ideas for potential extensions for this project come from the previously
descibed limitations. The whole system could be implemented by creating a complex
backend or API, and UI, connecting it to a real blockchain system with a functioning
consensus mechanism and implemented smart contracts. It could then be attempted to
commercialize the system by attracting users and EV sharing companies.

In terms of evaluation of consensus algorithms, more complex experiment designs could
be introduced even for an implemented tool, for instance, similar to the ones carried out
in [31]. View-change and normal-case operations could be tested separately, as well as
more parameters could be altered for testing such as the batch size, number of faulty
replicas, number of clients and number of operations per client.

Bibliography

[1] Muneeb Ali and Zartash Afzal Uzmi. Csn: A network protocol for serving
dynamic queries in large-scale wireless sensor networks. In Proceedings. Second
Annual Conference on Communication Networks and Services Research, 2004.,
pages 165–174. IEEE, 2004.

[2] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos
Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Lavent-
man, Yacov Manevich, et al. Hyperledger fabric: a distributed operating system for
permissioned blockchains. In Proceedings of the thirteenth EuroSys conference,
pages 1–15, 2018.

[3] Alysson Bessani, João Sousa, and Eduardo EP Alchieri. State machine replication
for the masses with bft-smart. In 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, pages 355–362. IEEE, 2014.

[4] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on bft consen-
sus. arXiv preprint arXiv:1807.04938, 2018.

[5] Vitalik Buterin et al. A next-generation smart contract and decentralized applica-
tion platform. white paper, 3(37):2–1, 2014.

[6] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OsDI,
volume 99, pages 173–186, 1999.

[7] Xiao Chen, Btissam Er-Rahmadi, Tiejun Ma, and Jane Hillston. Parbft: An opti-
mised byzantine consensus parallelism scheme. IEEE Transactions on Computers.

[8] Wikimedia Commons. Illustration of the byzantine generals problem.
https://upload.wikimedia.org/wikipedia/commons/f/fc/Byzantine_
Generals.png, 2007. File: Byzantine Generals.jpg.

[9] Noam Copel and Tal Ater. Dav white paper. tech. rep, 2017.

[10] Himadry Shekhar Das, Mohammad Mominur Rahman, S Li, and CW Tan. Electric
vehicles standards, charging infrastructure, and impact on grid integration: A
technological review. Renewable and Sustainable Energy Reviews, 120:109618,
2020.

[11] W Entriken, D Shirley, J Evans, and N Sachs. Non-fungible token standard,
document erc-721, sep. 2018, 2018.

36

Bibliography 37

[12] Tiago M Fernández-Caramés and Paula Fraga-Lamas. A review on the use of
blockchain for the internet of things. Ieee Access, 6:32979–33001, 2018.

[13] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,
Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. Sbft: a
scalable and decentralized trust infrastructure. In 2019 49th Annual IEEE/IFIP
international conference on dependable systems and networks (DSN), pages 568–
580. IEEE, 2019.

[14] Long He, Ho-Yin Mak, Ying Rong, and Zuo-Jun Max Shen. Service region design
for urban electric vehicle sharing systems. Manufacturing & Service Operations
Management, 19(2):309–327, 2017.

[15] Mike Hearn and Richard Gendal Brown. Corda: A distributed ledger. Corda
Technical White Paper, 2016, 2016.

[16] Luqman Hussain and Adil Bashir. Hirego white paper. https:
//web.archive.org/web/20180304202631/http://www.hirego.io/
lib/HireGo_Whitepaper.pdf, 2018.

[17] Srdjan Krco, David Cleary, and Daryl Parker. P2p mobile sensor networks. In
Proceedings of the 38th Annual Hawaii International Conference on System
Sciences, pages 324c–324c. IEEE, 2005.

[18] Jae Kwon. Tendermint: Consensus without mining. Draft v. 0.6, fall, 1(11), 2014.

[19] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. In Concurrency: the works of leslie lamport, pages 203–226. 2019.

[20] Xin Luan, Lin Cheng, Yang Zhou, and Fang Tang. Strategies of car-sharing pro-
motion in real market. In 2018 3rd IEEE International Conference on Intelligent
Transportation Engineering (ICITE), pages 159–163. IEEE, 2018.

[21] Satoshi Nakamoto. Bitcoin whitepaper. URL: https://bitcoin. org/bitcoin. pdf-(:
17.07. 2019), 2008.

[22] Karen Rose, Scott Eldridge, and Lyman Chapin. The internet of things: An
overview. The internet society (ISOC), 80:1–50, 2015.

[23] Fahad Saleh. Blockchain without waste: Proof-of-stake. The Review of financial
studies, 34(3):1156–1190, 2021.

[24] Julio A Sanguesa, Vicente Torres-Sanz, Piedad Garrido, Francisco J Martinez,
and Johann M Marquez-Barja. A review on electric vehicles: Technologies and
challenges. Smart Cities, 4(1):372–404, 2021.

[25] David Schwartz, Noah Youngs, Arthur Britto, et al. The ripple protocol consensus
algorithm. Ripple Labs Inc White Paper, 5(8):151, 2014.

[26] Victor Shoup. Practical threshold signatures. In Advances in Cryptol-
ogy—EUROCRYPT 2000: International Conference on the Theory and Applica-
tion of Cryptographic Techniques Bruges, Belgium, May 14–18, 2000 Proceedings
19, pages 207–220. Springer, 2000.

Bibliography 38

[27] Peter Triantafillou, Nikos Ntarmos, S Nikoletseas, and P Spirakis. Nanopeer
networks and p2p worlds. In Proceedings Third International Conference on
Peer-to-Peer Computing (P2P2003), pages 40–46. IEEE, 2003.

[28] Viktor Valaštı́n, Kritian Košt’ál, Rastislav Bencel, and Ivan Kotuliak. Blockchain
based car-sharing platform. In 2019 International Symposium ELMAR, pages 5–8.
IEEE, 2019.

[29] Fabian Vogelsteller and Vitalik Buterin. Eip 20: Erc-20 token standard. Ethereum
Improvement Proposals, 20, 2015.

[30] Dylan Yaga, Peter Mell, Nik Roby, and Karen Scarfone. Blockchain technology
overview. arXiv preprint arXiv:1906.11078, 2019.

[31] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai
Abraham. Hotstuff: Bft consensus in the lens of blockchain. arXiv preprint
arXiv:1803.05069, 2018.

[32] Qihao Zhou, Zhe Yang, Kuan Zhang, Kan Zheng, and Jie Liu. A decentralized
car-sharing control scheme based on smart contract in internet-of-vehicles. In
2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), pages 1–5.
IEEE, 2020.

