
Implementation of a Blockchain-Based V2V
Energy Sharing Application using Byzantine

Fault Tolerant Consensus Algorithms

Sadhil Jindal

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Artificial Intelligence and Computer Science

School of Informatics
University of Edinburgh

2023

Abstract
In this dissertation, Byzantine Fault Tolerance (BFT) consensus methods are used to
construct a Blockchain-based V2V energy sharing application. This study’s main goal
is to assess the efficiency and performance of the SBFT and Linear BFT consensus
types within the framework of the V2V energy sharing application. A proof-of-concept
Blockchain-based V2V energy sharing system was designed and developed for the
project, and a number of experiments were run to assess its performance in terms of
latency, throughput, and scalability. The study’s findings show that, in comparison to
regular BFT, the SBFT and Linear BFT consensus types can considerably increase
the effectiveness and dependability of the V2V energy sharing application, as well as
achieve higher transaction throughput and reduced latency. Overall, this study sheds
light on the potential of BFT consensus algorithms and Blockchain technology to enable
safe and effective energy sharing in a V2V environment.

i

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Sadhil Jindal)

ii

Acknowledgements
I would like to thank my supervisor, Professor Xiao Chen, for his support throughout
this project. Additionaly, I would like to thank Dr Mary Cryan for her advice during our
meeting. I would also like to thank Meng Kun for his support durling the implementation
phases of this project.

Thank you to my parents Sunita and Sushil Jindal for their love and support during my
time at university.

iii

Table of Contents

1 Introduction 1

2 Related Work 3
2.1 Live Solutions for V2V Energy Trading 3
2.2 Prototype Projects and Literature . 3
2.3 Summary . 4

3 Background Research 5
3.1 Blockchain . 5

3.1.1 Overview . 5
3.1.2 Permissioned and Permissionless Blockchains 6

3.2 State Machine Replication . 7
3.3 Byzantine Fault Tolerance . 8

3.3.1 Introduction . 8
3.3.2 Practical Byzantine Fault Tolerance 9
3.3.3 Linear BFT . 10
3.3.4 Scalable Byzantine Fault Tolerance 11

3.4 BFT SMaRt . 12
3.5 Vehicle to Vehicle Charging . 13

4 System Model 14
4.1 Scenario . 14
4.2 Requirements . 16
4.3 Design Principles and Reasoning . 17
4.4 System Architecture . 17

4.4.1 Consensus Model . 17
4.4.2 State Machine Replication Model 18
4.4.3 Blockchain Ledger Model 18
4.4.4 Model Flow . 19

5 System Design 20
5.1 Variables and Functions . 20

5.1.1 Unit Cost/Profit Functions 20
5.1.2 Fee Function . 21
5.1.3 Consumer Functions . 21
5.1.4 Provider Functions . 22

iv

5.2 Client Side Design . 22
5.2.1 Regular Client . 22
5.2.2 Master Client . 23
5.2.3 Vehicle Information . 23
5.2.4 Request Types . 23

5.3 Consensus Design . 24
5.3.1 Existing Design . 24
5.3.2 Modifications . 25

5.4 Server Application . 25
5.4.1 State Machine Replication 25
5.4.2 Class Architecture . 25
5.4.3 Order Matching Algorithm 26
5.4.4 Blockchain Ledger Design 28

6 Implementation 30
6.1 Client Side Implementation . 30

6.1.1 Regular Client . 30
6.1.2 Master Client . 31

6.2 Consensus Implementation . 31
6.2.1 Existing Libraries . 31
6.2.2 Modifications . 31

6.3 Server Application Implementation 32
6.3.1 State Machine Replication Implementation 32
6.3.2 Request Handling Implementation 32
6.3.3 Database Implementation . 32
6.3.4 Algorithm Implementation 32
6.3.5 Blockchain Ledger Implementation 32

6.4 Configuration Settings . 33
6.5 Unit Testing . 33

7 Performance Evaluation 34
7.1 Setup and Configuration . 34
7.2 Results . 35
7.3 Analysis . 36

7.3.1 Latency . 36
7.3.2 Throughput . 36
7.3.3 Comparison to Past Work 36
7.3.4 Summary . 37

8 Discussions 38
8.1 Achievements . 38
8.2 Limitations . 38
8.3 Future Work . 39

9 Conclusion 40

Bibliography 41

v

Chapter 1

Introduction

There are now more electric vehicles (EVs) on the road as a result of the global
transition towards renewable energy technology. These EVs have the capacity to both
use and distribute energy. As a result, new possibilities for peer-to-peer energy trading
have emerged, allowing owners of EVs to sell their extra energy to other users who
have higher need. However, peer-to-peer energy trading using electric vehicles is not
supported by the current energy infrastructure, which has prompted the development of
new technologies like Blockchain.

Blockchain [10] technology is a good contender for energy trading applications because
it offers a decentralised platform for safe and open peer-to-peer transactions, which
eliminates the need for a governing authority that has total control over the system
increasing fairness and transparency. In particular, Byzantine Fault Tolerance (BFT)
[18] consensus algorithms can guarantee the security and dependability of the system
while facilitating quick and effective transactions in Blockchain-based energy trading
systems.

The challenges of implementing and using a Blockchain-based application is that a
large number of nodes in the network bottleneck the consensus system to a point where
using a centralised application would be a much better choice, even with its weaker
security. In recent times however there has been a lot work and research on consensus
algorithms and faster algorithms have been created such as Linear BFT [27] and SBFT
[22].

The goal of this project is to design and implement a Blockchain-based V2V energy
trading framework that uses various BFT consensus variations BFT, LinearBFT and
SBFT. The proposed system enables EV owners to trade energy with nearby consumers.
The system uses a BFT consensus technique to assure the transactions’ security and
dependability while also enabling quick and effective transaction processing. The
main contribution of this project is the utilisation and testing of the improved BFT
consensus variations Linear BFT and SBFT. The application was made modular from
the consensus to allow easy rotation between the three different BFT consensus types.

The remainder of this report is structured as follows. In the next chapter, the related
work in Blockchain-based energy trading is discussed, followed by the background

1

2

knowledge needed to understand this project. Following this, the the proposed V2V
energy trading system is described and analysed in detail, including the system ar-
chitecture, request processing and implementation. Next, the results of simulation
experiments that demonstrate the effectiveness of the system are presented. Finally, the
findings are laid out and opportunities for future work are discussed before concluding
the project.

Chapter 2

Related Work

The field of Blockchain-based V2V [15] energy trading is an emerging area of research
and development, with a growing amount of literature and real world solutions exploring
the potential of this technology to transform the energy sector. In this section, some of
the existing literature and solutions in this area are analysed.

2.1 Live Solutions for V2V Energy Trading

At present, there are only some existing projects regarding blockchain based EV energy
sharing that are in the early stages of development, given that this is a new market.

One example of a V2V energy trading solution is The German firm eCharge Network
[30], which seeks to establish a peer-to-peer network for electric vehicle (EV) charging.
With the help of the platform, EV owners can lend out their charging stations to other
EV owners and earn credits that can be used to the cost of charging at other stations
around the network. Blockchain technology is used by the eCharge Network to speed
up transactions and maintain the system’s security and transparency. eCharge Network
uses an Ethereum [6] Blockchain, compared to the scope of this project where the use
of BFT consensus is explored.

Another instance is the European Union-funded CityFlow [20] project, which intends to
develop a V2V energy trading market for electric vehicles. The platform would make it
possible for EV owners to exchange energy with one another and the grid, balancing
supply and demand and lowering energy costs. Although the CityFlow project is
currently in the testing stage, successful trials have been carried out in a number
of European towns. However, this energy trading project does not use Blockchain
technology.

2.2 Prototype Projects and Literature

The Consensus Mechanism for Blockchain-Enabled Vehicle-to-Vehicle Energy Trading
in the Internet of Electric Vehicles [28] is one of the frameworks that has been published.
It suggests using a Byzantine Fault Tolerance (BFT) consensus method to make energy

3

2.3. SUMMARY 4

trading in the Internet of Electric Vehicles (IoEV) [19] easier. Even in the face of
malevolent actors, the BFT consensus algorithm ensures that all nodes in the network
concur on the legitimacy of transactions, maintaining the system’s integrity and security.
However this framework does not investigate newer BFT consensus variations, instead
it only uses the outdated Practical Byzantine Fault Tolerance (PBFT) [9] variant.

The Fast and Secured Vehicle-to-Vehicle Energy Trading Based on Blockchain Consen-
sus in the Internet of Electric Vehicles [31] also makes a proposal for a fast and secure
V2V energy trading system that makes use of a hybrid consensus algorithm combining
Proof-of-Work (PoW) [21] and PBFT consensus protocols. Fast transaction validation
is guaranteed by the hybrid consensus algorithm, which also keeps the system’s decen-
tralisation and security intact. However, the hybrid model of PoW and PBFT is still
energy inefficient [11] compared to a pure BFT consensus variation, which is what this
project focuses on.

The Efficient Vehicle-to-Vehicle (V2V) Energy Sharing Framework [29] is a different
suggested framework that makes use of smart contracts to enable peer-to-peer energy
trading between EVs. With transactions being verified and recorded on the Blockchain,
the framework enables EV owners to share excess energy with other EVs in the network.
This paper does not investigate BFT style consensus however, which is an area of
research this project focuses on.

2.3 Summary

Overall, these works demonstrate the potential of Blockchain-based V2V energy trading
systems, and highlight the advantages of using Blockchains, in that they ensure security
[32] and reliability [26]. However, there is still much work to be done in this area,
particularly in terms of scalability and real-world implementation.

Chapter 3

Background Research

In this chapter, the background for this project is discussed. This starts with an overview
of Blockchains and a brief explanation of its key concepts. This is followed by a
discussion on Permissioned and Permissionless Blockchains and an analysis on the uses
and advantages for each. Byzantine Fault Tolerance is discussed as it is an important
feature of modern Blockchains and distributed systems. This will lead to an analysis of
BFT consensus algorithms. The next section will explain the Smart Byzantine Fault
Tolerance library in detail.

3.1 Blockchain

3.1.1 Overview

Blockchain [21] technology has provided a means to create a distributed consensus
about the state of a system. The idea of a ’Blockchain’ was first proposed in 1979 by a
doctoral candidate David Chaum in his research paper [10]. This work was not focused
towards digital currencies, but instead just a general idea of how distributed databases
should work and how one would go about creating one.

It was not until 2009 that the first modern, fully functioning secure Blockchain system
was implemented. This was the infamous Bitcoin Blockchain that was based on Satoshi
Nakamoto’s work on peer-to-peer payment technologies. This system was a distributed
peer-to-peer payment system that guaranteed anonymity and security (barring certain
attacks) by creating a consensus on the order of transactions. The currency of this
system was given after its own name Bitcoin [21]. Since its introduction there has been
huge amounts of work and research in the field of Blockchains and Distributed Systems
[17], as their usefulness has become more widely recognise. This work has resulted in
a vast amount of new Blockchains being developed for various unique purposes apart
from simple peer-to-peer payments.

A Blockchain is essentially an append only data ledger [25] set that is split into a chain
of multiple data blocks. Blocks can be created and added to the end of the chain, but
they can never be modified or removed. Each block i contains multiple data entries
(usually transactions), the hash of the previous block i−1, and a nonce n that is utilised

5

3.1. BLOCKCHAIN 6

to verify the hash of the previous block. Having each block constrain the hash of the
previous block ensures that the Blockchain data cannot be modified. This is because,
if the data contained within block i was changed, this would affect the hash of block
i, leading to inequality between the hash value contained in block i+1 . This would
affect all blocks after block i+1 as the hash value corresponding to the previous block
would change for each block as it is directly dependant on the data contained within the
previous block. The entire chain of blocks comprises of the full data ledger.

Figure 3.1: Example Blockchain

In modern times, distributed Blockchain systems have become increasingly popular
for various uses such as peer to peer payments and distributed applications. In these
distributed systems, nodes are responsible for maintaining the functionality of the
network, and validating and adding data to the Blockchain. The validation of the data is
carried out through a consensus [13] between all nodes on the system, to see if there is
a majority agreement on the state of the Blockchain. Proof of Work and Proof of Stake
[6] are popular consensus protocols while Byzantine Fault Tolerance is the consensus
that is central to this project.

3.1.2 Permissioned and Permissionless Blockchains

Blockchain systems can be split into two categories, Permissioned [8] systems and
Permissionless systems.

In Permissionless Blockchain systems, also known as public Blockchain systems, there
is no restriction on who can or cannot join the network to use the core functionality
or participate in the consensus to append data to the system ledger. In Permissionless
systems, there needs to be a form of incentive [7] for nodes to join the network and
participate in the consensus otherwise there will not be enough nodes to achieve a
safe consensus. For example, if there are only n nodes participating in the consensus
of a network where n is relatively low, then an attacker could push n+ 1 malicious
nodes into the network to gain full control of the consensus as it only need 51% of the
voting power to manipulate the result in its favour (also known as the 51% attack [16]).
Thus, nodes are rewarded for participating in the consensus of the network and growing
the network’s Blockchain. Proof of Work (PoW) and Proof of Stake (PoS) are two
renowned consensus algorithms that reward nodes for participating in the consensus of

3.2. STATE MACHINE REPLICATION 7

the network. An interesting point is PoW is notorious for its energy inefficiency, and
while PoS is more energy efficient, it is not as secure as PoW. Since Permissionless
Blockchains need to reward nodes for their participation, each consensus algorithm has
its own drawbacks in order to ensure that nodes are rewarded for their participation.

In Permissioned Blockchain systems, there is a system owner or operator is respon-
sible for deciding who can and cannot join the network to use the core functionality
or participate in the consensus to append data to the system ledger. The owner or
operator can modify the Blockchain as they see fit. This type of Blockchain system is a
suitable solution for businesses looking to automate certain processes such as managing
supply chains, creating contracts and verifying payments between parties. Popular
Permissioned Blockchain examples are R3 Corda [24] and HyperLedger Fabric [8].
Since this Blockchain is not open for anyone to join, the nodes on the system network
are usually ones that have been deployed by the owner or operator or a third party that
is taking part in the business activities specified by the functionality of the Blockchain.
Nodes now do not need an incentive to join the network, as they are now deployed by
businesses or other entities for the specific purpose of keeping the functionality of the
Blockchain available. This gives the option of using other consensus algorithms that do
not have mechanisms for rewarding nodes such as Byzantine Fault Tolerance [9] which
is the consensus algorithm that is central to this paper.

3.2 State Machine Replication

State machine replication (SMR) [12] is a distributed computing technology that offers
fault tolerance and scalability by enabling several replicas of a system to operate
cooperatively. It makes sure that each replica maintains the same state and that each
replica processes requests in the same sequence. Treating the service like a deterministic
[14] state machine is the fundamental tenet of SMR. A mathematical model known as
a state machine consists of a limited number of states and a set of possible transitions
between them. Each transition results in an output event, a new state, and is initiated by
an input event. If a state machine generates a distinct output event and a new state from
a given input event and existing state, it is deterministic.

Each replica in SMR keeps a separate copy of the state machine. Replicas receive
client requests and process them in the same sequence. SMR makes use of a consensus
technique to guarantee that all replicas process requests in the same sequence. A client’s
request is initially sent to the primary replica when sending one to the service. Requests
are ordered by the primary replica and sent to the other replicas in that same order.
Following the same order of request execution, the copies provide the identical output
events and state changes. The primary replica notifies the client when all replicas have
completed processing a request.

SMR offers a number of advantages. First, by replicating the service over several nodes,
it offers fault tolerance. The other nodes can carry on providing the service even if one
fails. It also offers scalability by enabling many nodes to handle queries concurrently.
By making sure that all copies keep the same state and handle requests in the same
sequence, it also ensures consistency.

3.3. BYZANTINE FAULT TOLERANCE 8

One of the issues with SMR is making sure the state machine is still deterministic in the
presence of faults. For example, if a node crashes and subsequently restarts, it may have
missed some requests and state changes. To ensure that the node can catch up, it must
be able to recover its state by sending the requests it missed. This requires that the state
machine be deterministic and that the requests be idempotent, or that they return the
same result when done repeatedly. Another drawback of SMR is the need to maintain
the effectiveness and scalability of the consensus procedure. Consensus protocols are
frequently designed to work with a small number of nodes; as the number of nodes
increases, the performance of the protocols may degrade.

3.3 Byzantine Fault Tolerance

3.3.1 Introduction

Byzantine Fault Tolerance is the property of a distributed system that allows it to
continue operating correctly even when certain nodes in the system are acting incorrectly
or maliciously. This property is derived from the Byzantine Generals’ Problem [18].
This problem is a model of generals each with their own army that are trying to decide
whether to attack or retreat from the battle. The generals can only communicate with
each other via a messenger. There is no guarantee that the messengers will reach
the other general, and generals can act maliciously and send incorrect messages, see
figure reffig:generals. It has been proven previously and well known that if there are f
byzantine generals (malicious generals or using unreliable messengers) then there must
be greater than 3 f +1 generals in total to reach the correct decision in the consensus.

Figure 3.2: BFT Generals’ Problem

This problem can be applied to a distributed computer system. The generals are
represented as nodes and messengers are represented by the underlying point to point
communication service. All nodes on the system are required to reach a consensus on
a particular topic, however nodes can crash or act maliciously so this adds a layer of
complexity to the system. Byzantine Fault Tolerant is the category of systems that are

3.3. BYZANTINE FAULT TOLERANCE 9

not susceptible to this problem and are able to reach consensus even with f malicious or
faulty nodes, meaning they employ some kind of Byzantine Fault Tolerant Algorithm.

There are many different Byzantine Fault Tolerant consensus algorithms such as the
renowned PoW and PoS that are utilised by the two largest cryptocurrency networks,
Bitcoin and Ethereum respectively. The algorithms that will be focused on in this
project are BFT, Linear BFT and SBFT.

3.3.2 Practical Byzantine Fault Tolerance

PBFT [9] very first in its class of consensus algorithms when it was introduced in 1999.
It was the first State Machine Replication algorithm to allow a set of server replicas
to come to consensus on the state of the system after executing client instructions. It
guarantees both safety and liveliness under the condition that no more than (n−1)/3
replicas are faulty when there are n replicas in the system. Safety implies that the
system satisfies the linearizability property, meaning externally it should seem as if
the distributed system is a monolithic system that will only converge to one outcome.
Liveliness is defined as the property that clients will eventually receive a response to
their requests given that no more than (n−1)/3 replicas are faulty and delay(t) does not
grow faster than t indefinitely, where delay(t) is the time between sending a message
and the message reaching its destination. Most system networks have some sort of
guarantee on the delivery of messages, for example the TCP Network Protocol [23]
ensures that data is received at the destination given a reliable underlying IP channel.

The PBFT algorithm is based on the architecture of a client and a network of server
replicas, where the client sends a request into the network. The requests are often some
form of transactions between two or more parties. The request is validated through the
network nodes exchanging messages to agree on the order of execution of client requests.
If the order of execution of client requests is the same for all nodes, it is guaranteed that
the state of the system will be synchronized as all nodes execute their requests in the
exact same order. After a consensus has been reached within the network, the result of
the client request is sent back to the client. Each consensus instance is performed under
a view, the state of the network at that moment in time which consists of the leader
node and replicas. Views can change if the leader node fails or is unresponsive.

Pre-Prepare. The client sends the request into the network, and the request is picked
up by the current primary node. The primary node broadcasts a Pre-Prepare message
<< pre prepare,v,n,d >σi m > where m is the client’s message, v is the view number,
n is the sequence number, d is the message digest hash(m) and σi denotes the signing
of the message with the private key of replica i. Other replicas receive the message,
verify the legitimacy of d, the signature of the message is correct and the replica itself
is in view v. If these checks are passed, replicas add this message to their logs and then
broadcast a Prepare message < prepare,v,n,d >σi to ALL replicas.

Prepare. When a replica receives a < prepare,v,n,d >σi message it verifies the
signature is correct and that v matches the replica’s current view. It adds each valid
prepared message to its log. Once a replica has received 2 f + 1 (each replica sends
to itself too) valid Prepare messages, the replica broadcasts the Commit message

3.3. BYZANTINE FAULT TOLERANCE 10

< commit,v,n,D(m), i >σi where i is the identity of the replica that is broadcasting the
message and D(m) is the message applied to the digest function.

Commit. When a replica receives < commit,v,n,D(m), i >σi message it again ensures
that it the signature is valid and it is in the same view and following these checks
the message is added to the log. When the replica has received 2 f +1 valid Commit
messages, it can then execute the operation in the message associated with the corre-
sponding view and sequence number. If all replicas agree on the order of execution of
client requests, it is trivial that all replicas will have a synchronised state as execution
of the same requests in the same order will result in identical states and outputs.

The Pre-Prepare and Prepare phases ensure that non-Byzantine replicas agree for the
requests within a view. The commit phase along with the view change protocol ensure
non-Byzantine replicas all have the same sequence numbers for client requests even if
the committed local state is achieved in different views.

Figure 3.3: PBFT Execution Cycle

In figure 3.3 it can be seen that replica 3 becomes byzantine, but the execution of
PBFT still continues correctly as there are 3 f + 1 = 4 nodes. Notice the all-to-all
communication in the Prepare and Commit steps. This communication is of order O(n2)
where n is the number of replicas, which is expensive and in some cases can bottleneck
the underlying communication system.

3.3.3 Linear BFT

The Linear BFT [27] consensus algorithm is a variation of BFT. The key to this
algorithm is the use of a Threshold Signature Scheme (TSS) [3]. TSS is a method to
generate a signature that is actually comprised of several signatures. A threshold can
be set on the amount of signatures that need to be present in the combined key for it to
pass verification. In mathematical notation, an (n, t)-threshold signature on a message
m is a signature that only succeeds in verification if at least t +1 participants sign m.

As highlighted previously, in the Prepare and Commit steps of PBFT there is O(n2)
all-to-all communication. Linear BFT can use a TSS to reduce the communication
complexity from O(n2) to O(n) . The primary node acts as a collector for the Prepare
and Commit phases. Instead of each replica broadcasting their messages to every other

3.3. BYZANTINE FAULT TOLERANCE 11

replica, replicas only send their messages to the primary. The collector can then create
a (n,2 f +1)-threshold signature ts from all the individual signatures that were received
from other replicas. The primary sends this signature back to all replicas, who already
possess the public key. This signature will only pass verification if there were at least
(n,2 f + 1) replicas who sent a Prepare or Commit message, since that is what the
threshold was set to.

This modification adds two additional steps, by splitting Prepare and Commit into two
separate steps. After a replica receives a Pre-Prepare message, it only sends its Prepare
message to the collector. The collector can then generate the threshold signature from all
Prepare messages, and broadcast it to all replicas. Similarly, replicas send their Commit
messages to the collector again. The collector once again generates a threshold signature
from the Commit messages and broadcasts the signature to all replicas. Replicas can
then send their reply to the client as in the normal case.

This version of BFT has additional communication steps, but makes the communication
much more efficient. This is because, when the network size grows, having a quadratic
complexity like for message exchange like PBFT becomes increasingly inefficient.
Linear BFT allows for larger network size without sacrificing the latency and throughput
of consensus taking place over the network. However, there are drawbacks to using
TSS too, as the setup costs for this are quite expensive. TSS necessitates unique public
and private key pairs that are correlated. However, generating these key pairs in a
decentralized environment requires a distributed key generation (DKG) [4] protocol,
which involves significant communication. One example of a DKG is the Joint-Feldman
algorithm, which has communication footprint of O(n3). The most commonly used
DKG for Linear BFT is described in reference, and has a O(nlog(n)k) communication
footprint. If the set of nodes in the system changes, then a new set of public and private
key pairs must be generated to ensure that the threshold signature scheme remains
secure. This typically involves running the DKG protocol again with the new set of
nodes, which can be a time-consuming and communication-intensive process.

3.3.4 Scalable Byzantine Fault Tolerance

Scalable Byzantine Fault Tolerance (SBFT) [22] is a further extension on BFT from
Linear BFT. This SBFT takes advantage of TSS the same way that Linear BFT does.
To extract more performance from the network, this consensus algorithm exploits the
situation where all nodes in a network are stable, meaning there are 3 f +1 stable nodes.
When the whole network is stable, and each replica on the ordering of a client request
in the Pre-Prepare phase, it is not necessary for a Prepare step. In SBFT, when the
nodes are stable and agree on the order of the client request in the Pre-Prepare step the
Prepare step can be skipped, and the consensus can proceed to the Commit phase. This
reduces the amount of messages exchanged and will increase the performance of the
consensus by a considerable amount. This is referred to as the Fast Path in SBFT.

In the case where nodes in the network become unstable, meaning there are 1 ≤ x ≤ f
x Byzantine nodes in the system, the SBFT algorithm can revert to the Slow Path.
This is essentially just Linear BFT. The switch to the Slow Path is triggered when
primary receives less than 3 f + 1 Sign Share messages and the timer to receive all

3.4. BFT SMART 12

3 f +1 messages has expired. This timeout value can be adjusted according to network
conditions. The primary node can then assemble and broadcast the Prepare message as
described in Linear BFT. The following phases are the exact same as Linear BFT, and
this is what the Slow Path consists of. This switch between the two paths allows the
consensus to make progress faster when all nodes in the network are stable, and more
importantly it allows for progress even when there are up to f Byzantine nodes which
is our basis for all BFT algorithms.

Given certain scenarios, the performance of SBFT can be improved and it can made
more resilient by adding redundant nodes to the network. If in a certain consensus
network, there is capacity and resources to add more nodes to the network, it allows for
more padding of when the Fast Path can be used. Adding 2c redundant nodes to the
system creates the property that the Fast Path can be used even when their are c ≤ f
Byzantine nodes.

SBFT suffers from the same drawbacks as Linear BFT with the cost of setting up a
new TSS every time the network graph changes. The use case for SBFT is targeted at
networks where it is known that the nodes are usually stable so the Fast Path can be
used more often to progress consensus instances more efficiently.

3.4 BFT SMaRt

BFT SMaRt [2] is an implementation of PBFT in Java that will be used mainly in
this project. This code base provides a basic consensus framework based on PBFT
with some modern features such as multicore awareness, code modularity and node
reconfiguration support. This implementation has been proven to achieve significantly
better results than previous outdated implementations of PBFT. This baseline standard
BFT SMaRt implementation will be referred to as BFT.

The most significant advantage of BFT SMaRt is that the consensus functionality is
separated from the SMR functionality. This allows for decentralized applications to
be easily constructed on top of BFT SMaRt by modifying the SMR part of the code
base. The basic consensus can be adapted to recreate other BFT consensus types such
as Linear BFT [27] and SBFT [22]. This code base also has modular components for
the underlying point to point communication service, reconfiguration of nodes in the
network, and state transfer to update the state of new or faulty nodes in the network to
match the true state of the system. See figure

Due to BFT SMaRt’s focus on modularity, the code base can be easily modified to
recreate other versions BFT. There exists an implementation of Linear BFT that exploits
the modularity of BFT SMaRt by modifying the code base to use TSS. This is the
implementation that will be used in this project for running application on a Linear BFT
consensus. Similarly, an existing implementation of SBFT running on BFT SMaRt
was available to use. As mentioned, using BFT SMaRt as the code base for all three
consensus variations to be used in this project allows for the exact same application to
run on top of each consensus system, without needing to modify the code base.

3.5. VEHICLE TO VEHICLE CHARGING 13

Figure 3.4: BFT SMaRt Model

3.5 Vehicle to Vehicle Charging

Electric vehicles (EVs) can share electricity with each other directly through V2V
charging [15], which eliminates the need for a charging station or the power grid. In
V2V charging, one EV serves as the donor car and supplies electricity from its battery
to another EV, referred to as the recipient vehicle. A physical connection, such as a
cable, or wireless power transfer technology, such inductive or magnetic resonance
coupling, can be used to accomplish this.

V2V charging provides a number of potential advantages, such as allowing EVs to
increase their driving range by ”refuelling” at other EVs or to share power in emergency
circumstances where grid power may be absent or unstable. Additionally, it might lessen
the demand for charging infrastructure and give EV owners additional revenue streams,
such selling surplus energy to the grid or to other EV drivers. The standardisation of
connection protocols and assuring the security and dependability of power transfer are
two issues that V2V charging must address. Nevertheless, a number of businesses and
research institutions are working hard to develop and test V2V charging systems, and
they may play a significant role in the development of the EV ecosystem in the future.

Chapter 4

System Model

4.1 Scenario

Electric vehicles (EVs) are becoming popular due to several factors, including their
reduced environmental impact, cost savings in the long run, advancements in technology,
and government policies. With the explosive growth in this market that is yet to come,
there are problems that need to be solved to withstand the resulting energy demand.
Two of the main concerns that are addressed by this project are:

• The distribution of EV charging points in certain areas can be sparse. Even in
some densely populated areas around the world, there is not enough EV charging
infrastructure to ensure that their is charging solutions available to support a large
amount of EV usage.

• EV owners may be left stranded when they do not have sufficient charge left in
their battery to complete the remaining journey to their destination or even the
nearest EV charging point.

These shortcomings create a demand for EV owners to share energy amongst themselves
when charging stations are not available due to one of the mentioned reasons. This
demand is the perfect use case for V2V charging , which is a mobile charging solution
where EVs can transfer energy wirelessly to other EVs. The network of EV charging
points is slowly expanding to meet the predicted demand when EVs become mandatory,
but V2V will still be a key technology in the situation that stationary charging points
are not accessible and a more mobile solution is required. This project prototypes an
application that could be used for EV owners to engage in V2V transactions.

The application scenario comprises of EV owners at their respective current locations
and meeting points. The meeting points are at fixed locations that act as synthetic
charging points. Energy consumers and providers will meet at the optimal meeting
point when a suitable transaction has been submitted. EV owners who have a shortage
of battery charge can send requests via the application, similarly EV owners who have
a surplus of energy and are willing to sell this energy can submit requests via the
application. The system then computes what consumer, provider, and meeting point
combinations yield the lowest cost for the consumer and highest profit for the provider

14

4.1. SCENARIO 15

based on variables that are discussed in detail later. The system then instructs and gives
directions to the designated meeting point to both consumer and provider. At arriving
at the specified meeting point, the provider should use V2V charging to transfer the
previously agreed amount of energy.

Figure 4.1: Application Use Scenario

A concrete user scenario can be explained by using figure 4.1. Three EV owners have a
surplus of energy and are going to be within the same area for some amount of time.
They take the opportunity to make some extra money by using the application to sell
their surplus energy for profit. The three providers submit their respective requests to
the system and the state is updated accordingly to reflect the prices each provider is
willing to trade at. After some time, an EV owner nearby realises that they do not have
sufficient charge to be able to complete their journey to their destination and their EV
does not have sufficient charge to reach the nearest charging point. The stranded owner
realises that it can make use of this application to attempt to purchase energy. The
consumer submits a request to the system for exactly how much charge they require to
reach their destination safely. The state of the system is updated accordingly to reflect
this new request. The underlying system logic computes which provider, if any, leads
to the minimum cost for the consumer, and also the maximum profit for the provider.
In this scenario, provider 3 is decided to be the best match for the consumer. The
transaction is executed and the relevant information should be updated in the system
state, such as the transferring of currency from consumer to provider. Both the consumer
and the provider drive to the designated meeting point (meeting point 2). Upon arriving
at the destination, the provider uses their EV to supply the consumer with the agreed
upon amount of energy, using V2V charging technology. The EVs of the provider and
consumer will send the system updates on their battery state once the charging has been
completed to verify that the exchange has been successful. The consumer now has

4.2. REQUIREMENTS 16

enough charge in their EV to travel to their destination, and the provider has made some
profit from the transaction, meaning both parties have received some type of benefit
from the application.

This process describes the use case for this system from the point of view of clients
of the system. This scenario needs to be investigated in detail to extract all variables
that need to be taken into account while matching providers and consumers. In the next
section the requirements of the system are extracted from this use case.

4.2 Requirements

This application will be a Consumer-to-Consumer (C2C) service that allows clients to
participate in an energy exchange with other clients to buy and sell energy for their EVs.
As this project is focused on consensus and Blockchain technology, the requirements of
this application will be focused on these aspects rather than considering the entire system
end-to-end. As a result, requirements such as User Experience/Interface, Underlying
Communication Channels, Physical Infrastructure and anything not related to the core
of this project will mot be considered in the requirements or design of the application.

The requirements set to be achieved in this application are as follows:

• Basic Request Functionality - Clients should be able to send Buy/Sell requests
into the system with all required information. Notifications should be delivered
to clients upon successful requests.

• Deterministic Buy/Sell Request Matching Algorithm - Client Buy and Sell requests
should be matched via the implemented algorithm that ensures satisfaction for
both providers and consumers. Providers should not be selling for a loss and
consumers should be provided with the best deal on the market, considering their
location and other factors discussed later. Matches should be deterministic to
allow for State Machine Replication.

• Request Validation and Ordering - All client requests should be validated and
ordered via consensus before they are confirmed and added to the system. This
process should be secure and transparent so that malicious parties cannot tamper
with requests and requests can be verified by interested third parties.

• State Machine Replication - The application state should be replicated over all
nodes in the consensus network to ensure that there is agreement on the confirmed
transactions.

• Modular Application-Consensus Design - The type of consensus used by the sys-
tem should be easily interchangeable without the need to modify the application
itself.

• Scalability - The system should be scalable so that it is able to process a large
volume of requests to simulate real world usage. The consensus network should
also be scalable to handle more faults and malicious nodes for increased security.

• Confirmed Transactions Written to Blockchain - The system should integrate

4.3. DESIGN PRINCIPLES AND REASONING 17

a Blockchain ledger to write confirmed transactions to for later inspection and
security.

Throughout the design and implementation of the application, these requirements will
be used as a general target to achieve. In the Evaluation chapter, the success of the
implementation will be measured against this set of requirements.

4.3 Design Principles and Reasoning

The principles driving the design of the application lie around the central topics of this
paper.

• Using a consensus mechanism to validate client requests means that there is
no single point of failure. Using multiple nodes to participate in the consensus
provides extra security, malicious parties would need to obtain access to a majority
of nodes to manipulate consensus results.

• Naturally, utilising a network of nodes to run the consensus leads to using State
Machine Replication to run the application simultaneously across all nodes. Using
SMR will ensure that the system state is kept consistent throughout all honest
nodes in the network. This will result in only valid transactions being confirmed.

• Once confirmed, transactions will be written to a Blockchain ledger. This de-
sign choice makes transactions immutable once confirmed due to the property
of Blockchain ledgers as discusses in the background chapter. The use of a
Blockchain ledger also gives the system the properties of transparency and
anonymity.

4.4 System Architecture

The architecture of the system should be based around the requirements specified previ-
ously. Consensus, SMR and Blockchain ledgers are the framework for this applications
architecture. This system will be designed and modelled as a permissioned blockchain
system, meaning consensus nodes will have to be validated before they can join the
network,

4.4.1 Consensus Model

Byzantine Fault Tolerance consensus is the type of consensus that will be used, and
in the background section of the project it has been established that there can be up
to f byzantine nodes in a network of 3 f +1 nodes. In the scenario of this system, the
authority that is responsible for deployment and maintenance should be the responsible
party for the consensus nodes. Client requests will all be transmitted to this consensus
network, where all replicas will participate in a BFT-style consensus to validate and
order the client requests. Malicious parties that want to tamper with the matching
process will need to gain access to at least f nodes in the system. The value of f should
be made as high as possible as this will increase the security and safety of the system.

4.4. SYSTEM ARCHITECTURE 18

An example model of the consensus process is shown in figure 4.2, where the red node
is a byzantine node and the green nodes are functioning correctly. There are 4 nodes
in the system and only 1 byzantine node so this network would still produce correct
consensus results as per the BFT consensus property.

Figure 4.2: Consensus Model

4.4.2 State Machine Replication Model

Once all nodes have agreed on the validity and ordering of client requests, each request
is executed sequentially by the application to update the system state. The application
will be deterministic as stated in the requirements, to ensure that the same operation
execution on all nodes with the same application state produces the same result state.
The client matching algorithm will be a module of this application, which will output
any valid client matches to create confirmed transactions. Trivially, any nodes who join
the consensus network will need an up to date version of the application state to start
executing new client requests. A model example is shown in figure 4.3.

Figure 4.3: Consensus Model

4.4.3 Blockchain Ledger Model

Once transactions have been confirmed , they will be written into a Blockchain ledger.
As discussed, this ensures that once transactions are confirmed, they become immutable
and safe from tampering due to the properties of Blockchain ledgers discussed in the
background chapter. Utilising a Blockchain ledger means all transactions are transparent
and can be viewed by any interested third party. The Blockchain ledger model is shown
in figure 4.4.

4.4. SYSTEM ARCHITECTURE 19

The original project plan was to integrate the system with the R3 Corda Blockchain to
eliminate developing a new Blockchain component from scratch. However, due to the
workload and time required to set this up, this step was left out in the implementation

Figure 4.4: Blockchain Model

4.4.4 Model Flow

Now that it has been established what architecture the system will use, a final model
flow of the complete end to end system can be created. See figure 4.5 for a model
reference on how each component of the system is used.

Figure 4.5: System Model

Chapter 5

System Design

Now that the model of the system has been laid out, the system design should naturally
follow the structure of the model. As the implementation will be in the Java language,
it is important that object oriented principles are adhered to whilst designing the system.
The system must be designed on both client and server side so that complete functionality
can be implemented following this design pattern.

5.1 Variables and Functions

In this section, the variables that will influence the matching process are defined.
Consumers and providers have different requirements from which meeting point and
partner client they are assigned to. Consumers want the match that will result in the
lowest overall cost per unit of energy, and providers want the match that will result in the
highest overall profit per unit of energy. One important model decision that is made here
is that the area that the system operates in is represented as a coordinate system. For
example, a consumer EV could be located at (2,3), and a meeting point could be located
at (9,4). This simplification allows straightforward calculation of distances. From these
derivations, UC and UP values can be calculated for each potential consumer and
provider pair, while iterating through the various meeting points. (3.1) and (3.2) will be
used in the implementation of the matching algorithm.

5.1.1 Unit Cost/Profit Functions

Separate functions can be created for both consumers and providers based off their
requirements.

UC =
CC

α
(5.1)

UP =
RP −CP

α
(5.2)

20

5.1. VARIABLES AND FUNCTIONS 21

Where UC and UP are cost per unit of energy for consumers and profit per unit of
energy for providers respectively. α is the total units of energy of being traded in the
transaction. CC and CP are the cost functions for the consumer and provider respectively,
and RP is the revenue function for the provider. The maximisation of UC then UP
(specifically in that order as consumers are prioritised over providers) is the goal of the
matching algorithm in the system. Trivially, any match that will lead to a negative UP
value should be discarded as it is a system failure if the provider makes a loss on the
transaction. To model the cost and revenue functions for both provider and consumer,
all factors that will influence the functions need to be considered.

5.1.2 Fee Function

The model for the transaction fee that the application will receive as its main source of
revenue, can simply be modelled as:

F = r×α (5.3)

where r is the constant that controls the size of the fee and 0 < r < 1.

5.1.3 Consumer Functions

Starting with the consumer, the cost of travelling to the designated meeting point, the
price for purchasing the energy from the provider and the fee for using the platform will
affect the consumer cost function.

The purchase cost for the consumer for the energy is trivially:

EC = pSP ×α (5.4)

where pSP is the price per unit of energy set by the provider. The cost of travelling to
the designated meeting point for the consumer can be modelled as:

TCC =
√

(x2
C − x2

MP)+(y2
C − y2

MP)× eC × pC (5.5)

where (xC,yC) and (xMP,yMP) are the coordinates of the consumer EV and designated
meeting point respectively. eC is the efficiency of the consumer EV and pC is the price
per unit that the original energy was bought for by the consumer.

The cost function for the consumer can be created as a sum of (3.3), (3.4) and (3.5):

CC = EC+TCC +F (5.6)

5.2. CLIENT SIDE DESIGN 22

5.1.4 Provider Functions

For the provider, the cost of travelling to the designated meeting point, the price that
the energy was initially purchased, selling price and the transaction fee should be
considered. The cost of travelling to the meeting point can be modelled in a similar
manner to the consumer:

TCP =
√
(x2

P − x2
MP)+(y2

P − y2
MP)× eP × pP (5.7)

where (xP,yP) are the coordinates of the provider EV. eP is the efficiency of the provider
EV and pP is the price per unit that the original energy was bought for by the provider.
The model for the transaction fee is the same as (3.5). The cost function for the provider
is trivially a sum of (3.7) and (3.5).

CP = TCP +F (5.8)

The revenue function for the provider is just the revenue generated from the sale of the
energy to the consumer:

RP = pSP ×α (5.9)

5.2 Client Side Design

System users require a client application to interface with the system. In this section the
functionality and design of this client application is discussed.

5.2.1 Regular Client

The regular client will require the following functionality:

• Registering a new user. Client IDs must be unique.

• Logging in with registered Client ID.

• Linking EV to Client ID.

• Depositing/Withdrawing funds.

• Placing Buy/Sell Orders.

• Viewing Market Orders.

It is important to note that in a real world system deployment, sensitive operations such
as logging in, registering and managing funds would have an additional layer of security
or encryption to prevent fraudulent activity, but as this is not the priority for this project
it has been left abstract. No data will be held on the client except for the logged in
Client ID and associated vehicle information. For easy reference a skeleton class has

5.2. CLIENT SIDE DESIGN 23

been given in the figure 5.1. These functions will each submit the corresponding type
of request to the consensus network for ordering and validation.

5.2.2 Master Client

The authority responsible for running the system must have some elevated access and
functionality. The master client has been designed for this purpose, in the case that
orders or client information needs to be modified. The following functionality will be
included in this client:

• Logging in with registered Master User ID.

• Managing User IDs. Clients who repeatedly misuse the system may have to be
removed, new clients may be registered through the responsible authority.

• Modifying client funds. This functionality would be used in the situation clients
need to be penalised for misusing the system or compensated for being involved
in a failed transaction.

• Removing Buy/Sell Orders. If there are problems with specific orders, they may
have to be removed from the system.

• Viewing Market Orders.

Like the regular client, only session information will be stored on the master client. The
application state and logic will be entirely run on the nodes of the consensus and SMR
network. These functions will each submit the corresponding type of request to the
consensus network for ordering and validation. See figure 5.1 for a class skeleton.

5.2.3 Vehicle Information

Clients must be linked to an EV in order to place orders, as information is needed from
the EV system such as battery state, location, telemetry and energy efficiency. A vehicle
class is required to gather this information from the vehicle’s onboard computer and
transfer it to the client application. The EV state can then be accessed by the client
when sending requests. See figure 5.1 for a skeleton.

5.2.4 Request Types

Client requests can be of two types:

• Ordered Requests - Requests that should be validated and ordered through con-
sensus. This applies to requests that will alter the system state in some way, such
as placing orders or managing funds.

• Unordered Requests - Requests that can skip consensus. This applies to requests
that do not alter the system state, instead just read the system state, such as
viewing the market and logging in.

5.3. CONSENSUS DESIGN 24

Figure 5.1: Client Class Skeleton

This differentiation allows requests that do not need ordering or validation to execute
faster as they will bypass the consensus, and directly be passed to the SMR application.
This also will improve the performance of the system as less time will be spent on
executing consensus instances.

5.3 Consensus Design

As per the projects aim, three varying BFT consensus types will be used in the imple-
mentation. The consensus module must be kept abstract and separate in order to easily
swap between consensus versions. As discussed in the background chapter, this was the
main reason BFT SMaRt was selected as the code base for this system, as it allows for
SMR applications to be created without modifying the underlying consensus module.

5.3.1 Existing Design

For all three consensus versions, existing implementations were used with some modifi-
cations in order to tailor to the system requirements. All three versions share the same
design pattern as they use BFT SMaRt. See figure 5.2

All intra-network communication has been designed using a Netty framework and
made abstract so point-to-point communication can be completed with simple function
calls. Client requests are first delivered to the primary node which initiates a consensus
instance for the request to be validated and ordered. In each consensus instance the low
level algorithm and exchanged messages depend on what version of BFT is being used
(see Background chapter for details). Once requests have been successfully ordered,
they are delivered to the SMR application to be executed sequentially, and replies are
sent back to the owner of the request.

5.4. SERVER APPLICATION 25

Figure 5.2: Consensus Design

5.3.2 Modifications

In the original implementations there was no validation of requests, the consensus had
only ordering functionality. To simulate validation, the consensus module design was
extended to include a validation module. This module ensures that requests received
are from valid and trusted clients and the format matches the one that is required by the
SMR application.

It is viable that the nodes running on the network change, so nodes must be able to send
and receive states to catch up to the newest application state. The state transfer module
design was modified to interface with the application to fetch and update the state when
required, for example sending an updated state to a new node or installing the updated
state in a new node.

5.4 Server Application

The server application is where the main logic will be located. All requests once
validated and ordered will be passed to the application to be executed.

5.4.1 State Machine Replication

All nodes will run the server application in parallel, after applying consensus to requests
for validation and ordering. The state of the application will be replicated across
nodes as the order of operation execution will be consistent throughout all nodes in the
network by consensus. However, to ensure the state is consistent the application must
be deterministic, meaning an operation should have only one possible outcome. No
random functions are used in the design to ensure that execution is always deterministic.

5.4.2 Class Architecture

Each instance of the server application will have its own database of client information
such as what EV is associated with the client, available funds and placed orders. The

5.4. SERVER APPLICATION 26

main class of the application will manage this database, fetch ordered and validated
requests from the underlying consensus module and deliver replies back to clients. The
order matching algorithm will be executed within this main class using the database
already described. As the class structure is complex, a diagram has been shown in figure
5.3 for easy reference.

Figure 5.3: Class Model

5.4.3 Order Matching Algorithm

The algorithm to match buy and sell orders prioritises minimising the cost for consumers
and maximising the profit for providers. The pseudo code for this design has been given
for reference below. UC and UP are calculated by the equations derived in section 5.1.
The variables required in these equations will be contained in client requests, where
the client has submitted certain request parameters and certain request parameters are
extracted from the linked EV.

5.4. SERVER APPLICATION 27

Algorithm 1: Request Handling
Result: Order Matches
initialization;
while true do

fetch next request r;
if r.type is order then

continue;
else

skip iteration;
end
extract order o from r;
if o.type is sell then

insert (orderID, o) into sellOrders;
execute sellOrderHelper(o);
set response;

else
insert (orderID, o) into buyOrders;
execute buyOrderHelper(o);
set response;

end
return response to client;

end

Algorithm 2: Sell Order Helper
Result: Order Matches
paremter o;
initialise bestMatch;
for bo in buyOrders do

for mp in meetingPoints do
calculate UC and UP for (o,bo,mp);
if UC, UP better than bestMatch then

update bestMatch to (o,bo,mp);
else

return nil;
end

end
end
if match found then

remove bo from buyOrders;
remove o from sellOrders;
return bestMatch;

else
continue;

end

5.4. SERVER APPLICATION 28

Algorithm 3: Buy Order Helper
Result: Order Matches
paremter o;
initialise bestMatch;
for so in sellOrders do

for mp in meetingPoints do
calculate UC and UP for (o,so,mp);
if UC, UP better than bestMatch then

update bestMatch to (o,so,mp);
else

return nil;
end

end
end
if match found then

remove so from sellOrders;
remove o from buyOrders;
return bestMatch;

else
continue;

end

The complexity of this algorithm to process one request is O(m× n) where m is the
number of buy/sell orders and n is the number of meeting points. Since n is a constant
that can be controlled, the complexity can be reduced to O(m).

5.4.4 Blockchain Ledger Design

The project objectives originally included integration with R3 Corda to have a fully
functioning Blockchain system. However, due to time limitations, this was not possible
in the final implementation. As a fallback, a dummy Blockchain scheme was designed
to be used by confirmed transactions. This design uses a file to substitute a ledger, where
each node would maintain its own copy of the file just as nodes on a real Blockchain
network have a local copy of the ledger. Confirmed transactions are passed through
a SHA-256 hash function and written to the ledger in blocks. The block size can be
modified to adjust the rate of production of blocks. Every block except the genesis block
will have the hash value of the previous block, just as a regular Blockchain does. To
view the ledger the file can be read by other parties. New nodes joining the system can
request a copy of this file or ledger to catch up the latest transactions in the Blockchain.

5.4. SERVER APPLICATION 29

Figure 5.4: Blockchain Ledger Design

Chapter 6

Implementation

The entire system was implemented using the Java programming language, whilst
following the design laid out in the Design chapter. The reasoning for this choice was
that the BFT SMaRt code base was based on Java, so it would make sense to use Java
for the entire implementation for easy interfacing with BFT SMaRt. In this section the
implementation of each component in the system is discussed and how the functionality
would be used in the real world.

6.1 Client Side Implementation

6.1.1 Regular Client

The regular client was implemented with two main components, an interactive client
interface and a backend that communicates with the consensus network.

The interactive client provides an interface for users to use all functions of the system
that are listed in section 5.2.1. The interface implementation is simple and easy to use,
and gives instructions for each step. Once the user has logged in using the interactive
interface, the client application will link all requests to the corresponding client_id.
The extracted request data from user input is then passed to the backend. Once the
request has successfully been completed, the response is displayed to the user and
the user is free to submit another request. The code for this module is located in the
V2VInteractiveClient class.

The backend client package receives unprocessed requests from the interactive interface
and packages them into the structure that is required by the consensus nodes. All nodes
require to be receive requests in Java byte array format, so the user input has to be
parsed and converted and serialized into a byte array. One important implementation
detail is that requests that do not change the state of the system such as viewing market
data are packaged into unordered requests before being sent to the server. As discussed
previously this allows these requests to bypass consensus to improve the performance
of the system. The underlying Netty communication framework from the consensus
module is extended to be used by the client, so the client can simply call functions from
the communication module to send requests into the server. The backend also receives

30

6.2. CONSENSUS IMPLEMENTATION 31

responses from the server network and passes them to the server, deconstructs them
from byte array format and passes them back the interface in a human readable format.
The code for this module is located in the V2VBackendClient class.

6.1.2 Master Client

The master client was implemented with the same methodology as the regular client,
with just the request types being modified to conform to the design discussed in section
5.2.2. The code for this client can be found in the V2VInteractiveMasterClient and
V2VBackendMasterClient classes.

6.2 Consensus Implementation

6.2.1 Existing Libraries

Developing and implementing a BFT consensus system from scratch in the available
time frame was not viable, as existing implementations of BFT consensus systems such
as PBFT and UpRight contain upwards of 20k lines of code. For this reason it was
decided to use the implemented BFT SMaRt library for the consensus module.

The original BFT SMaRt library consists of over 14k lines of Java code. Understanding
this code base was a major part of development, as it was important to correctly interface
with the consensus module. The implementations of Linear BFT and SBFT were based
on the code base of BFT SMaRt, so understanding the new libraries was less difficult
after already having the knowledge on the baseline BFT SMaRt.

6.2.2 Modifications

As discussed in section 5.3.2, the functionality of the consensus modules was changed
during implementation.

In each implementation version, request validation was added inside the consensus
module to ensure received requests were from trusted clients. This was implemented in
the Consensus class in all three code bases by checking the client_id of the request
with a hard coded white list of IDs. In a real world deployment, this would not be
suitable as the clients can change, but for this projects purposes this implementation
was sufficient for test purposes.

The state management module was modified to include sending and receiving the
application state to allow new nodes in the system to receive the updated state of the
application. This was implemented by serializing the application database into a Java
byte array structure. When new nodes enter the network, they can request the latest
version of the database from up to date nodes during the initialisation phase.

6.3. SERVER APPLICATION IMPLEMENTATION 32

6.3 Server Application Implementation

The application that executes on each replica server is where the main logic of the
system was implemented. The main class for this application is V2VServer. This class
extends the DefaultSingleRecoverable class that is provided by BFT SMaRt to
make integration with the server application more streamlined.

6.3.1 State Machine Replication Implementation

As the consensus orders all incoming requests, SMR is trivially achieved if operation
execution on the server application is always deterministic as long as there are no
random properties included in the application. It was made sure during implementation
to use only deterministic functions.

6.3.2 Request Handling Implementation

Validated and ordered requests are unpacked from Java byte array format. Depending
on what request type is defined in the header of the request, the correct request function
is called. This flow was implemented using a switch statement with all the request
types, specified in the V2VRequestType class.

6.3.3 Database Implementation

The application stores information on orders and clients in a database. This database
was implemented using Java HashMap and HashSet to link classes to others in a
structured way, so that lookup, insertion and deletion could be performed easily using
the associated IDs.

6.3.4 Algorithm Implementation

The order matching algorithm was implemented following the design in section 5.4.3.
The translation from psuedocode to Java remained O(m) complexity, where m is the
amount of buy/sell orders. The database of orders is modified during the execution of
this algorithm. The algorithm additionally checks that consumers have sufficient funds
to complete the transaction it is confirmed. Upon confirmation, the respective client
accounts are credited/debited and the confirmed transaction is sent back to the clients in
Java byte array format.

6.3.5 Blockchain Ledger Implementation

The dummy ledger functionality was implemented by simply writing the hash of
confirmed transactions into a file with the specified block size. The code for this
functionality is located in the LedgerWriter class, and uses a Java BufferedWriter
to write to a file.

6.4. CONFIGURATION SETTINGS 33

6.4 Configuration Settings

Since there will be multiple nodes on the network running the same application, it
must be specified what IP addresses and ports the nodes will be running on. Nodes
can be added and removed by editing the system.config and host.config files. The
codebase functions correctly with both local and external nodes. The payload size of
requests will be modified during performance experimentation and can be adjusted
in the system.config file. The block size for the block chain was also made to be
adjustable in the same file.

6.5 Unit Testing

Individual functionality of each method in the client was tested by sending valid and
invalid requests to the network and checking the response was correct. The unit testing
included the following functionality checks:

• Registering new users - Registration with an ID that has already been registered
results in failure. Unique IDs return successfully.

• Logging in - Invalid IDs were unable to log into the system, but registered IDs
were able to login successfully.

• Master Client Functionality - The functionality of each method in the master
client was correct, and it could modify user details are required.

• Linking an EV - Logged in users were able to link an EV to their ID.

• Depositing/Withdrawing funds

• Placing orders - Only logged in clients with linked EVs were able to place orders.
The response was always displayed back to the user.

• Viewing the Market - Logged in clients were able to view the orders on the market
at the current time.

The unit testing functionality of the server application included the following checks:

• Database Management - Insertion, deletion and updating records was always
correct.

• Order Matching - If a valid match was found between provider, consumer and
meeting point, it was always he match with the lowest UC and highest UP. When
there was no match found, no confirmed transaction was outputted.

• State Machine Replication - The application state of all nodes hashed to the same
value for after each operation execution.

• Ledger Output - Each replica produced a ledger file that was the exact same with
the hash of confirmed transactions in the specified block sizes.

Chapter 7

Performance Evaluation

In this chapter, the performance of each version of BFT consensus is benchmarked by
measuring throughput and latency whilst varying message size and network size.

7.1 Setup and Configuration

The aim of the performance experiments was to test the throughput and latency of
the different versions of BFT consensus by simulating application use. Latency was
measured as the average time taken for a response to be sent to a request from the client
side, while throughput was the average number of operation executions per second
the server applications achieved. The simulation of users submitting requests was
implemented by creating Java threads for 10 different clients. Then for each client,
requests were created through randomisation of request parameters. It was originally
planned that the number of requests sent during the experiments would be high to
simulate real world use, but the existing implementation of the SBFT consensus was
not stable after for a large number of consensus rounds. To keep the amount of requests
consistent between experiments, the requests were kept to an amount that would not
break SBFT, which was discovered to be 200 requests per client, totalling 2000 requests
being sent to the servers in total. To keep the requests consistent between experiments,
a random seed was used to ensure that the request parameters would always be the exact
same for each experiment run. In turn this ensures that the consensus would always
receive the same requests to order and validate for each version of BFT consensus, and
the application would execute the same operations in each experiment run.

The properties that were varied during the experiments were BFT consensus type,
message size, and the number of nodes in the network. All server nodes were deployed
locally on unique port numbers, the network sizes used were 4, 8, 16, 32 and 64 nodes.
The message size was adjusted by padding requests with a Java byte array. The message
sizes used were 8 bytes, 1 kilobyte and 10 kilobytes. The consensus type was trivially
swapped by executing the associated consensus code base with the applications that
were developed in this project. SBFT test runs were only in Fast Path mode as this is
the main differentiation to Linear BFT.

34

7.2. RESULTS 35

Figure 7.1: 8 Byte Message Latency Figure 7.2: 8 Byte Message Throughput

Figure 7.3: 1Kb Message Latency Figure 7.4: 1Kb Message Throughput

Figure 7.5: 10Kb Message Latency Figure 7.6: 10Kb Message Throughput

7.2 Results

See figures 7.1, 7.2, 7.3, 7.4, 7.5 and 7.6.

7.3. ANALYSIS 36

7.3 Analysis

7.3.1 Latency

The latency between using 8 byte messages and 1Kb messages did not have a large
impact on any of the consensus variations [7.1 and 7.3]. However using an extremely
large message size did have a noticeable performance loss [7.5]. For some network
sizes, this value almost doubles. This could be explained by the fact that larger message
sizes means the underlying Netty communication framework for the consensus becomes
a bottleneck as too much data is being sent in each message. As the number of nodes in
the network increases, Linear BFT and SBFT perform better. This is to be expected as
the exploitation of TSS allows for O(n2) message exchange complexity, Since there are
less messages being exchanged between nodes, there is less bottleneck in the system
and latency will be lower, Strangely however, the performance of Linear BFT and SBFT
is rather similar, when ideally SBFT should outperform Linear BFT due to its Fast Path
feature where it skips the Prepare step of the consensus algorithm. When the network
size is relatively small, the performance difference in latency between the consensus
algorithms is negligible as only a relatively small amount of messages would need to be
exchanged in any consensus variation.

7.3.2 Throughput

The throughput values are somewhat stable between message sizes [7.2, 7.4 and 7.6].
The explanation for this could possibly be that once the consensus has received a
large message, unpacking and processing time and time for consensus to be achieved is
negligible compared to the time spend in sending the large message through the network,
which affects latency but not throughput. There appears to be an optimal range in which
both SBFT and Linear BFT perform significantly better than regular BFT on all message
sizes. This range is around 8-32 nodes where the gap between the throughput of regular
BFT and both Linear BFT and SBFT is large. When the network size is relatively low,
the throughput performance is stable between all versions of consensus as the number of
messages exchanged is low, leading to faster consensus decisions and in turn operation
executions happen more frequently on the server application. In the 8-32 node range
mentioned, the conditions are favourable for both Linear BFT and SBFT to exploit their
linear message complexity property to achieve consensus with less message exchanges,
However, for larger networks, the exchange of messages becomes the influential factor
regardless of message complexity, leading to a lower throughput for all three versions
of consensus. It should be noted again that SBFT did not outperform Linear BFT, even
though this was expected due to SBFT being able the Prepare step while running the
Fast Path.

7.3.3 Comparison to Past Work

These findings are consistent with previous work such as the mentioned papers [28]
and [31] where regular BFT [9] is one of the slowest performing consensus algorithms.
The performance tests in the respective papers for both SBFT [22] and Linear BFT
[27] share similar results where they both outperform regular BFT easily. However, the

7.3. ANALYSIS 37

results obtained by SBFT in this project are not as impressive as the ones obtained in
the SBFT paper, where the performance of SBFT in the Fast Path is up to 3 times better.

7.3.4 Summary

It is clear from the performance tests that Linear BFT and SBFT outperform regular
BFT. There is a range between 8-32 nodes on the network that has conditions that are
most favourable for SBFT and Linear BFT, where high throughput can be achieved
whilst maintaining low latency from the client side. One unexplained discovery was the
similarity in performance between SBFT and Linear BFT, SBFT running with the Fast
Path property was expected to outperform Linear BFT, but failed to do so. This may
be a problem with the implementation of SBFT where the code design may not be as
efficient as the Linear BFT code.

Chapter 8

Discussions

8.1 Achievements

In this project, a Blockchain-based V2V Energy Trading system that uses BFT style
consensus was successfully modelled, designed and implemented. Looking back at the
requirements specified for the system in section 4.2, each requirement was fulfilled by
the end of the final implementation.

• Basic Request Functionality - Clients can use all functionality that was originally
designed.

• Deterministic Buy/Sell Request Matching Algorithm - The algorithm to match
orders successfully passed the unit test for determinism.

• Request Validation and Ordering - The system integrates BFT consensus to order
and validate requests

• State Machine Replication - The nodes on the system network converge to the
same state for the same operation executions.

• Modular Application-Consensus Design - The version of BFT consensus is easily
able to be interchanged without modifying the application code base.

• Scalability - The network was able to scale to 64 nodes to allow for up to 21
corrupt nodes for increased security.

• Confirmed Transactions Written to Blockchain - The hashed transactions were
written to a file for ledger functionality simulation.

8.2 Limitations

There are certain limitations to the work completed in this project. The SBFT imple-
mentation used was unstable for a large amount of requests, which limited the number
of requests that could be sent for testing both the stable Linear BFT and regular BFT.

38

8.3. FUTURE WORK 39

Additionally, the affect of having byzantine nodes was not investigated as the SBFT im-
plementation did also not include a switch from the Fast Path to the Slow Path, meaning
the algorithm would get stuck when nodes become byzantine. To keep tests consistent
between all versions of BFT, it was decided to avoid this experiment. The original
project plan included integrating R3 Corda into the system. but due to time frame
limitations this could not be achieved. Instead, dummy Blockchain ledger functionality
was used by writing hashed transactions to a file. The experiments were all run locally,
instead of deploying the nodes on the cloud at various locations to better simulate a real
distributes system.

8.3 Future Work

The future work for this project is naturally based around the current limitations. Using
an implementation of SBFT with complete functionality would allow for additional
experiments to further investigate what effects each version of the BFT consensus
have on application performance. Furthermore, new versions of BFT consensus such
as HotStuff [1] and Tendermint [5] could also be used with the application to see if
there is any improvements compared to the currently used consensus types. Running
the consensus network on the cloud across different physical locations would better
simulate a real world deployment of the system, where server replicas are spread about
an area for security. This would give more realistic results for throughput and latency
experiments. Perhaps the main work that could be completed to extend this project
is integrating with a developed Blockchain system such as R3 Corda for additional
security and functionality. This would also allow for more realistic performance test
scenarios.

Chapter 9

Conclusion

Comprehensive model, design and implementation of a Blockchain-based V2V Energy
Sharing system using BFT consensus have been discussed and analysed in this project.
The final implementation of the interfacing application is robust and reliable, and
provides the functionality a real world deployment of this system would use. The
application was designed to be modular so that different versions of BFT consensus
based on the BFT SMaRt code base could be used to compare and test the performance
results. A ledger prototype was implemented in place of integration with an existing
Blockchain system, which perhaps is the main limitation of this project especially
compared to previous work. The system was evaluated through simulation experiments,
which have shown that it can achieve high levels of throughput and scalability.

There has been previous work completed in this field, but the unique contribution of
this project was the use of Linear BFT and SBFT with a V2V Energy Sharing system.
No other published work has discussed or tested these types of BFT consensus. It was
discovered that these two BFT consensus versions were very similar in performance
tests for throughput and latency, but both performed significantly better than the regular
BFT consensus algorithm.

Overall, this dissertation contributes to the growing body of literature on Blockchain-
based V2V energy trading, and provides valuable insights into the potential of this
technology to transform the energy sector. With further research and development, it is
hoped that Blockchain-based V2V energy trading systems can be successfully deployed
on a large scale, leading to a more sustainable and decentralized energy future.

40

Bibliography

[1] Ittai Abraham, Guy Gueta, and Dahlia Malkhi. Hot-stuff the linear, optimal-
resilience, one-message BFT devil. CoRR, abs/1803.05069, 2018.

[2] Alysson Bessani, João Sousa, and Eduardo Alchieri. State machine replication for
the masses with bft-smart. pages 355–362, 06 2014.

[3] Dan Boneh, Marten Drijvers, and Gregory Neven. Bls signatures. IACR Cryptology
ePrint Archive, 2018:1–26, 2018.

[4] Dan Boneh, David M Freeman, and Jonathan Katz. Distributed key generation in
the wild. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 266–282. Springer, 2003.

[5] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT
consensus. CoRR, abs/1807.04938, 2018.

[6] Vitalik Buterin. Ethereum white paper. https://ethereum.org/en/whitepaper/, 2014.
Accessed on April 24, 2023.

[7] Vitalik Buterin. The next frontier in cryptocurrency: Scalability. In ACM SIGSAC
Meeting on Computer and Communications Security, pages 123–124. ACM, 2014.

[8] Christian Cachin and Marko Vukolic. Architecture of the hyperledger blockchain
fabric. Proceedings of Workshop on Distributed Cryptocurrencies and Consensus
Ledgers, 2016.

[9] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In OSDI,
volume 99, pages 173–186, 1999.

[10] David Chaum. Blind signatures for untraceable payments. In Advances in Cryp-
tology Proceedings of Crypto, pages 199–203. Springer, 1982.

[11] Konstantinos Christidis and Michael Devetsikiotis. Understanding the blockchain
technology behind bitcoin: An energy perspective. IEEE Transactions on Smart
Grid, 9(3):2169–2177, 2018.

[12] Allen Clement, Edmund L Wong, Lorenzo Alvisi, and Michael Dahlin. State-
machine replication scalability made simple. In Proceedings of the 23rd ACM
symposium on Operating systems principles, pages 153–168, 2009.

[13] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. Bitcoin: Under the hood.
Communications of the ACM, 58(9):104–113, 2015.

41

Bibliography 42

[14] John E. Hopcroft and Jeffrey D. Ullman. Introduction to automata theory, lan-
guages, and computation. Addison-Wesley, pages 106–109, 1979.

[15] Peter Joseph, Elangovan Devaraj, and Arunkumar Gopal. An overview of wireless
charging and v2g integration of electric vehicles using renewable energy for
sustainable transportation. IET Power Electronics, 12, 04 2019.

[16] Joshua A Kroll, Ian C Davey, and Edward W Felten. The economics of bitcoin
mining, or bitcoin in the presence of adversaries. In Proceedings of WEIS, 2013.

[17] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, 1978.

[18] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals prob-
lem. In Proceedings of the 4th ACM SIGACT-SIGOPS symposium on Principles
of distributed computing, pages 382–401. ACM, 1982.

[19] Xiaolong Li, Xiaoliang Liu, Wei Chen, Feng Xia, Hongbin Sun, and Yonggang
Wen. Internet of electric vehicles: architecture, applications and technologies.
IEEE Internet of Things Journal, 4(6):2012–2023, 2017.

[20] S. Mazloom, B. Zhang, G. Pau, and H. Li. Cityflow: A vehicle-to-grid en-
ergy management platform for smart cities. IEEE Transactions on Smart Grid,
11(2):1569–1579, 2020.

[21] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[22] Rafael Pass and Elaine Shi. Sbft: a scalable and decentralized trust infrastruc-
ture for blockchains. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 429–447. ACM, 2017.

[23] J. Postel. Transmission Control Protocol. In RFC 793, 1981.

[24] R3. Corda: An introduction. R3 White Paper, 2016.

[25] Melanie Swan. Blockchain: blueprint for a new economy. O’Reilly Media, Inc.,
2015.

[26] Ethan C Tse, Li Zhou, and Yan Li. Blockchain reliability: A perspective. IEEE
Access, 6:20238–20253, 2018.

[27] Yin Yang. Linbft: Linear-communication byzantine fault tolerance for public
blockchains. CoRR, abs/1807.01829, 2018.

[28] Mingrui Yin, Yu Yang, Wenjie Li, and Xiang Huang. Consensus mechanism for
blockchain-enabled vehicle-to-vehicle energy trading in the internet of electric
vehicles. IEEE Access, 9:107894–107905, 2021.

[29] Weisheng Yue, Hongfei Fan, Zheng Zhang, Yajun Xu, Kui Zhang, and Siyuan
Cheng. An efficient vehicle-to-vehicle (v2v) energy sharing framework. IEEE
Transactions on Industrial Informatics, 17(4):2813–2823, 2021.

[30] Maryam Zahedi, Mehrdad Nouri Moghaddam, Naser Movahhedinia, Masoud
Javadi, Behnam Mohammadi-Ivatloo, and Jamshid Aghaei. echarge: A blockchain-

Bibliography 43

based platform for peer-to-peer electric vehicle charging. Sustainable Cities and
Society, 42:251–260, 2018.

[31] Jinyu Zhang, Anhong Zhou, Bin Hu, and Jianguo Yang. A fast and secured
vehicle-to-vehicle energy trading based on blockchain consensus in the internet of
electric vehicles. IEEE Access, 7:103902–103913, 2019.

[32] Eric P Zheng. Blockchain and healthcare strategy guide. CRC Press, 2017.

