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Abstract
The softmax function is the default approach to output a probability distribution in
multiclass classification problems. However, recent literature on language modeling
points out the shortcomings of softmax when the number of classes is large. The
problem, known as the low-rank softmax bottleneck, limits the expressive capabilities
of language models. In the thesis, we describe the intuition to understand the bottleneck.
We provide a survey of the solutions proposed in the literature that aim to solve it. We
generalize the bottleneck to any network where the last hidden layer is lower than the
output. Then, for the first time, we experimentally evaluate solutions to the bottleneck
in image classification. Based on experiments on handwritten digit recognition and
species classification, we find that the Mixture of Softmaxes and Mixture of Sigsoftmaxes
can lead to higher accuracy than softmax for very low ranks.
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Notation

Symbol Typical meaning

K The number of classes
d The dimension of the last hidden layer
M The number of mixtures in MoS/MoSS
a, A Regular (not bold) letters are scalars
a, v Lowercase bold letters are vectors
A, B Uppercase bold letters are matrices
:= Is defined to
AB A matrix multiplication
AT A transpose of a matrix
aTb A dot product
ai An i-th element of a vector
Ai j An (i, j)-th entry of a matrix
1N A vector of all ones of size N
1[a = b] An indicator function: 1 if a = b, else 0
img,dim Image of a function, dimension of a vector space
P(·) A probability of an outcome
P(· | ·) A conditional probability
R The set of real numbers
Rn A vector of real numbers of size n
Ra×b An a×b dimensional matrix of real numbers

∑
A
a=1 The sum of all elements for a = 1, . . . ,A

∏
A
a=1 The product of all elements for a = 1, . . . ,A

a ∈ A a is a member of set A
A ⊆ B A is a subset of B
{a | p} The set with all elements a such that p is true.
{an}N

n=1 The set {a1, . . . ,aN}
∀x The universal quantifier meaning “for all x”
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Introduction

1.1 Motivation

Modeling probabilistic distributions is a big part of machine learning. A common
task is a multiclass classification, where an algorithm models the probability that an
input example belongs to one of a set of mutually exclusive classes (Bishop, 2006). In
deep learning, the input representation is learned using a neural network. However,
the values of the last layer of the network are not guaranteed to satisfy the probability
axioms. Hence, we need a transformation that can map the output to a valid probability
distribution. The standard transformation to achieve this is softmax (Goodfellow et al.,
2016).

Nevertheless, recent literature points out the shortcomings of softmax when the number
of classes is large. An example of this problem is neural language modeling where a
model outputs a probability distribution over a big vocabulary. Yang et al. (2018) found
that in the majority of neural language models, softmax imposes a low-rank output
representation that does not have enough capacity to model the complexity of a natural
language. They also provided a simple solution to mitigate the problem that led to
state-of-the-art results. Their paper motivated a series of follow-up papers trying to
improve the expressivity along with the time and memory efficiency of the baseline
solution.

On the other hand, it is not clear how much of the theory of low-rank softmax matters
for practical applications. In particular, state-of-the-art models such as GPT-3 use
the low-rank softmax, albeit their dimensionality has increased dramatically (Brown
et al., 2020). Very often we do not need the whole distribution, but just the most
likely class (referred to as argmax). An example task is machine translation in which
argmax corresponds to the best translation. Grivas et al. (2022) analyzed the bottleneck
from the perspective of argmax in machine translation. They argued the bottleneck
affects only very infrequent tokens and is unlikely to impact the quality of practical
machine translation models. Also in the paper Parthiban et al. (2021), the authors
found that while the low-rank matrix is a theoretical problem, it has little impact on
the performance of a model. In their empirical study, higher rank was very weakly
correlated with a better perplexity of a language model.
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1. Introduction 2

Since the problem of a low-rank approximation induced by softmax is a novel research
topic, there is a need for a review paper that would compare various solutions. In the
opinion of the author, it is not clear from the literature to what extent the proposed
solutions solve the bottleneck. It is also not agreed on how much of a practical problem
the softmax bottleneck is. Moreover, the bottleneck was only explored in the case of
language modeling. Can we generalize the bottleneck to other tasks such as image
classification? Would the methods from the literature alleviate the bottleneck similarly
well in these other tasks? Throughout the thesis, we aim to answer these questions.

1.2 Main contributions

The thesis addresses the problem of the low-rank softmax bottleneck. It can be regarded
as a survey paper on existing solutions from the literature. The author provides the
necessary background to understand the bottleneck. The methods proposed in the
literature are explained using consistent mathematical notation (which is not necessarily
the case in their original papers). To facilitate the discussion of the different models, we
include intuitive explanations and examples. We also release all the code used in the
thesis1.

The other contributions include:

• The author generalizes the softmax bottleneck outside its initial language mod-
eling domain into any multiclass classification problem where the number of
neurons in the last hidden layer is less than the output.

• Following this general formulation, four different models from the literature are
tested in image classification tasks of handwritten digit recognition and species
classification. We implement and share the implementation of three models from
the literature.

• Based on experiments, we demonstrate Mixture of Softmaxes and Mixture of
Sigsoftmaxes can give higher accuracy in image classification in very low-rank
networks.

1.3 Structure

• Chapter 1 - Introduction: In this chapter, we contain the motivation and goals
for the thesis. We also state the main contributions.

• Chapter 2 - Background: We formally explain what multiclass classification is
with language modeling as its example. We describe the problem of the low-rank
softmax bottleneck and why simple solutions do not solve it.

• Chapter 3 - Towards breaking the bottleneck: The chapter contains a literature
review with our theoretical findings from original papers. We also present intuition
and examples to help the reader understand the literature in a broader context.

1https://github.com/dzionek/softmax-bottleneck

https://github.com/dzionek/softmax-bottleneck
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• Chapter 4 - Experiments: The chapter comprises our experiments on images
with their findings. We share details about our implementation. Then, we ex-
perimentally evaluate models from the literature in the task of handwritten digit
recognition and species classification.

• Chapter 5 - Conclusions: We summarize the thesis, its findings, and its limita-
tions. We also provide recommendations for future work.

• Appendix A - Proofs: This appendix contains detailed mathematical proofs for
the keen reader.

• Appendix B - Additional results from experiments: The appendix contains the
detailed results we got in the experiments. Chapter 4 discusses a subset of them.
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Background

2.1 Multiclass classification

The goal of a multiclass classification is to take an input x and assign it into one of
K disjoint classes Ck where k = 1, . . . ,K (Bishop, 2006). As a simple example, let us
imagine a problem of assigning an article title into categories: sport C1, technology
C2, or business C3. We would like our ideal classifier to assign the article with a title

“Lewandowski sets a goal record” to C1, “What is the best operating system?” to C2,
and “The most promising stocks” to C3.

We can also see this problem probabilistically as estimating the conditional distribution
P(C |φφφ) = [P(C1 |φφφ), . . . ,P(CK |φφφ)]T where the vector φφφ is any transformation of the
input. For example, if φφφ is a transformation of the article title “The most valuable
football clubs”, we might estimate the distribution as P̂(C1 |φφφ) = 0.7, P̂(C2 |φφφ) = 0.01,
and P̂(C3 |φφφ) = 0.29.

The transformation φφφ and the probability P̂(C |φφφ) can be learned using a neural network.
A (feed-forward) neural network takes the input φφφ and transforms it through a series of
H hidden layers:

h(1) = g
(

W(1)
φφφ

)
, h(2) = g

(
W(2)h(1)

)
, . . . , h(H) = g

(
W(H)h(H−1)

)
,

where g is a non-linear function called an activation function (Goodfellow et al.,
2016). An example g is a sigmoid activation that can be applied element-wise:
σ(x) = 1

1+exp(−x) .

The network’s input vector φφφ is called an embedding and can be obtained from an article
title using simple methods like one-hot encoding (Khoshgoftaar, 2020) or using learned
embeddings such as Skip-Gram (Mikolov et al., 2013) and GloVe (Pennington et al.,
2014).

For short, we denote the vector of the last hidden layer h(H) as h. We also assume
h ∈ Rd . Then, the output layer is an affine transformation of h,

z = Wh,

4



2. Background 5

such that W ∈ RK×d and z ∈ RK . In this output, the vector element zi corresponds to
the class Ci.

Definition 2.1 (Kolmogorov (1950)). Let Ω be a sample space consisting of mutually
exclusive events X1, . . . ,XN . A probability measure P must satisfy:

1. P(Xi)≥ 0 for all i = 1, . . . ,N.

2. P(Ω) = ∑
N
i=1 P(Xi) = 1.

In the multiclass classification, we have Ω = {C1, . . . ,CK}. However, we cannot assume
z to be a probability measure P(· |φφφ). The elements of z are not guaranteed to satisfy
any of the two axioms in definition 2.1.

2.2 Softmax

To consider the set of all valid probability distributions for multiclass classification, it is
worth recalling the definition of a simplex.

Definition 2.2 (Boyd and Vandenberghe (2004)). The (K −1)-dimensional probability
simplex is given by

∆
K−1 :=

{
v ∈ RK | ∀K

k=1vk ≥ 0,
K

∑
k=1

vk = 1

}
.

Example 2.3. Every categorical distribution over K categories belongs to the (K −1)-
dimensional probability simplex. For instance, P(C) = [0.2,0.3,0.5]T ∈ ∆2. We can
also see P(C) as a point on the polytope ∆2 as presented in figure 2.1.

x

y

z

P(C )

P(C1)
P(C2)

P(C3)

(1,0,0)

(0,1,0)

(0,0,1)

Figure 2.1: Distribution P(C) = (0.2,0.3,0.5) and ∆2.

Comparing the two conditions of the set in definition 2.2 with the axioms in definition
2.1, we see that (K −1)-dimensional probability simplex is a set of all valid probability
distributions with K classes. Thus, if we can find a function f : RK → ∆K−1, then f (z)
would be a valid probability distribution over K classes.



2. Background 6

The most common choice of a function f is softmax (Goodfellow et al., 2016).

Definition 2.4 (Bridle (1989)). Let z ∈ RK . The softmax value at the k-th element is

softmax(z)k :=
exp(zk)

∑
N
k′=1 exp(zk′)

for all k = 1, . . . ,K.

As presented in theorem A.1 in the appendix, softmax(z)∈ ∆K−1. A detailed discussion
of softmax as a projection onto the probability simplex was described in Blondel (2019).
Most importantly, we can use softmax to define the output of a neural network to be

softmax(z) = softmax(Wh) = P̂(C |φφφ).

The elements of the vector Wh are called logits (Goodfellow et al., 2016).

Example 2.5. If Wh = [−2.15,1,0]T, softmax gives P̂(C |φφφ)≈ [0.03,0.71,0.26]T.

We call our output layer of a neural network a softmax layer. It involves first computing
the logits, and then passing them to the softmax function. In the next sections, we
present why the softmax layer might not be the ideal choice when the number of classes
is large.

Overall, to train the network, we can consider a training set D =
{(

φφφ
(i), t(i)

)}I

i=1
,

where t(i) is the one-hot-encoded class for the i-th example.

Example 2.6. Re-using classes from the first paragraph of this chapter, we can have

D = {(φφφ“sport”,
[
1,0,0

]T
),(φφφ“computer”,

[
0,1,0

]T
),(φφφ“debt”,

[
0,0,1

]T
),

(φφφ“money”,
[
0,0,1

]T
),(φφφ“code”,

[
0,1,0

]T
),(φφφ“game”,

[
1,0,0

]T
)}.

The trained weights W ∗ = ⟨W(1), . . . ,W(H),W⟩ minimize negative log-likelihood

− log P̂(D |W ∗) =− log
I

∏
i=1

K

∏
k=1

P̂(Ck |φφφ(i))t(i)k =−
I

∑
i=1

K

∑
k=1

t(i)k log P̂(Ck |φφφ(i)). (2.1)

The objective of equation 2.1 is called cross-entropy and can be optimized using
backpropagation and Stochastic Gradient Descent (Bishop, 2006).

2.3 Language modeling

An example of a task with a large number of classes is language modeling. In language
modeling the set of classes is called a vocabulary V . Usually, |V | ≈ 105 (Yang et al.,
2018). The goal of language modeling is to assign a probability to a sequence of word
tokens (Eisenstein, 2019):

P(X1, . . . ,XT ) where each Xt ∈ V .
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Example 2.7 (Eisenstein (2019)). Suppose we generate a Spanish sentence X (s) from a
language model

Ps

(
X (s)

)
= Ps

(
X (s)

1 , . . . ,X (s)
T

)
.

Each X (s)
t is a token from the Spanish vocabulary V (s). For instance, let x∗ be a sentence

“El cafe negro me gusta mucho”. Suppose we consider all possible translations of x∗

into some English sentence X (e). The distribution over possible translations is the
conditional

Pe | s

(
X (e) | x∗

)
.

In this formulation, we can expect

Pe | s (The coffee black me pleases much | x∗)< Pe | s (I love dark coffee | x∗) ,

meaning “I love dark coffee” is a better English translation for x∗.

By the chain rule of probability, the probability of the whole sequence factorizes into

P(X) =
T

∏
t=1

P(Xt |X1, . . . ,Xt−1) =
T

∏
t=1

P(Xt |Ct),

where Ct = X1, . . . ,Xt−1 is called a context. Intuitively, a context is the sequence
preceding the current token.

Example 2.8. When considering a probability of a sentence, it is common to pad the
sentence with the start token □ and the end token ■ (Eisenstein, 2019). These special
tokens are one way that guarantees probabilities of sentences of all lengths sum to one.
Then, the chain rule of probability implies

P(A dog barks) = P(A |□)P(dog |A)P(barks |A dog)P(■ |A dog barks).

We can interpret P(X |C) as a multiclass classification with K possible values for X
and a context C being the input transformation. The standard approach in language
modeling research is to model this probability using softmax (Eisenstein, 2019).

2.4 Formulation of the softmax bottleneck

In this section, we reformulate language modeling as a matrix factorization problem. To
do this, we distinguish two distributions. The modeled distribution P̂(X |C) is learned
to estimate the actual distribution P(X |C). The modeled distribution uses softmax

P̂(X |C) =

P̂(X1 |C)
...

P̂(XK |C)

= softmax


wT

1 h
...

wT
Kh


= softmax


hTw1

...
hTwK


 .

While the set of contexts can be theoretically unbounded, when training the model we
use a finite number of contexts. So, for the purpose of the analysis, let us consider
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the variable C captures a fixed large number of contexts C1, . . . ,CN . Then, we notice
K ≪ N, and we get a matrix

P̂(X |C) =
[
P̂(X |C1) . . . P̂(X |CN)

]
=

P̂(X1 |C1) . . . P̂(X1 |CN)
... . . . ...

P̂(XK |C1) . . . P̂(XK |CN)

 ,

whose (k,n)-th entry is

P̂(X |C)kn = P̂(Xk |Cn) =
exp

(
hT

n wk
)

∑
K
k′=1 exp

(
hT

n wk′
) :=

exp
(
hT

n wk
)

zn
.

Using element-wise logarithm, we define (similarly to Ganea et al. (2019)),

Â := log P̂(X |C) = WHT−1K logzT, (2.2)

where W =

wT
1
...

wT
K

 ∈ RK×d , H =

hT
1
...

hT
N

 ∈ RN×d , logz =

 logz1
...

logzN

 ∈ RN .

Yang et al. (2018) state the problem of expressivity as finding suitable parameters for Â
that make it equal to the matrix of the actual distribution A := logP(X |C). However, we
note that rank(WHT)≤ d and rank(1K logzT) = 1. Combining with the rank-of-sum
inequality (theorem A.2 in appendix), yields rank(Â)≤ d +1. Figure 2.2 provides a
visual understanding of the bounded rank.

– =

Figure 2.2: Visual representation of the equation 2.2. Consider the case d < K,N; we
observe that d becomes the bottleneck for rank.

However, Yang et al. (2018) hypothesize the matrix of actual distributions A is high-rank
(possibly of full rank K) due to the high context-dependency of natural languages. Since

d < rank(A)−1 ≈ K −1 implies rank(Â)< rank(A),

for typical values d ≈ 102 and K ≈ 105, the softmax layer is a bottleneck in expressivity
as Â ̸= A due to different ranks.
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2.5 Naive solutions

Yang et al. (2018) mention two simple ideas that might seem to fix the problem: n-gram
modeling and using sufficiently large embedding dimension d. Both of them inherently
lead to overfitting according to their paper.

2.5.1 N-gram models

Definition 2.9 (Jurafsky and Martin (2008)). N-gram assumption is a Markov assump-
tion stating that the sequence of tokens depends only on the previous (n−1) tokens.

P(Xt |X<t)≈ P(Xt |Xt−1, . . . ,Xt−n+1) ∀t with appropriate padding

Example 2.10. In a unigram model (N = 1):

P(A dog barks) = P(A)P(dog)P(barks),

whereas in a bigram model (N = 2):

P(A dog barks) = P(A |□)P(dog |A)P(barks |dog)P(■ |barks).

The advantage of N-gram is that it can be easily trained through the maximum likelihood
estimation (Jurafsky and Martin, 2008):

P̂(Xt |Xt−1, . . . ,Xt−n+1) =
count(Xt−n+1, . . . ,Xt−1,Xt)

∑
X∈V

count(Xt−n+1, . . . ,Xt−1,X)
=

count(Xt−n+1, . . . ,Xt−1,Xt)

count(Xt−n+1, . . . ,Xt−1)

Example 2.11. Suppose we have a dataset with sentences: “A dog barks”, “A cat
meows”, “A dog sleeps”. Then,

P̂(dog |A) = count(A dog)
count(A)

=
2
3
, P̂(cat |A) = 1

3
, P̂(barks |A dog) =

1
2
.

To make sure an n-gram model can generalize to unseen data, other extensions can be
added such as Laplace smoothing (Jurafsky and Martin, 2008) or back-off (Kneser and
Ney, 1995). If we compute each entry of Â independently in this way, the matrix will
be high-rank. However, we will need K ×N parameters. With that many parameters
and unbound N, the model is very likely to overfit (Yang et al., 2018).

2.5.2 Large embedding size

We could instead just use the previous neural model with embeddings of size d := K. In
this case, W would be K ×K, which also leads to overfitting. It was empirically found
that increasing d beyond hundreds does not improve language models (Merity et al.,
2018; Melis et al., 2018; Krause et al., 2018; Yang et al., 2018). Moreover, we note that
high d can be computationally infeasible.

Based on the analysis of the two simple ideas, Yang et al. (2018) claim there is a
trade-off between the generalization of a model and its expressivity. They highlight the
need for a model that is more expressive than the softmax neural network and does not
lead to an explosion in the number of parameters.
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Towards breaking the bottleneck

In this chapter, we critically evaluate the solutions to the softmax bottleneck proposed
by the literature. We contrast the approaches with the linear softmax discussed in the
previous chapter.

3.1 Mixture of Softmaxes

We start the discussion with Mixture of Softmaxes (MoS) which was the first recom-
mendation to break the bottleneck Yang et al. (2018). The idea is to use a convex
combination of M softmax activations with different context embeddings.

Definition 3.1 (Yang et al. (2018)). Mixture of Softmaxes (MoS) parametrizes the
model as

Â(MoS)
kn := log P̂(xk | cn) := log

M

∑
m=1

πn,m
exp

(
hT

n,mwk
)

∑
K
k′=1 exp

(
hT

n,mwk′
) s.t.

M

∑
m=1

πn,m = 1

where πn,m are called priors (or mixture weights) of the m-th softmax with regards to
the n-th context. The visual comparison between the MoS network and linear softmax
is shown in figure 3.1. The only difference is that we have weights πm and the final
probability is a weighted average of M different logits.

Example 3.2. If M = 1, we have πn = 1 for all contexts n = 1, . . . ,N. Hence, the
MoS reduces to the linear softmax. By having M > 1, we will show that the MoS can
theoretically attain a higher rank than softmax.

The priors can be modeled using a recurrent neural network (RNN) (Rumelhart et al.,
1986). In particular, Yang et al. (2018) in their paper use the state-of-the-art architecture
at that time called AWD-LSTM (Merity et al., 2018). In general, an RNN is composed
of T hidden states (g1, . . . ,gT ). Each context is a transformation of a hidden state
hnt ,m = tanh

(
Wh,mgt

)
. To make sure the priors sum to one, the RNN normalizes them

using softmax. Thus, the prior at time t takes the form

πnt ,m =
exp

(
wT

π,mgt
)

∑
M
m′=1 exp

(
wT

π,m′gt

) ,
10
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Figure 3.1: The linear softmax network (left) and the MoS network (right). Contexts were
omitted for simplicity; σ can be any non-linearity; products and sums are element-wise.
All linear layers from h(H)

m to logit m share the same weights.

where Wh,m and wπ,m are parameters of the model.

Compared to the linear softmax, we do not have the previous matrix factorization
(equation 2.2). In fact, the log probability matrix is

Â(MoS) = log
M

∑
m=1

exp
(

WHT
m −1K logzT

)
ΠΠΠm,

where ΠΠΠm is a N ×N diagonal matrix with entries πn,m. In other words, the matrix ΠΠΠm
contains the mixture coefficients for a given mixture component across N timesteps.
Yang et al. (2018) argue that due to the non-linear log-sum-exp transformation, the
matrix can be arbitrarily high rank. Furthermore, they claim the model would generalize
well (unlike the naive solutions discussed in section 2.5). The model does not need to
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have many parameters, as we can decrease dimension d to compensate for additional
mixture parameters.

In opposition to the optimism of Yang et al. (2018), the author notes the Â(MoS) matrix
might not necessarily be high-rank. Yang et al. (2018) did not provide any theoretical
guarantees for the rank, except the intuition with non-linear structure. Let us think
about the corner case when all context embeddings are equal, i.e. Hm = H for all m.
Then, it holds that

Â(MoS) = log
M

∑
m=1

exp
(

WHT−1K logzT
)

ΠΠΠm

= logexp
(

WHT−1K logzT
) M

∑
m=1

ΠΠΠm

= logexp
(

WHT−1K logzT
)
IN

= WHT−1K logzT.

In this case, we have the same factorization as in equation 2.2, so rank
(

Â(MoS)
)
≤ d+1.

On the other hand, when Hm are not the same, the Â(MoS) matrix can possibly be
high rank. This is because entries of Â(MoS) are computed by a non-linear element-
wise function. Even though the rank of WHT

m − 1K logzT is bounded by d + 1, its
entries are transformed by a non-linear log-sum-exp function. To better understand
why a non-linear element-wise function can make the rank higher, let us consider two
examples.

Example 3.3. (A non-linear element-wise function can increase rank). Let us
consider

A :=

1 2 8
2 4 16
4 8 32

 , log2 A =

0 1 3
1 2 4
2 3 5

 , B :=

1 4 1
2 2 1
3 0 1

 , 2B =

2 16 2
4 4 2
8 1 2

 .

We note rank(A) = 1 as the columns of A are multiples of each other. However,
rank(log2 A) = 2 because two times the second row minus the third row gives the first
row. Also, while rank(B) = 2 due to the middle row being an average of the other rows,
we have rank

(
2B)= 3.

Example 3.4. (Log-sum-exp is a non-linear element-wise function). Let us define

LSE(x,y) := log(exp(x)+ exp(y)).

By definition, the LSE function is an element-wise function. The plots in figures 3.2 &
3.3 illustrate the log-sum-exp function is non-linear. In contrast, for a linear function,
the contour plot would present parallel lines.

We need to note that, in practice, there are no guarantees the MoS training leads to
distinct column/row spaces whose sum could span all K dimensions. This is evident in
the example 3.3, where taking log did not provide a full-rank matrix. Furthermore, the
cross-entropy objective used in multiclass classification might not cause the rank to be
maximized.
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Figure 3.2: 3D plot of LSE(x,y)
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Figure 3.3: Contour plot of LSE(x,y)

3.1.1 Mixture of Contexts

Definition 3.5 (Yang et al. (2018)). As a naive alternative to the MoS, one could also
consider Mixture of Contexts (MoC),

Â(MoC)
kn := log

exp
((

∑
M
m=1 πn,mhn,m

)Twk

)
∑

K
k′=1 exp

((
∑

M
m=1 πn,mhn,m

)Twk′
) s.t.

M

∑
m=1

πn,m = 1.

However, by setting h′
n := ∑

M
m=1 πn,mhn,m , Yang et al. (2018) observe that ÂMoC could

be factorized as in equation 2.2, leading again to the softmax bottleneck.
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3.1.2 Mixtape

Despite the ability to break the bottleneck, the MoS model can be much more expensive
in terms of memory and time requirements. Yang et al. (2019) iterate on the mixture of
contexts idea in the Mixtape model. The authors argue that using element-wise matrix
multiplication would make the matrix high-rank. However, the evidence is mostly
empirical. According to their results, Mixtape is much more efficient at the cost of
slightly lower performance.

We note that claims about MoS being prohibitively expensive might be exaggerated.
The authors were able to train both Mixtape and the better-performing but slower MoS.
We also observe MoS can be always scaled down by taking a lower number of mixtures
M. Therefore, Mixtape might only be applicable when time and memory are very
important constraints and picking small M is impossible. We will not assume such
constraints in this paper and thus we will not evaluate Mixtape in our experiments.

3.2 Sigsoftmax

Kanai et al. (2018) take a different approach than the Mixture of Softmaxes. The
authors note that the MoS is de facto an additional layer or a mixing technique instead
of a different output activation function. The MoS also requires tuning the additional
hyperparameter M (number of mixtures) and adding additional weights Wh,m and wπ,m.

3.2.1 Necessary conditions

To remediate the aforementioned problems, Kanai et al. (2018) go back to the properties
that must hold for a valid output function f : RK → ∆K−1. They state the function must
be of the normalizing form

f (z)k =
g(z)k

∑
K
k′=1 g(z)k′

,

and satisfy conditions:

• Non-linearity of logg(z): If logg(z) is a linear function of z, we would have a
factorization similar to equation 2.2, leading to the rank bottleneck.

• Numerical stability: Training with gradient-based methods requires computing
the gradient of log probabilities

∂ log f (z)i

∂z j
=

1
f (z)i

∂ f (z)i

∂z j
.

One needs to make sure f (z)i ̸= 0 throughout training to avoid division by zero.

• Non-negative: Recall that ∆K−1 is a subset of the non-negative orthant (definition
2.2). This requires g(z)i ≥ 0 for all i = 1, . . . ,K. The condition also follows
directly from definition 2.1 condition 1.
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• Monotonically increasing: f should be a smoothed argmax of z. The higher the
zi value, the higher probability f should output. Given a constant denominator, it
necessitates g to also be monotonically increasing.

The authors note that softmax does not satisfy all of these constraints.

Example 3.6. For softmax,

• logsoftmax is numerically stable:

∂ logsoftmax(z)i

∂z j
= 1[i = j]− softmax(z) j.

The activation does not involve division (by zero).

• g is non-negative: exp(z)i > 0.

• g is monotonically increasing: ∀zi ≥ z j, exp(zi)≥ exp
(
z j
)
.

• logg is linear: logexpz = z. Thus, softmax suffers from the rank bottleneck.

3.2.2 Sigsoftmax and its mixture

The solution for the softmax bottleneck proposed by their paper is replacing exp with a
product of exp and sigmoid.

Definition 3.7 (Kanai et al. (2018)). Sigsoftmax uses g(z) = exp(z)σ(z) where σ is a
sigmoid function,

Â(SS)
kn := log

exp
(
hT

n wk
)
σ
(
hT

n wk
)

∑
K
k′=1 exp

(
hT

n wk′
)
σ
(
hT

n wk′
) .

Unlike softmax, sigsoftmax satisfies all of the aforementioned constraints.

Theorem 3.8 (Kanai et al. (2018)). Sigsoftmax satisfies the necessary conditions from
section 3.2.1.

Proof. • non-linearity: log(exp(z)σ(z)) = 2z− log(1+ exp(z)).

• numerically stable: ∂ log f (z)i
∂z j

= (1[i = j]− f (z) j)(2−σ(z j)).

• non-negative: both exp(z)≥ 0 and σ(z)≥ 0.

• monotonically increasing: both exp and σ are monotonically increasing.

Again, we should accentuate these are necessary conditions, not sufficient conditions.
The non-linear property of sigsoftmax can help to increase the rank but it is not guar-
anteed. To increase the chance of high rank we can consider taking a mixture of
sigsoftmaxes as we did before in MoS.
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Definition 3.9 (Kanai et al. (2018)). Similarly as before, one can define Mixture of
Sigsoftmaxes (MoSS). Note that the priors can also be computed using sigsoftmax.

Â(MoSS)
kn := log

M

∑
m=1

πn,m
exp

(
hT

n,mwk
)
σ
(
hT

n,mwk
)

∑
K
k′=1 exp

(
hT

n,mwk′
)
σ
(
hT

n,mwk′
) ,

πnt ,m :=
exp

(
wT

π,mgt
)

σ
(
wT

π,mgt
)

∑
M
m′=1 exp

(
wT

π,m′gt

)
σ

(
wT

π,m′gt

) .
We note that sigsoftmax has the same number of parameters as softmax, and the MoSS
has the same as the MoS. However, both will require more time to train. The evidence
for a possible improvement of MoSS over MoS is purely empirical.

3.3 Piecewise linear increasing function

Ganea et al. (2019) continue the search of a function g discussed by Kanai et al. (2018).
The authors consider functions of the form g(z) = exp(ψ(z)). To make sure ψ is
expressive (can model any distribution), the authors add an additional constraint that ψ

needs to be surjective on R. Since logg(z) = ψ(z), ψ must be a non-linear function to
avoid the low-rank bottleneck.

Example 3.10. A simple choice of a non-linear function could be sigmoid or rectified
linear unit (ReLU). But the image of sigmoid is (0,1) and of ReLU is [0,∞). Hence,
they are not surjective on R and cannot be considered for ψ.

Additionally, to preserve the argmax property, one needs to ensure ψ is increasing.
Instead of picking one specific ψ(z), Ganea et al. (2019) decided to consider the whole
family of continuous piecewise linear functions.

Definition 3.11 (Chua and Kang (1977)). A continuous piecewise linear function is a
function whose graph is composed of line segments that consecutively intersect at their
endpoints.

Example 3.12. We give an example of an increasing continuous piecewise linear
function ψ(z) comprising 4 line segments.

ψ(z) :=


z if z < 0,
2z if 0 ≤ z < 3,
z+3 if 3 ≤ z < 5,
4z−12 if z ≥ 5.

0 3 5

0

6
8

z

ψ
(z
)
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In the approach of Ganea et al. (2019), the segments are learned together with the model.
A large enough interval [−T,T ] is split into M+1 equally-distanced knots

li :=−T +
2Ti
M

for i = 0, . . . ,M.

Here, T and M are hyperparameters (e.g. T = 20, M = 105). The function becomes

ψ(x) := six+bi ∀x ∈ [li, li+1],

with parameters si,bi.

It is necessary to constrain the parameters si and bi to make sure the function is
increasing and continuous. Fortunately, we can map this constrained optimization
problem into unconstrained optimization. First, to ensure ψ is increasing, the slope
si must be positive. To attain this, the authors set si := log(1+ exp(vi)) (i.e. softplus
function) and find first unconstrained vi. The last part is ensuring the segments are
intersecting at their ends. The condition holds when

bi := b0 + s0l0 − lisi +
2T
M

i−1

∑
j=0

s j.

Thus, we can only learn the unconstrained bias term b0 and then we are able to compute
all bi.

Definition 3.13 (Ganea et al. (2019)). For a learned ψ being a piecewise linear increas-
ing function (PLIF),

Â(PLIF)
kn := log

exp
(
ψ(hT

n wk)
)

∑
K
k′=1 exp

(
ψ(hT

n wk′)
) .

The advantage of the PLIF model is the computational cost of training is only slightly
higher than softmax. It allows using a high M (many different segments) leading to
a highly non-linear function that means a more flexible model. Then, we can hope a
highly non-linear model would lead to an increase in rank.

3.4 Generalization of the bottleneck

While all the approaches presented in this chapter aim to increase the rank of the
matrix Â, we can notice the main point why someone would use them is to increase
performance (like perplexity for language models). We do not need to think about the
rank of any matrix to check if they are able to improve a model. Therefore, we propose
to generalize the problem of the low-rank softmax bottleneck to any network where
d < K. Having a very small d ≪ K is very likely to negatively impact the performance
as the very low-dimensional vector needs to be mapped into a high-dimensional vector.
Having such a generalization, we are able to test solutions from this chapter outside
language modeling.



4

Experiments

In the previous chapter, we discussed the various approaches from the literature to
solve the problem of low-rank softmax bottleneck. In this chapter, the goal is to
experimentally evaluate these models. In particular, for the first time, we will test the
models outside the language-modeling domain. We aim to assess if the improvements
claimed by language modeling researchers can transfer into better performance in image
classification.

4.1 Implementation highlights

The experiments are conducted using PyTorch version 2.0 (Paszke et al., 2019). The
hardware used is a cluster of NVIDIA GTX 1060 6GB GPUs. The implementation
used in the experiments is made publicly available on Github1.

4.1.1 Code

In the experiments, we will compare Softmax with the alternative output layers: Mixture
of Softmaxes (MoS), Sigsoftmax, Mixture of Sigsoftmaxes (MoSS), and Piecewise
Linear Increasing Function model (PLIF). Since the bottleneck is identified in the
standard Softmax, it is going to be our baseline. Henceforth, we will commonly refer to
MoS and MoSS as the mixture models. The others are called non-mixture models. This
should not be confused with the general family of mixture models in statistics.

The code for PLIF is courtesy of Ganea et al. (2019) and publicly available as part of
experiments from Parthiban et al. (2021). For the other models, the code was written by
the author by following the definitions in their original papers.

In the context of language modeling, Yang et al. (2018) modeled priors πn,m using a
recurrent neural network. However, in our experiments, we will deal with images that
do not have a natural equivalent of context. Thus, our priors need to be non-contextual.
To do this, we use πππ′ ∈RM as the parameters. The priors are enforced to be non-negative
and sum to one by transformation πm := softmax(πππ′)m.

1https://github.com/dzionek/softmax-bottleneck
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4.1.2 Numerical stability

When evaluating softmax and its alternatives, it is important to avoid errors due to the
fixed precision of floating-point numbers (IEEE, 2019).

Whenever possible, we use the built-in PyTorch functions that do not have problems with
numerical stability, such as torch.logsumexp. However, sometimes we need to create
our own numerically-stable functions. For instance, to evaluate log(∑exp(x)σ(x)).

The first type of problems we encountered is due to arithmetic overflow. The problem
appears when raising a number to a very high power, e.g. evaluating exp(100) for
softmax. To avoid this problem, a common strategy is to subtract the maximum logit
(Blanchard et al., 2020):

exp(xi −maxk xk)

∑ j exp
(
x j −maxk xk

) =
exp(−maxk xk)exp(xi)

exp(−maxk xk)∑ j exp
(
x j
) =

exp(xi)

∑ j exp
(
x j
) .

The subtraction guarantees each subtracted logit is less than or equal to zero, and cannot
overflow.

Example 4.1. softmax([1,10,100]T) = softmax([−99,−90,0]T).

The other problem is arithmetic underflow. When we have a very small positive number
it is stored as zero due to limited precision. This can cause problems with the logarithms
of zero as the logarithm of zero is undefined. To fix this, the most common approach is
to add a very small ε before taking the logarithm. The very small number is unlikely to
change the final results while helping with the underflow. Following the approach from
the code of Yang et al. (2018), we use ε = 10−8.

4.1.3 Efficient implementation of mixtures

Note that in contrast to the figure presenting MoS (fig. 3.1), in the implementation
we can learn all the last hidden layers and logits through just two linear layers. We
are also able to vectorize both the multiplication by prior coefficients πm and the final
sum. In the thesis, we present the implementation of the most interesting example,
MoSS, as figure 4.1. All M embeddings are learned using the self.fc1 layer. Then,
we obtain logits with the self.fc2 layer. Priors are ensured to be valid with softmax
and then multiplied element-wise with logits. Finally, by summing we get the output
probabilities. The code snippet also employs the techniques to avoid underflow and
overflow as discussed in section 4.1.2. For the remaining implementation, we refer the
reader to the code repository.
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class MixtureOfSigSoftmaxesNetwork(nn.Module):
def __init__(self, d, M):

super().__init__()
self.fc1 = nn.Linear(PREVIOUS_HIDDEN_LAYER, d * M)
self.fc2 = nn.Linear(d, K)
self.prior = nn.Parameter(torch.randn(M), requires_grad=True)
self.d = d
self.M = M

def sigsoftmax(self, logits, dim):
stable_logits = logits - torch.max(logits)
unnormalized = torch.exp(stable_logits) * torch.sigmoid(logits)
return unnormalized / (

torch.sum(unnormalized, dim=dim, keepdim=True) + EPSILON)

def forward(self, x):
x = self.fc1(x)
x = F.relu(x)
x = x.reshape((x.shape[0], self.M, self.d))

prior = F.softmax(self.prior, dim=-1)
output = self.sigsoftmax(self.fc2(x), dim=2)
output = output * prior.view((1, self.M, 1)).repeat((x.shape[0], 1, K))
output = torch.sum(output, dim=1)
output = torch.log(output + EPSILON)
return output

Figure 4.1: Our PyTorch implementation of MoSS.

4.2 Research question

In the following set of experiments, we want to answer the question: Can the other
types of output layers improve the standard softmax image classifier when d < K while
having comparable performance when d ≥ K? The performance of the classifier will
be measured in terms of (average) cross-entropy (equation 2.1) and accuracy on the
test set. Accuracy is simply defined as the ratio of the number of correctly classified
examples to the total number of examples.

4.3 Handwritten digit recognition

4.3.1 Dataset

We start our evaluation with one of the most significant datasets in the history of deep
learning (Wang and Raj, 2017): MNIST (LeCun et al., 1998b). The MNIST dataset is
composed of 70 thousand 28x28 pixel images corresponding to handwritten digits. Each
pixel takes a grayscale value between 0 and 255. We split the dataset into a training set
with 60 thousand images and a test set with the remaining 10 thousand. A sample of the
dataset is shown in figure 4.2.
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Figure 4.2: Example images from MNIST with their labels written under the images.

4.3.2 Methodology

One can notice that in the context of MNIST the number of classes is small (K = 10).
It is easy to train a model with a high dimension of the last hidden layer and get a
full-rank solution. In fact, the popular PyTorch example2 for MNIST uses d = 128 and
achieves almost 100% accuracy. However, we can still investigate the effect of different
output layers by setting d to less than 10. In this way, the low-dimensional vector of
the last hidden layer needs to be transformed into a higher-dimensional vector of the
probabilities.

Figure 4.3: The network used for training on MNIST. We vary the size of the last hidden
layer d and the activation for the output layer (in red). Using d < 10 imposes low-rank
output.

Every compared model will be the same network except for the final layers. The
baseline Softmax network is based on the PyTorch example3. To extract features from
the images, we use convolutional layers with max-pooling (LeCun et al., 1998a). The
inputs are then flattened and processed through a feed-forward neural network with two
linear layers. The output is the probability of the image representing a particular digit.
The visual representation of the network is given as figure 4.3. To improve the training
process, we use the AdamW optimizer (Loshchilov and Hutter, 2017) with its default
PyTorch learning rate 10−3.

We run 50 different experiments. For each 5 different output layers, we train 10 different
architectures with varying d:

• The first architecture with the dimension of the last hidden layer d = 128. This
is a standard architecture from the PyTorch example. Since this network would

2Accessed on 15 March 2023: https://github.com/pytorch/examples/tree/main/mnist
3See footnote 2

https://github.com/pytorch/examples/tree/main/mnist
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overfit due to a high number of parameters, we use dropout for regularization
(Srivastava et al., 2014). In detail, we use dropout with p = 0.25 after max
pooling, and p = 0.5 after the first fully connected linear layer.

• We consider 9 different low-rank architectures where the penultimate layer has
fewer neurons than the output: from d = 9 down to d = 1. These architectures do
not use dropout because a lower number of parameters is a natural regularizer.

Each network is trained for 40 epochs because this is the number that leads to con-
vergence in test accuracy, according to the manual examination of training curves by
the author. To make sure the results do not depend on initial weight initialization,
each experiment is re-run on 10 different seeds randomly sampled by the author. Each
train and test loss and accuracy will be reported as the average of the different seeds
plus-minus the standard deviation.

4.3.3 Results

d Model Test loss Test accuracy (%)

128

Softmax 0.03±0.0 99.37±0.05
Sigsoftmax 0.03±0.0 99.37±0.06

PLIF 0.03±0.0 99.38±0.04
MoS 0.03±0.0 99.44±0.05

MoSS 0.03±0.0 99.48±0.04

5

Softmax 0.44±0.56 84.84±23.23
Sigsoftmax 0.45±0.42 87.36±17.41

PLIF 0.24±0.29 92.92±12.95
MoS 0.1±0.06 97.82±1.68

MoSS 0.12±0.05 98.3±0.52

3

Softmax 0.89±0.81 69.58±33.69
Sigsoftmax 0.95±0.8 68.95±34.12

PLIF 0.6±0.69 78.56±28.14
MoS 0.2±0.14 95.07±3.58

MoSS 0.26±0.22 96.78±0.65

1

Softmax 1.78±0.43 33.79±18.6
Sigsoftmax 1.74±0.47 35.4±19.91

PLIF 1.75±0.56 32.13±21.16
MoS 1.47±0.29 41.2±11.0

MoSS 1.3±0.36 48.22±13.55

Table 4.1: Comparison of test cross-entropy and accuracy on MNIST by varying d.
Reported values are means and standard deviations based on 10 different random
seeds. In bold, we present the best means for each d. Full results are presented in
tables B.1 & B.2.
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Cross-entropy and accuracy

The full results of the experiments are available in the appendix as tables B.1 & B.2.
Here, we will focus on the insights from selected groups of experiments.

First, let us consider a subset of the results as given in table 4.1. It is apparent that in
a high-rank setting d = 128, all of the models achieved high accuracy and low cross-
entropy. The differences in performance of different layers are minimal. Interestingly,
MoS and MoSS give the highest accuracies. It shows that even though the alternative
layers are designed for low-rank cases, they do similarly well as Softmax when the rank
is high. Moreover, when d = 128, the standard deviations are very low, which shows
we can get a consistent performance irrespective of the random seed used.

When we decrease d to be less than K, we notice bigger differences between the output
layers. When d = 5, we see a big increase in variance for the non-mixture models.
Softmax gives the lowest accuracy and highest variance. Sigsoftmax seems to give
performance similar to Softmax. PLIF outperforms Softmax and Sigsoftmax in accuracy
but gives worse accuracy than MoS and the best MoSS. The reported losses behave
differently than accuracies but generally point to the same superiority of the mixture
models.

If we decrease d even further to d = 3, the effect observed in decreasing d to 5 seems to
be even more pronounced. MoS and MoSS are able to retain high accuracy. Notably,
MoSS continues to give remarkably low standard deviation of accuracies. PLIF is
still between the mixture models and Softmax/Sigsoftmax with loss and accuracy, and
Softmax/Sigsoftmax are still the worst with similar scores.

In the most extreme case, when d = 1, all models report high variance. Non-mixture
models have both the lowest accuracy and the highest variance. This time PLIF does
not outperform Softmax and Sigsoftmax. Mixture models are the best but the difference
in percentage points is smaller. However, the difference in accuracy between MoSS and
MoS is even bigger in favor of MoSS, despite its higher variance.

Figure 4.4: Training curves with cross entropy and accuracy for Softmax and d = 5.
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Figure 4.5: Training curves with cross entropy and accuracy for MoSS and d = 5.

Figure 4.6: Training curves with cross entropy and accuracy for Softmax and d = 1.

Figure 4.7: Training curves with cross entropy and accuracy for MoSS and d = 1.

Training curves and unlucky seeds

We note that the results in the experiments are heavily influenced by the high variability
between different seeds. To better understand what happened, we can look at training
curves. In the training curves we present, each line corresponds to a different seed.
There are two types of patterns we can identify.

The first pattern is when the network is able to learn and occasional lower accuracies
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Figure 4.8: The number of unlucky seeds that led to test accuracy below 13%.

might be due to the low-rank weakness of the architecture. This is the case when d = 5.
Figure 4.4 depicts Softmax and one can see that two seeds led to the accuracy of about
80% and 40%. However, for MoSS, as shown in figure 4.5, all seeds gave over 95%
accuracy.

On the other hand, the second pattern is when the network was not able to learn properly.
In the figure 4.6, we see that for Softmax at d = 1 four seeds were stuck at about 11%
accuracy and 2.3 average cross-entropy. For MoSS, only one seed led to such low
performance (fig. 4.7). In this thesis, we refer to such seeds that lead to accuracy below
13% as “unlucky”. We plot a histogram of those unlucky seeds by each d and model,
and present it in figure 4.8. The highest d for which we found an unlucky seed was
d = 6 for PLIF. Nonetheless, we can observe the unlucky seeds are mainly visible
for very low values of d. It is likely that this is related to more difficult training with
ultra-small d. Comparing different models, we see the mixture models had only one
unlucky seed each at d = 1, compared to many more unlucky seeds for non-mixture
models. It is disappointing to see Sigsoftmax and PLIF having the same number of
unlucky seeds or bigger than Softmax. We hypothesize this is the case because Softmax
is well-optimized in PyTorch, compared to our custom activations.

We note that for unlucky seeds the classifier has a performance similar to a random
classifier. For a random classifier over 10 classes, we have P̂(Ck | φφφ) = 0.1 for each
class k. With perfectly balanced dataset we can expect the accuracy to be 10% and the
average cross-entropy to be − log P̂(Ck |φφφ) =− log(0.1)≈ 2.3.

During designing the experiments, we found that selecting an optimizer had a significant
impact on the number of unlucky seeds. In particular, when we earlier used the Adam
optimizer (Kingma and Ba, 2014) instead of AdamW (Loshchilov and Hutter, 2017),
we witnessed more unlucky seeds across all activations.
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Figure 4.9: Test accuracy after discarding unlucky seeds for high values of d.
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Figure 4.10: Test accuracy after discarding unlucky seeds for low values of d.

Analysis after discarding unlucky seeds

We think it is worth noting that mixture models led to better training across more seeds.
In spite of this, we can also analyze potential improvements from a different perspective.
Let us consider it is not a problem to run an experiment on multiple seeds and discard
results from unlucky seeds (by a simple test of accuracy below 13%).

If we discard unlucky seeds for d = 6,7,8,9,128 (only one unlucky seed in this group,
for PLIF and d = 6), we get distributions as in figure 4.9. While all models perform
relatively well for these values of d, we notice PLIF has the most significant drops in
accuracy (especially d = 7 and unlucky seed at d = 6). We can also say MoS and MoSS
are slightly better performing than non-mixture models.
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For lower values of d, the distributions after removing unlucky seeds for each model
are given in figure 4.10. We can say that MoS and MoSS had much less variance in
their test accuracy than non-mixture models for d ≥ 2. The most interesting example is
d = 2 where the variances of non-mixture models are very large. Consequently, their
mean accuracy is much lower. But if we look at the top-performing seeds, all models
are able to attain a very high accuracy of approximately 93%. Surprisingly, if we check
d = 1, MoS was actually the worst model in both the lowest, mean, and highest reported
accuracy. MoSS had the highest-scoring seeds, confirming its superiority across all
values of d.

4.3.4 Conclusions & limitations

Based on the MNIST experiments we can say that:

• The alternative output layers do offer similarly high performance to Softmax
when d > K. They can be also equally good for higher ranks, such as in our
network when d ≥ 6.

• We can notice there are two groups based on the analysis of performance: mixture
models (MoS and MoSS) perform similarly to each other, and the second group
is non-mixture models. In general, mixture models gave higher accuracy than
non-mixture models for all values of d.

• MoSS was the best model in our tests. It was better than the second-best MoS,
having both higher mean and lower standard deviation across different seeds.

• In the low-rank case, our MNIST network suffered from unlucky seeds that made
the classifier unable to learn anything beyond random choice.

• The success of MoS and MoSS is largely due to being more resistant to unlucky
seeds. We hypothesize that since they have more parameters, they can be easier
to optimize for very low values of d. Sigsoftmax and PLIF were more susceptible
to unlucky seeds than Softmax. Especially PLIF has shown big dependence on
appropriate seeds.

• We cannot conclude any model is always better than the rest. Even with small
d = 2, there were seeds that gave similarly high 93% accuracy. We can however
say, it was the easiest with MoSS to get high accuracy. On the other hand,
Sigsoftmax and PLIF did not make a meaningful difference compared to the
commonly used Softmax.

It is also worth pointing out the limitations of our MNIST experiments:

• The original formulation of the softmax bottleneck is related to a high number of
classes and high context-dependence in natural languages. None of the conditions
apply to handwritten digit recognition. In particular, the standard approach is to
use d > K, in contrast to language modeling (see section 2.5.2).

• When evaluating MoS and MoSS, one needs to consider the number of mixtures
M as an additional hyperparameter. Also for PLIF, the number of knots and
the size of the interval can impact the final performance. Due to the limited
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time and computational resources, the author run all experiments with the default
parameters based on the code from papers: M = 10 for mixtures, and 100 thousand
knots with the interval [−20,20] for PLIF.

• The sensitivity to weight initialization shows that running the experiments on
10 seeds might not be enough to get clear results. Additionally, the influence
of the choice of an optimizer, we identified, shows one should spend more time
adjusting optimizers and their hyperparameters.

4.4 Species classification

The experiments on MNIST were made on a small dataset with a low number of classes.
Let us now consider a dataset with a higher number of classes.

4.4.1 Dataset

Figure 4.11: Representatives of our smaller subset of iNaturalist with 100 classes.
Decoded labels are given under the images.

In this section, we will consider the task of species classification. Given a picture of
an animal or a plant, the classifier needs to recognize the class the picture belongs to.
The dataset we will use comes from iNaturalist (Horn et al., 2017). In particular, we
will use the dataset from the 2021 challenge4. This dataset comprises images of 10
thousand species. In the mini version of the dataset, the training set has 50 images for
each species. The test set comprises 10 images per species. However, we note that even
the mini dataset is 50GB in size. It significantly exceeds the computational resources
of the computer cluster offered to undergraduate students. Therefore, in the thesis, we

4Accessed on 19 March 2023: https://www.kaggle.com/competitions/inaturalist-2021

https://www.kaggle.com/competitions/inaturalist-2021


4. Experiments 29

are forced to limit our analysis to a smaller subset of 100 classes. We randomly sample
these 100 classes. We present some examples of images from our smaller test set in
figure 4.11.

4.4.2 Methodology

Instead of training all parts of a model, a common approach in classifying images is
transfer learning. The method consists of using a large pre-trained model that is later
fine-tuned on a downstream task. Transfer learning is especially helpful when one can
leverage a model trained on a big dataset in training a new model on a small dataset
(Hussain et al., 2019). We note that this is the case in our experiment.

Inputs
3@WxH

ViTImageProcessor

Feature
maps

3@224x224

ViT-Base
w/o output layer

Pre-processed
768

Hidden
units
d

Outputs
100

Fully
connected

Fully
connected

Softmax

Figure 4.12: The network used for training on our subset of iNaturalist 2021. The initial
image can be of arbitrary dimensions, it will be scaled appropriately to 224x224 by
ViTImageProcessor. Then, the image is passed through ViT-Base without the output
layer. We treat ViT-Base as a pre-processing step and do not update its weights during
training. Such pre-processed images are then trained on two linear layers with varying
d < 100 and output activations (in red), similarly as for MNIST.

Our pre-trained model is going to be Vision Transformer (ViT) which gives state-of-
the-art scores on image classification benchmarks (Dosovitskiy et al., 2020). Vision
Transformer splits images into patches and uses them as an input to a transformer
(Vaswani et al., 2017). Hence, we can think of the patches as equivalents of tokens in
language modeling. The ViT model was pre-trained on the ImageNet dataset (Deng
et al., 2009). Since ImageNet contains a large collection of species, we think ViT will
be a reasonable choice for transfer learning on iNaturalist.

In the experiments, we use the base version of ViT (ViT-Base has 86 million parameters).
To make sure the images are of the correct dimensions, we will first pass them through
the model’s pre-processing tool. In our approach to transfer learning, we freeze all the
weights of ViT. We remove the output layer of ViT and instead connect its last hidden
layer with 2 new linear layers that will be trained to give output corresponding to 100
classes. The visualization of our approach is shown in figure 4.12. Our linear layers
are trained for 200 epochs and optimized using the AdamW optimizer (Loshchilov and
Hutter, 2017) with the default learning rate 10−3.
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Similarly to MNIST, we will vary d in our experiments to compare the training perfor-
mance of different output layers. For experiments, we pick d ∈ {32,16,8,4,2,1}. For
statistical consistency, every experiment is run with 10 different seeds and is reported
with the mean and standard deviation.

4.4.3 Results

d Model Test loss Test accuracy (%)

32

Softmax 0.62±0.07 86.2±0.5
Sigsoftmax 0.72±0.11 85.87±0.69

PLIF 0.62±0.11 85.76±0.62
MoS 0.6±0.07 86.68±0.52

MoSS 0.68±0.13 86.39±0.64

16

Softmax 0.86±0.18 81.8±0.91
Sigsoftmax 0.92±0.23 80.86±0.9

PLIF 0.78±0.02 80.88±0.85
MoS 0.83±0.11 82.03±0.57

MoSS 0.96±0.15 81.92±0.52

8

Softmax 1.23±0.07 71.6±1.03
Sigsoftmax 1.45±0.1 69.72±0.95

PLIF 1.24±0.06 70.6±1.01
MoS 1.26±0.09 73.79±1.39

MoSS 1.37±0.05 72.65±1.1

4

Softmax 2.34±0.12 45.79±1.75
Sigsoftmax 2.64±0.18 44.59±2.2

PLIF 2.44±0.14 45.49±1.6
MoS 2.29±0.11 50.78±1.19

MoSS 2.69±0.18 46.12±1.51

2

Softmax 3.69±0.11 11.37±0.89
Sigsoftmax 3.82±0.16 11.46±0.86

PLIF 3.65±0.11 13.39±0.84
MoS 3.52±0.06 12.61±0.84

MoSS 3.9±0.35 12.64±0.97

Table 4.2: Test cross entropy and accuracy for various d. Reported values are means
and standard deviations based on 10 different random seeds. In bold, we present the
best means for each d. Full results are in table B.3.

Cross-entropy and accuracy

The full results of our experiment are given in table B.3. Table 4.2 contains the main
results we discuss in this section.

Our first observation is transfer learning from ViT is a good choice to classify images
in our sample of iNaturalist. Using small d = 32, we are already able to get high
test accuracy (> 85%) and low cross-entropy. We can expect that with higher d,
regularization, and tuning hyperparameters the metrics would be even higher.
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In terms of the different models we used, we see that for d = 32 and d = 16, all models
have similar test accuracy. However, MoS seems to be slightly better in accuracy than
the other models.

For d = 8, we go more low-rank and both accuracy and loss scores are already much
worse than for higher values of d. MoS is still slightly better, but the difference between
the accuracy of MoS and other models increases. Sigsoftmax is the worst in both loss
and accuracy, in particular, it performs worryingly worse than Softmax.

For d = 4, MoS is clearly better than other models in terms of accuracy. All other
models perform very similarly to each other in accuracy. However, the difference
between MoS and Softmax measured in loss is not as big as in accuracy.

With d = 2, the network becomes too low-rank and all models perform very badly.
Interestingly, PLIF is the best (or rather the least bad) in accuracy.

Figure 4.13: Training curves with cross-entropy and accuracy for Softmax and d = 1.

Figure 4.14: Training curves with cross-entropy and accuracy for Softmax and d = 2.

Training curves

In contrast to MNIST, this time we did not experience unlucky seeds that would make
the network unable to learn. Overall, the variance between different seeds was very low
as shown in table 4.2. Even for very small values of d and using Softmax, we get very
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Figure 4.15: Training curves with cross-entropy and accuracy for Softmax and d = 4.

similar training curves in every 10 seeds. Figures 4.13, 4.14 and 4.15 depict training
curves for Softmax on d = 1,2,4 respectively. We notice based on the loss curves that
training proceeds as expected without unlucky seeds. We also note that as we increase
d, the training curves become less and less wiggly.
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Figure 4.16: Test accuracy across 10 seeds for high values of d.

Reliable training between seeds

To better see that training gave a very similar performance on different seeds, let us
again looks at boxplots. This time, however, we do not discard any seeds as the plots
are readable even with all seeds.

Figure 4.16 presents the distribution of accuracies for high values of d. For d = 16 and
d = 32, we see very similar distributions across models. For d = 8, we start seeing MoS
is the best. The only unexpected outlier points on this plot come from MoS and are due
to even higher accuracy than for most of its seeds. Overall, based on this plot, we might
be disappointed with Sigsoftmax and PLIF. They perform worse than Softmax across
different d-s, even though they were invented to outperform it.
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Figure 4.17: Test accuracy across 10 seeds for low values of d.

Figure 4.17 illustrates accuracies for lower values of d. For d = 4, we see the dominance
of MoS even more clearly. Even the worst-performing seed for MoS was better than the
best-performing seed for Softmax. Since the values d = 2 and d = 1 are very low, none
of the models can retain high accuracy and the differences between models are minimal.
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Figure 4.18: Test accuracy of MoS on iNaturalist when d = 4 and with varying M. The
line represents the mean and the shadow standard deviation based on 10 different seeds.
The dashed line shows the previously evaluated M = 10.

Impact of the number of mixtures

Based on our results, we might think that MoS was the best choice for low-rank d.
Nevertheless, it is not obvious how much improvement can we expect from MoS
because it adds an additional hyperparameter to tune, the number of mixtures M. As far
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as we are aware, there does not exist any literature about picking the optimal M. Thus,
in the follow-up experiment, we pick MoS as our activation and keep d = 4 because for
it the MoS brought the biggest improvement in accuracy. We test 29 different values for
M, in the set {1,2,3, . . . ,9,10,20,30, . . . ,200} to measure how sensitive the model is
to M. The network architecture and hyperparameters are the same as before.

We present our result as figure 4.18. When M = 1, MoS reduces to Softmax, so has the
same accuracy as presented in table 4.2. As M increases to 10, we see an increase in
accuracy. However, with values of M higher than 10, we get to the point of diminishing
returns. The optimal accuracy was found for M = 130 but it was not much better than
for M = 10. The experiment also shows that even with very high M we will not be able
to get high accuracy when the rank is very low.

4.4.4 Conclusions & limitations

The species classification experiments again demonstrate mixture models are able
to improve accuracy in the low-rank case while being equally good for high rank.
The higher accuracy was more pronounced in the case of MoS, MoSS only slightly
outperformed Softmax. Sigsoftmax and PLIF were on par with Softmax, with PLIF
being only slightly better for ultra-low d. However, it is worth mentioning we did not
engage in tuning hyperparameters of PLIF and used the same as for MNIST.

Based on the analysis of tuning the number of mixtures M, we can say MoS is not
particularly sensitive to M. Even a small value of M can lead to better accuracy and
there is no need to increase the computational time and memory with high M. The
limitation of this experiment is having a fixed d. It is possible that for even smaller d it
would be necessary to have higher M. When d is very low, for example, d = 2, MoS
was not able to yield significant improvement. It would be interesting to see if having
higher M would allow it to bring improvement.

While our study provides interesting results for 100 classes, ideally the experiments
should be done on the whole dataset with 10 thousand classes. When dealing with 10
thousand classes, the network would have a natural rank bottleneck. This is due to
transfer learning as the dimension of the penultimate layer for the Vision Transformer
ranges from 768 (ViT-Base) to 1280 (ViT-Huge). The fine-tuning network would need
to transform such lower-dimensional vectors into 10000 dimensions. However, this was
not possible with the servers of the author, and we leave these experiments for future
work.
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Conclusions

5.1 Summary and findings

In this thesis, we managed to explain the theory of the softmax bottleneck to make
it easier to understand to an undergraduate-level student. We included the necessary
background on multiclass classification and language modeling and kept the notation
consistent throughout the thesis. Since we discussed the main solutions proposed in the
literature, this paper can serve as a survey of the low-rank softmax bottleneck literature.
Our contribution encompasses presenting examples and figures to deepen understanding
of the theory and providing open-source implementation to foster future research.

The main contribution is generalizing the concept of bottleneck to any neural multiclass
classification with the dimension of the penultimate layer lower than the number of
classes. For the first time ever, we evaluated the solutions to the low-rank softmax
problem in image classification. To do this, we wrote our own implementation of
Sigsoftmax, MoS, and MoSS.

First, we looked at a small number of classes in the handwritten digit recognition task.
We implemented a convolutional neural network and looked at the impact of changing
d and output activation on accuracy and cross-entropy. All models were equally good if
d ≥ K. However, when d < K, we noticed MoS and MoSS gave higher accuracy than
Softmax and were much more reliable across different seeds. They suffered much less
from the problem of “unlucky” seeds.

Then, we analyzed the more challenging task of species classification. We demonstrated
that transfer learning from Vision Transformer is an effective way to train a classifier on
iNaturalist. Once again, we provided evidence that MoS and MoSS can yield higher
accuracy than Softmax for d ≪ K.

Therefore, we can recommend trying MoS and MoSS as an alternative to Softmax in
neural networks when the penultimate layer dimension is significantly less than the
output layer dimension. We cannot say which one is the better of the two activations.
MoSS seemed to be better on MNIST, but MoS outperformed it on iNaturalist.

Our iNaturalist experiments show that even a small number of mixtures (e.g. M = 10)

35
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can be close to optimal, so there is no need for a significant increase in computational
time with higher M. There is also no reason for an extensive search for M.

Based on our results, we can also suggest trying PLIF as it was sometimes better than
Softmax. On the other hand, we did not observe any meaningful improvements from
(single) Sigsoftmax.

Overall, the low-rank softmax bottleneck is far from being solved. When d decreases to
small values, the performance of MoS and MoSS also decreases. For extremely small
d, their accuracy was much lower than for high d and on par with Softmax. Even with
a very high number of mixtures M, the mixture models are not able to get the same
accuracy as when d is higher. The question remains whether it is possible to always
attain a high rank, and if a high rank would lead to high performance.

5.2 Limitations

It is worth reiterating the main limitations we identified in this thesis.

Our experiments are based on a different domain that does not exhibit the same problems
as language modeling. In particular, the main hypothesis motivating the low-rank
softmax bottleneck is based on two assumptions of Yang et al. (2018):

• The number of classes K is very large, e.g. K ≈ 105 for language modeling.
Having very high d, for instance, d := K, would lead to an explosion in the
number of parameters and overfitting. However, from the perspective of an
undergraduate student, we were not able to access hardware that would make
such experiments possible. The experiments we conducted had low K of 10 and
100. The standard approach on those datasets would be to use d higher than K,
add regularization, and consequently get high accuracy.

• The output is expected to form a high-rank matrix. This assumption was based on
the hypothesis that a natural language is highly context-dependent, so the matrix
A should have uncorrelated entries and have a high rank. This was not the case in
our experiments. There was no concept of a context for images, all images were
independent of each other.

Besides, our experiments did not involve extensive hyperparameter tuning. While the
goal was to fairly evaluate different output layers on the same configurations, it is
possible that different models can perform optimally for different hyperparameters. In
particular, we experienced unlucky seeds on MNIST but not on iNaturalist. We think
more work should be done to explain why this happened.

5.3 Future work

The most natural line of future research is trying the solutions to the bottleneck problem
on different datasets in image classification, especially those with a high number of
classes. Besides, evaluation in yet another type of multiclass classification (beyond
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images and language) would allow us to better assess the general applicability of models
as MoS.

Due to limited time, the author was not able to cover all papers on the low-rank softmax
bottleneck. In future work, it would be interesting to see a broader discussion. For
example, Chang and McCallum (2022) continue the topic by addressing a limitation
of Mixture of Softmaxes when the embedding space distribution has multiple modes.
Demeter et al. (2020), on the other hand, analyze the problem geometrically. They show
softmax can limit the expressiveness of a language model when the words are on the
interior of a convex hull of the embedding space.

It is also necessary to look into the literature suggesting the bottleneck might not be a
problem in practice. Parthiban et al. (2021) experimentally demonstrated that rank is
neither a necessary nor sufficient condition for the good perplexity of language models.
Grivas et al. (2022) evaluated many large language models and machine translation
models and also concluded the low-rank softmax had little impact on the performance.

Finally, while the evaluation of RNN-based language models motivated the early
research on the softmax bottleneck, it is vital to assess its impact on modern transformer
architectures (Vaswani et al., 2017). The state-of-the-art language models like the GPT
family (Radford et al., 2018) or BERT (Devlin et al., 2019) employ linear softmax
over vocabulary in their output layer. The current research points out to low usefulness
of MoS in transformers. In particular, Narang et al. (2021) experimentally show
using softmax and MoS in transformers led to a comparable performance on different
tasks. Moreover, Tay et al. (2022) analyze how the performance of different transformer
architectures scales with the number of parameters and computation time. Their findings
show the linear softmax transformer gives better performance than MoS transformer
when using the same computational time. However, if time is not an issue, a simple
change of softmax to MoS was able to slightly increase performance. So, overall,
we think the validity of using MoS and other solutions presented in this thesis in
transformers is not yet resolved and requires further research.
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Appendix A

Proofs

Theorem A.1. For all z ∈ RK , softmax(z) ∈ ∆K−1.

Proof. Let z ∈ RK . We prove two conditions of the set in definition 2.2:

• Since exp(a)≥ 0 for all a ∈ R, exp(zk)

∑
K
k′=1 exp(zk′)

≥ 0 for all k = 1, . . . ,K.

• ∑
K
k=1 softmax(z)k = ∑

K
k=1

exp(zk)

∑
K
k′=1 exp(zk′)

= ∑
K
k=1 exp(zk)

∑
K
k′=1 exp(zk′)

= 1.

As both ∀K
k=1 softmax(z)k ≥ 0 and ∑

K
k=1 softmax(z)k = 1, softmax(z) ∈ ∆K−1.

Theorem A.2. For all A,B ∈ Rm×n, rank(A+B)≤ rank(A)+ rank(B).

Proof. Let A,B ∈ Rm×n, i.e. A and B are matrices of linear transformations TA and TB
respectively. If we take any v ∈ img(TA+TB), it means there exists some x such that
(TA+TB)(x) = v. By definition of linear operator, (TA+TB)(x) = TA(x)+TB(x), so
v ∈ img(TA)+ img(TB). Thus, img(TA+TB)⊆ img(TA)+ img(TB), and the rank is

rank(A+B) := dim(img(TA+TB))≤ dim(img(TA)+ img(TB))

≤ dim(img(TA))+dim(img(TB)) = rank(A)+ rank(B).
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Appendix B

Additional results from experiments

B.1 Handwritten digit recognition

d model train loss test loss train accuracy test accuracy
128 softmax 0.0±0.0 0.03±0.0 99.96±0.07 99.37±0.05
128 sigsoftmax 0.0±0.0 0.03±0.0 99.96±0.05 99.37±0.06
128 plif 0.0±0.0 0.03±0.0 99.96±0.05 99.38±0.04
128 mos 0.0±0.0 0.03±0.0 99.86±0.05 99.44±0.05
128 moss 0.0±0.0 0.03±0.0 99.93±0.06 99.48±0.04

9 softmax 0.0±0.0 0.09±0.04 99.91±0.09 98.53±0.71
9 sigsoftmax 0.0±0.0 0.09±0.03 99.94±0.1 98.68±0.34
9 plif 0.0±0.0 0.08±0.02 99.89±0.11 98.6±0.31
9 mos 0.0±0.0 0.05±0.01 99.87±0.05 99.05±0.14
9 moss 0.0±0.0 0.05±0.01 99.92±0.04 99.02±0.09
8 softmax 0.0±0.0 0.08±0.01 99.84±0.13 98.59±0.2
8 sigsoftmax 0.0±0.01 0.14±0.16 99.92±0.21 98.52±0.65
8 plif 0.0±0.0 0.08±0.01 99.9±0.12 98.52±0.28
8 mos 0.01±0.0 0.05±0.0 99.81±0.09 98.89±0.14
8 moss 0.0±0.0 0.06±0.01 99.88±0.09 98.94±0.15
7 softmax 0.0±0.0 0.09±0.02 99.9±0.06 98.52±0.21
7 sigsoftmax 0.01±0.01 0.11±0.04 99.89±0.23 98.34±0.6
7 plif 0.02±0.04 0.13±0.07 99.33±1.07 97.42±1.84
7 mos 0.01±0.0 0.06±0.01 99.78±0.07 98.74±0.3
7 moss 0.01±0.0 0.06±0.02 99.88±0.09 98.8±0.24
6 softmax 0.0±0.0 0.1±0.02 99.89±0.05 98.34±0.35
6 sigsoftmax 0.01±0.01 0.13±0.08 99.88±0.15 98.17±0.65
6 plif 0.24±0.69 0.33±0.66 90.88±26.56 89.24±25.99
6 mos 0.01±0.0 0.06±0.01 99.74±0.08 98.56±0.09
6 moss 0.01±0.0 0.1±0.08 99.88±0.07 98.57±0.28

Table B.1: Cross entropy and accuracy for d = 6 to 9, and 128. Reported values are
means and standard deviations based on 10 different random seeds.
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d model train loss test loss train accuracy test accuracy
5 softmax 0.32±0.57 0.44±0.56 86.67±23.7 84.84±23.23
5 sigsoftmax 0.25±0.41 0.45±0.42 89.95±17.05 87.36±17.41
5 plif 0.12±0.3 0.24±0.29 95.2±13.0 92.92±12.95
5 mos 0.04±0.05 0.1±0.06 99.34±0.99 97.82±1.68
5 moss 0.01±0.01 0.12±0.05 99.76±0.32 98.3±0.52
4 softmax 0.3±0.5 0.48±0.49 87.75±20.77 85.09±20.68
4 sigsoftmax 0.28±0.42 0.46±0.45 88.89±17.79 86.35±18.48
4 plif 0.4±0.7 0.52±0.66 84.91±27.72 82.35±26.98
4 mos 0.02±0.01 0.09±0.02 99.47±0.32 97.87±0.5
4 moss 0.02±0.01 0.11±0.03 99.61±0.25 97.87±0.53
3 softmax 0.73±0.89 0.89±0.81 71.81±35.13 69.58±33.69
3 sigsoftmax 0.75±0.89 0.95±0.8 71.08±35.24 68.95±34.12
3 plif 0.5±0.73 0.6±0.69 80.75±28.98 78.56±28.14
3 mos 0.11±0.16 0.2±0.14 96.95±3.98 95.07±3.58
3 moss 0.04±0.03 0.26±0.22 99.03±0.72 96.78±0.65
2 softmax 1.04±0.79 1.2±0.71 58.57±30.89 56.46±29.57
2 sigsoftmax 1.4±0.81 1.53±0.71 44.4±30.88 42.77±29.5
2 plif 0.98±0.76 1.08±0.71 60.72±29.92 58.35±28.64
2 mos 0.2±0.09 0.32±0.11 91.49±5.66 88.97±5.77
2 moss 0.23±0.1 0.44±0.08 90.96±6.2 88.53±6.24
1 softmax 1.64±0.54 1.78±0.43 35.05±19.75 33.79±18.6
1 sigsoftmax 1.59±0.59 1.74±0.47 36.97±21.33 35.4±19.91
1 plif 1.69±0.62 1.75±0.56 32.97±22.2 32.13±21.16
1 mos 1.44±0.3 1.47±0.29 41.68±11.21 41.2±11.0
1 moss 1.23±0.38 1.3±0.36 49.63±14.03 48.22±13.55

Table B.2: Cross entropy and accuracy for d = 1 to 5. Reported values are means and
standard deviations based on 10 different random seeds. In bold, we present the best
means for each d.
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B.2 Species classification

d model train loss test loss train accuracy test accuracy
32 softmax 0.07±0.08 0.62±0.07 99.34±1.12 86.2±0.5
32 sigsoftmax 0.02±0.02 0.72±0.11 99.99±0.03 85.87±0.69
32 plif 0.06±0.06 0.62±0.11 99.49±0.88 85.76±0.62
32 mos 0.06±0.05 0.6±0.07 99.01±0.51 86.68±0.52
32 moss 0.06±0.05 0.68±0.13 99.0±0.62 86.39±0.64
16 softmax 0.18±0.13 0.86±0.18 97.17±2.77 81.8±0.91
16 sigsoftmax 0.22±0.1 0.92±0.23 96.4±2.22 80.86±0.9
16 plif 0.27±0.09 0.78±0.02 94.66±2.33 80.88±0.85
16 mos 0.15±0.08 0.83±0.11 96.74±0.94 82.03±0.57
16 moss 0.13±0.07 0.96±0.15 97.19±0.98 81.92±0.52
8 softmax 0.59±0.12 1.23±0.07 86.04±3.12 71.6±1.03
8 sigsoftmax 0.58±0.13 1.45±0.1 86.77±3.54 69.72±0.95
8 plif 0.64±0.06 1.24±0.06 84.12±1.7 70.6±1.01
8 mos 0.48±0.19 1.26±0.09 90.08±2.66 73.79±1.39
8 moss 0.55±0.03 1.37±0.05 90.05±1.0 72.65±1.1
4 softmax 1.43±0.06 2.34±0.12 59.28±1.73 45.79±1.75
4 sigsoftmax 1.49±0.08 2.64±0.18 58.05±2.12 44.59±2.2
4 plif 1.27±0.12 2.44±0.14 64.09±3.42 45.49±1.6
4 mos 0.95±0.08 2.29±0.11 81.55±2.28 50.78±1.19
4 moss 1.4±0.11 2.69±0.18 70.63±3.94 46.12±1.51
2 softmax 3.07±0.05 3.69±0.11 13.59±0.7 11.37±0.89
2 sigsoftmax 3.03±0.05 3.82±0.16 13.69±0.73 11.46±0.86
2 plif 2.92±0.07 3.65±0.11 16.04±1.03 13.39±0.84
2 mos 2.89±0.06 3.52±0.06 20.71±1.25 12.61±0.84
2 moss 2.86±0.03 3.9±0.35 21.78±1.16 12.64±0.97
1 softmax 3.95±0.04 4.24±0.05 3.44±0.25 3.76±0.34
1 sigsoftmax 3.94±0.06 4.26±0.07 3.55±0.31 3.8±0.36
1 plif 3.91±0.08 4.26±0.06 3.55±0.4 3.73±0.18
1 mos 3.88±0.04 4.12±0.04 4.46±0.47 4.01±0.37
1 moss 3.86±0.04 4.17±0.09 4.54±0.53 4.03±0.38

Table B.3: Cross entropy and accuracy for various d. Reported values are means and
standard deviations based on 10 different random seeds. In bold, we present the best
means for each d.
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