
HaskellQuest: a game for teaching functional
programming in Haskell

Eva Bogomil
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Computer Science

School of Informatics
University of Edinburgh

2023

Abstract
Functional programming is notably different from procedural or object-oriented pro-
gramming paradigms, and many students and developers find it challenging to under-
stand its main concepts at first. While traditional learning methods remain a readily-
available option, the primary goal of this project was to make the learning process
easier and more entertaining by developing an educational game for teaching functional
programming, using Haskell as an example.

HaskellQuest is a classic-inspired 2D RPG that gamifies the process of learning the
functional programming language Haskell and makes it a highly engaging, accessible
and rewarding experience. It is primarily aimed at undergraduate Computer Science
students who have to undertake a functional programming course as part of their degree
curriculum, as well as anyone who would like to learn or improve their Haskell skills.

The game is set in a fantasy world and follows a pilgrim who is recovering the long-lost
knowledge of the ancient art of functional programming. The player travels through
different locations of increasing difficulty, exploring the world and collecting fragments
of Haskell knowledge to fight off enemies. The hero’s journey continues until the
world’s biggest mystery is finally solved.

The project has succeeded in the implementation of all the core mechanics necessary for
a functional game. Subsequent user tests have yielded overwhelmingly positive reviews,
validating the concept behind the game and justifying the project’s main purpose.

The first release of HaskellQuest is currently publicly available on GitHub. Should
further development continue, the game can easily be scaled-up to accommodate further
content, and target to fill the currently existing gap in publicly available production-
grade interactive resources for Haskell education.

i

Research Ethics Approval
This project obtained approval from the Informatics Research Ethics committee.
Ethics application numbers: 7094, 7256
Dates when approval was obtained: 2022-11-29, 2023-01-31

The participants’ information sheets and a consent forms are included in the appendix.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Eva Bogomil)

ii

Acknowledgements
I would like to express my gratitude to my project mentor Professor Don Sannella for
remaining invariably supportive of my efforts.

A special thank you to the JDoodle team for their collaboration and making the open
user testing more accessible, as well as Jacob Gibbins, Adrian Hill and everyone else
for providing me with invaluable advice at the start of the project.

iii

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Project goals . 2
1.3 Project structure . 2

2 Background 3
2.1 Functional programming education 3

2.1.1 Why Haskell . 4
2.1.2 Teaching Haskell to first-year students at the University of

Edinburgh . 4
2.2 Gamification in education . 5

2.2.1 Why Haskell may be difficult to pick up 5
2.2.2 Previous work . 6

3 Approach 7
3.1 Industry development cycle . 7
3.2 Game engine . 9
3.3 Questionnaire . 9

4 Concept 11
4.1 Game main concept . 11
4.2 Game mechanics . 11
4.3 Writing Haskell . 13
4.4 Level difficulty evaluation . 15

5 Design 18
5.1 Aesthetics and user experience . 18
5.2 Plot . 18
5.3 User interface . 19

6 Implementation 23
6.1 Territory . 23
6.2 Battle system . 25
6.3 Saving data . 25
6.4 Haskell integration . 27

iv

7 Evaluation 29
7.1 User testing . 29
7.2 Improvement suggestions based on user feedback 30

7.2.1 High impact/priority improvements 30
7.2.2 Medium impact/priority improvements 31
7.2.3 Low impact/priority improvements 31

7.3 Known issues and limitations . 32

8 Conclusion 33
8.1 Retrospective and further development 33
8.2 Main achievements . 34

Bibliography 35

A Questionnaire 41
A.1 Participants’ information sheet . 46
A.2 Participants’ consent form . 49

B User testing 50
B.1 Feedback form . 51
B.2 Bug report form . 55
B.3 Participants’ information sheet . 56
B.4 Participants’ consent form . 60

C Minimum Viable Product Criteria 61

D Haskell Quest Game Design Document 62

E Relevant UI sketches and prototypes 71

F Game music 74

v

Chapter 1

Introduction

HaskellQuest is an educational game that gamifies the process of learning the functional
programming language Haskell and makes it a highly engaging, accessible and reward-
ing experience. It is primarily aimed at undergraduate Computer Science students at the
University of Edinburgh (”UoE”) who have to undertake the INF1A “Informatics 1 -
Introduction to Computation” course as part of their compulsory first-year curriculum,
as well as anyone else who would like to learn or improve their skills with Haskell.
This paper explores different approaches to gamifying programming education and its
potential positive impact on students’ engagement with Haskell.

The gamification of programming is not inherently a new idea. Various existing ex-
amples of it can be found on platforms such as CodinGames [3] for many popular
programming languages. However, HaskellQuest mechanics goes above and beyond its
peers in terms of flexibility, range and variety of usage. Instead of restrictive methods of
education, HaskellQuest users are encouraged to explore Haskell concepts in a way that
stimulates both creativity and curiosity, which facilitates a truly unique and engaging
learning experience. While this game is developed mainly based on the information
gathered from students at the University of Edinburgh, it is not institution-specific and
can be used as a practical support tool by anyone who is learning Haskell.

1.1 Motivation

As someone who initially struggled to understand the principles of functional program-
ming, I am very passionate about this project. My motivation for HaskellQuest was to
build a valuable and accessible tool that not only educates, but motivates its users, and
would fill the currently existing gap in publicly available production-grade interactive
resources for Haskell education.

Haskell as a language does have some interesting applications that include Barclays
Capital’s Quantitative Analytics group where Haskell was used to develop a domain-
specific functional language FPF to specify exotic equity derivatives as mathematical
functions. Companies such as Facebook, Bank of America, BAE Systems and Klarna
also use Haskell [12]. And while it is not one of the top most sought-for languages

1

Chapter 1. Introduction 2

in the industry, I believe it can still serve as a valuable introduction to the functional
programming paradigms used in other programming-related domains. For example,
MapReduce - a programming paradigm used for handling big data - was inspired by
”map” and ”reduce” functions from functional programming. Haskell also teaches
higher-order functions and lambda functions, which are a common feature of many
other popular languages such as Java, Python, Scala, Kotlin and JavaScript.

1.2 Project goals

At the start of the project, the following three main goals were identified.

1. Throughout its development cycle, the project should follow industry standards
and best practises discussed in the Approach Chapter.

2. HaskellQuest should cover at least 5 Haskell concepts discussed in the Concept
Chapter.

3. HaskellQuest should provide an engaging and unique user experience that moti-
vates players discussed in the Design Chapter.

1.3 Project structure

• Chapter 2. Background discusses functional programming education and gamifi-
cation of teaching programming languages.

• Chapter 3. Approach describes the project development methodology in accor-
dance with the industry-standard game production cycle. It also covers the game
target audience study and decisions behind the chosen game technology.

• Chapter 4. Concept is dedicated to the main game concepts and mechanics, as
well as description and evaluation of players’ usage of Haskell.

• Chapter 5. Design explains all major creative processes and decisions made
regarding user interface, user experience and game plot.

• Chapter 6. Implementation includes key technical details behind the core game
mechanics.

• Chapter 7. Evaluation summarises the results of the user testing, future improve-
ments based on the user feedback and current game limitations.

• Chapter 8. Conclusion describes the planned future development and main
achievements of HaskellQuest.

Chapter 2

Background

In the first half the chapter discusses the importance and relevance of functional pro-
gramming education, specifically Haskell. The second half discusses the advantages
of the gamification approach in education by exploring available existing interactive
resources for learning programming languages.

2.1 Functional programming education

The initial attempt at teaching functional programming languages dates back to 1980s at
MIT. ”The structure and interpretation of computer programs” was especially designed
as a compulsory entry-level course to focus on the ”techniques used to control the
intellectual complexity of large software systems” rather than on syntax, algorithms or
mathematical analysis. A ”dialect of the programming language Lisp” was used for the
course and the course organisers claimed that they did not have to teach it to students in
a formal way but rather expected students to easily pick it up.[43]

In 2001 Dijkstra mentioned in his letter to the Budget Council of The University of Texas
that the ”practical reason for preferring functional programming in a freshman course is
that most students already have a certain familiarity with imperative programming” and
that teaching Haskell to first-year students would introduce novelty compared to any
school programming experience and thus boost interest and engagement. Additional
points were made about the improved perception of functional programs as mathematical
objects and the advantages of lazy evaluation concepts. [51]

M. M. T. Chakravarty and G. Keller talk about their preference for functional lan-
guages as the latter support the three principles the authors believe students should get
introduced to first: elementary techniques of programming (the practical aspect), essen-
tial concepts of computing (the theoretical aspect), and the development of analytical
thinking and problem-solving skills (the methodological aspect). [47]

3

Chapter 2. Background 4

2.1.1 Why Haskell

Haskell is a modern, standard, non-strict, purely-functional programming language.
[15]

According to HaskellWiki, Haskell is currently being taught at a number of UK univer-
sities, as well as overseas. Among those, the University of Edinburgh, the University of
Nottingham, the University of Oklahoma and several others teach Haskell as the first
language in their Computer Science curriculum. [56]

M. M. T. Chakravarty and G. Keller believe that first year courses should focus on
teaching foundational knowledge rather than individual languages. They state that
Haskell syntax helps to ”concentrate on general programming concepts” and allows
the introduction of complex structures, such as expression trees and memory trees,
to beginners. ”Rigorous static type discipline” also assists with emphasising types
as another fundamental concept. At the same time, ”topics specific to functional
programming”, such as list comprehensions, currying, higher-order functions and
lambda expressions, can initially be omitted. [47]

2.1.2 Teaching Haskell to first-year students at the University of
Edinburgh

The University of Edinburgh does not require previous experience in Computer Science
to undertake an undergraduate degree in Computer Science. In fact, at the time of
writing, UCAS does not list A Level Computer Science as a prerequisite for any
undergraduate Computer Science course at any UK university. [32]. Instead, entrance
requirements often lay emphasis on Mathematics.[29] Such an approach is advocated for
by M. M. T. Chakravarty and G. Keller who believe that ”a modern functional language
makes it easier to appeal to the mathematical background of these students and serves
to neutralise some of the advantage that their peers have due to prior programming
experience.”[47]. The belief, however, somewhat contradicts the original idea by MIT
course authors (later expanded by Dijkstra) that teaching functional programming in
the first year should be based on the expectation that first-year students already have
some experience in either programming or computer hardware systems.[51] [43]

In 2022, BCS, The Chartered Institute for IT (”BCS”), recorded 158,340 Computer
Science applicants in the UK [39]. That same year, only 15,210 students took Computer
Science at A Level in England [40]. According to the ”Computing Qualifications in
the UK” report [38], only AQA included functional programming in their ”Computer
Science and IT” A Level syllabus. This was addressed by the INF1A course organisers
at UoE. D. Sannella, M. Fourman, H. Peng and P. Wadler in their ”Introduction to
Computation” book, written specifically for the course, acknowledge that ”Students
who have never programmed before need to work a little harder. But students who have
programming experience often have just as much difficulty understanding that Haskell
is not just Python with different notation.” [68].

Having done a thorough investigation of the students’ feedback [25] on INF1A course
between 2017-2021, I have identified the following common patterns.

Chapter 2. Background 5

Firstly, the majority of people find tutorials very useful for understanding the functional
programming part of the course, meaning that students seem to enjoy practical exercises
in general. However, students also mentioned that ”It would be helpful to have time with
similar problems that are not assessed so we have freedom in our questions.” Secondly,
there was a large number of responses stating that previous programming experience
would have been useful for the course, as well as those advising future generations to
pick up Haskell before starting the course. Some students felt particularly negative
about this issue: ”You must have computer knowledge before starting this course. It
is not advertised accurately.” Since INF1A is the very first programming course of the
UoE CS degree, for some students it effectively becomes an introduction to the whole
area. Thirdly, some students complained that the course was too hard for complete
beginners and that they felt discouraged by how poorly they were performing compared
to students who had more programming experience.

2.2 Gamification in education

While, as mentioned above, there are clear advantages in teaching functional program-
ming in general, and Haskell in particular, it can also prove challenging for students for
reasons discussed below.

2.2.1 Why Haskell may be difficult to pick up

Functional programming is notably different from procedural or object-oriented pro-
gramming paradigms. M.Lipovača, the author of ”Learn You Haskell for Great Good!”,
states in the first chapter, ”I failed to learn Haskell approximately 2 times before finally
grasping it because it all just seemed too weird to me and I didn’t get it.” [61]. P.Wadler
mentions in his paper that programmers who are familiar with imperative programming
languages often find functional programming odd at first. He also states that for popular
problems, imperative solutions are more likely to exist and be readily available than
functional ones, even if the latter would be more elegant [76]. This view is supported
by this project’s own research Questionnaire.

Some authors believe that the difficulties can at least partially be attributed to the need
for better Haskell teaching resources, especially for the medium level of expertise, since
a lot of those currently available are made for either complete beginners or expert-level
programmers [69]. I tend to agree that one of the biggest challenges for learning Haskell
is the lack of interactive resources. For the UoE Inf1A courses the main resources
are reading materials, lectures and tutorials. Among those the latter are being more
practical, but are limited to a few sessions per week. The lack of outside resources could
be explained by languages popularity which is dictated predominantly by industry needs
[74]. Some of the largest platforms on the internet, such as codecademy [2], do not even
offer any courses on functional languages. LeetCode supports only Erlang, Scala, Elixir
[19] despite numerous requests from users [36] to cover Haskell. HackerRank[10]
supports Haskell as well as a broader ”Functional Programming” course[11].

Chapter 2. Background 6

2.2.2 Previous work

As was mentioned before, the gamification of programming is not inherently a new idea.
There have been many advancements in introducing games to programming education.
Among some of the more interesting examples is the article by Almeida et al. [45] that
describes a successful redesigning of an introductory functional programming laboratory
course at the University of Minho. During the course the students were asked to ”build
a complete game from scratch in their first encounter with a programming language”.
The assignment was done in Gloss (an FRP-inspired Haskell library). Authors conclude
that ”the restructuring kept students motivated to work actively on their project” and
consequently observed an increase in student approval over the years.

Dicheva et al. [50] arrive at a similar conclusion in their paper, in which they conduct a
thorough analysis of the gamification approach in education. They argue that compared
to traditional means of education, games reinforce skills such as problem-solving,
collaboration and communication. Games are described as highly motivational by
inducing the joy of gameplay and a thrill from the possibility to win. Games are also a
medium that can utilise various mechanisms to encourage people to engage with them.

There are other examples of similar attempts at educational games. Many can be found
on CodinGames[3], an online resource that provides ”challenge-based training platform
for programmers” and has a wide range of games adapted for many programming
languages, including Haskell. The common limitation, however, is that a lot of these
games present users with only one challenge for each designated topic such as specific
algorithms, optimisation or concepts. Most are also designed primarily for practice and
competition rather than teaching.

Indeed, ”gamification”, as defined by Deterding et al. [49], is “the use of game design
elements in non-game contexts”. However, unlike the aforementioned examples, for
this project I, in some sense, aimed to go beyond this standard approach by building
a fully functional game around educational concepts, instead of merely ”gamifying”
selected aspects of the course. Such an approach is referred to as ”Serious games”
by S. Dreimane[55] and is described as being ”more effective in achieving goals,
which might include developing cognitive abilities and knowledge”. Examples of such
games for functional programming include The Soccer-Fun project and ScalaQuest.
Soccer-Fun was developed for an introductory course in functional programming at the
Radboud University Nijmegen [44]. Similarly to INF1A, its authors noticed that ”Every
year... there is a group of students who have a hard time understanding functional
programming”. In Soccer-Fun, players ”program the brains of football players in the
functional language” Clean. The project was deemed successful at improving student
involvement and motivation. Similarly, ScalaQuest was an online game aimed at Scala
education. It fell into the same category of fantasy RPGs as HaskellQuest, with the
core difference being the gameplay - ScalaQuest taught Scala predominantly through
quizzes and challenges. Unfortunately, the project was shut down on May 8, 2019[24].

Chapter 3

Approach

3.1 Industry development cycle

As mentioned earlier, I decided to adopt an industry-standard game production cycle.
At the beginning of the project, I participated in an intogames[16] online conference,
where I had an opportunity to discuss work routines and cycles with both industry and
indie game developers. This, combined with additional research gave me great insights
into the common development stages and the typical activities that take part in each of
them.

Since my project is a one-person project, I had to take into account the time constraints
and adapt the typical development process to fit my goals. I have omitted the pre-launch
stage that is described in ”The 7 Stages of Game Development” [65] by combining
it with the testing. I also did not include the post-launch stage due to its falling
outside the time constraints. However, potential post-launch activities are covered in
the Retrospective and further development section.

As a result, I separated my work project into the following stages:

1. Planning

2. Pre-production

3. Production

4. Testing

5. Launch

The planning stage began during the summer of 2022 and lasted up to week three of
the first semester. This stage included detailed planning of the project time frames and
milestones, determining the game target audience, creating the general game idea and
its essential features, analysing the targeted platforms and identifying the necessary
tools for development. I utilised tools like Gantt charts [28] for planning and a Trello
board[31] for tracking the progress.

The pre-production stage lasted around five weeks and included activities such as

7

Chapter 3. Approach 8

finalising the game plot and interface, structuring the gameplay and familiarising myself
with the game engine and other decisions. Following industry standards, I produced
a Game Design Document (”GDD”) (included in Appendix D Haskell Quest Game
Design Document) with a detailed description of game mechanics, game flow, player
goals, level descriptions, characters, game map and in-game items. This document
was later used as guidance for the production stage. It also played a crucial role in
maintaining the game’s integrity and consistency, and, most importantly, it allowed
the identification of design flaws and early introduction of major changes. This stage
also coincided with learning the necessary skills for Unity game engine which was
the engine selected for the project, developing the user interface prototype, as well as
completing the background research discussed in the Background section.

Production was the longest of all stages and lasted from the fifth week of the first
semester to the second half of the second semester. My goal was to incorporate Agile
and DevOps practices to which I have been exposed to during my time in industry, but
adapt them to my needs. I have separated this stage into 2-week sprints with a milestone
at the end of each sprint to reflect on the achievements and identify any blockages. Each
sprint was dedicated to a particular part of the game. While it was not always the case
that I followed this 2-week structure as sometimes it was difficult to predict how long
certain tasks would take, it nevertheless provided vital structure to the process.

A detailed GDD from the pre-production stage helped to identify the key mechanics of
the game that needed to be prioritised over other ideas, thus the first major milestone
for the production stage was the development of a ”vertical slice” [42]. A ”vertical
slice” helps developers evaluate the initial game flow and user experience (”UX”)
before adding the rest of the game features. It included implementing the simplest
version of each major game mechanic and integrating them into a small prototype. For
HaskellQuest, such a ”vertical slice” was finished in January and featured some basic
game scenes including a menu, one territory and one playable level. Afterwards, I
integrated Haskell (see Haskell integration) and improved the battle algorithm, thus
completing the Minimum Viable Product (”MVP”) described in Appendix C Minimum
Viable Product Criteria. This was followed by the implementation of additional game
mechanics described in Design that concluded the development of the game’s currently
released version.

The last cycle of this stage coincided with the first testing activity. Originally, the plan
included two testing phases: Alpha and Beta. Alpha was supposed to focus on finding
and eliminating bugs, generating additional game content and improving both the
gameplay and user experience. Beta was intended to serve as the main game evaluation
activity. However, due to the time constraints, both testing phases had to eventually
be merged into one, resulting in a Beta version of the game that was used for all the
enumerated testing activities. The outcome of this stage is covered in detail in the
Evaluation chapter.

The final stage of development was launch. As of 26th March 2023, a complete and
playable version of HaskellQuest is available on GitHub for Windows: https://
github.com/somethingololo/HaskellQuest-for-Windows and macOS: https:
//github.com/somethingololo/HaskellQuest-for-MacOS.

https://github.com/somethingololo/HaskellQuest-for-Windows
https://github.com/somethingololo/HaskellQuest-for-Windows
https://github.com/somethingololo/HaskellQuest-for-MacOS
https://github.com/somethingololo/HaskellQuest-for-MacOS

Chapter 3. Approach 9

3.2 Game engine

One of the core decisions was the choice of the game engine. Game engines are responsi-
ble for such aspects as game physics, rendering, development tools etc. While there are
many available game engines, I was specifically choosing between the following: Unity
[33], Unreal [35], Godot [9], RPG Maker [23] and GameMaker Studio [7]. My criteria
were that it must support 2D rendering, have a suitable learning curve, be relatively
inexpensive, be applicable to the industry and allow me to gain transferable skills. At
this stage, I had a brief game concept which was a 2D Role Playing Game (RPG) with
turn-based battle mechanics. Intuitively, RPG Maker would have been an appropriate
first choice, however, it is limited exclusively to RPG mechanics which would not allow
much flexibility if I wanted to add other mechanics to the game. Furthermore, RPG
Maker had a smaller developer community in comparison to other engines and a high
initial cost. Unreal engine is a well-established industry tool used for popular games
such as ”Fortnite”, ”Sea Of Thieves”, ”Final Fantasy 7Remake” and ”Ark: Survival
Evolved” [54]. However, even though it is possible to make 2D games in Unreal, its
prime application is 3D. At this point, my choice was narrowed down to Unity, Godot
and GameMaker Studio, of which I chose Unity for the following reasons. Firstly, it
provided a large ecosystem that, apart from the engine itself, contained Unity Asset
Store, Unity Play and the Unity Learn platform with many courses and solutions. It is
also worth mentioning the large community of developers and indie creators providing
tutorials and answers to many problems. According to multiple sources, more than 50%
of games are made with Unity[66] [71] including titles like ”Genshin Impact”, ”Ori and
the Will of the Wisps” and ”Among Us” [41]. This made Unity the best choice for my
project.

Alternative options included writing the game from scratch in Haskell [75], similar to
the ”Unity Tutorial Project in Haskell with Apecs and SDL2” [58] or ”HSRogue: A
roguelike in Haskell” [70] since the main HaskellQuest concept was to allow players
to write Haskell code in-game. I decided not to use this approach because I wanted
to use the more advanced and readily available features of established game engines.
Another idea I discarded for the same reason was using CodinGame Game Engine (sdk)
by CodinGame, which at the start of HaskellQuest development also lacked detailed
documentation and resources.

3.3 Questionnaire

To better design HaskellQuest for its target audience, I have conducted a study (see
Appendix A Questionnaire) on the experience of the University of Edinburgh students
studying Haskell. The aim was to understand students’ behaviour when they start
learning new programming languages. Overall, out of the 46 participants, 36 (78%) had
no experience with functional programming before starting their undergraduate degree.
Out of the 10 (22%) who did have previous experience with functional programming,
half mentioned Haskell as their first functional language. 30 participants (65%) strongly
agreed that Haskell helped them understand other programming paradigms and logic
better. 19 (41%) mentioned using Haskell in their further careers and studies. This

Chapter 3. Approach 10

covered cases from using Haskell for other courses to internships, personal projects and
competitions. Some participants stated that Haskell helped them with learning Scala,
Agda and using functional concepts in Python and Java.

Participants ranked Haskell at 4.83 on the difficulty scale from 1 to 10 (1 - very easy,
10 - very hard). On the multiple choice question on the preferred learning techniques
(see Appendix A Questionnaire), “Self-practise and experiments” was ranked as the
preferred method of studying new programming languages (39% - 18 participants ranked
as the top), followed by ”Video materials” (13 - 28%). The least preferred method
was ”Quizzes” with 35% of students (16) placing it in the lowest tier. Overall, there
was a clear preference towards more active and visual activities with “Self-practise and
experiments”, ”Video materials”, ”Courses with guided instructions” and ”Interactive
platforms” all placed above more passive categories such as ”Blogs”, ”Lectures”,
”Books” and ”Quizzes”. This further influenced the choice of in-game activities towards
a classic-like RPG (see Concept).

Participants were also asked about which Haskell topics they found the most diffi-
cult. The most common replies were monads, recursions, functions and thinking in a
functional programming way. The latter was addressed by designing the game around
the concept of functions (see Design and Concept), while the topics of functions and
recursions were included in the current version of the game.

Chapter 4

Concept

4.1 Game main concept

HaskellQuest is a 2D RPG set in a fantasy world. The player takes on the role of a
protagonist recovering long-lost knowledge of the ancient art of functional programming.
The player will have to travel through different locations and explore the world to find
pieces of knowledge. Each game location is dedicated to a specific Haskell topic. Once
the player feels comfortable with their understanding, they can proceed to complete
game levels of increasing difficulty where they have to apply their knowledge to progress
further.

The game is based on three main game mechanics: exploration, coding and repetition.
Players have to explore the world by interacting with in-game objects and non-playable
characters (NPCs). These interactions provide the player with both Haskell knowledge
and background story. Once the player feels comfortable with their level of Haskell,
they can proceed to the next territory by following the main story quest. To unlock a
new territory the player has to complete multiple battle levels by coding their actions in
Haskell. By completing each battle level the player starts a new game loop with new
story content, different Haskell topics and unexplored territories as shown in Figure 4.1.

4.2 Game mechanics

The game includes multiple core mechanics for different scenes that have varying
purposes. The main story is presented in the story mode shown in Figure 4.2. The
story mode introduces the player to the world setting and their role in the game. This
mode contains dialogue presented against a static background. The dialogue can be
progressed with a click of the mouse. It is heavily inspired by visual novels.

Story mode is followed by open-world mechanics. The player is presented with a
territory that they can navigate freely. The territory contains various interaction points
such as in-game objects and NPCs. The player sees a dialogue box when interacting
with them. There are two types of interactive objects to be found: ”main story” and
”general”. ”Main story” interactive objects navigate the player through the game by

11

Chapter 4. Concept 12

Figure 4.1: Core gameplay loop

Figure 4.2: Story mode example of introducing player to their role

Chapter 4. Concept 13

providing tips on how they can use Haskell knowledge in battle and how to progress to
the next territory. The player has to interact with the ”main story” objects in order to
understand the game. Interactive objects of the ”general” category provide additional
Haskell knowledge and practical examples, as well as character dialogues. Overall, the
purpose of the open-world mechanics was to combine the excitement of the unknown
and stimulate players’ natural curiosity to explore and learn more Haskell tips. The
players are rewarded for exploration with interesting and unique tips to complete battle
levels. However, in order to encourage free exploration, rather than make it a burden,
the player can decide how much they would like to explore. This would depend on
the player’s experience with Haskell, time available and personal preferences. More
experienced players can quickly proceed to the battle levels by playing just the main
story. This allows the game to cater to players with different levels of knowledge.

As the player progresses through the main story, they must proceed to the battle mode
before navigating to the new territory. The battle mode can be accessed at any stage
of the game, however, the main story helps to guide the player to the correct location.
The battle mode is a turn-based strategy mechanics. Every enemy and player on the
battlefield is referred to as a ”unit”. Units take turns performing an action. Enemies’
actions are attacks directed towards the player. The player in their turn needs to write
Haskell code that describes their intended action in the built-in text editor. In order for
the actions to be executed, the code should compile and be of the correct form described
in more detail in Writing Haskell, otherwise the game displays an appropriate error. If
the player defeats all the enemies, the game progresses to the next level of increasing
difficulty, otherwise the player is returned to the previous territory. The code written
by players is preserved in the editor throughout the same level but resets to default as
the player progresses to the next one. This is done with the intention of encouraging
players to try different strategies for different levels and memorise the syntax.

4.3 Writing Haskell

My goal for the game was to encourage creativity in players when approaching battle
levels. As with many complex programming problems, battle levels are not limited to
one correct solution. Players write Haskell code in an in-built text editor in a similar way
to writing a regular Haskell source file. To execute an action, they need to specify the
function in the console just like calling functions from GHCi. This setup allows players
to obtain transferable skills in a familiar environment. There is only one restriction -
the executing function should have a return type of list of type Turn. Turn is one of
the predefined types in HaskellQuest. Type Turn describes which playable character
performs which action on whom.

type Turn = ((Char, Int), Action, (Char, Int))

Each character and each enemy have a unique index of type (Char, Int) that can be
found next to their names.

For example the simplest attack could look like this:

attack :: [Turn]

Chapter 4. Concept 14

attack = [((’p’, 0), SwordSlash, (’e’, 0))]

Other pre-defined types in HaskellQuest include:

1. Player

2. Enemy

3. Action

4. Units as variables

Definitions of Player, Enemy, Action and Turn appear in the text editor during the entire
duration of the level. Action contains different actions a player can perform during the
level. For example, SwordSlash would allow the Player to deal damage and Heal would
restore health. Some actions are only available during certain levels or characters. For
example, RestoreMana action can only be used from the second game level. Player and
Enemy are types describing different attributes such as name, index, health, damage
and mana. Each unit can be passed to a function as a variable of the corresponding type.
For example:

attackGuard :: Player -> Enemy -> [Turn]
attackGuard p e

| hp p > 5 && mana p == 10 = [(index p, SwordSlash, eindex e)]
| hp p > 5 && mana p < 10 = [(index p, RestoreMana, index p)]
| otherwise = [(index p, Heal, index p)]

To execute this function on an enemy unit ”shadowPuddle” a player ”playerExample”
would have to use

attackGuard playerExample shadowPuddle

in the console. It is also worth mentioning that the player variable would be the name
provided by the user at the start of the game, prefixed with the ”player” string literal,
for example, ”playerAngryPotato123”.

HaskellQuest battle system allows any Haskell syntax and function complexity. It
allows players to use two distinct approaches: static and dynamic attacks. Static attacks
are more straightforward: players write a function taking into account the state of the
battle only before the function execution like in the example above. It could be the case
that the function describes multiple actions, some of which become inapplicable during
its execution - for example, if the attacked enemy is already defeated. A more complex
dynamic function would allow players to track the state of the units. Dynamic functions
are not compulsory but can become a rather powerful tool for players who are more
comfortable with Haskell.

attackDynamic :: Player -> Enemy -> [Turn]
attackDynamic p e

| ehp e > 0 = [(index p, SwordSlash, eindex e)] ++
attackDynamic p (enemyHealth e p)

| otherwise = []

Chapter 4. Concept 15

enemyHealth :: Enemy -> Player -> Enemy
enemyHealth e p = Enemy (ename e) (eindex e) (edamage e) (ehp e - damage p)

Once the player is happy with their function and console input, they can proceed to
compilation and execution using the ”Compile action” button. Any errors with network,
compilation or code format are shown in the dialogue window. If a compilation error
occurs, the action won’t be executed and the player will have a chance to correct their
code. This is done in order to encourage players to experiment with code and reduce
player frustration. However, if the action compiles, but was wrong for a different reason,
the player will lose their turn and see an error message pointing to where they made a
mistake. For example, if the return type of the function was not [Turn], the dialogue
window would notify the user that ”Your function output should be in the format [((Char,
Int), Action, (Char, Int))]” and the game will proceed with the enemies’ turn.

Alternatively, players always have a chance to run away from the battle level and return
to the previous territory. If they do so during the battle, the battle progress will be
lost. After completing any level, the player is rewarded with an upgrade to their level,
damage, health or another attribute. These upgrades will be saved even if the player
loses or decides to run away during the next battle level.

The current version of the game supports the following Haskell concepts (tested):

• Types including custom types

• Arithmetic and Boolean operations

• Tuples

• Functions

• If-then-else statements

• Lists including list comprehensions

• Guards

• Recursion

4.4 Level difficulty evaluation

Battle levels are a form of checkpoints for users to evaluate their level of understanding.
They are designed with increasing difficulty to challenge the players. The current
version of HaskellQuest contains three such battle levels. To ensure dynamic gameplay
I evaluated the difficulty of these levels in terms of a minimum number of actions a
player has to perform in order to complete each level 4.3. The complete data for this
graph can be found in 4.1.

The graph 4.3 shows the total number of attacks a player needs to perform to win,
the minimum number of actions a player needs to execute including RestoreMana
(assuming the player performs them in one turn without taking any damage) and the
total number of enemy attacks for the player to lose. With each battle level the number
of actions a player needs to perform increases, with Level 3 being the hardest by design.

Chapter 4. Concept 16

Game level Lvl 1 Lvl 2 Lvl3
Player

Health 15 18 21
Damage 5 7 9
Mana 10 10 10
ManaPerAttack 3 3 3
RestoreMana 5 5 5
Heal 5 5 5

Enemy 1
Health 10 10 70
Damage 3 3 10

Enemy 2
Health NA 15 NA
Damage NA 7 NA

Total
Total enemy health 10 25 70
Total enemy damage 3 10 10
Player attacks to win 2 4 8
Mana needed 6 12 24
How many times to RestoreMana 0 1 5
Min player actions to win (excluding Heal) 2 5 13
Enemy actions to lose 5 2 3

Table 4.1: Player and enemy attributes analysis through the game levels

Level 1, on the other hand, is designed to be introductory and thus the number of player
actions is much less than the enemies’. No RestoreMana action is needed on this level.
This allows the player to get confident with the game and its interface before proceeding
to much harder levels. Level 2 introduces two enemies, and the difficulty goes up. At
this stage the player is encouraged to write more complex functions.

Chapter 4. Concept 17

1 2 3
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Game level

N
um

be
ro

fa
ct

io
ns

Number of unit actions to win or lose a battle level

Player attacks to win
Enemy actions to lose

Min player actions to win (excluding Heal)

Figure 4.3: Level difficulty evaluation graph

Chapter 5

Design

5.1 Aesthetics and user experience

One of my goals for this project was to deliver a unique and engaging user experience
that motivates players. While visuals, music and story were not strictly part of the
game mechanics, I believe they were equally valuable for creating a pleasant learning
environment.

According to Riot Games’ “So you wanna make games?” series [26], game art and
UI should aim for clarity and satisfaction when being interacted with. They should
have a coherent style and set the right emotional tone. The tone of HaskellQuest is
light fantasy and the emotional tone is excitement for adventure and learning new
things about the game world. The creative process started off with a visual board of
various ideas and images. I wanted the game world to feel coherent with Haskell,
so the keywords such as ”bugs”, ”functions”, and ”recursions” inspired a lot of the
world-building. I thought, ”Why not implement functions as attacks that the player
casts to defeat enemies?” This application of functions felt natural and dynamic. I
wanted the player to be able to express their creativity while dynamically writing the
code and practising syntax rather than being bound to set options, from where came
the idea of the in-game editor. This also provides a much more hands-on practical
activity of experiencing various difficulties with writing code rather than a more passive
activity like choosing the correct answer out of the given options. This could also prove
beneficial for better understanding of the concepts following the common given advice
to beginner programmers [52] [48] [62]. The concept of recursions inspired both the
main gameplay loop discussed earlier in the Concept and the story. ”Bugs” became
Corruptions that the player fights. Just like bugs in code, they hide in the world of
HaskellQuest breaking its natural processes.

5.2 Plot

The plot of the currently released version of HaskellQuest follows the player who at the
start of the game finds themselves looking into the sky lying next to a lake. They then

18

Chapter 5. Design 19

start a conversation with the Sprite of Light who briefly introduces them to the world.
The Sprite explains to the player that they need to fulfil their role as the Pilgrim of Light
who needs to recover the long-forgotten art of functional programming. The Pilgrim
possesses a rare artefact - a Grimoire that needs to be filled with Haskell knowledge.
The player then proceeds to the first territory - the city of Caladail, also called the City
of Shimmering Lights, where they meet some of the main characters. After having a
dialogue with Stella (an NPC) at the tavern, the player finds out about the Archives that
could contain information about what happened to the previous Haskell masters and
the event called ”the Great Despair”. The road to the Archives lies through a cave pass
where the player takes part in the first series of battle levels.

While the currently released version of the game is limited to the first level only (see
User testing), future versions of HaskellQuest would continue the story. As mentioned
earlier, the structure of the story is inspired by the concept of recursion. It has multiple
endings depending on the character’s choices and their performance in story-connected
battle levels. These endings include:

1. Good ending

2. Neutral ending

3. Bad ending

4. Secret ending

In good, neutral and bad endings the player returns back to the lake location just like at
the start of the game and can replay the game again to explore other endings. When
unlocking the secret ending the user finds out about the recursion that was controlling
their fate and discovers a secret action that, when activated during the final battle level,
completes the game.

For writing character conversations and developing the story, I utilised Arcweave
software [1] and Ink Unity Integration asset by inkle[57].

5.3 User interface

The prototype of the user interface (UI) was originally created during the pre-production
stage of development. HaskellQuest required robust UI that presents a lot of information
to the player during gameplay. The process started with paper sketches that were
also used as a story board walk-through [60]. Afterwards, I moved to wireframes
construction in Figma[6] to block out UI element layouts for different game scenes.
Once I was happy with the balance, I moved onto building the interactive prototype[14].
The prototype allowed early evaluation of the UI usability, consistency and ease of
completing different actions. The final version of HaskellQuest UI was designed to be
harmonious with the game’s main themes and aesthetics for seamless fusion with game
sprites and textures [26].

The game consists of seven distinct designs of screens: Main Menu, Last Saved, Credits,
Player Name Input, Story, Territory and Battle. All designs were fully implemented

Chapter 5. Design 20

Figure 5.1: Current Territory UI

in the current version of the game with the exception of Last Saved, because the Save-
and-Load system was not included in this release. Main Menu and Credits designs
were executed closely to the Figma prototype and had very few minor changes to them.
Player Name Input and Story were added during the development stage. Later I also
added features for the Grimoire (1), Help menu (2) and player statistics (3), such as
the name and current level shown in Figure 5.1, which used to be accessible only
from the battle level UI. Minimap is currently absent from the Territory UI but will be
implemented in future versions of the game.

Designing the battle level interface shown in Figure 5.2 was the most challenging of all
due to the large number of elements in it. The design splits the screen into two logical
halves: left side for the game visualisation that contains action stage overlayed with
the Grimoire (1), help button (2), player statistics (3), enemy statistic (4), dialogue box
(5), escape button (6), compile code button (7); and right side for code writing, which
consists of a flexible and user-friendly In-Game Text Editor [67] (8) and a console
(9). The UI design was created to comply with Jakob Nielsen’s general principles for
interaction design [64]. For example, the dialogue box (5) guides the player through
the battle by displaying the turn, compilation and code format errors and the effects
player’s actions have on the units. It complies with Neilson’s heuristics of ”Visibility
of system status”. The design of the right side is meant to replicate a common setup
for writing Haskell according to the second heuristic - ”Match between system and
the real world”, where the real-world is any other IDE. Additionally, every code error
produces a detailed error message for the user to help identify the mistake and avoid
making it in the future in accordance with the ”Error prevention” heuristic. All icons are
chosen to be as intuitive as possible, for example arrows for directions, crosses for close
and question marks for help, similar to many other common software UIs. Red health
and green mana bars are consistent with other games’ UIs for ”Recognition rather than
recall”.

Chapter 5. Design 21

The Grimoire element (1) is another major part of the UI/UX. It is persistent through
the territory and battle level and contains discovered Haskell information. The Grimoire
button opens an overlay panel shown in Figure 5.3. It contains a book-inspired interface
that is a horizontally scrollable list with dynamic arrow buttons indicating if more
content is available on either side. The first prototype appended new Haskell tips in
the order of discovery resembling a queue. Later it was replaced with a version in
which new knowledge would appear on the designated page to keep the logical order of
Haskell topics, while empty pages would signal to the player that there is still knowledge
to be found in the territory.

Future improvements discussed in Improvement suggestions based on user feedback
and Retrospective and further development should be done to the interface to make it
more intuitive and accessible.

Chapter 5. Design 22

Figure 5.2: Current Battle level UI

Figure 5.3: Grimoire UI

Chapter 6

Implementation

6.1 Territory

The goal for the territory mechanics was free and interactive exploration that was
achieved by sprite/textures levels hierarchy such as water, grass areas and rocks. Trees,
houses and other objects have a custom z-axis to allow the player to walk in-front as
well as behind them. This achieves a so-called 2.5D [59] feel to the gameplay while
still keeping the 2D rendering pipeline [72]. Trees, flames, water and other dynamic
elements have added animations to them for aesthetic purposes and a more engaging
user experience.

To balance out the game content, I started with multiple map sketches identifying the
positions of ”main story” interaction points and other Haskell content. After finalising
the draft, I tried to replicate the territory as close as possible with the chosen sprites from
Unity Store [34] and itch.io [17]. The final version is shown in Figure 6.1. ”Main story”
walkthrough is marked yellow, Haskell content marked blue and other interactions
marked green. Haskell content was placed such that more crucial tips were much easier
to find, while harder, more specific tips were hidden further away.

One of the challenges was scaling available assets from different packages to realistic
sizes compared to each other without compromising their quality. Another aspect
was camera movement. As of now, the camera is centered on the player’s sprite and
follows its movements. The map has collidable boundaries that do not allow the player
to wander off the edge of the map. However, it is a rather restrictive solution, and a
possible future improvement for visual consistency would be to prevent the camera
from moving beyond the borders, too.

Interactive items display a visual trigger when the player approaches them. There are
different visual triggers for the ”main quest” and ”general” objects. The dialogue system
is an adapted version of the system described in ”How to make a Dialogue System
with Choices in Unity2D” by Trever Mock [63]. Once the player enters the starting
territory for the first time, they are also greeted with an instruction on the controls
dialogue box. The controls are a common combination of keyboard shortcuts such as
”WASD”/Arrowkeys for player sprite movement and mouse UI interactions.

23

Chapter 6. Implementation 24

Figure 6.1: Final territory implementation. Note: during the gameplay the camera zooms
in on the player, and you cannot see the whole map at once. Yellow marks show the
main story walkthrough and interaction points, where ”start” marks the start and 6 marks
the entrance to the battle levels. Blue marks show Haskell content. Green marks show
other game content.

Chapter 6. Implementation 25

6.2 Battle system

Battle system is responsible for sequential events in battle levels. The algorithm
flowchart is shown in Figure 6.2. The battle system consists of five states: Start, Player
Turn, Enemy Turn, Won and Lost. The original version of the algorithm was based
of the ”Turn-Based Combat in Unity” tutorial by Brackeys [46], but was later heavily
modified to fit HaskellQuest ideas.

Once the player enters a battle level, they can no longer move their sprite freely. Instead,
all player battle actions should be done through the in-game text editor. The player can
still interact with the interface using a mouse, and use a keyboard to write code.

The current algorithm supports the ”one player against multiple enemies” case. The
player in their turn has to write code that is then sent to JDoodle server for compilation
(see Haskell integration). If the code runs into a network error, the player is notified
through the dialogue box. If the code compiles correctly, the game proceeds with
interpreting it into game actions. Any subsequent runtime errors are displayed to the
player in the dialogue box to help the player fix their code. The player can execute
multiple actions in one turn, and the effects of each action are processed and tracked
sequentially in real time. If the player’s code contains more actions than necessary,
they will not be executed, for example if the player defeats the enemy half-way through
a series of attacks. When processing individual actions, the algorithm also performs
additional checks on the code format described in Writing Haskell and verifies if a
given action is allowed, for example if there is enough mana for an attack. Otherwise
it intentionally allows any player-coded action as long as the player is the one set to
perform the action. This logic holds even if an action is not in favour of the player, for
example if the player mistakenly heals an enemy or attacks themselves. During the
enemies’ turn, all enemies perform an attack one by one. Similarly to the player turn,
all attack effects are tracked in real time. If an enemy gets defeated, it disappears from
the scene and is no longer a part of the battle. Every action is followed by a descriptive
message in the dialogue box. The player can escape any battle level at any time by
clicking the ”Run away” button, and the battle system algorithm will stop.

6.3 Saving data

One of the main challenges with the game was implementing data persistence between
different scenes. This was crucial for preserving players data and progress such as
discovered Haskell knowledge in the Grimoire, player name, level, damage and other
attributes. The current game version does not support saving and loading the overall
game progress yet, as that would require extensive additional research on game file
encryption and safe storage. Instead, I used a Unity solution with a singleton class that
is not destroyed on scenes load [73].

Chapter 6. Implementation 26

Figure 6.2: Battle algorithm flowchart

Chapter 6. Implementation 27

6.4 Haskell integration

One of the biggest design challenges for HaskellQuest was integrating the Haskell
compiler - GHC. The necessity comes from the user’s ability to freely write any Haskell
code in the in-game text editor, thus making it one of the core mechanics of the game.
There were two ways in which the compiler could have been integrated within the game
- internal and external.

Integrating GHC compiler internally would mean either including it with the game files
as a part of the build, or suggesting the users install it themselves. The first option
means that the entirety of the compiler has to be installed with the game, which adds to
the weight of the game, and may cause potential errors from the user environment. The
second option adds extra steps to the installation, which can demotivate players and
potentially add unnecessary complexity. Difficulty installing Haskell and its compiler
in the first place was a common issue mentioned by both experienced developers and
UoE students alike. [76] [25] [69] Since the compiler is a crucial mechanic of the game,
the players’ failure to successfully install the intended version would result in them
not being able to access the game at all. Relying on the already installed versions of
the compiler means making assumptions about players’ environment and also risking
introducing errors. But above anything else, HaskellQuest code would likely have to
make system calls in order to use GHC which compromises the security. Lastly, this
approach would limit the integration of the game to various platforms where GHC can
not be installed by default such as consoles [8] if the project were to be extended to
those, too.

Taking all of the above considerations into account, I decided to implement the external
integration of GHC by using the services of online compilers. An online Haskell com-
piler meant that the only assumption I had to make about the player’s environment was
an active connection to the Internet. The latter is a very common game requirement that
is easily achievable by the device owner. However, there is a need for maintainability:
using GHC internally would be a more stable option while connecting to a compiler
through an API means that HaskellQuest needs to be kept up to date with potential
updates. The inspiration for this solution came originally from built-in code editors on
websites designed to practise coding questions such as HackerRank [10] and LeetCode
[19]. The official Haskell website [13] provides a field where site users can try and
write Haskell code that then gets compiled and the result is displayed. Tracing outgoing
network requests led me to TryHaskell [53] by Chris Done. This website can compile
Haskell in the browser, however, it has certain limitations that I discovered later. Since
the main purpose of the website is to provide an interactive Haskell tutorial, its on-
line GHCi does not allow the upload of any supporting Haskell source files. Further
research led me to multiple other online compilers: JDoodle [18], codingground [4]
and replit [22]. JDoodle had the advantage of having a user API, but with a limit of
200 free requests per day. The other two were free but had no API and were aimed
at collaborative code writing and coding practice. I also got in touch with RunCode’s
team who kindly agreed to add an online Haskell compiler in their upcoming service
OnlineCompiler [20] that would be available without limitations. Unfortunately, this
service could not have been completed in time for the planned user testing, but pending

Chapter 6. Implementation 28

a successful launch of HaskellQuest, it should be considered as an alternative resource
for future work.

JDoodle services provide a REST API to send POST requests containing the code for
compilation. JDoodle then responds with the result of the compilation or a detailed error
from the GHC compiler as shown in Figure 6.2. Processing these messages allowed me
to handle Haskell code as strings in a much more elegant and reliable way compared
to calling Haskell directly from C#. Additionally, it acts as an additional abstraction
layer such that the game code cannot interfere with player-written code and vice versa.
For example, if the player writes an infinite recursion, the service would respond back
with an error informing the user that the recursion limit has been reached instead of
potentially crashing the game and the platform it runs on.

Chapter 7

Evaluation

I express my gratitude towards everyone who has kindly participated in the user testing
phase and provided insightful and thoughtful feedback. Overall, I received many
positive comments about the game concept and world structure around Haskell, as
well as the gameplay experience and the battle system flexibility 7.1. This validates
the success of the game approach towards teaching Haskell and the chosen mechanics
systems.

”I felt the theme encourages motivation to learn Haskell - some things that
have put me off learning Haskell (compared to other languages) before
have been that it’s seen as a language more for research than professional
use, and that t expects abstract, ’arcane’ knowledge (e.g. the ’A monad is
just a monoid in the category of endofunctors’ meme). The fantasy setting
reframes these as a positive though, akin to wizardry.”

”The way you learn about Haskell by looking around the world.”

”The game concept factors in the core goal of teaching Haskell into all of
its mechanics and design. Making it feel very cohesive.”

Figure 7.1: A few of the responses to the form question ”What do you like the most about
HaskellQuest?”

7.1 User testing

The majority of the feedback came from the open user testing. Participants were
provided with instructions on how to install the game together with two feedback
forms. One of the forms focused on user experience with the game (a single submission
per user), the other one was for submitting bug reports (unlimited submissions per
user). Both of the forms, as well as complete results with visualisations are attached in
Appendix B User testing.

User testing of the game included the first territory and three battle levels. As discussed
in the Concept chapter, each territory will eventually be dedicated to a single Haskell

29

Chapter 7. Evaluation 30

topic. However, in the currently released version of the game the first territory contains
mentions of all topics listed in the Writing Haskell section. While at the moment this
temporarily increases the difficulty level of the starting territory for beginners, this was
done for the benefit of more experienced testers to give them a chance to attempt to
write more advanced Haskell code and test the core battle system on a wider range of
inputs. The difficulty of battle levels as such remained unaltered and they could still be
completed by less experienced users.

Overall, 18 people took part in user testing. The participants had a wide range of
previous experiences with Haskell, with half of them having little-to-no experience
(chose 1-2 on a scale of ”1 - never seen Haskell before” to ”6 - proficient in Haskell”)
and 8 (44%) identifying as ”moderately experienced” or ”confident” (4-5 on the scale).
However, regardless of their proficiency level, the majority of participants found Haskel-
lQuest not as difficult as I had expected despite the abundance of Haskell topics included
in the test version of the game. It was given an average difficulty of 4 out of 6 with 15
(83%) votes falling between 3-5 on a scale where 6 is very easy. The playing experience
was rated on average at 4.67 on a scale of ”1 - Non satisfactory” to ”6 - Would definitely
play again”. 11 (61%) testers gave a positive rating 5 or 6, and 6 (33%) gave the highest
rating of 6, making it the most frequent response. This is a major success for the project
for one of its key goals: ”HaskellQuest should provide an engaging and unique user
experience that motivates players” (see section Project goals).

The majority of testers also believed that HaskellQuest would be helpful to learning
Haskell, with 15 (83%) of participants choosing between 4-6 on a scale of ”1 - Not
helpful at all” to ”6 - Very helpful”. When assessing player interactions with the game
mechanics, most testers showed good understanding of the game instructions, with the
mode rating of 5 (33%) and the average rating of 4.39 on a scale of ”1 - Very hard
to understand” to ”6 - Very easy”. However, some clarity should be added in future
versions of the game as the second most frequent rating (28%) was 3 out of 6. Haskell
content in NPC dialogues was found useful to the gameplay with 15 (83%) of testers
rating it above 4 out of 6.

7.2 Improvement suggestions based on user feedback

After analysing all of the responses, I generated a list of improvements based on their
level of priority and impact.

7.2.1 High impact/priority improvements

The number of attacks a player can perform during the level is restricted by mana. Each
attack costs a certain amount of mana, and when mana level reaches 0, no action can
be performed. The intention was to encourage players to optimise their code. During
user testing, however, multiple players pointed out that they can still write code similar
to lower levels and beat more difficult bosses by simply adding a RestoreMana action.
Therefore, one of the biggest improvements should be balancing the player abilities.
A better solution for the future would be to limit the usage of RestoreMana action by
allowing it only as a consumable item and/or to deplete different amounts of mana

Chapter 7. Evaluation 31

depending on the syntax used. For example, a solution with a hard-coded list of attacks
would drain significantly more mana than an elegant list comprehension.

I have also received feedback requesting more Haskell content and use case examples.
At the moment in HaskellQuest the user has to enter the battle level to progress to
a new territory. In contrast, in ”Octopath Traveller” [27], for example, the player
travels between quest zones using roads where they may or may not encounter enemies.
Those chance encounters, compared to the more common case of enemies bound to
a location, bring an extra dynamic to the game. Additionally, to make the world feel
more open, it might be better if the player could encounter enemies in different areas
during exploration, too. Some other suggestions included the addition of side quests
and a practice arena for ”showing the player that their gained knowledge is applicable
to the games challenges early”, as well as adding a more visual tutorial for the first
battle level, similar to how it is done for the territory scene.

7.2.2 Medium impact/priority improvements

There were a few requests for saving the written code in the text editor when progressing
through levels. As mentioned in Game mechanics, players’ code is not preserved with
the intention of encouraging players to try different approaches. It can indeed be argued,
however, that this system can make it more difficult for the players to improve the
already written code and quickly become an annoyance. A lot of testers admitted that
they were manually copy-pasting their code between levels. One of the more interesting
suggestions included the introduction of ”spells” - attacks previously written by users
that could be pasted into the code during battle. This mechanics could further be evolved
into a skill tree common in many games such as ”The Elder Scrolls V: Skyrim” [30]
and ”Path of Exile” [21]. Such an addition to the game would facilitate a more dynamic
gameplay and game lore while still letting the players practise Haskell.

• A more flexible dialogue navigation

• Adding visual representations of units’ attributes to battle level UI

• More visual content to Haskell content in the Grimoire such as pictograms

7.2.3 Low impact/priority improvements

• Visual tag to identify that new knowledge was added to the Grimoire

• Better terrain delineations in certain places such as stairs

• When the player runs away from the battle level, they need to return to the
cavepath entrance instead of the starting location on the territory

• Music and volume controls

• Grimoire section headers

• Preserving console history similar to terminal

• Adding collision boxes for NPCs

Chapter 7. Evaluation 32

7.3 Known issues and limitations

While the current version of HaskellQuest was thoroughly tested during both develop-
ment and user testing, there is no guarantee that it is completely bug-free. Some areas
in need of further testing and potential improvements are:

• Handling of special characters in the in-game text editor

• Image consistency when scaling to different window/screen sizes

• Player text input sanitation on the Name input screen and Battle level

• Jdoodle account scaling

JDoodle service requires a creation of an account with assigned secrets that need to be
included within the POST message. The number of available requests would depend
on the account tier. At the moment HaskellQuest operates from one account that was
given access to a large number of requests for the duration of the user testing. However,
this solution is not secure and is not scalable in the long run. One of the potential
fixes would be the creation of separate accounts for each new player through a game
registration system, however, this solution requires further research on security and
player privacy and safekeeping of player data.

In addition to the above, some bugs were also reported that did not restrict the gameplay
but had an impact on user experience and should be fixed in future releases, including:

• Some inconsistent collision boxes of items and NPCs affecting smooth interac-
tions with them

• Fixing some order of sprites on the z-axis

Chapter 8

Conclusion

8.1 Retrospective and further development

At the start of HaskellQuest, there were many features and ideas that were falling outside
of the time limitations for this project. I had to heavily prioritise the core mechanics and
main ideas in order to deliver a playable version of the game. However, there is a list of
planned future features that would further enhance the gameplay and user experience.

When working on HaskellQuest, I did research on games like ”Octopath Traveller” [27]
and ”Darkest Dungeon” [5], both of which are popular turn-based games. I enjoyed
the immersive world and aesthetics of ”Octopath Traveller” as well as the interesting
features of its battle system. ”Octopath Traveller” has a unique ”Break system” [37] in
which every enemy has a set of attacks they are vulnerable to. This idea could be well
translated into HaskellQuest by making enemies vulnerable to specific functions. This
coincides with some users’ requests to increase the difficulty of the game.

”Darkest Dungeon” has high-paced gameplay, which is very engaging from the start.
This thrill is achieved by adding time pressure by limiting the life of the torch that
the party carries in a dark dungeon. As the flame grows weaker, enemies are getting
stronger and characters are getting stressed. I believe a similar technique could help
increase the difficulty and players’ excitement for some battle levels. It also inspired
me to come up with the following features:

1. Code line limitation

2. Levels that only allow using certain Haskell topics

3. Limitation on available actions

4. Time limit to fix non-compiling code before the enemy attacks

Some other features include:

• More playable characters with unique abilities that can be used to build a team

• A save-and-load system

• Syntax highlighting

33

Chapter 8. Conclusion 34

• Interactive in-game items such as currency, potions and collectables

• Player inventory

• A more advanced reward system

• Multiplayer support

• Minimap UI to improve exploration and a full map panel

• Character weapons and armor with certain effects on gameplay

• UI panel for level transitioning

• Lighting system

• Character customisation

• Walking inside houses

8.2 Main achievements

The main achievement of this project is the implementation of all the core mechanics
necessary for a functional game. This includes story mode, open-world mechanics,
dialogues, Grimoire and battle system. This allows any further improvements and
features to be built on top of an already existing and functional system. Moreover, the
game in its current state can be easily scaled-up to add more levels and content with all
major UI elements, animations, mechanics built-in as prefabs. For example, the battle
system can be applied to any level of any difficulty, and creating a new enemy or an
NPC is as easy as changing the sprite and unit details.

Another achievement is the completion of all the three project goals I set at the start in
Introduction. Not only have I gained multiple applied skills with developing the game,
but also learnt a lot about the game industry, community, resources, current trends
and recent developments. Developing this game and especially its gameplay centred
around Haskell helped me understand Haskell concepts in greater depth than before.
HaskellQuest was a very engaging project, yet challenging in many areas, from UI/UX,
creative writing and animation to architecture, networks and security.

Bibliography

[1] Acweave. https://arcweave.com/. Online; accessed: 9-April-2023.

[2] Codecademy Docs. https://www.codecademy.com/resources/docs. Online;
accessed: 9-April-2023.

[3] CodinGames. https://www.codingame.com/home. Online; accessed: 17-
December-2022.

[4] codingground Online Haskell Compiler. https://www.tutorialspoint.com/
compile_haskell_online.php. Online; accessed: 9-April-2023.

[5] Darkest Dungeon. https://www.darkestdungeon.com/. Online; accessed:
9-April-2023.

[6] Figma: the collaborative interface design tool. https://www.figma.com/. On-
line; accessed: 9-April-2023.

[7] GameMaker. https://gamemaker.io/en. Online; accessed: 9-April-2023.

[8] GHC Wiki Platform. https://gitlab.haskell.org/ghc/ghc/-/wikis/
platforms. Online; accessed: 9-April-2023.

[9] Godot. https://godotengine.org/. Online; accessed: 9-April-2023.

[10] HackerRank. https://www.hackerrank.com/. Online; accessed: 9-April-2023.

[11] HackerRank Functional Programming. https://www.hackerrank.com/
domains/fp?filters%5Bstatus%5D%5B%5D=unsolved. Online; accessed: 9-
April-2023.

[12] Haskell in industry. https://wiki.haskell.org/Haskell_in_industry. On-
line; accessed: 9-April-2023.

[13] Haskell.org. https://www.haskell.org/. Online; accessed: 9-April-2023.

[14] HaskellQuest UI Prototype in Figma. https://www.figma.com/
proto/06WxmfW89YjV18i00MqSei/Haskell-Quest?page-id=0%3A1&
node-id=1-2&viewport=490%2C347%2C0.32&scaling=min-zoom&
starting-point-node-id=1%3A2. This is my original work.

[15] HaskellWiki. Introduction. https://wiki.haskell.org/Introduction#
What_is_Haskell.3F. Online; accessed: 17-October-2022.

35

https://arcweave.com/
https://www.codecademy.com/resources/docs
https://www.codingame.com/home
https://www.tutorialspoint.com/compile_haskell_online.php
https://www.tutorialspoint.com/compile_haskell_online.php
https://www.darkestdungeon.com/
https://www.figma.com/
https://gamemaker.io/en
https://gitlab.haskell.org/ghc/ghc/-/wikis/platforms
https://gitlab.haskell.org/ghc/ghc/-/wikis/platforms
https://godotengine.org/
https://www.hackerrank.com/
https://www.hackerrank.com/domains/fp?filters%5Bstatus%5D%5B%5D=unsolved
https://www.hackerrank.com/domains/fp?filters%5Bstatus%5D%5B%5D=unsolved
https://wiki.haskell.org/Haskell_in_industry
https://www.haskell.org/
https://www.figma.com/proto/06WxmfW89YjV18i00MqSei/Haskell-Quest?page-id=0%3A1&node-id=1-2&viewport=490%2C347%2C0.32&scaling=min-zoom&starting-point-node-id=1%3A2
https://www.figma.com/proto/06WxmfW89YjV18i00MqSei/Haskell-Quest?page-id=0%3A1&node-id=1-2&viewport=490%2C347%2C0.32&scaling=min-zoom&starting-point-node-id=1%3A2
https://www.figma.com/proto/06WxmfW89YjV18i00MqSei/Haskell-Quest?page-id=0%3A1&node-id=1-2&viewport=490%2C347%2C0.32&scaling=min-zoom&starting-point-node-id=1%3A2
https://www.figma.com/proto/06WxmfW89YjV18i00MqSei/Haskell-Quest?page-id=0%3A1&node-id=1-2&viewport=490%2C347%2C0.32&scaling=min-zoom&starting-point-node-id=1%3A2
https://wiki.haskell.org/Introduction#What_is_Haskell.3F
https://wiki.haskell.org/Introduction#What_is_Haskell.3F

Bibliography 36

[16] intogames. https://intogames.org/. Online; accessed: 5-June-2022.

[17] itch.io. https://itch.io/. Online; accessed: 9-April-2023.

[18] JDoodle. https://www.jdoodle.com/. Online; accessed: 9-April-2023.

[19] LeetCode. https://leetcode.com/. Online; accessed: 9-April-2023.

[20] OnlineCompiler. https://onlinecompiler.io/. Online; accessed: 9-April-
2023.

[21] Path of Excile. Passive skill tree. https://www.pathofexile.com/
passive-skill-tree. Online; accessed: 9-April-2023.

[22] Replit. https://replit.com/. Online; accessed: 9-April-2023.

[23] RPG Maker. https://www.rpgmakerweb.com/. Online; accessed: 9-April-
2023.

[24] ScalaQuest - the game to learn Scala. https://www.kickstarter.com/
projects/andanthor/scalaquest-a-game-to-learn-scala. Online; ac-
cessed: 9-April-2023.

[25] School of Informatics Intranet. Informatics Teaching Organisation. Student
course feedback. https://web.inf.ed.ac.uk/infweb/student-services/
ito/admin/course-survey-reports. Online; accessed: 20-October-2022.

[26] So You Wanna Make Games?? https://www.riotgames.com/en/artedu.
Online; accessed: 9-April-2023.

[27] Square Enix Octopath Traveller. https://www.square-enix-games.com/en_
GB/games/octopath-traveler. Online; accessed: 9-April-2023.

[28] Teamgantt. https://www.teamgantt.com/h2. Online; accessed: 9-April-2023.

[29] The University of Edinburgh. Undergraduate study - 2023 entry.
https://www.ed.ac.uk/studying/undergraduate/degrees/index.php?
action=view&code=G401. Online; accessed 13-October-2022.

[30] the Unofficial Elder Scrolls Pages. Skyrim:Skills. https://en.uesp.net/wiki/
Skyrim:Skills. Online; accessed: 9-April-2023.

[31] Trello. trello.com/. Online; accessed: 9-April-2023.

[32] UCAS. Computer science 2023. https://www.ucas.com/explore/subjects/
computer-science. Online; accessed 13-October-2022.

[33] Unity. https://unity.com/. Online; accessed: 9-April-2023.

[34] Unity Asset Store. https://assetstore.unity.com/. Online; accessed: 9-
April-2023.

[35] Unreal Engine. https://www.unrealengine.com/en-US. Online; accessed:
9-April-2023.

https://intogames.org/
https://itch.io/
https://www.jdoodle.com/
https://leetcode.com/
https://onlinecompiler.io/
https://www.pathofexile.com/passive-skill-tree
https://www.pathofexile.com/passive-skill-tree
https://replit.com/
https://www.rpgmakerweb.com/
https://www.kickstarter.com/projects/andanthor/scalaquest-a-game-to-learn-scala
https://www.kickstarter.com/projects/andanthor/scalaquest-a-game-to-learn-scala
https://web.inf.ed.ac.uk/infweb/student-services/ito/admin/course-survey-reports
https://web.inf.ed.ac.uk/infweb/student-services/ito/admin/course-survey-reports
https://www.riotgames.com/en/artedu
https://www.square-enix-games.com/en_GB/games/octopath-traveler
https://www.square-enix-games.com/en_GB/games/octopath-traveler
https://www.teamgantt.com/h2
https://www.ed.ac.uk/studying/undergraduate/degrees/index.php?action=view&code=G401
https://www.ed.ac.uk/studying/undergraduate/degrees/index.php?action=view&code=G401
https://en.uesp.net/wiki/Skyrim:Skills
https://en.uesp.net/wiki/Skyrim:Skills
trello.com/
https://www.ucas.com/explore/subjects/computer-science
https://www.ucas.com/explore/subjects/computer-science
https://unity.com/
https://assetstore.unity.com/
https://www.unrealengine.com/en-US

Bibliography 37

[36] Leetcode Support Feedback. https://leetcode.com/discuss/feedback/
136097/please-provide-haskell-language-support, October 2018. On-
line; accessed: 9-April-2023.

[37] Octopath Traveler - Overview Launch Trailer - Nintendo Switch. https://www.
youtube.com/watch?v=Fmi8KrntszI, July 2018. Online; accessed: 9-April-
2023.

[38] BCS landscape review: Computing qualifications in the UK.
https://www.bcs.org/policy-and-influence/education/
bcs-landscape-review-computing-qualifications-in-the-uk/, March
2022. Online; accessed: 17-October-2022.

[39] BCS. Record numbers have applied for UK computer science degrees
this year. https://www.bcs.org/articles-opinion-and-research/
record-numbers-have-applied-for-uk-computer-science-degrees-this-year,
February 2022. Online; accessed: 17-October-2022.

[40] BCS. Record numbers of students choose Computer Science A Level
in 2022. https://www.bcs.org/articles-opinion-and-research/
record-numbers-of-students-choose-computer-science-a-level-in-2022/,
June 2022. Online; accessed: 17-October-2022.

[41] Top Games Made with Unity: Unity Game Programming . https://www.
create-learn.us/blog/top-games-made-with-unity/, February 2022.

[42] What vertical slicing is and how it’s used in project management.
https://monday.com/blog/project-management/vertical-slice/,
September 2022. Online; accessed: 9-April-2023.

[43] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Interpre-
tation of Computer Programs. MIT Press, 1985.

[44] Peter Achten. The soccer-fun project. Journal of Functional Programming,
21(1):1–19, 2011.

[45] José Bacelar Almeida, Alcino Cunha, Nuno Macedo, Hugo Pacheco, and José
Proença. Teaching how to program using automated assessment and functional
glossy games (experience report). Proc. ACM Program. Lang., 2(ICFP), July
2018.

[46] Brackeys. Turn-Based Combat in Unity. https://www.youtube.com/watch?
v=_1pz_ohupPs&t=537s, November 2019. Online; accessed: 9-April-2023.

[47] Manuel M. T. Chakravarty and Gabriele Keller. The risks and benefits of teaching
purely functional programming in first year. Journal of Functional Programming,
14(1):113–123, 2004.

[48] John D. Cook. The value of typing code. https://www.johndcook.com/
blog/2012/12/18/the-value-of-typing-code/, December 2012. Online;
accessed: 9-April-2023.

https://leetcode.com/discuss/feedback/136097/please-provide-haskell-language-support
https://leetcode.com/discuss/feedback/136097/please-provide-haskell-language-support
https://www.youtube.com/watch?v=Fmi8KrntszI
https://www.youtube.com/watch?v=Fmi8KrntszI
https://www.bcs.org/policy-and-influence/education/bcs-landscape-review-computing-qualifications-in-the-uk/
https://www.bcs.org/policy-and-influence/education/bcs-landscape-review-computing-qualifications-in-the-uk/
https://www.bcs.org/articles-opinion-and-research/record-numbers-have-applied-for-uk-computer-science-degrees-this-year
https://www.bcs.org/articles-opinion-and-research/record-numbers-have-applied-for-uk-computer-science-degrees-this-year
https://www.bcs.org/articles-opinion-and-research/record-numbers-of-students-choose-computer-science-a-level-in-2022/
https://www.bcs.org/articles-opinion-and-research/record-numbers-of-students-choose-computer-science-a-level-in-2022/
https://www.create-learn.us/blog/top-games-made-with-unity/
https://www.create-learn.us/blog/top-games-made-with-unity/
https://monday.com/blog/project-management/vertical-slice/
https://www.youtube.com/watch?v=_1pz_ohupPs&t=537s
https://www.youtube.com/watch?v=_1pz_ohupPs&t=537s
https://www.johndcook.com/blog/2012/12/18/the-value-of-typing-code/
https://www.johndcook.com/blog/2012/12/18/the-value-of-typing-code/

Bibliography 38

[49] Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart Nacke. From game
design elements to gamefulness: Defining gamification. volume 11, pages 9–15,
09 2011.

[50] Darina Dicheva, Christo Dichev, Gennady Agre, and Galia Angelova. Gamification
in education: A systematic mapping study. Journal of Educational Technology
Society, 18(3):75–88, 2015.

[51] Edsger Wybe Dijkstra. Letter To the members of the Budget Council.
https://www.cs.utexas.edu/users/EWD/transcriptions/OtherDocs/
Haskell.html, 2001. Online; accessed 13-October-2022.

[52] Andrea Diotallevi. 5 Benefits Of Typing V Copy Pasting When Work-
ing On New Code. https://www.andreadiotallevi.com/blog/
5-benefits-of-typing-v-copy-pasting-when-working-on-new-code,
September 2022. Online; accessed: 9-April-2023.

[53] Chris Done. Try Haskell. https://tryhaskell.org/. Online; accessed: 9-
April-2023.

[54] Jeff Drake. 24 Great Games That Use The Unreal 4 Game Engine.
https://www.thegamer.com/great-games-use-unreal-4-game-engine/
?newsletter%20popup=1shenmue-3, March 2023. Online; accessed: 9-April-
2023.

[55] Santa Dreimane. Gamification for Education: Review of Current Publications,
pages 453–464. Springer International Publishing, Cham, 2019.

[56] HaskellWiki. Haskell in education. https://wiki.haskell.org/index.php?
title=Haskell_in_education&oldid=63321, 2020. Online; accessed 13-
October-2022.

[57] inkle. Ink Unity Integration. https://assetstore.unity.com/packages/
tools/integration/ink-unity-integration-60055. Online; accessed: 9-
April-2023.

[58] K. Galov J. Torrång. Unity Tutorial Project in Haskell with Apecs and SDL2.
https://github.com/mewhhaha/apecs-unity-tutorial-haskell, Decem-
ber 2022. Online; accessed: 9-April-2023.

[59] S. Knight. What Are 2.5D Games? How They Differ From 2D and 3D
Games. https://www.makeuseof.com/what-are-2-5d-games-2d-3d/, June
2021. Online; accessed: 9-April-2023.

[60] Rachel Krause. Storyboards Help Visualize UX Ideas. https://www.nngroup.
com/articles/storyboards-visualize-ideas/, July 2018. Online; ac-
cessed: 9-April-2023.

[61] Miran Lipovača. Learn You a Haskell for Great Good!: A Beginner’s Guide. No
Starch Press, 2011.

https://www.cs.utexas.edu/users/EWD/transcriptions/OtherDocs/Haskell.html
https://www.cs.utexas.edu/users/EWD/transcriptions/OtherDocs/Haskell.html
https://www.andreadiotallevi.com/blog/5-benefits-of-typing-v-copy-pasting-when-working-on-new-code
https://www.andreadiotallevi.com/blog/5-benefits-of-typing-v-copy-pasting-when-working-on-new-code
https://tryhaskell.org/
https://www.thegamer.com/great-games-use-unreal-4-game-engine/?newsletter%20popup=1shenmue-3
https://www.thegamer.com/great-games-use-unreal-4-game-engine/?newsletter%20popup=1shenmue-3
https://wiki.haskell.org/index.php?title=Haskell_in_education&oldid=63321
https://wiki.haskell.org/index.php?title=Haskell_in_education&oldid=63321
https://assetstore.unity.com/packages/tools/integration/ink-unity-integration-60055
https://assetstore.unity.com/packages/tools/integration/ink-unity-integration-60055
https://github.com/mewhhaha/apecs-unity-tutorial-haskell
https://www.makeuseof.com/what-are-2-5d-games-2d-3d/
https://www.nngroup.com/articles/storyboards-visualize-ideas/
https://www.nngroup.com/articles/storyboards-visualize-ideas/

Bibliography 39

[62] Joe Mayberry. The Value of Re-Typing Code. https://www.wearediagram.
com/blog/value-of-retyping-code, March 2013. Online; accessed: 9-April-
2023.

[63] Trever Mock. How to make a Dialogue System with Choices in Unity2D —
Unity + Ink tutorial 2021. https://www.youtube.com/watch?v=vY0Sk93YUhA,
September 2021. Online; accessed: 9-April-2023.

[64] Jakob Nielsen. 10 Usability Heuristics for User Interface Design. https://www.
nngroup.com/articles/ten-usability-heuristics/, November 2020. On-
line; accessed: 9-April-2023.

[65] Devin Pickell. The 7 Stages of Game Development. https://www.
g2.com/articles/stages-of-game-development#5-pre-launch, October
2019. Online; accessed: 23-December-2022.

[66] Egor Piskunov. Unity Vs GameMaker: What to
Choose for Game Development? https://ilogos.biz/
unity-vs-gamemaker-what-to-choose-for-game-development/, Au-
gust 2022. Online; accessed: 9-April-2023.

[67] Sandro Ropelato. In-Game Text Editor. https://assetstore.unity.com/
packages/tools/gui/in-game-text-editor-199113. Online; accessed: 9-
April-2023.

[68] Don Sannella, Michael Paul Fourman, Haoran Peng, and Philip Wadler. Intro-
duction to Computation: Haskell, Logic and Automata. Undergraduate Topics in
Computer Science. Springer International Publishing, 1 edition, February 2022.

[69] C. Scalfani. Why is Learning Functional Programming
So Damned Hard? https://cscalfani.medium.com/
why-is-learning-functional-programming-so-damned-hard-bfd00202a7d1,
November 2019. Online; accessed: 23-October-2022.

[70] Ashley Smith. HSRogue: A roguelike in Haskell. https://aas.sh/project/
hsrogue/, March 2019. Online; accessed: 9-April-2023.

[71] Anastasia Stefanuk. Pros and Cons of Hiring Free-
lance Unity Developer. https://mobilunity.com/blog/
pros-and-cons-of-hiring-freelance-unity-developer/. Online;
accessed: 9-April-2023.

[72] Sunny Valley Studio. How to sort sprites by Y axis in Unity 2D. https://
www.sunnyvalleystudio.com/blog/how-to-sort-sprites-in-unity, Au-
gust 2022. Online; accessed: 9-April-2023.

[73] Unity Technologies. Implement data persistence between scenes. https://learn.
unity.com/tutorial/implement-data-persistence-between-scenes,
November 2022. Online; accessed: 9-April-2023.

[74] Sruthi Veeraraghavan. Top 20 Best Programming Lan-
guages To Learn in 2023. https://www.simplilearn.com/

https://www.wearediagram.com/blog/value-of-retyping-code
https://www.wearediagram.com/blog/value-of-retyping-code
https://www.youtube.com/watch?v=vY0Sk93YUhA
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.g2.com/articles/stages-of-game-development#5-pre-launch
https://www.g2.com/articles/stages-of-game-development#5-pre-launch
https://ilogos.biz/unity-vs-gamemaker-what-to-choose-for-game-development/
https://ilogos.biz/unity-vs-gamemaker-what-to-choose-for-game-development/
https://assetstore.unity.com/packages/tools/gui/in-game-text-editor-199113
https://assetstore.unity.com/packages/tools/gui/in-game-text-editor-199113
https://cscalfani.medium.com/why-is-learning-functional-programming-so-damned-hard-bfd00202a7d1
https://cscalfani.medium.com/why-is-learning-functional-programming-so-damned-hard-bfd00202a7d1
https://aas.sh/project/hsrogue/
https://aas.sh/project/hsrogue/
https://mobilunity.com/blog/pros-and-cons-of-hiring-freelance-unity-developer/
https://mobilunity.com/blog/pros-and-cons-of-hiring-freelance-unity-developer/
https://www.sunnyvalleystudio.com/blog/how-to-sort-sprites-in-unity
https://www.sunnyvalleystudio.com/blog/how-to-sort-sprites-in-unity
https://learn.unity.com/tutorial/implement-data-persistence-between-scenes
https://learn.unity.com/tutorial/implement-data-persistence-between-scenes
https://www.simplilearn.com/best-programming-languages-start-learning-today-article

Bibliography 40

best-programming-languages-start-learning-today-article, March
2023. Online; accessed: 9-April-2023.

[75] Jan Christopher Vogt. Writing 2D games using super simple Haskell. https:
//www.youtube.com/watch?v=CfaCfQstBIM/, August 2020. Online; accessed:
12-April-2023.

[76] Philip Wadler. Why no one uses functional languages. ACM Sigplan Notices,
33(8):23–27, 1998.

https://www.simplilearn.com/best-programming-languages-start-learning-today-article
https://www.simplilearn.com/best-programming-languages-start-learning-today-article
https://www.simplilearn.com/best-programming-languages-start-learning-today-article
https://www.youtube.com/watch?v=CfaCfQstBIM/
https://www.youtube.com/watch?v=CfaCfQstBIM/

Appendix A

Questionnaire

41

Appendix A. Questionnaire 42

Appendix A. Questionnaire 43

Appendix A. Questionnaire 44

Appendix A. Questionnaire 45

Appendix A. Questionnaire 46

A.1 Participants’ information sheet

Appendix A. Questionnaire 47

Appendix A. Questionnaire 48

Appendix A. Questionnaire 49

A.2 Participants’ consent form

50

Appendix B. User testing 51

Appendix B

User testing

B.1 Feedback form

Appendix B. User testing 52

Appendix B. User testing 53

Appendix B. User testing 54

Appendix B. User testing 55

B.2 Bug report form

Appendix B. User testing 56

B.3 Participants’ information sheet

Appendix B. User testing 57

Appendix B. User testing 58

Appendix B. User testing 59

Appendix B. User testing 60

B.4 Participants’ consent form

Appendix C

Minimum Viable Product Criteria

Minimum Viable Product (”MVP”) version of the game should contain the following:

• 2D plane with player object that can be controlled using keyboard input

• Character can interact with NPCs

• Battle level where enemy object attacks character object in enemy turn

• Code editor panel where player can write Haskell code

• Haskell code should compile and correctly interpret player’s attack on the chosen
enemy in player’s turn

• Both the enemy and the character must have health bars

• When either the player or the enemy are attacked, the health bar should go down

• Once the player’s or enemy’s health bar goes to 0, they die ending the battle

61

62

Appendix D. Haskell Quest Game Design Document 63

Appendix D

Haskell Quest Game Design Document

Appendix D. Haskell Quest Game Design Document 64

Appendix D. Haskell Quest Game Design Document 65

Appendix D. Haskell Quest Game Design Document 66

Appendix D. Haskell Quest Game Design Document 67

Appendix D. Haskell Quest Game Design Document 68

Appendix D. Haskell Quest Game Design Document 69

Appendix D. Haskell Quest Game Design Document 70

Appendix E

Relevant UI sketches and prototypes

71

Appendix E. Relevant UI sketches and prototypes 72

Figure E.1: Battle level UI draft

Figure E.2: Territory UI draft

Appendix E. Relevant UI sketches and prototypes 73

Figure E.3: Caladail map sketch

Appendix F

Game music

Music titles used in HaskellQuest: ”Explorer”, ”Enchanted Forest”, ”Magic Tavern”,
”Battle Loop” by Alexander Nakarada (www.serpentsoundstudios.com). Licensed
under Creative Commons BY Attribution 4.0 License http://creativecommons.
org/licenses/by/4.0/.

74

www.serpentsoundstudios.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Motivation
	Project goals
	Project structure

	Background
	Functional programming education
	Why Haskell
	Teaching Haskell to first-year students at the University of Edinburgh

	Gamification in education
	Why Haskell may be difficult to pick up
	Previous work

	Approach
	Industry development cycle
	Game engine
	Questionnaire

	Concept
	Game main concept
	Game mechanics
	Writing Haskell
	Level difficulty evaluation

	Design
	Aesthetics and user experience
	Plot
	User interface

	Implementation
	Territory
	Battle system
	Saving data
	Haskell integration

	Evaluation
	User testing
	Improvement suggestions based on user feedback
	High impact/priority improvements
	Medium impact/priority improvements
	Low impact/priority improvements

	Known issues and limitations

	Conclusion
	Retrospective and further development
	Main achievements

	Bibliography
	Questionnaire
	Participants' information sheet
	Participants' consent form

	User testing
	Feedback form
	Bug report form
	Participants' information sheet
	Participants' consent form

	Minimum Viable Product Criteria
	Haskell Quest Game Design Document
	Relevant UI sketches and prototypes
	Game music

