
Reinforcement Learning Racecar Local
Controller

Hefan Wang
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Computer Science

School of Informatics
University of Edinburgh

2023

Abstract
In this paper, we present a reinforcement learning-based approach for developing
an autonomous race car controller capable of optimizing performance while safely
navigating complex track configurations. Our methodology integrates a realistic vehicle
dynamics simulation with a procedural race track generation algorithm, creating a
rich learning environment that encourages the generalization of the trained agent. We
employ the Proximal Policy Optimization (PPO) algorithm, renowned for its balance
between sample efficiency, simplicity, and performance, as the foundation of our
reinforcement learning framework. By carefully designing the observation space,
reward function, and action space, we create an effective training environment for our
agents. Our results demonstrate the effectiveness of our approach, with the trained agent
exhibiting proficiency in autonomously controlling the simulated race car, optimizing
performance, and adapting to various track configurations, displaying professional
driver-like strategies and manoeuvres.

i

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Hefan Wang)

ii

Acknowledgements
I sincerely appreciate my supervisor Dr Steve Tonneau for his kind support and guid-
ance.

I want to thank all of my friends and family for their invaluable companionship.

I would also like to thank everyone on the Honours Project Day who voted for and
awarded me and my project poster the best poster/presentation award. I went to some
very fancy restaurants with the £100 prize, which served as a strong reward signal to
reinforce my brain to be even more enthusiastic about the project.

iii

Table of Contents

1 Introduction 1
1.1 Motivations . 1
1.2 Project Aims . 2
1.3 Report Structure . 3

2 Background 4
2.1 Reinforcement Learning . 4
2.2 The Racing Problem . 5
2.3 Racecar Local Controller . 5
2.4 Related Works . 6

2.4.1 Super-Human Performance in Gran Turismo Sport Using Deep
Reinforcement Learning [11] 6

2.4.2 Outracing champion Gran Turismo drivers with deep reinforce-
ment learning [33] . 6

2.4.3 High-speed Autonomous Drifting with Deep Reinforcement
Learning [3] . 6

2.5 Potential Improvements of Related Works 7
2.5.1 Improving Universality . 7
2.5.2 Minimizing Prior Knowledge Guidance 7
2.5.3 Optimizing Observation Encoding 7

3 Environment and Task Setup 8
3.1 Overview . 8
3.2 Vehicle Dynamics Simulation . 9

3.2.1 Numerical Integration . 9
3.2.2 Ackermann Steering Geometry 10
3.2.3 Engine and Transmission . 11
3.2.4 Suspension System . 12
3.2.5 Tire Friction Modelling . 14
3.2.6 Aerodynamics Approximation 15

3.3 Procedural Race Track Generation 15
3.3.1 Race Tracks . 15
3.3.2 Pseudo-Random Number Generator 16
3.3.3 Random Point Scattering . 17
3.3.4 The Travelling Salesman Problem 17

iv

3.3.5 Genetic Algorithm . 18
3.3.6 Bézier Curves . 19
3.3.7 Race Track Elements Placement 20

4 Methodology 23
4.1 The Reinforcement Learning Problem 23
4.2 Observations . 23

4.2.1 LiDAR and Ray-casting . 23
4.2.2 Observation Space Processing 24
4.2.3 Additional Observations . 25

4.3 Reward shaping . 25
4.3.1 Collision Penalty . 25
4.3.2 Speed Encouragement . 26

4.4 Action Space . 26
4.4.1 Steering Output . 26
4.4.2 Throttle & Brake Output . 27

4.5 Proximal Policy Optimisation [28] 27

5 Experimentation and Results 29
5.1 Training . 29
5.2 Hyper-parameter Tuning . 31
5.3 Results & Evaluation . 32

6 Conclusions 34
6.1 Conclusions . 34
6.2 Future Works . 35

Bibliography 36

v

Chapter 1

Introduction

1.1 Motivations

The advancement of autonomous vehicle technology has gained significant attention in
academia and industry. One of the primary challenges in this domain is the development
of robust and efficient local controllers that can safely navigate vehicles through complex
and dynamic environments. Developing a reinforcement learning (RL) based racecar
local controller presents a unique opportunity to address this challenge. Compared
to traditional control methods, it can lead to improved performance, adaptability, and
generalizability.

The motivation behind building a reinforcement learning racecar local controller stems
from the inherent limitations of classical control techniques[7]. While such methods
have succeeded in well-defined scenarios, their reliance on fixed mathematical models
can hinder their adaptability to novel or changing situations and limit their potential
performance by human domain knowledge[27]. On the other hand, reinforcement
learning has the potential to overcome these limitations by allowing the controller to
learn from its interactions with the environment and adapt its actions accordingly[29]

Moreover, the highly dynamic nature of racing environments presents a compelling case
for exploring reinforcement learning-based control. In these environments, vehicles
need to maintain high speeds while navigating tight corners, avoiding collisions, and
reacting to the actions of other competitors[14] The inherent ability of reinforcement
learning algorithms to learn complex, non-linear control policies makes them well-
suited for such tasks. Furthermore, deep reinforcement learning techniques can enable
the controller to automatically extract relevant features from high-dimensional sensory
input, thereby reducing the need for manual feature engineering[21]

In addition to the potential performance benefits, developing a reinforcement learn-
ing racecar local controller can provide valuable insights into the broader field of
autonomous vehicle control. Lessons learned from this local controller’s design, im-
plementation, and evaluation can inform the development of more advanced control
systems for a wide range of autonomous applications, from urban transportation to
high-speed racing competitions[20] Ultimately, the pursuit of this research aims to

1

Chapter 1. Introduction 2

contribute to a deeper understanding of the capabilities and limitations of reinforcement
learning in the context of vehicular control, thereby driving the field toward safer, more
efficient, and more adaptable autonomous systems.

The majority of previous studies on reinforcement learning-based vehicle controllers
rely on off-the-shelf racing simulations, which inherently constrain their trained models
to the specific race tracks and vehicles used during the training process. This lack of
customizability inhibits the generalizability of the developed models, restricting their
applicability beyond the original training environment.[11][3][33]

Another important motivation comes from the opportunity to collaborate with the Edin-
burgh University Formula Student team. EUFS is one of the best teams in the United
Kingdom’s Formula Student autonomous car racing landscape and has become the
champion of its autonomous racing event in 2022. Being a member of such a distin-
guished team provides a unique opportunity to contribute to cutting-edge automotive
technologies’ development and ongoing success. A significant motivation behind our
research on reinforcement learning for autonomous race car controllers stems from
the potential to deploy the developed algorithm on the team’s real self-driving racecar.
This collaboration opportunity would evaluate the practical applicability of our research
and demonstrate our commitment to pushing the boundaries of autonomous vehicle
technology.

1.2 Project Aims

This project aims to develop a comprehensive framework for designing, implementing,
and evaluating a reinforcement learning-based racecar local controller. To achieve this
goal, the project will focus on three primary objectives:

• Building a realistic racecar vehicle dynamics simulation

• Constructing a procedural race track generator

• Training a reinforcement learning agent that can safely and efficiently navigate
the racecar around the track

The first objective, developing a realistic vehicle dynamics simulation, is crucial for
creating an accurate and representative virtual environment in which the reinforcement
learning agent can be trained and evaluated. This simulation should incorporate the
essential physical properties of a racecar, such as its engine behaviours, suspension
system, and tire characteristics, as well as the effects of various forces and torques
on the vehicle’s motion. By ensuring the fidelity of the simulation, the project aims
to facilitate the transfer of the learned control policies to real-world racing scenarios,
ultimately increasing the likelihood of successful deployment.

The second objective involves the creation of a procedural race track generator that
can produce diverse and challenging race tracks for the reinforcement learning agent
to navigate. By generating a wide variety of track layouts with varying degrees of
complexity, the generator will allow for the assessment of the controller’s robustness
and adaptability under different conditions. The variety of track layouts is essential for

Chapter 1. Introduction 3

establishing the controller’s capacity to handle novel and dynamic racing environments,
which is a key requirement for real-world deployment. Furthermore, the procedural
track generator will provide testing scenarios for benchmarking the performance of the
proposed reinforcement learning controller against other control methods, enabling a
rigorous and fair comparison.

Finally, the third objective centres around training a reinforcement learning agent to
effectively control the racecar to achieve safety and high performance. This objective
will involve selecting and implementing appropriate RL algorithms, environment ob-
servation and exploration strategies, and reward functions to drive the learning process.
Utilizing the realistic vehicle dynamics simulation and the diverse tracks generated by
the procedural race track generator, the reinforcement learning agent will be trained
to make optimal real-time decisions based on its current state and the surrounding
environment. Upon successful training, the agent should be able to navigate the racecar
around the track in a safe and efficient manner while demonstrating the ability to adapt
to varying track conditions and potential disturbances.

1.3 Report Structure

This report is structured into five main chapters, each dedicated to a specific aspect of
our research on reinforcement learning for autonomous racecar local controllers.

In Chapter 2, ”Background”, we offer an extensive overview of our research’s foun-
dations, including the key concepts and techniques in reinforcement learning, racing,
and autonomous vehicle local controllers. This chapter aims to provide readers with
the necessary context and understanding of the relevant literature and state-of-the-art
approaches in these domains, setting the stage for our proposed methodology and its
implementation.

Chapter 3, ”Environment and Task Setup”, delves into the details of our research
environment, including the implementation of the vehicle dynamics simulation and
the procedural race track generator. We discuss the design and development of these
essential components, ensuring that our training environment is realistic, diverse, and
able to foster the learning of a generalized agent.

Chapter 4, ”Methodology”, outlines our reinforcement learning approach, specifically
addressing the observation space, reward function, and action space. We explain the
rationale behind the design choices made in this chapter and how they contribute to the
effectiveness of our agent’s training and its subsequent performance on the race track.

Chapter 5, ”Experiment and Results”, presents our experiments’ results and our trained
agent’s performance. We detail the various stages of training, the impact of hyperparam-
eter tuning, and the result of the agent’s ability to control the simulated race car. This
chapter highlights the success of our approach and its potential application in real-world
autonomous vehicle control systems.

Chapter 2

Background

2.1 Reinforcement Learning

Reinforcement learning (RL) is a subfield of artificial intelligence and machine learning
that focuses on training agents to make decisions by interacting with their environment.
The central idea behind reinforcement learning is that an agent learns to map its current
state to an optimal action by maximizing a cumulative reward signal, which gives
feedback on the agent’s performance[29]

In a typical reinforcement learning setup, an agent interacts with an environment
through discrete time steps. At each time step, the agent perceives the current state
of the environment, selects an action from its available action space, and executes the
chosen action. In response, the environment transitions to a new state, giving the agent
a scalar reward signal. The agent’s goal is to learn a policy, which is a mapping from
states to actions, that maximizes the expected cumulative reward over time[25]

Reinforcement learning algorithms employ a combination of value estimation and
policy optimization techniques to maximize the cumulated reward. Value estimation
methods estimate the expected cumulative reward obtained by taking a particular action
in a given state. At the same time, policy optimization techniques update the agent’s
policy to select actions that lead to higher estimated values. A common RL value
estimation approach uses temporal-difference (TD) learning algorithms, such as Q-
learning[6] and SARSA[35], which update value estimates incrementally based on the
difference between successive state-action value predictions. On the other hand, policy
optimization methods, such as policy gradients[30] and actor-critic[17] algorithms,
directly optimize the policy by computing and applying gradients of the objective
function for the policy parameters.

In recent years, incorporating deep neural networks in reinforcement learning, known
as deep reinforcement learning (DRL)[21], has led to significant advancements in the
field. Deep neural networks can be used as function approximators to represent complex
policies and value functions, enabling the RL agent to learn from high-dimensional
sensory input and tackle problems with large state and action spaces. This development
has resulted in breakthroughs in various applications, from playing video games[23]

4

Chapter 2. Background 5

and robotics[13] to natural language processing[31] and autonomous vehicles[1].

2.2 The Racing Problem

Time-trial-style car racing in closed circuits presents a challenging problem due to the
complex interplay of various factors that contribute to the overall performance of the
racecar. In this racing format, each vehicle competes individually against the clock,
attempting to complete a set number of laps around a closed circuit in the shortest time
possible. The focus of the competition shifts from direct driver-to-driver interaction to
the optimization of individual lap times, placing a premium on vehicle control, strategy,
and the efficient navigation of the track[11].

Several aspects contribute to the complexity of time-trial-style racing in closed circuits.
First, the dynamic nature of the vehicle’s motion and the intricate balance between
various forces, such as aerodynamic downforce, tire grip, and engine torque, make
predicting and controlling the car’s behaviour challenging. Accurate modelling of
these forces is essential for developing effective control strategies, yet the inherent
nonlinearity and uncertainty in their interactions present significant obstacles.

Second, the track layout determines the optimal racing line and trajectory, influencing
the vehicle’s speed and cornering capabilities. The variability of track features, such as
turns, elevation changes, and surface conditions, demands high adaptability from both
the driver and the vehicle’s control systems. Furthermore, varying constraints, such as
track boundaries and dynamic obstacles like debris, add complexity to the problem[4].

Lastly, the time-sensitive nature of time-trial racing necessitates exploring control
strategies that prioritize safety and speed. This delicate balance requires the development
of sophisticated algorithms that can account for the trade-offs between aggressive
driving manoeuvres and the risk of losing control or causing damage to the vehicle.
Finding the optimal racing strategy requires integrating advanced modelling techniques,
adaptive control algorithms, and robust optimization methods.

2.3 Racecar Local Controller

In the domain of autonomous vehicular control, A local controller manages a vehicle’s
dynamics and actuation in real time, depending on the current conditions of the vehicle
and its surrounding environments. The local controller’s primary goal is to optimise
several performance measures, including speed, acceleration, and cornering ability, to
preserve the vehicle’s control while maintaining the desired trajectory[32]. This is done
by continuously monitoring the vehicle’s sensor detections and states and applying
control inputs, such as throttle, brake, and steering adjustments, to maintain the desired
performance characteristics.

Chapter 2. Background 6

2.4 Related Works

2.4.1 Super-Human Performance in Gran Turismo Sport Using Deep
Reinforcement Learning [11]

In this study, the authors demonstrate the capacity of a deep reinforcement learning
agent to attain super-human lap times on specific race tracks and vehicles within
the Gran Turismo Sport simulation environment. The researchers employ a state
observation technique called edge distance measurements, which emulates the behaviour
of lidar sensors through ray-casting, enabling the agent to extract proximate race track
features. The agent’s Soft Actor-Critic (SAC) reinforcement learning network receives
input comprising measured distances from the car to race track edges, current speed,
acceleration information, and a reward function proportional to the distance traversed
by the car along the track’s centre line. The inference network’s output directly controls
the car’s steering, throttle, and brake commands. The trained agent outperforms human
competitors in the given race conditions and exhibits awareness and application of
common racing knowledge.

2.4.2 Outracing champion Gran Turismo drivers with deep rein-
forcement learning [33]

This research presents a deep reinforcement learning agent trained to compete with real-
time players, in contrast to the previous study’s static time-trial scenario. The proposed
method concentrates on overtaking opponents and evading unlawful collisions with
other race cars. The agent employs a simpler perception model that directly accesses the
ground truth data of the race track a few seconds ahead of its current position without
considering the car’s facing angle or perceivable distance. Information about the agent’s
nearest opponents is also input into its Quantile Regression Soft Actor-Critic (QR-SAC)
training network. A unique curriculum sequence of diverse training environments is
utilised, from basic static single-agent time trials to multi-agent competitive scenarios
starting at different track locations.

2.4.3 High-speed Autonomous Drifting with Deep Reinforcement
Learning [3]

This paper explicitly addresses the drifting problem in car racing. Rather than minimis-
ing side-slipping like most human racers, the agent is rewarded for executing prolonged,
controlled drifting. The training employs a reward allocation function proportional to
the vehicle’s lateral speed and wheel-slip duration. The agent is primarily trained using
an imitation learning approach in the CARLA vehicle simulation environment, employ-
ing a SAC reinforcement learning network and a trajectory driven by a human drifting
expert. The trained agent can maintain controlled drifting on a given set of tracks and
vehicles. The performance of other reinforcement learning algorithms, including DDPG
and DQN, is assessed and compared within the same training scenario.

Chapter 2. Background 7

2.5 Potential Improvements of Related Works

2.5.1 Improving Universality

Although the studies mentioned above yield remarkable results, most share a common
limitation: their trained models apply only to the specific race track and vehicle on which
they were trained. This constraint may stem from the off-the-shelf racing simulators
used, which offer a preset range of race tracks and vehicles, lack variability, and thus
risk overfitting. To address this issue, researchers could develop a customisable racing
simulator, enabling them to randomise vehicle dynamics and track layouts for each
training session. A customisable racing simulator could produce more robust, versatile,
and useful agents combined with larger training networks.

2.5.2 Minimizing Prior Knowledge Guidance

While incorporating domain-specific prior knowledge into training can expedite con-
vergence, it may also constrain the agent’s potential performance. Instances of such
limitations include rewarding agents for adhering to the track’s centre line or following
a human-generated trajectory. These methods counteract the sparse reward nature of
racing problems. Future research should explore more natural and heuristic approaches.
[10]

2.5.3 Optimizing Observation Encoding

By refining state observation encoding, agents may train and converge more rapidly.
Ideal state observation encoding should be consistent, normalised, and highly perti-
nent to the agent’s decision-making process. To incorporate ahead race track location
and boundary information into the agent, the observation data should be filtered, pre-
processed, and normalised to facilitate the agent’s comprehension and interpretation.
Potential data preprocessing methods may involve geometric transformations and op-
timisation techniques such as racing line calculation. Employing more sophisticated
observation encoding could lead to more efficient learning processes and ultimately
result in improved agent performance.

Chapter 3

Environment and Task Setup

3.1 Overview

The importance of developing a comprehensive environment and simulation setup
is paramount in training and evaluating a reinforcement learning-based racecar local
controller. By constructing a realistic vehicle dynamics simulation, we can accurately
represent the complex physical interactions and the various subsystems that influence
the racecar’s behaviour. This level of realism is crucial for ensuring that the learned
control policies are transferable to real-world racing scenarios, thereby increasing the
likelihood of successful deployment and the possibility of discovering new racing
strategies.

Additionally, the procedural race track generation method facilitates the creation of a
wide array of diverse and challenging race tracks, which is essential for contributing
to the controller’s robustness, adaptability, and performance under various conditions.
The ability to generate a multitude of track layouts and configurations enables the
reinforcement learning agent to be exposed to a broader range of racing situations,
ultimately enhancing its capacity to handle novel and dynamic racing environments.
The combination of the vehicle dynamics simulation and the procedural race track
generation provides a rigorous and controlled framework for training and benchmarking
the performance of the proposed reinforcement learning controller.

8

Chapter 3. Environment and Task Setup 9

Figure 3.1: A Screen Shot of the Simulation Environment

3.2 Vehicle Dynamics Simulation

To realistically simulate the complex dynamics of a racecar, the modelling of various
components, such as the car’s body, engine, suspension system and wheels, plays a
critical role in accurately representing the vehicle’s behaviour. The simulation considers
many vehicle parameters and inputs. Examples include wheelbase, rear track, turn
radius, air friction coefficient, suspension stiffness, and engine torque curve. By
accounting for these factors, the system effectively captures the nuanced interaction
between different components, ensuring that the simulation accurately represents the
physical reality of a vehicle’s motion.[12]

3.2.1 Numerical Integration

Numerical integration plays a vital role in physics simulations, as it allows for approxi-
mating continuous functions and evaluating definite integrals using discrete data points
[9]. In the case of simulating car physics, numerical integration is utilised to compute
the motion and internal states of the racecar, considering various forces and torques
acting on the vehicle and updating its position, velocity, orientation, suspension travel,
and engine speeds over time.

Chapter 3. Environment and Task Setup 10

The Euler method is one common approach to numerical integration employed in
physics simulations. In the context of simulating car physics, the equations of motion
can be represented as a system of first-order ordinary differential equations. They can be
applied to update the vehicle’s state over time. The basic formula for the Euler method
is as follows:

x(t +∆t)≈ x(t)+∆t · x′(t) (3.1)

Where x(t) is the state variable at time t, x’(t) is the derivative of the state variable for
time at time t, and delta t is the time step. This method is utilised in simulating various
vehicle components, including the car’s body movement and rotation, wheels rotation,
suspension travel, and engine revolutions.

3.2.2 Ackermann Steering Geometry

The steering system plays a crucial role in simulating the vehicle’s dynamics. The
Ackermann steering geometry is employed in the simulation, which ensures that all
wheels rotate around a common centre of curvature[22]. This geometry prevents tire
scrubbing and provides a smooth steering experience. The steering input, which the user
or an AI controller can provide, directly affects the calculation of the steering angles for
each wheel.

To determine the steering angles, the system uses the Ackermann constants derived
from the vehicle’s wheelbase and rear track. The wheelbase is the distance between the
front and rear wheel axles, while the rear track refers to the distance between the centres
of the rear wheels. These parameters affect the vehicle’s turning status and handling
characteristics.[8]

cot(δL)− cot(δR) =
RT
WB

(3.2)

δAck =
δin

γ
(3.3)

δL = tan−1
(

WB tan(δAck)

WB+0.5RT tan(δAck)

)
(3.4)

δR = tan−1
(

WB tan(δAck)

WB−0.5RT tan(δAck)

)
(3.5)

Chapter 3. Environment and Task Setup 11

Figure 3.2: Visualisation of the Ackermann Steering Geometry

The Ackermann constants are then used in a trigonometric calculation to determine the
steering angles for each wheel based on the steering input provided by the driver or
an AI system. This method of calculating steering angles ensures that the simulation
effectively models the correct steering behaviour for Racecars.

3.2.3 Engine and Transmission

The engine simulation is a vital component of the vehicle’s dynamics simulation. It
incorporates a torque curve, gear ratio, differential, and transmission efficiency to
determine the drive torque applied to the drive wheels [34]. The torque curve is a
function that represents the engine’s torque output at different RPMs, and it is essential
for simulating realistic engine behaviour.

The gear ratio and differential work together to transfer the engine’s torque to the

Chapter 3. Environment and Task Setup 12

drive wheels. The gear ratio determines how much the engine’s torque is multiplied or
reduced before being transmitted to the wheels. The differential helps distribute the
torque evenly between the drive wheels, allowing them to rotate at different speeds
when necessary. The transmission efficiency is a factor that accounts for power losses
in the transmission system.

Figure 3.3: Engine Simulation Parameters

Figure 3.4: Engine Torque vs RPM Graph

The simulation also calculates the traction torque, rolling friction torque, and brake
torque applied to the wheels. The traction torque is the force that propels the vehicle
forward, while the rolling friction torque opposes the vehicle’s motion and is caused by
the tire’s contact with the ground. Brake torque is the force generated by the braking
system to slow down or stop the vehicle.

These torques influence the angular velocity and current RPM of the wheels. The
simulation calculates the angular velocity of wheels based on the torques and the
wheel’s moment of inertia, and the current RPM is derived from the angular velocity.
By considering these factors, the system accurately represents the engine’s influence on
the wheels and the vehicle’s dynamics.

3.2.4 Suspension System

The vehicle’s suspension is a crucial component that significantly impacts the vehicle’s
handling characteristics and overall performance. In the simulation, the suspension
is modelled using a spring-damper system with adjustable parameters, including rest
length, spring travel, spring stiffness, and damper stiffness. The rest length represents
the uncompressed length of the spring, while the spring travel denotes the maximum
displacement that the spring can undergo. The spring stiffness and damper stiffness are

Chapter 3. Environment and Task Setup 13

coefficients that determine the forces generated by the spring and damper, respectively
[16].

Fk =−kx (3.6)

Fd = c
dx
dt

(3.7)

The suspension forces, which consist of the spring force and damper force, are calculated
based on the current length and velocity of the spring. The spring force is a function
of the spring stiffness and the spring’s displacement from its rest length, while the
damper force is a function of the damper stiffness and the spring’s velocity. These
forces work together to provide a responsive and realistic suspension behaviour that
reacts to different road surfaces and driving conditions. By adjusting these parameters,
the system can simulate various suspension configurations and accurately represent
their behaviour under various driving conditions.

The suspension forces are then applied to the vehicle’s rigid body at the point of contact
with the ground. This application of forces ensures that the vehicle’s body responds
appropriately to the forces generated by the suspension, simulating the interaction
between the vehicle’s body and the suspension system. As a result, the suspension
system plays a crucial role in accurately simulating the vehicle’s dynamics, providing a
realistic representation of how the vehicle reacts to various road surfaces, inputs, and
weight transferring and body rotations.

Figure 3.5: Visualisation of the suspension system’s subtle influence on the vehicle body

Chapter 3. Environment and Task Setup 14

3.2.5 Tire Friction Modelling

The lateral and longitudinal tire forces are modelled using a combination of slip angle,
slip ratio, and friction coefficient, which are essential in determining the vehicle’s
traction and handling characteristics. These parameters capture the complex behaviour
of the tire as it interacts with the road surface, which directly influences the vehicle’s
performance.

The slip angle is the angle between the tire’s direction and its actual velocity, and it is
used to determine the lateral forces acting on the tire. The slip angle is essential for
simulating the tire’s lateral grip and cornering capabilities.

The slip ratio represents the difference between the wheel’s rotational and ground speeds.
This ratio calculates the longitudinal forces acting on the tire, including acceleration
and braking forces. The slip ratio is critical for simulating the tire’s traction and braking
performance.

Figure 3.6: Tire Friction Modelling Parameters

Figure 3.7: Tire Lateral Force VS Slip Angle Graph

The friction coefficient is another vital parameter that influences tire forces. It represents
the tire’s grip on the road surface and affects lateral and longitudinal forces. The friction
coefficient can change based on factors such as tire compound, road surface, and
temperature.

Fx = f (κ,Fz) = Fz ·D · sin(C · arctanBκ−E[Bκ− arctan(Bκ)]) (3.8)

The horizontal and lateral tire forces are calculated using these parameters combined

Chapter 3. Environment and Task Setup 15

in the Pacejka Magic Formula tire model that describes the relationship between these
parameters and the forces generated by the tire [24]. The calculated tire forces are then
applied to the relative wheel positions on the vehicle’s rigid body, ensuring that the
tire’s performance characteristics directly influence the vehicle’s motion and response
to inputs. By accurately representing this relationship, the simulation can effectively
capture the tire’s behaviour under various driving conditions and road surfaces, such as
dry, wet, or icy pavement and different suspension configurations.

3.2.6 Aerodynamics Approximation

The air resistance force is another critical factor in vehicle dynamics simulation, as it
significantly impacts the vehicle’s acceleration and top speed. The simulation calculates
the air resistance force based on the air friction coefficient, frontal area, air density, and
the square of the vehicle’s velocity [15]. The air friction coefficient is a dimensionless
parameter representing the resistance of the vehicle’s shape to the airflow. At the same
time, the frontal area is the cross-sectional area of the vehicle that faces the direction of
travel.

Fair =
1
2

ρCDAv2 (3.9)

The air density parameter is a pre-computed variable affected by the ambient tempera-
ture, pressure, and altitude, and it directly affects the magnitude of the air resistance
force. By accounting for these parameters, the system can accurately calculate the air
resistance force experienced by the vehicle as it travels at various speeds and through
different environments. This force is then applied to the vehicle’s rigid body in the
opposite direction of its velocity, ensuring that the simulation effectively represents the
influence of air resistance on the vehicle’s performance.

3.3 Procedural Race Track Generation

3.3.1 Race Tracks

Race tracks are specialized venues designed to host various racing competitions, includ-
ing automobiles, motorcycles, and even horse racing. These tracks are meticulously
engineered to meet the requirements of the racing events they host, with consideration
given to aspects such as track surface, layout, safety features, and spectator ameni-
ties. The primary objective of a race track is to provide a challenging and exciting
environment for competitors and spectators while ensuring the safety of all participants.

Race tracks are generally characterized by a closed-circuit design, forming a continuous
loop without any intersecting paths. This allows for a clearly defined start and finish line,
consistent lap timing and performance measurement. The length, width, and overall
layout of race tracks can vary significantly depending on the type of racing event and
the desired difficulty level [19].

Chapter 3. Environment and Task Setup 16

Figure 3.8: Procedural race track generation system overview

A key aspect of race track design is incorporating various track features that present
unique challenges to drivers or riders. These may include a combination of straights,
curves, and corners. Straights are the track sections where vehicles can reach their
top speeds due to the lack of curvature. These stretches are crucial for overtaking
opportunities and strategically planning one’s approach to upcoming corners or curves.
The length and number of straights on a track can significantly impact the nature of the
competition and the vehicles’ performance characteristics.

Curves and corners, on the other hand, require precise handling and tactical manoeuvres
from the drivers or riders. These track features are defined by their geometry, which
includes factors such as radius, angle, and direction. The radius of a curve refers
to the distance between its centre and the outer edge of the track. A larger radius
results in a gentler curve, allowing for higher speeds, while a smaller radius demands
more significant adjustments to a vehicle’s speed and trajectory. The angle of a corner
represents the change in direction it causes, with a greater angle requiring a more
pronounced steering input and braking. Corners can also be classified based on their
direction, as either left-hand or right-hand turns.

The transitions between straights, curves, and corners form a race track’s overall layout
and flow. Designers must carefully balance the demands of high-speed straights with the
technical challenges posed by curves and corners and consider the potential overtaking
opportunities and strategic implications of each feature. The track’s geometry can
significantly influence a race’s dynamics, with tighter, more technical circuits favouring
vehicles with superior handling and agility. In contrast, more open and fast tracks
benefit those with higher top speeds and aerodynamic efficiency.

3.3.2 Pseudo-Random Number Generator

Random number generators (RNGs) are algorithms or devices designed to produce a
sequence of numbers that lack any discernible pattern or predictability. These numbers
exhibit statistical randomness, meaning that each number in the sequence is independent
of its predecessors and has an equal probability of appearing. RNGs are vital in

Chapter 3. Environment and Task Setup 17

numerous fields, including cryptography, computer simulations, and procedural content
generation [2].

Two primary categories of random number generators are true random number genera-
tors (TRNGs) and pseudo-random number generators (PRNGs). TRNGs derive their
randomness from physical processes, such as electronic noise, radioactive decay, or
atmospheric phenomena. These generators capitalise on the inherent unpredictability
of such processes to produce truly random numbers. However, TRNGs can be slower,
more expensive, and may require specialised hardware, which can limit their practical
applications.

In contrast, PRNGs are algorithmic approaches that employ deterministic processes
to generate seemingly random sequences of numbers. PRNGs utilise an initial value,
the seed, to determine the starting point for the number sequence. Given the same
seed, PRNGs produce the same sequence of numbers, allowing for reproducibility in
simulations or other applications. Although PRNGs may not offer true randomness,
their output can approximate the properties of random sequences, provided that the
algorithm is well-designed and properly initialised.

Procedural generation is a technique commonly used in computer graphics, video games,
and simulations, where content is created algorithmically rather than manually. By
utilising random number generators, procedural generation can generate diverse and
seemingly unique results. In this context, PRNGs are particularly advantageous, as their
deterministic nature allows developers to reproduce specific configurations or tweak
their parameters to fine-tune the generated content.

3.3.3 Random Point Scattering

The first essential step for the procedural race track generation is to utilise pseudo-
random number generators (PRNGs) to scatter random points on a two-dimensional
plane to generate a set of coordinates (x, y) that represent points in a Cartesian coordinate
system with two separate PRNGs, one for each coordinate. First, the PRNG responsible
for the x-coordinate is initialised with a seed value and then used to produce a sequence
of pseudo-random numbers within the desired range of x values. Simultaneously, a
second PRNG, initialised with a different seed, generates a sequence of pseudo-random
numbers within the desired range of y values. Combining the x and y values produced
by these PRNGs creates a set of two-dimensional points with a seemingly random
distribution.

3.3.4 The Travelling Salesman Problem

The Traveling Salesman Problem (TSP) is a computational challenge that has captured
the attention of researchers and practitioners from various fields, such as operations
research, computer science, and applied mathematics. The TSP’s main objective is to
find the shortest route that visits a set of given points and returns to the starting point.
This problem has broad applicability in logistics, manufacturing, and network design.

The TSP is formally defined as follows: Given a set of points (or nodes) and a distance

Chapter 3. Environment and Task Setup 18

matrix representing the pairwise distances between these points, the objective is to find
a Hamiltonian cycle—a closed loop that visits each point exactly once—such that the
total distance is minimised. There are two primary categories of TSP - symmetric and
asymmetric - depending on whether the distances between pairs of points are identical
in both directions or not [18].

The TSP is a challenging problem due to its computational complexity, which is classi-
fied as NP-hard. The number of permutations grows factorially, doing an exhaustive
search for an optimal solution infeasible for moderately-sized instances. This means
that an efficient algorithm capable of optimally solving all instances of the problem is
unlikely to be developed without significant advancements in computing.

Researchers have developed heuristic and metaheuristic algorithms to address these
computational challenges to find near-optimal solutions within a reasonable time frame.
Heuristic methods, such as the nearest neighbour and minimum spanning tree, exploit
problem-specific knowledge to construct a solution. Metaheuristic techniques, such
as simulated annealing, genetic algorithms, and ant colony optimisation, explore the
solution space through stochastic processes. While these methods do not guarantee an
optimal solution, they often yield high-quality results relatively quickly, making them
well-suited for practical applications.

In procedural race track generation, solving the TSP for a set of randomly scattered
points on a 2D plane can help determine the optimal layout for the track. By minimising
the total distance required to traverse the entire set of points, the track’s design can be
optimised and made into a closed loop without any intersecting paths, forming a closed
circuit.

3.3.5 Genetic Algorithm

In our work, we utilised the genetic algorithm (GA), a population-based metaheuris-
tic, to tackle the Traveling Salesman Problem (TSP) as a critical component of our
procedural race track generation process. Genetic algorithms draw inspiration from
natural selection and evolution processes, offering an adaptable and efficient method
for searching large and complex solution spaces [18]. In this context, the GA proved
effective in determining near-optimal layouts for the race track by optimising the order
in which the randomly scattered points on a 2D plane were connected.

Implementing the GA for the TSP involved several key steps, beginning with creating
an initial population. Each population member represented a candidate solution, en-
coded as a permutation of the points. We employed various initialisation strategies to
generate a diverse population, including random permutations and the insertion of some
heuristically-constructed solutions.

Following the initialisation, the GA proceeded with iterative selection, crossover, and
mutation cycles. During the selection process, we adopted a fitness-based approach, in
which individuals with lower total distances and, thus, higher fitness were more likely to
be selected for reproduction. This allowed us to maintain a balance between exploration
and exploitation, preserving reasonable solutions while continuing to search for better
alternatives.

Chapter 3. Environment and Task Setup 19

Crossover, also known as recombination, played a crucial role in generating offspring
by combining the genetic information of two parent solutions. We used order-based
crossover operators designed explicitly for the TSP to ensure the generation of valid
offspring permutations. These operators maintained each parent’s relative order of
points while creating new potential solutions.

Mutation operators were also employed to introduce random alterations to the offspring
solutions, adding diversity to the population and mitigating premature convergence. We
implemented various mutation operators, such as swap, insertion, and inversion, each
of which modified the order of the points in the offspring solutions in distinct ways.

The GA iterations continued until a predefined stopping criterion was reached, such
as a maximum number of generations or a target solution quality. Upon termination,
the best solution found by the algorithm was used as the layout for the race track. Our
implementation of the GA exhibited a strong capability to solve the TSP in the context
of procedural race track generation, producing high-quality race track layouts within
reasonable time frames.

3.3.6 Bézier Curves

Bezier curves, named after the French mathematician Pierre Bezier, have found wide-
ranging applications in various domains, such as computer graphics and design, due to
their mathematical elegance and ability to generate smooth curves. These parametric
curves are defined by a set of control points, which in turn determine the shape and
properties of the curve. Bezier curves can be constructed of various orders, with
quadratic and cubic Bezier curves being the most common. While higher-order curves
offer greater control and flexibility in shaping the curve, they also introduce increased
complexity in calculations [5].

One of the key properties of Bezier curves is their containment within the convex hull
formed by their control points. This ensures that the generated curves do not deviate
significantly from the desired path. Bezier curves also possess a local control property,
which entails modifying a control point only influences the curve in its vicinity. The
combination of these properties and the ability to create continuous and differentiable
curves make Bezier curves particularly well-suited for generating smooth and visually
appealing paths.

In the context of race track generation, Bezier curves are an advantageous choice due to
their smoothness, local control, and ability to generate continuous paths. A seamless
and engaging race track layout can be created using Bezier curves to interpolate between
the points.

After obtaining the near-optimal layout for the race track using the genetic algorithm to
solve the TSP, we employed Bezier curves to interpolate between the scattered points
and generate smooth, realistic race track segments. This process was critical to our
procedural race track generation pipeline, ensuring that the generated tracks offered
a continuous and realistic racing experience. We first created a sequence of control
points based on the TSP solution to achieve this, accounting for the geometric properties
required to produce a smooth race track.

Chapter 3. Environment and Task Setup 20

For each pair of adjacent points in the layout, additional control points were strategically
placed to shape the curve and maintain desired geometric properties, such as tangent
directions at the start and end of each curve segment. The placement of these additional
control points was governed by a set of heuristics and constraints that aimed to preserve
the overall structure of the layout while producing a smooth race track. By considering
factors such as curvature, the distance between points, and the desired racing line, we
ensured that the generated curves were visually appealing and conducive to an engaging
racing experience.

Figure 3.9: Visualisation of Bezier curves race track fitting

Cubic Bezier curves offered sufficient flexibility to generate the necessary curvature
while maintaining computational efficiency. Utilising cubic Bezier curves, defined by
four control points per segment, we created the continuous path between the points in
the TSP solution. By connecting the Bezier curve segments and ensuring continuity in
the first and second derivatives at the joining points, we produced a seamless race track
with realistic turns and transitions.

In the final stage of the race track generation process, we connected the Bezier curve
segments to form a smooth and continuous path. This ensures that the first and second
derivatives are continuous at the joining points of the curve segments, leading to
seamless transitions between different track sections. This continuity was crucial for
providing a realistic racing experience, allowing racers to maintain their momentum
while negotiating the track’s turns and twists.

3.3.7 Race Track Elements Placement

3.3.7.1 Traffic Cones

In order to provide a clear and visually coherent delineation of the race track boundaries,
we used the normal and tangent information extracted from the generated race track
Bezier curve to place a series of traffic cones alongside the track strategically. This
step enhanced the visual appeal of the track and served as an essential guide for racers,
helping them navigate the course and understand the boundaries of the racing surface.

Chapter 3. Environment and Task Setup 21

Utilising the mathematical properties of the Bezier curve, we calculated the tangent
vector at various points along the curve. The tangent vector is the curve’s first derivative
and represents the curve’s direction at each sampled point. This information was
essential for determining the orientation of the traffic cones, ensuring they were placed
consistently with the direction of the race track. By normalising the tangent vector, we
obtained a unit vector that provided a consistent reference for cone placement.

Subsequently, we calculated the normal vector by taking the orthogonal vector to the
tangent vector. This normal vector represented the direction perpendicular to the curve
at each sampled point and was used to offset the cone positions from the main path of
the track. By selecting an appropriate distance from the main path, we ensured that the
cones were placed at a consistent offset from the race track, effectively marking the
boundaries of the racing surface.

Figure 3.10: Visualisation of the race track elements placement

To evenly distribute the traffic cones along the race track, we employed a sampling
strategy based on the arc length parameterisation of the Bezier curve. This approach
allowed us to maintain a consistent spacing between the cones, providing a visually
pleasing and easily interpretable boundary for the racers. By varying the density of the
cones based on the curvature and complexity of the track sections, we ensured that the
cones provided clear guidance for the racers, especially in more challenging areas of
the course, like tight corners.

Chapter 3. Environment and Task Setup 22

3.3.7.2 Racecar spawning

Once the race track has been procedurally generated using Bezier curves and traffic
cones placed to mark the track boundaries, the next step is to spawn the race car onto
the track, ensuring it is correctly oriented and positioned. To achieve this, we selected a
suitable starting point along the Bezier curve and calculated the tangent vector at that
point. This tangent vector indicates the direction of the track, enabling us to orient the
race car either facing forwards or backwards, depending on the desired initial racing
direction. By aligning the race car’s forward vector with the tangent vector, we ensured
that the car was correctly oriented along the track direction, thus allowing for a seamless
commencement of the racing simulation.

In addition to spawning the race car on the generated track, it is crucial to initialise the
vehicle dynamics simulation parameters for a realistic and immersive racing experience.
To do so, we set the initial values for various parameters such as wheelbase, rear track,
turn radius, air friction coefficient, frontal area, air density, suspension properties, and
engine behaviour. By carefully calibrating these parameters based on the specific
attributes of the race car being simulated, we could ensure high fidelity in the vehicle’s
motion and response to various inputs, such as steering, throttle, and braking. This
level of detail in the vehicle dynamics simulation significantly contributed to the overall
realism of the racing simulation.

Chapter 4

Methodology

4.1 The Reinforcement Learning Problem

Our study aimed to investigate the application of reinforcement learning (RL) tech-
niques for driving the racecar vehicle dynamics model we developed on the procedurally
generated race tracks. To frame this as an RL problem, we first needed to define the es-
sential components of the learning task, including the observation, reward function, and
action space. Our goal was to design an autonomous driving agent capable of learning to
navigate the tracks efficiently and safely, using a suite of custom-designed observation
methods for environment perception, reward function for behaviour encouragement and
action mapping for decision actuation and execution.

4.2 Observations

4.2.1 LiDAR and Ray-casting

Light Detection and Ranging (LiDAR) is a widely utilised remote sensing technique in
autonomous driving. LiDAR enables accurate assessment of distances between objects
in the surrounding environment by releasing laser pulses, measuring the time it takes for
the light to reflect back to the sensor, and then estimating the distance to nearby objects.
LiDAR offers useful information about the area around the vehicle in the context of
autonomous driving, enabling very accurate and reliable obstacle identification and
tracking [26].

An interesting parallel can be drawn between LiDAR in autonomous driving and ray-
casting techniques in computer graphics. Ray casting is a rendering technique that
involves tracing rays from a viewpoint into the scene and computing the intersections
between the rays and the objects in the environment. This approach allows for determin-
ing the visible surfaces in a 3D scene and is widely used in various computer graphics
applications, such as video games and robotic simulations.

In our implementation, we employed a method inspired by LiDAR and ray-casting
principles to detect the cones surrounding the race car in a 2D planar environment.

23

Chapter 4. Methodology 24

The method involved emitting rays from the vehicle in multiple directions, extending
outwards in a planar fashion, and computing the intersections between the rays and the
cones’ positions. This process enabled us to determine the distances between the vehicle
and the cones, which were then incorporated as part of the observation provided to the
reinforcement learning agent. This approach not only maintained a reasonable level of
computational efficiency in the simulation but also provided a realistic representation
and simulation of the vehicle’s onboard sensors that could potentially be applied in
real-life scenarios.

4.2.2 Observation Space Processing

Utilising raw LiDAR detection data as the observation space in reinforcement learning
applications can be problematic for several reasons. Firstly, the raw data is often not
normalised, which means that the values representing the distances between the vehicle
and the cones can vary significantly. This can pose challenges for reinforcement learning
algorithms, as they rely on consistent and normalised input values to learn and make
decisions effectively. Secondly, relying solely on raw LiDAR detection data can lead to
inconsistencies in the observation space, where certain cones might be missed by the
detection algorithm, especially in challenging track conditions such as tight corners and
hairpins.

Figure 4.1: Visualisation of processed LiDAR observation input

In our implementation, we addressed the issues of normalisation and consistency
by dividing the vehicle’s front-facing directions into 40 evenly distributed sectors
and recording only the distance of the closest cone in each sector. By adopting this
approach, we achieved a normalised observation space, as the distances within each
of the 40 sectors were consistent and comparable. Moreover, this method ensured
that cones positioned between LiDAR rays would not be missed by the detection
algorithm, allowing the agent to accurately perceive every cone in its environment, even
in challenging track sections such as tight corners and hairpins.

Chapter 4. Methodology 25

4.2.3 Additional Observations

Incorporating the vehicle’s velocity, acceleration, and orientation information into the
reinforcement learning agent’s observation is vital for several reasons.

First, the vehicle’s velocity is a crucial observation component, as it directly affects
the agent’s ability to perceive the vehicle’s dynamics and respond to different track
conditions. A higher velocity, for instance, can require greater control and finer adjust-
ments to steering and throttle inputs, while lower speeds might necessitate a different
approach. By including the velocity in the observation, the agent can learn to adapt its
control policy according to the vehicle’s current speed.

Second, acceleration is essential to the vehicle’s state observation, as it gives the agent
insight into how the vehicle responds to its inputs. For example, a sudden increase
in acceleration may indicate that the agent is applying too much throttle, resulting in
wheel spin or loss of traction. A sudden decrease in acceleration may suggest that the
agent is applying the brakes or that the vehicle is losing speed due to external factors,
such as track conditions or air resistance. By incorporating acceleration data into the
observation space, the agent can learn the result of its control inputs, optimising its
performance on the track.

Finally, the vehicle’s orientation is also important to the agent’s decision-making process,
which provides crucial information about the vehicle’s alignment relative to the track.
Understanding the vehicle’s orientation allows the agent to predict how the vehicle will
respond to steering inputs and anticipate upcoming changes in the track layout. This
information can help the agent to learn when to adjust its steering, throttle, and braking
inputs to navigate the track optimally.

4.3 Reward shaping

4.3.1 Collision Penalty

Implementing a penalty or negative reward upon collision with traffic cones serves a
critical purpose in the reinforcement learning process for our autonomous vehicle. By
assigning a negative reward of -10 for these events, the agent is encouraged to learn
behaviours that avoid colliding with the cones, ultimately leading to more efficient and
safe driving on the generated race tracks.

This design choice is rooted in the desire to train an agent that can navigate the race
track without hitting the traffic cones as they mark the track’s boundaries. By penalising
collisions with cones, the reinforcement learning process is guided towards an optimal
policy that maintains the vehicle within the bounds of the track, ultimately resulting in
smoother and more controlled driving.

In our implementation, once the agent’s vehicle collides with a traffic cone, we apply a
significant negative reward, signalling to the agent that the incurred action was undesir-
able. This feedback helps the agent adjust its policy to avoid similar consequences in
the future. Additionally, upon collision, we reset the training episode and generated an
entirely new race track. This approach ensures that the agent encounters a diverse range

Chapter 4. Methodology 26

of track layouts, encouraging it to learn generalised strategies for handling various track
configurations rather than memorising specific track patterns.

4.3.2 Speed Encouragement

Incorporating a positive reward for achieving faster speeds in the reinforcement learning
process incentivises the agent to develop a policy that navigates the race track safely,
increases efficiency, and decreases lap times. By providing the agent with a reward
signal directly proportional to the race car’s current speed at each time step with a
value of 0.01 * current speed, we encourage the development of a driving strategy that
balances safety with optimal performance.

This design choice stems from the goal of training an autonomous vehicle that can
navigate different race tracks at higher speeds while avoiding collisions. The positive
reward for increased speed is implemented in a way that complements the negative
reward given for colliding with traffic cones. This combination helps the agent to strike
a balance between avoiding collisions and driving at a faster pace.

In our implementation, we apply the speed reward only once the race car reaches a
small initial speed threshold, greater than 1 MPH. This ensures that the agent is not
incentivised to remain stationary or drive at extremely low speeds to avoid collisions,
which would result in an inefficient driving strategy. By applying the speed reward past
this initial threshold, we promote the learning of an optimal policy that maintains higher
speeds while navigating the track safely and efficiently.

The importance of incorporating the speed reward into the reinforcement learning
process is evident in developing an agent capable of navigating the race tracks at higher
speeds without compromising safety. By rewarding the agent for achieving faster speeds
while concurrently penalising collisions, we create an environment conducive to the
learning of a robust policy that can handle a diverse range of racing conditions with
proficiency and agility. This design choice aligns with the ultimate goal of producing
an autonomous vehicle that can perform effectively in a racing scenario, where the
optimisation of speed and efficiency is of paramount importance.

4.4 Action Space

4.4.1 Steering Output

Designing an appropriate action space is crucial for effectively training a reinforcement
learning agent, as it determines the available actions the agent can take to interact
with its environment. In our case, we map the action output of the agent, which is a
continuous floating-point number ranging from -1 to 1, to the left-to-right steering input
of the racecar vehicle dynamics model.

To accomplish this mapping, we interpret the agent’s action output as the steering
command for the racecar’s front wheels. A value of -1 corresponds to the maximum
left steering angle, 1 corresponds to the maximum right steering angle, and 0 indicates
neutral steering with the wheels pointing straight ahead. The continuous range of values

Chapter 4. Methodology 27

between -1 and 1 allows for proportional control, allowing the agent to produce a broad
spectrum of steering commands for refined racecar control.

This approach to action space mapping provides several benefits. Firstly, it ensures
the agent can learn to produce a wide range of steering commands to navigate various
track configurations and conditions. Secondly, the continuous nature of the action space
enables smoother and more precise control of the racecar, allowing the agent to make
subtle adjustments as needed to maintain optimal racing lines and avoid collisions.

4.4.2 Throttle & Brake Output

Another crucial aspect of designing the action space for our reinforcement learning
agent involves defining how the agent controls the acceleration and deceleration of the
racecar. To address this, we map a second action output of the agent, which is also a
continuous floating-point number ranging from -1 to 1, to the throttle and braking inputs
of the racecar vehicle dynamics model. This mapping allows the agent to modulate its
speed, enabling it to achieve optimal lap times and respond appropriately to different
track conditions.

We interpret the agent’s action output as a command for both the throttle and brake
systems of the racecar. A value of -1 corresponds to full braking force, a value of
1 corresponds to full throttle, and a value of 0 represents no input to either system,
causing the car to coast. The continuous range of values between -1 and 1 allows for
proportional control over the throttle and brake, providing the agent with the capability
to fine-tune the racecar’s speed and adapt to the dynamic racing conditions.

This dual-input action space mapping confers several advantages. First, it allows the
agent to learn to produce a variety of throttle and braking commands that cater to
different racing scenarios, such as accelerating out of corners or decelerating before
entering a sharp turn. Second, the continuous nature of the action space ensures smooth
and precise control over the racecar’s speed, preventing sudden or jerky movements that
could destabilize the vehicle. Implementing this mapping mechanism for throttle and
brake inputs empowers the agent with the necessary control mechanisms to optimize its
performance on race tracks.

4.5 Proximal Policy Optimisation [28]

Our study employed Proximal Policy Optimization (PPO), a reinforcement learning
algorithm proposed by Schulman et al [28]. PPO is a policy gradient method that alter-
nates between sampling data through interaction with the environment and optimising a
surrogate objective function using stochastic gradient ascent. Unlike standard policy
gradient methods, which perform one gradient update per data sample, PPO utilises
a novel objective function that enables multiple epochs of minibatch updates. This
approach shares some of the benefits of Trust Region Policy Optimization (TRPO),
such as data efficiency and reliable performance. However, it is simpler to implement,
more general, and exhibits better sample complexity.

Chapter 4. Methodology 28

The PPO algorithm introduces a novel objective with clipped probability ratios, which
forms a pessimistic estimate (i.e., lower bound) of the policy’s performance. To optimise
policies, PPO alternates between sampling data from the policy and performing several
epochs of optimisation on the sampled data. Empirical results suggest that the surrogate
objective with clipped probability ratios performs the best compared to other surrogate
objective versions. PPO has demonstrated superior performance on benchmark tasks,
such as continuous control tasks and Atari games, compared to other online policy
gradient methods.

PPO strikes a favourable balance between sample complexity, simplicity, and wall time,
making it an appealing choice for our reinforcement learning problem. Its scalability
allows it to handle large models and parallel implementations while maintaining data
efficiency and robustness across various problems without extensive hyperparameter
tuning. Furthermore, PPO’s compatibility with first-order optimisation makes it suitable
when more complicated optimisation techniques, such as TRPO, are not feasible.

Chapter 5

Experimentation and Results

5.1 Training

This chapter presents the training method to teach the reinforcement learning agent
to drive the racecar on various race tracks. We aim to develop an agent capable of
navigating a diverse range of race track environments while avoiding overfitting to
specific track layouts. The foundation of our method involved generating a new race
track for each training episode, initialising the racecar in the appropriate starting position,
and allowing the agent to control the vehicle while receiving reward signals based on
its performance.

We employed the procedural track generator previously discussed to generate new race
tracks for each training episode. This generator provided a continuous supply of novel
track layouts for the agent to navigate, thereby ensuring that the agent faced an array of
driving scenarios throughout the training process. In turn, this approach fostered the
development of a more versatile and adaptable agent by preventing it from memorising
specific patterns or sequences.

Generating a new race track for each training episode served to combat overfitting and
ensure the development of a more generalised agent capable of driving on various race
tracks. By constantly exposing the agent to diverse driving scenarios, our methodology
prevented the reinforcement learning algorithm from over-optimising for specific track
layouts or patterns, resulting in a more versatile and adaptable driving policy.

Before each training episode commenced, the racecar was initialised and placed in the
appropriate starting position on the newly generated track. Once every training episode
begins, the agent starts to issue control commands to the vehicle simulation and receives
reward signals based on performance metrics measured from speed and collisions with
traffic cones.

During the training process, if an unwanted collision occurred, a negative reward signal
for collision penalty was issued, and the training episode was terminated and reset. This
design decision aimed to provide immediate feedback to the agent when an undesirable
event transpired, encouraging the development of driving strategies that prioritise safe
and efficient navigation. By concluding an episode immediately after a collision event,

29

Chapter 5. Experimentation and Results 30

the reinforcement learning algorithm could adjust the policy to avoid similar scenarios
in the future, fostering the development of more effective driving strategies.

Figure 5.1: 10 Instances of the training environment running simultaneously

To expedite training and capitalise on modern hardware’s parallelism, we ran ten
instances of the training environments simultaneously. This approach enabled the agent
to learn from multiple episodes concurrently, drastically reducing the time required
for training. Additionally, this methodology provided the agent with a broader and
more diverse range of driving experiences, allowing it to gain insights into various track
configurations and challenges more quickly.

Multiple training environments also minimised any potential biases introduced by
individual track layouts, ensuring that the agent could develop a more robust and
generalised understanding of driving dynamics. This approach allowed the agent to
learn to adapt to a range of new track configurations simultaneously.

The maximum episode length for each episode was set to 3000 simulation steps. This
constraint ensured that the agent’s training focused on shorter, more manageable track
sections rather than attempting to learn from exceedingly long episodes. This design
choice allowed the agent to build its driving capabilities incrementally, mastering
smaller segments before tackling more complex or lengthy track configurations.

Chapter 5. Experimentation and Results 31

5.2 Hyper-parameter Tuning

In this chapter, we discuss the process of tuning hyperparameters for the proximal policy
optimisation (PPO) algorithm employed in our reinforcement learning agent’s training.
By assessing the agent’s performance with different hyperparameter combinations, we
aimed to discover the configuration that resulted in the most effective and efficient
training. To identify the optimal combination of hyperparameters that yielded the
highest cumulative reward, we programmed the training algorithm to systematically
sweep through a set of predefined values for batch size, buffer size, learning rate, epsilon,
lambda, hidden units number, and hidden layers number.

Figure 5.2: The set of training hyper parameters for the final agent

The batch size hyperparameter refers to the number of samples used in a single update
step of the gradient optimisation process. A larger batch size generally reduces the
variance in the update steps, potentially improving the stability of the training process.
However, larger batch sizes may also increase the computational requirements and slow
down the overall training process.

Buffer size determines the number of transitions (state, action, reward, and next state

Chapter 5. Experimentation and Results 32

tuples) stored in the replay buffer for the reinforcement learning agent to learn. A larger
buffer size can enhance the diversity of samples available for training, improving the
agent’s ability to learn from a broader range of experiences. Conversely, a smaller buffer
size may limit the agent’s learning capacity due to a reduced variety of experiences, but
it can also reduce memory requirements and improve computational efficiency.

The learning rate hyperparameter controls the magnitude of the weight updates during
the optimisation process. A larger learning rate can speed up convergence to an optimal
policy but may also lead to instability or oscillation in the training process. On the other
hand, a smaller learning rate can result in more stable training but at the expense of
potentially slower convergence.

Epsilon, a parameter specific to the PPO algorithm, represents the clipping threshold
used to bound the ratio of old and new policy probabilities. This hyperparameter
constrains the magnitude of the policy updates to prevent excessively large deviations
from the current policy. Balancing the value of epsilon is crucial, as a smaller value
provides a tighter constraint and greater stability, while a larger value allows for more
flexibility in policy updates, potentially enabling faster convergence.

Lambda is a parameter in the generalised advantage estimation (GAE) used for comput-
ing the advantage function in PPO. Adjusting lambda influences the balance between
the bias and variance of the advantage estimates. Higher lambda values reduce the bias
but may increase the variance, while lower values result in lower variance but increased
bias.

The number of hidden units and layers in the neural network architecture can signifi-
cantly impact the model’s capacity and the complexity of the function approximations.
Increasing the number of hidden units or layers can improve the expressive power of
the network, enabling it to learn more complex policies. However, larger networks can
also increase the risk of overfitting and require more computational resources.

5.3 Results & Evaluation

In the results section, we present the comprehensive outcomes of our experimentation
after training the reinforcement learning algorithm for 28,270,000 steps. As the training
progressed, we observed that the cumulative reward exhibited a converging trend,
ultimately stabilising at a steady level at around 26. This observation implies that the
agent had achieved a level of proficiency in controlling the simulated race car within
the simulation environment, demonstrating a degree of mastery in adapting to various
race track configurations and maximising the car’s performance whenever possible.

The agent’s driving behaviour exhibited a high level of sophistication, firstly in its ability
to maintain a straight trajectory on predominantly straight sections of the race track.
The agent maximised acceleration and speed by keeping the vehicle aligned in a straight
line while travelling through straight sections of the track, taking full advantage of the
car’s performance capabilities. This behaviour showcases the agent’s understanding of
optimising vehicle speed for straightaways.

When approaching corners, the agent displayed further evidence of skilful vehicle

Chapter 5. Experimentation and Results 33

control as it applied the brakes in a measured manner to decrease speed. This braking
behaviour showcased the agent’s understanding of the need to adjust the vehicle’s speed
in response to changing track conditions, as well as its ability to steer dynamically based
on the track’s layout. Furthermore, the agent demonstrated a keen awareness of varying
corner tightness levels, as evidenced by more aggressive braking and earlier brake
points when encountering sharper turns. These nuanced driving behaviours suggest that
the agent had developed a high degree of control over the simulated race car, ensuring
optimal performance while navigating diverse track features.

Remarkably, the agent’s driving pattern bore a striking resemblance to the racing
techniques employed by professional race car drivers. The agent consistently followed
a vague racing line, a path along the track that optimises the distance travelled and
enables the vehicle to maintain the highest possible speed through corners. Adhering to
the racing line demonstrates the agent’s ability to strategically and efficiently traverse
the race track.

In addition to adhering to the racing line, the agent displayed an aptitude for minimising
its turning radius while maintaining speed, strategically approaching corner apexes
while preserving a safe distance from the traffic cones lining the track’s edge. This
behaviour highlights the agent’s capacity to balance performance optimisation and
safety, showcasing the efficacy of the training methodology employed in our study.

Figure 5.3: Graph of Cumulative reward over training steps

Figure 5.4: Cumulative reward histogram over training steps

Chapter 6

Conclusions

6.1 Conclusions

This research project was motivated by the goal of developing an advanced reinforce-
ment learning agent capable of autonomously controlling a race car while optimising
its performance and safely navigating complex track configurations. Our approach
involved the implementation of a realistic vehicle dynamics simulation, developing a
procedural race track generation algorithm, and using state-of-the-art reinforcement
learning techniques to train an autonomous driving agent.

The vehicle dynamics simulation served as the foundation of our project, providing an
accurate representation of the race car’s behaviour under various driving conditions. The
procedural race track generation algorithm further augmented our experimental setup
by allowing us to create diverse race tracks, thereby ensuring the generalisation of our
reinforcement learning agent. This unique simulation and track generation combination
was crucial for providing a rich and challenging environment in which our agents could
learn and adapt.

Our reinforcement learning framework was built around the Proximal Policy Opti-
mization (PPO) algorithm, chosen for its excellent balance between sample efficiency,
simplicity, and performance. By carefully designing the observation space, reward func-
tion, and action space, we created a learning environment conducive to training a robust
and versatile driving agent. Additionally, we conducted an extensive hyperparameter
tuning process, which contributed to the success of our PPO training algorithm.

Our experiments’ results demonstrated our approach’s effectiveness, with the trained re-
inforcement learning agent displaying remarkable proficiency in autonomously control-
ling the simulated race car. Our agent successfully optimised the race car’s performance
while navigating a wide variety of race track configurations and adapting its driving
behaviour to the changing track conditions, displaying self-driving autonomy similar to
professional racecar drivers.

34

Chapter 6. Conclusions 35

6.2 Future Works

We intend to explore the deployment of our reinforcement learning algorithm onto
our real Edinburgh University Formula Student autonomous race car. The evaluation
of our approach in a real-world scenario will serve as a crucial step in validating the
effectiveness and robustness of our trained agent. Moreover, this would open up new
opportunities for further optimisation and refinement of our algorithm and the potential
application of our findings to broader autonomous driving contexts.

Bibliography

[1] Szilárd Aradi. Survey of deep reinforcement learning for motion planning of
autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems,
23(2):740–759, 2020.

[2] Lenore Blum, Manuel Blum, and Mike Shub. A simple unpredictable pseudo-
random number generator. SIAM Journal on computing, 15(2):364–383, 1986.

[3] Peide Cai, Xiaodong Mei, Lei Tai, Yuxiang Sun, and Ming Liu. High-speed
autonomous drifting with deep reinforcement learning. IEEE Robotics and Au-
tomation Letters, 5(2):1247–1254, 2020.

[4] Luigi Cardamone, Daniele Loiacono, Pier Luca Lanzi, and Alessandro Pietro
Bardelli. Searching for the optimal racing line using genetic algorithms. In
Proceedings of the 2010 IEEE Conference on Computational Intelligence and
Games, pages 388–394. IEEE, 2010.

[5] Ji-wung Choi, Renwick Curry, and Gabriel Elkaim. Path planning based on bézier
curve for autonomous ground vehicles. In Advances in Electrical and Electronics
Engineering-IAENG Special Edition of the World Congress on Engineering and
Computer Science 2008, pages 158–166. IEEE, 2008.

[6] Jesse Clifton and Eric Laber. Q-learning: Theory and applications. Annual Review
of Statistics and Its Application, 7:279–301, 2020.

[7] R Craig Coulter. Implementation of the pure pursuit path tracking algorithm.
Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST, 1992.

[8] David Crolla. Encyclopedia of automotive engineering. John Wiley & Sons, 2015.

[9] Philip J Davis and Philip Rabinowitz. Methods of numerical integration. Courier
Corporation, 2007.

[10] Peter Finnman and Max Winberg. Deep reinforcement learning compared with
q-table learning applied to backgammon, 2016.

[11] Florian Fuchs, Yunlong Song, Elia Kaufmann, Davide Scaramuzza, and Peter
Dürr. Super-human performance in gran turismo sport using deep reinforcement
learning. IEEE Robotics and Automation Letters, 6(3):4257–4264, 2021.

[12] Giancarlo Genta. Motor vehicle dynamics: modeling and simulation, volume 43.
World Scientific, 1997.

36

Bibliography 37

[13] Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, and Sergey
Levine. How to train your robot with deep reinforcement learning: lessons we
have learned. The International Journal of Robotics Research, 40(4-5):698–721,
2021.

[14] Radoslav Ivanov, Taylor J Carpenter, James Weimer, Rajeev Alur, George J Pappas,
and Insup Lee. Case study: verifying the safety of an autonomous racing car with
a neural network controller. In Proceedings of the 23rd International Conference
on Hybrid Systems: Computation and Control, pages 1–7, 2020.

[15] Joseph Katz. Race car aerodynamics. Robert Bentley, 1995.

[16] C Kim and PI Ro. Reduced-order modelling and parameter estimation for a
quarter-car suspension system. Proceedings of the Institution of Mechanical
Engineers, Part D: Journal of Automobile Engineering, 214(8):851–864, 2000.

[17] Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural
information processing systems, 12, 1999.

[18] Pedro Larranaga, Cindy M. H. Kuijpers, Roberto H. Murga, Inaki Inza, and Sejla
Dizdarevic. Genetic algorithms for the travelling salesman problem: A review of
representations and operators. Artificial intelligence review, 13:129–170, 1999.

[19] L Leonard, A Lim, TJS Chesser, SA Norton, and JP Nolan. Does changing the
configuration of a motor racing circuit make it safer? British journal of sports
medicine, 39(3):159–161, 2005.

[20] Nan Li, Dave W Oyler, Mengxuan Zhang, Yildiray Yildiz, Ilya Kolmanovsky, and
Anouck R Girard. Game theoretic modeling of driver and vehicle interactions
for verification and validation of autonomous vehicle control systems. IEEE
Transactions on control systems technology, 26(5):1782–1797, 2017.

[21] Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint
arXiv:1701.07274, 2017.

[22] Wm C Mitchell, Allan Staniforth, and Ian Scott. Analysis of ackermann steering
geometry. Technical report, SAE Technical Paper, 2006.

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[24] Hans B Pacejka and Egbert Bakker. The magic formula tyre model. Vehicle system
dynamics, 21(S1):1–18, 1992.

[25] Martin L Puterman. Markov decision processes. Handbooks in operations research
and management science, 2:331–434, 1990.

[26] Thinal Raj, Fazida Hanim Hashim, Aqilah Baseri Huddin, Mohd Faisal Ibrahim,
and Aini Hussain. A survey on lidar scanning mechanisms. Electronics, 9(5):741,
2020.

Bibliography 38

[27] Moveh Samuel, Mohamed Hussein, and Maziah Binti Mohamad. A review of
some pure-pursuit based path tracking techniques for control of autonomous
vehicle. International Journal of Computer Applications, 135(1):35–38, 2016.

[28] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[29] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[30] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Pol-
icy gradient methods for reinforcement learning with function approximation.
Advances in neural information processing systems, 12, 1999.

[31] Victor Uc-Cetina, Nicolas Navarro-Guerrero, Anabel Martin-Gonzalez, Cornelius
Weber, and Stefan Wermter. Survey on reinforcement learning for language
processing. Artificial Intelligence Review, pages 1–33, 2022.

[32] Sandor M Veres, Levente Molnar, Nick K Lincoln, and Colin P Morice. Au-
tonomous vehicle control systems—a review of decision making. Proceedings of
the Institution of Mechanical Engineers, Part I: Journal of Systems and Control
Engineering, 225(2):155–195, 2011.

[33] Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik
Subramanian, Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska
Eckert, Florian Fuchs, et al. Outracing champion gran turismo drivers with deep
reinforcement learning. Nature, 602(7896):223–228, 2022.

[34] Bernhard Wymann, Eric Espié, Christophe Guionneau, Christos Dimitrakakis,
Rémi Coulom, and Andrew Sumner. Torcs, the open racing car simulator. Software
available at http://torcs. sourceforge. net, 4(6):2, 2000.

[35] Dongbin Zhao, Haitao Wang, Kun Shao, and Yuanheng Zhu. Deep reinforcement
learning with experience replay based on sarsa. In 2016 IEEE symposium series
on computational intelligence (SSCI), pages 1–6. IEEE, 2016.

