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Abstract
In recent years, the amount of meeting transcripts has been rapidly growing due to
the increase in remote meetings and advancements in transcription technology. This
increased the need for query-based meeting summarisation models, where the goal is
to generate a summary of a meeting based on a query. This allows users to quickly
extract specific information from the meeting transcript by asking a query. Despite the
increasing use of such models, existing solutions have limited efficacy in generalising
to new domains, and require a large amount of domain-specific data to perform well,
which can be challenging to obtain due to the time-consuming and expensive process of
data collection and manual annotation.

This creates an crucial need for solutions to improve the out-of-domain performance of
existing models to perform well on new unseen domains. This thesis proposes a novel
approach by using data augmentation techniques to solve the issue of out-of-domain
performance in query-based meeting summarisation. By increasing the diversity and
size of the training data, data augmentation can improve the ability of the models
to generalize to new domains. Achieving this objective has practical implications in
improving the accuracy and efficiency of automatically generated meeting summaries,
which can save time and resources for individuals and organizations.

i



Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Maxime Chemenda)

ii



Acknowledgements
Firstly, I would like to express my heartfelt gratitude to my supervisor, Alexandra
Birch-Mayne, for her invaluable guidance and support throughout this research journey.
Her expertise and insights have been instrumental in shaping this thesis.

I would also like to extend my appreciation to the authors who created the datasets and
models for providing access to these resources, which were critical to the success of
this study.

I am deeply grateful to my family who have constantly supported me throughout my
whole life, providing love and support, and to my friends, who brought even more joy
throughout my academic journey.

iii



-

iv



Table of Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4
2.1 Text Summarization . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Query-based meeting summarization . . . . . . . . . . . . . . . . . . 5
2.3 NLP techniques for query-based meeting summarization . . . . . . . 6
2.4 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Methodology 10
3.1 Benchmark dataset and data collection . . . . . . . . . . . . . . . . . 10

3.1.1 Overview of the QMSum dataset . . . . . . . . . . . . . . . . 10
3.1.2 Advantages of the QMSum dataset . . . . . . . . . . . . . . . 12
3.1.3 QMSum’s Limitations in Out-of-Domain Performance . . . . 13
3.1.4 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Baseline Implementation . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Implementation details . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 Back-Translation . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 Data augmentation with GPT . . . . . . . . . . . . . . . . . . 23
3.3.3 Data Augmentation Pipeline . . . . . . . . . . . . . . . . . . 25
3.3.4 Benefits and Limitations . . . . . . . . . . . . . . . . . . . . 26

4 Results And Discussion 27
4.1 Baseline Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Comparison with QMSum . . . . . . . . . . . . . . . . . . . 28
4.1.2 Baseline results overview . . . . . . . . . . . . . . . . . . . . 28

4.2 Data Augmentation Experiments . . . . . . . . . . . . . . . . . . . . 30
4.2.1 Results Overview . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Comparison between data augmentation techniques . . . . . . 31

v



4.2.3 Variety of augmented data . . . . . . . . . . . . . . . . . . . 35

5 Conclusions 38
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Bibliography 41

A Additional result visualisations 46
A.1 Out-of-domain performance gap variations . . . . . . . . . . . . . . . 46

vi



Chapter 1

Introduction

1.1 Motivation

Meeting summarization is a task that has received significant attention in recent years
(Wang and Cardie [2013]; Kulkarni et al. [2020], Li et al. [2019]) with the constant
growth of produced meeting transcripts. Meetings play a crucial role in many organi-
sations and are critical for decision-making and information sharing (Cascio [2000]).
However, meetings can also be time-consuming as they usually contain a lot of informa-
tion, which can be overwhelming, making it challenging to extract the essential points.
With the recent growth of remote work, it is even more important to be able to extract
information from meetings for people who did not attend those (Spataro [2020]).

This led to an exponential growth of meeting transcripts, which are often lengthy, each
one of them often addressing many topics (Cascio [2000]). Hence, using common
summarisation models that provide high-level summaries does not satisfy the needs
of individuals who require detailed information based on a specific query, such as the
speakers’ opinions, actions and decisions (Wang and Cardie [2013]). This has led to a
growing focus in query-based meeting summarization, where the objective is to provide
a concise summary in response to a specific query (Mohamed and Rajasekaran [2006],
Zhong et al. [2021], Murray et al. [2005]). A dataset has been created by (Zhong et al.
[2021]) specifically for this task and has been established to be a benchmark dataset
that we will use in our study.

The existing query-based meeting summarisation models mainly focus on single-domain
settings, which limits their generalizability. This leads to a failure of understanding
the nuances of meetings across different domains, resulting in poor out-of-domain
performance. Hence, these models require domain-specific datasets in order to perform
well on a particular domain. However, the creation of such datasets for a specific
domain requires a lot of resources (Zhong et al. [2021]), which lays down the need
for techniques to improve out-of-domain performance of existing models that were
trained on other domains than the target one. Indeed, with a query-based meeting
summarisation model that generalises well to various domains, performing this task on
unseen domains would not require the creation of additional data, thus could be used
for a wide range of applications.
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Chapter 1. Introduction 2

Poor out-of-domain performance can be due to the lack of data, and with the lack of
data for query-based meeting summarisation, finding ways to augment the existing
data could help improve existing models’ performance in out-of-domain settings. This
became even more feasible with the outstanding recent advancements in state-of-the-art
language models, such as GPT (Maynez et al. [2020]), which can be used to paraphrase
existing data, thus resulting in meeting transcripts that contain the same information,
but with a significant change in their structure.

In this context, the motivation for this thesis is to make a significant contribution
to the field of query-based meeting summarization by addressing the issue of poor
out-of-domain performance. By leveraging data augmentation techniques such as
back-translation, and novel state-of-the-art models like GPT, we aim to improve the
generalizability of models across different domains, making it a more versatile tool for
organizations.

1.2 Objectives

The primary objective of this dissertation is to improve the out-of-domain performance
of query-based meeting summarization models, hence the motivation of this thesis is to
answer the following research question:

Can data augmentation techniques improve the performance of query-based meeting
summarisation models on out-of-domain data?

To answer this research question, we will use a query-based meeting summarisation
model introduced by (Mao et al. [2022]) as our baseline implementation, and apply
various data augmentation techniques to its training data, such as back-translation and
paraphrasing using GPT. We will explore whether these techniques can add enough
diversity to existing data and allow the model to perform well in out-of-domain settings.

Overall, this research question aims to address the challenges of meeting summarization
in the real world, where there is wide range of meeting domains. By answering this
question, this paper aims to contribute to the development of meeting summarization
models that are robust and can generalize to new domains.

1.3 Contributions

This dissertation presents several contributions to the field of query-based meeting
summarization:

1. We thoroughly evaluate the ability of existing query-based meeting summarisation
models to adapt to new domains. Our findings indicate that existing models have
limited efficacy in handling domain-specific variations.

2. We explore data augmentation approaches for improving model performance for
in-domain and out-of-domain settings using back-translation and paraphrasing
with GPT. Our findings indicate that back-translation is not suitable for the
query-based meeting summarisation task due to its inability to introduce variety,
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while paraphrasing with GPT turns out to be a promising approach which gives
great results. Hence, we provide information regarding the careful consideration
required when selecting data augmentation techniques.

3. We present a novel data augmentation technique using GPT language models,
which enables us to improve the quality of our model’s summaries across all
domains. This approach not only improves our model’s performance on out-of-
domain data, but also significantly improves its in-domain performance.

4. We provide a thorough analysis of the variations in the performance in function
of the characteristics of the domains. By highlighting the unique challenges and
characteristics of each domain, we explain that data augmentation techniques
that are applied to structured and formal data can significantly improve the
models’ performance on both formal and informal meeting transcripts. Hence,
we give guidance regarding the types of data that should be chosen for data
augmentation. Specifically, we identify key requirements that a dataset should
meet for paraphrasing to be a successful data augmentation technique.

1.4 Overview of the thesis

This thesis aims to address the issue of out-of-domain performance in query-based
meeting summarization. The main objective is to improve the performance of existing
models by exploring data augmentation techniques and evaluating their effectiveness.

Chapter 2 provides a literature review of existing work in the field, highlighting their
strengths and limitations, while helping the reader understand the knowledge required
to appreciate the content addressed in our paper. Chapter 3 describes the methodology
and experimental design for this study, including the dataset introduced by (Zhong
et al. [2021]), our baseline implementation using the model introduced by (Mao et al.
[2022]), and the data augmentation techniques used to perform our research, namely
back-translation and paraphrasing using GPT.

Chapter 4 presents the experimental results, where we analyse the performance of the
proposed solutions and compare the differences in performance for both in-domain
and out-of-domain settings. This chapter also includes an analysis of the differences
between the augmented data and the original data, which help understand the variations
in performance introduced by both data augmentation techniques.

Finally, Chapter 5 provides a conclusion and discusses the implications of the research
findings, including their potential for future research in the field of query-based meeting
summarization. The chapter also discusses the limitations of this study and provides
recommendations for future work.



Chapter 2

Background

This chapter gives the readers the background required in order to understand the
research done in this thesis. In the following sections, we will review the different
types of meeting summarization, the NLP techniques used in summarization, data
augmentation techniques, and evaluation metrics used to measure the performance of
summarization systems.

2.1 Text Summarization

Summarization is the task of generating a shorter version of a document while keeping
the key information contained in it. It is an important problem in natural language
processing (NLP) that has many real-world applications, such as news article summa-
rization (Eyal et al. [2019]), legal document summarization (Parikh et al. [2021]), email
summarization (Zhang et al. [2021]), and has applications across various fields, such as
journalism (Handler and O’Connor [2017]), business (La Quatra and Cagliero [2020]),
education (Miller [2019]), and research (Haruna et al. [2022]).

Summarization can be defined mathematically as follows: given a document D =
s1,s2, ...,sn consisting of n sentences, the goal of text summarization is to find a
summary S = s1′,s2′, ...,sm′ consisting of m′ ≤ n sentences, that maximizes the infor-
mativeness of the summary while minimizing its length. This can be represented as an
optimization problem:

minimize S = s1′,s2′, ...,sm′ subject to:

• the length of the summary m′ is less than or equal to some predefined length L.

• the informativeness of the summary is maximized, where the informativeness can
be measured using some metric such as ROUGE or BLEU.

The objective function can be defined as a linear combination of various factors, in-
cluding sentence importance, coherence, diversity, and redundancy, each of which
can be represented mathematically. The optimization problem can be solved using
various techniques, including neural network-based methods, but also integer linear
programming, or greedy algorithms.

4
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In this thesis, we will focus on a distinct genre of summarization known as meeting
summarization. Meetings are often rich in information and can be time-consuming
and difficult to follow. Hence, meeting summarization can help participants to quickly
review the key points of a meeting. Previous work on meeting summarization has
explored various approaches, including sentence extraction (McKeown et al. [2005])
and keyphrase extraction (Gillick et al. [2009]). However, meeting summarization is
a challenging task due to the informal nature of meetings, the presence of multiple
speakers, and the lack of standardized meeting structures (Feng et al. [2021b]). Ad-
ditionally, evaluation of meeting summarization is challenging due to the subjective
nature of summarization and the lack of annotated data, as discussed in Section 2.5.

Meeting summarization can be further classified into two sub-categories: non-query-
based and query-based. Non-query-based summarization aims to summarize the entire
meeting, while query-based summarization focuses on generating summaries that
answer specific queries.

2.2 Query-based meeting summarization

Query-based summarization is a type of summarization that focuses on answering
specific queries, unlike traditional summarization, which aims to provide a summary
of the entire text. This task can be applied to various domains, such as news articles
(Annisa and Khodra [2017]), scientific papers and meetings (Zhong et al. [2021]).
Meeting transcripts can indeed be lengthy and contain a large amount of information,
hence query-based meeting summarization models are an important tool for efficiently
extracting relevant information from them.

Query-based meeting summarization can be mathematically defined by first introducing
a query Q = (w1, · · ·,w|Q|) and treating the task as a sequence-to-sequence problem.
Specifically, each meeting transcript X = (x1,x2, . . . ,xn) consists of n turns, and each
turn xi represents the utterance ui and its speaker si, that is, xi = (ui,si). Additionally,
each utterance contains li words ui = (w1, . . . ,wli). The objective is to generate a
summary Y = (y1,y2, . . . ,ym) by modelling the conditional distribution

p(y1,y2, . . . ,ym|Q,(u1,s1), . . . ,(un,sn)) (2.1)

Query-based meeting summarization is a challenging task due to the unique nature of
meetings. Informal language, such as jargon, idiomatic expressions, and colloquialisms,
is commonly used in meetings, which can make it difficult to extract relevant information
(Feng et al. [2021b]). Additionally, meetings often do not have a clear structure, which
can result in conversations going from one topic to another without clear transitions,
making it difficult to summarise pertinent information.

Finally, data scarcity is a significant obstacle to effective query-based meeting sum-
marization. Indeed, the creation of high-quality annotated data is costly and time-
consuming, as it requires a lot of effort from human annotators. Furthermore, obtain-
ing meeting transcripts is challenging due to privacy concerns within organisations.
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Confidential information in meeting transcripts may require anonymization, which
complicates the creation of large amounts of data.

Despite all these challenges, a recently introduced dataset named QMSum (Zhong
et al. [2021]) has emerged as a benchmark for the query-based multi-domain meeting
summarization task. This dataset contains meetings from three domains, namely, AMI
(Carletta et al. [2006]), ICSI (Janin et al. [2003]), and committee meetings of the
Welsh Parliament and Parliament of Canada. However, this paper presents certain
limitations, as their proposed model performs poorly for out-of-domain data. The
motivation behind this thesis is hence to address this issue and explore whether the
out-of-domain performance can be improved by using data augmentation techniques.
Before introducing the concept of data augmentation in Section 2.4, we will present the
main techniques used in natural language processing for text summarization.

2.3 NLP techniques for query-based meeting summa-
rization

Two-step models (Lee et al. [2011]) and end-to-end models (Karn et al. [2021]) are
both commonly used for query-based meeting summarization. Two-step models use a
locator model to identify the relevant sentences that answer the query, and a summarizer
model to generate a summary based on the locator’s selected sentences. In contrast,
end-to-end models generate summaries directly from the input text using a single model.
Two-step models may lack coherence and fail to identify important sentences, along
with a locator model that may fail to identify important sentences. On the other hand,
end-to-end models may lack specificity, and require large amounts of training data, thus
making it more tedious to use them.

There are two main approaches that can be used for automatic text summarisation,
namely extractive summarization and abstractive summarization. Extractive summa-
rization approaches select a subset of sentences from the original document to form the
summary, which is straightforward and can produce high-quality summaries, but it may
suffer from redundancy and lack of coherence (Nenkova and McKeown [2011]).

On the other hand, abstractive summarization approaches involve generating new
sentences that contain the main ideas of the document. This approach is of course more
complex, but can produce more coherent summaries. Extractive summarization can
preserve the original wording and meaning of the text, while abstractive summarization
can capture more complex relationships between sentences and generate summaries
that are more informative (See et al. [2017]). However, abstractive summarization can
also introduce errors and distortions, and may require more sophisticated models and
training data due to its additional complexity.

Extractive summarization was the first approach to summarization and is still widely
used today, but the recent advancements of transformer models, such as BERT (Devlin
et al. [2019]) and GPT (Maynez et al. [2020]), led to abstractive summarization being
more feasible while showing great improvements in performance.

Indeed, the progress in summarisation tasks has been increasing with the recent ad-
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vancements of pre-trained language models, such as BERT and BART (Lewis et al.
[2019]). These models are trained on large amounts of data and can generate summaries
of great quality. Pre-trained language models have shown very promising results in
various summarization tasks, including news article summarization and scientific paper
summarization (Garg et al. [2021]). However, there are also limitations to these models,
such as the fact that they are computationally expensive to train and use, and have
limited control, as pre-trained models are not designed to follow specific rules or con-
straints, making it difficult to generate summaries that follow specific requirements (Xu
et al. [2021]). Given that both extractive and abstractive approaches present benefits,
we opted to use in our study a hybrid model that uses an extractive approach for the
locator, and an abstractive approach for the summariser.

Given the limited amount of data available for query-based meeting summarization and
the difficulty of the task, achieving good out-of-domain performance is essential to avoid
having to create new datasets for each new domain. Data augmentation techniques
can address this challenge and become a good solution to improve out-of-domain
performance.

2.4 Data augmentation

Data augmentation is already a common technique in NLP for improving model per-
formance, as it increases the size and diversity of training data (Feng et al. [2021a])
without collecting additional data. Hence, by increasing the amount of data along with
its diversity, data augmentation can help to improve model generalization and improve
out-of-domain performance, with the model’s predictions remaining consistent despite
these changes (Feng et al. [2021a]).

There are several common techniques for data augmentation in NLP, such as synonym re-
placement and EDA (Easy Data Augmentation) (Wei and Zou [2019]), back-translation
(Beddiar et al. [2021]), and paraphrasing (Kumar et al. [2019]).

Synonym replacement consists in replacing words in the existing data with their syn-
onyms, while EDA consists in applying various transformations to it, such as randomly
deleting words. Both of these techniques can be useful in scenarios where the meaning
of the sentence is still preserved even if some words are replaced with synonyms or
transformed. For example, in a sentiment analysis task, replacing words with their
synonyms can improve the ability of the model to generalize to new data (Fiarni et al.
[2016]). Similarly, EDA is beneficial in text summarization where the objective is to
generate a concise summary that captures the key information of the data, without the
need to answer specific queries, in which case random transformations may still impact
the quality of the summary, but in a moderate way (Somayajula et al. [2022]).

However, in query-based meeting summarization, the objective is to generate summaries
that answer specific queries, hence replacing words with their synonyms or applying
random transformations could produce summaries that are irrelevant to the query. In
other words, the synonyms may not convey the same meaning as the original words,
and this could lead to a summary that is misleading. For example, randomly deleting
words could remove key information that is necessary to answer a specific query.
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For these reasons, there are two other candidates to be explored for data augmentation
for query-based meeting summarization for our research, namely back-translation
and paraphrasing. Back-translation consists in translating sentences from a source
language to another language, and then translating them back to the source language.
Paraphrasing involves using a model to paraphrase the data to create new variations of
the same text. This has become even more achievable with the recent advancements in
state-of-the-art models such as BERT and GPT, as discussed previously.

The advantage of these two techniques is that they allow to generate new sentence
structures. With new sentence structures, the augmented data can be sufficiently different
from the original data to help improve the diversity of the training data. This in
turn can lead to the model capturing better the nuances of the language and improve
its performance. However, it is important to note that both paraphrasing and back-
translation may result in low-quality output, highlighting the need for careful evaluation
of the augmented data (Beddiar et al. [2021]).

2.5 Evaluation metrics

Query-based meeting summarization is a challenging task due to the informal nature
of meetings, the presence of multiple speakers, and the lack of standardized meeting
structures (Zhong et al. [2021]). In addition, evaluation of meeting summarization is
challenging due to the subjective nature of summarization and the lack of annotated data.
Both of these challenges add complexity to the query-based meeting summarisation
task, leading to the need for a thorough evaluation of the generated summaries.

There are two types of evaluation metrics, namely automatic and manual. Automatic
evaluation metrics are computed using algorithms that compare the generated summary
with the reference summary, whereas manual evaluation metrics require humans to rate
the quality of the generated summary.

Automatic evaluation metrics have the benefit that they are faster and more objec-
tive than manual evaluation metrics, but they do not always reflect the quality of the
generated summary accurately, as they do not always capture the nuances of meeting
summarisation, such as understanding the context, the purpose of the meeting, or the
speaker’s intentions (Lloret et al. [2018]). On the other hand, manual evaluation metrics
can capture these nuances and provide a more accurate measure of a summary’s quality,
but they come with the disadvantage of being time-consuming and costly. Hence, given
that manual evaluation may be subjective and resource-intensive, automatic metrics are
more relevant in the context of this study.

The most common automatic metrics used in summarization are ROUGE (Recall-
Oriented Understudy for Gisting Evaluation) (Lin [2004]), BLEU (Bilingual Evaluation
Understudy) (Post [2018]), and METEOR (Metric for Evaluation of Translation with
Explicit ORdering) (Banerjee and Lavie [2005]).

ROUGE is a metric based on the concept of n-gram co-occurrence and measures
the overlap between the generated summary and the reference summary. BLEU is
another popular metric but has been criticized for its inability to capture the diversity
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of the generated summary, as it primarily focuses on n-gram precision (Post [2018]).
The authors of this paper show that BLEU is sensitive to the length of the summary,
penalizing longer summaries even if they contain the necessary information. On the
other hand, METEOR has been criticized for being too complex and having poor
correlation with human judgments, and has shown to be less reliable than ROUGE
(Banerjee and Lavie [2005]). Hence, ROUGE seems to be the most appropriate metric
for query-based meeting summarisation in our research.

However, ROUGE also has some limitations, such as the fact that it does not take
into account the quality of the generated summary beyond surface-level similarities
with the reference summary (Lloret et al. [2018]). The authors of this paper also state
that ROUGE does not consider the coherence of the generated summary, which are
important aspects of text summarization.

Facing these limitations, researchers attempted to develop alternative metrics, such as the
Content Divergence Score (CDS) and the Pyramid Evaluation Metric (PEM) (Nenkova
et al. [2007]), which take into account the quality of the generated summary beyond
surface-level similarities with the reference summary, as opposed to ROUGE. Despite
addressing some of the limitations of ROUGE, these newer metrics may also introduce
additional complexity and may not necessarily provide a significant improvement over
ROUGE that would justify their use for our study. Thus, given that ROUGE is widely
used and correlates well with human judgments, it is a relevant evaluation metric to
employ for query-based meeting summarization research.



Chapter 3

Methodology

In this chapter, we will first present the dataset used in our study, justify our choices
regarding this dataset selection, and show that there is a need for data augmentation
techniques to improve the out-of-domain performance of existing query-based meeting
summarisation models. We then describe the model that we have used as a baseline
to perform our experiments, which jointly trains a locator model, and a summariser
model. Finally, we will dive into the two augmentation techniques used to perform our
research, namely, back-translation and paraphrasing with GPT.

3.1 Benchmark dataset and data collection

In this section, we present the QMSum dataset (Zhong et al. [2021]), discuss its
components, the results obtained from the paper, and its limitations in out-of-domain
performance. We will end the section by explaining the modifications that we have
done to the dataset, such as the preprocessing steps we applied to it.

3.1.1 Overview of the QMSum dataset

The QMSum dataset, introduced by Zhong et al. [2021], contains in total 232 meetings
with 1,808 question-summary pairs, and is composed of three types of meeting data
that are annotated using query-summary pairs: product meetings, academic meetings
and committee meetings.

Each meeting transcript is associated with various queries, meaning that a meeting can
span multiple queries. Each query can be either of these two categories:

• General queries: Queries related to general information, such as the contents of
whole meetings.

• Specific queries: Queries related to relatively detailed information, such as the
discussion about certain topics.

We provide below a more thorough description of each domain, along with concrete
examples taken directly from these datasets (product, academic and committee) in Table

10
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3.1, Table 3.2 and Table 3.3.

3.1.1.1 Product meetings

(Carletta et al. [2006]) introduced the AMI dataset, composed of 137 meetings on
product design in an industrial context. This dataset includes transcripts of meetings that
describe the process of designing a new remote control, along with their corresponding
summaries.

Query Query type
Summarize the whole meeting General
Summarize the groupmates’ self-
introduction and the project introduc-
tion.

Specific

What did the group discuss about the
email they received on the project an-
nouncement?

Specific

Table 3.1: Example of two specific queries and one general query, associated with a
Product meeting transcript (ID ES2002a).

3.1.1.2 Academic meetings

The ICSI dataset, created by (Janin et al. [2003]), contains 59 group meetings focused
on research topics among students that took place on a weekly basis at the International
Computer Science Institute (ICSI) in Berkeley, along with the corresponding meeting
summaries.

Query Query type
Summarize the whole meeting General
Summarize the discussion about the
current XML format to link up differ-
ent components in data

Specific

What did F think about the current
XML format to link up different com-
ponents in data?

Specific

Table 3.2: Example of two specific queries and one general query, associated with an
Academic meeting transcript (ID Bdb001).

3.1.1.3 Committee meetings

Committee meetings contain formal discussions on many subjects, such as education
system reforms and public health. It contains 25 committee meetings from the Welsh
Parliament and 11 from the Parliament of Canada.
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Query Query type
Summarize the whole meeting General
Summarize the debate about the flaws
in government‘s pandemic relief pro-
gram.

Specific

How did racism and long-term care
related to government’s policy?

Specific

Table 3.3: Example of two specific queries and one general query, associated with a
Committee meeting transcript (ID covid 0).

3.1.2 Advantages of the QMSum dataset

Amongst the available datasets available for query-based meeting summarisation, we
have specifically chosen the QMSum dataset for our study as it offers several advantages
over previous datasets for our task. Firstly, QMSum is the largest meeting summarization
dataset available, with 232 meetings and a total of 1,808 question-summary pairs.
Detailed statistics of the QMSum dataset are provided in Table 3.4, with amounts of
data contained in the training, validation and testing splits, which are shown in Table
3.5. The large size of this dataset, compared to previous ones, allows exploring more
deeply the architectures of various models and, most importantly, data augmentation
techniques.

Datasets # Meetings # Turns Len. of Meet. Len. of Sum. # Speakers # Queries
Product 137 535.6 6007.7 70.5 4.0 7.2
Academic 59 819.0 13317.3 53.7 6.3 6.3
Committee 36 207.7 13761.9 80.5 34.1 12.6
All 232 556.8 9069.8 69.6 9.2 7.8

Table 3.4: Figure provided by QMSum (Zhong et al. [2021]), showing the statistics of the
QMSum dataset.

Datasets Train Valid Test
Product 690 145 151
Academic 259 54 56
Committee 308 73 72
All 1,257 272 279

Table 3.5: Figure provided by QMSum (Zhong et al. [2021]), showing how many query-
summary pairs are contained for each split across all domains.

Additionally, the QMSum dataset is designed with a multi-domain focus, including
Product, Academic, and Committee meetings (Zhong et al. [2021]). This brings an
improvement compared to previous datasets, which focused on a single domain. Thus,
it was a natural choice to use this dataset when exploring techniques to improve out-of-
domain performance of models.

Furthermore, the QMSum dataset brings a focus on capturing specific contents of
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meetings by having shorter summary lengths, with an average length of 69.6 words.
This contrasts with the previous datasets such as AMI and ICSI, which contain longer
summaries. The brevity of summaries in QMSum challenges models to accurately
capture relevant information and compress it into concise summaries, thus pushing the
boundaries of current meeting summarization methods.

Lastly, the QMSum dataset was created using a thorough annotation process. Profes-
sional annotators were provided with meeting transcripts and specific queries, and they
were asked to summarize the relevant parts of the meeting based on those queries. This
process resulted in a rich set of query-summary pairs that can be used in our research to
explore data augmentation approaches to improve out-of-domain performance.

3.1.3 QMSum’s Limitations in Out-of-Domain Performance

Table 3.6 depicts the performance of QMSum’s BART (Lewis et al. [2019]) summa-
rization model, when using gold spans instead of a locator model. The results indicate
that out-of-domain performance is significantly lower than in-domain performance,
with the best scores achieved when training and testing on the same domain, except for
the Academic domain. Indeed, the highest R-2 and R-L scores for when tested on the
Academic domain are achieved when the model is trained on three domains. Further
analysis of these results are provided in Chapter 4.

We observe that training the model on Product and testing it on the Product domain
results in R-1, R-2, and R-L scores of 35.43, 10.99, and 31.37, respectively. However,
when trained on the Academic or Committee domain and evaluated on Product, there is
a significant decrease in the R-1 score by 23%, 56%, and 23%, respectively. Therefore,
the results suggest the need for techniques to help the model perform better on out-of-
domain data, which is the objective of our study.

Before describing the data augmentation techniques we used to address this problem in
Section 3.3, we will now provide an overview of the preprocessing pipeline we applied
to the QMSum dataset, followed by a presentation of the baseline implementation used
for our research in Section 3.2.

Datasets Product Academic Committee All
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Pro. 35.43 10.99 31.37 22.59 3.41 19.82 24.48 3.84 21.94 30.02 7.58 26.62
Aca. 27.19 4.86 24.09 26.69 4.32 22.58 27.84 4.29 25.10 27.22 4.59 24.02
Com. 25.56 3.48 22.17 23.91 2.99 20.23 32.52 6.98 27.71 27.07 4.28 23.21
All 34.93 10.78 31.21 26.47 5.05 23.01 31.16 6.47 27.52 32.18 8.48 28.56

Table 3.6: Figure provided by QMSum (Zhong et al. [2021]), showing the multi-domain
and cross-domain summarization experiments. Each row represents the training set,
and each column represents the test set. The cells with text written in bold denote the
best result on the dataset in this column. Standard Rouge F-1 score is used to evaluate
the model’s performance.
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3.1.4 Preprocessing

To preprocess our data, we first extracted input data from JSON files provided by
QMSum, and applied various methods from the Natural Language Toolkit 1 (nltk)
module, and tokenized them using RobertaTokenizer 2 (for the locator model) and
BartTokenzier 3 (for the summariser model) from the HuggingFace Transformers
library.

3.1.4.1 Tokenization

Tokenization is the process of breaking down the input text into smaller units, such as
words or subwords. Using the nltk module, we tokenize the input into words, convert
them to lowercase (normalisation), remove punctuation, and join them back together
into a single string separated by spaces.

Many pre-processing techniques in NLP include stop words removal and stemming
(Gharatkar et al. [2017]). However, we have not used these techniques, as they might
remove or modify words that are actually important for our task. Indeed, in some cases,
stop words carry important contextual information, while in other cases, stemming
can modify a word in a way that changes its meaning, which can lead to a poorer
performance of our model (Kathiravan and Haridoss [2018]). Additionally, we use the
pre-trained language models RoBERTa and BART, which have already been trained
on a large amount of data that includes a wide range of language patterns, including
stop words. This means that the tokenizers associated with these models have already
learned how to handle these stop words, and attempting to remove them could negatively
impact the performance of the model (Gerretzen et al. [2015]).

3.1.4.2 Cleaning

We also perform cleaning, which is the process of removing unwanted characters and
symbols from the input text. We remove specific markers, abbreviations, and pauses
from the input text, by performing various string replacements on the input text to
remove tags and markers used in the QMSum dataset. These replacements include
removing the vocalsound , disfmarker , pause , nonvocalsound , and gap tags, as
well as replacing various abbreviations like a m i and t v with their full forms (ami
and tv, respectively).

Figure 3.1 explains the process of normalisation, tokenisation and cleaning with a
sample sentence from the QMSum dataset. We then use the output from this sequence
of operations and convert it to input IDs.

3.1.4.3 Converting to input IDs

Given that we use a model which contains a retriever employing RoBERTa, and a
summariser employing BART (as later explained in Section 3.2), different tokenization

1https://www.nltk.org/
2https://huggingface.co/docs/transformers/model_doc/roberta
3https://huggingface.co/docs/transformers/model_doc/bart
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Figure 3.1: Visualisation of the steps performed in manual processing. This figure shows,
for each step, the output of the relevant operation for a sentence taken from a Product
meeting (ID ES2005a).

methods are required for the input data. To tokenize the input data for the retriever task,
the RoBERTa model is fine-tuned and therefore, the RoBERTaTokenizer is employed
as it is specifically designed for pre-training and fine-tuning RoBERTa models. On the
other hand, the BART model, which is a denoising autoencoder well-suited for text
generation tasks, is used for the generator task. Thus, the BartTokenizer is used for this
purpose, as it is designed for pre-training and fine-tuning BART models.

After normalising the text data, tokenizing and cleaning it using the steps described in
Section 3.1.4.1 and Section 3.1.4.2, we convert the tokens into input IDs. These input
IDs are numerical representations of the tokens that can be fed into the corresponding
pre-trained model. We created input IDs by using the RobertaTokenizer for the retriever,
and BartTokenizer for the summariser. By using a different tokenizer for the locator
and the summarizer, we ensured that our input IDs were compatible with the respective
pre-trained models.

3.1.4.4 Truncation

The input IDs are then truncated to a specified maximum length, which is a necessary
step, as transformer models, such as RoBERTa and BART, have fixed input lengths. If
the input length exceeds the model’s limit, then the model will not be able to process it.

The maximum input length for RoBERTa refers to the maximum number of tokens
that can be fed to the RoBERTa model at one time, and it is set to 512. This limit is
necessary as the model can only process inputs up to a certain length due to memory
constraints. Hence, with truncation, if an input exceeds the maximum length, it will be
split into smaller chunks to be processed separately.

The maximum source length and maximum target length for BART refer to the maxi-
mum number of tokens that can be used for the input and output sequences, respectively.



Chapter 3. Methodology 16

The maximum source length is set to 64, and it determines the maximum number of
tokens in the source document that can be fed into the BART generator. If the source
document exceeds this length, it must be split into smaller chunks, and each chunk is
then separately fed into the BART generator. The maximum target length is set to 900,
which refers to the maximum number of tokens that can be used to produce the output.
This parameter guarantees that the summary is neither too long, nor too short, as if the
summary exceeds the maximum target length, it will be truncated.

3.1.4.5 Padding

After truncation, padding is added to ensure that all inputs have the same length. Given
that our pre-trained models require inputs of fixed length, padding guarantees that the
model can process batches of inputs efficiently. In our context, padding is added to the
right side of the input sequence using the padding token specified in the tokenizer.

After tokenising the input and converting it to input IDs, we created input sequences
for the models. These input sequences contained the query associated with the relevant
meeting transcript, with special tokens such as < s > (start) and </s > (end) to indicate
the beginning and end of different segments. For instance, we used the following
input format for the retriever model: ”< s > Query < /s > Relevant Text Spans
< /s >”. Preparing the inputs this way enabled the models to process and understand
the relationship between the query and the corresponding meeting transcripts. Figure
3.2 illustrates the tokenization process performed by the RoBERTa tokenizer, including
the conversion from the original text to input IDs and padding.

3.2 Baseline Implementation

Extract-then-generate approaches are commonly used for long-input summarisation
(Zhong et al. [2021]), a type of summarisation that query-based meeting summarisation
falls into, due to the recurrent large length of meeting transcripts. These approaches use
a locator (also known as extractor or retriever) to locate the relevant text spans in the
meetings that answer the query, and a generator (also known as summariser) to sum-
marise these extracted text snippets. However, extract-then-generate approaches usually
train the extractor and the generator separately, which can limit their performance as
they suffer from cascaded errors from the extractor to the generator (Mao et al. [2022]).

Hence, (Mao et al. [2022]) proposed a variation of the extract-then-generate approach by
introducing a new model specifically designed for long-input summarisation: Dynamic
Latent Extraction for Abstractive Summarization (DYLE). DYLE jointly trains the
extractor and the generator in an end-to-end manner, and keeps the extracted text
snippets latent.

By keeping the extracted text snippets latent, DYLE can learn in a more flexible way
the representation of the input document and generate more accurate summaries, as it
can capture the most relevant information from the input document. This is proven by
the results they obtain, which largely outperform existing models using the QMSum
dataset.
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Figure 3.2: RoBERTa input formatting schema that shows the steps required to convert
a sentence to token IDs to be used by RoBERTa. We use an example of sentence taken
from a Product meeting (ID ES2003b).

In the following sections, we present the model architecture details of DYLE, which
we used as our baseline implementation, and explain how it leverages the power
of pre-trained language models such as RoBERTa and BART (both available in the
HuggingFace 4 library) for a state-of-the-art model for long-input summarisation. We
will also present the hyperparameters used to train the model and our training process,
including the optimization methods and regularizers employed. Finally, we will discuss
the performance metrics used to evaluate the retriever and the generator.

3.2.1 Model Architecture

In the long-input summarization task, the input consists of L text snippets, X =
(x1, . . . ,xL), and an optional query q if a query is paired with a summary. The out-
put is a summary y of length T . Using dialogue utterances by each speaker as snippets,
the goal is to learn a model that generates a sequence of summary tokens y given the
input snippets X and the previously generated tokens y < t:

4https://huggingface.co/docs/transformers/model_doc/bart
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Pθ(y | q,X) =
T

∏
t=1

Pθ(yt | q,X ,y<t) (3.1)

DYLE offers a variation of extract-then-generate approaches to solve this task by
incorporating a dynamic weighting mechanism for the extracted snippets. An overview
of DYLE’s model is presented in Figure 3.3. In the following sections, we will dive
deeper into each component observed in this figure, with a particular focus on the
extractor, the generator and the various losses used to compute the training objective.

Figure 3.3: Figure provided from Mao et al. [2022]. Overview of DYLE’s approach, where
the input is a document X (each x ∈ X is a sentence) and an optional query q, and the
output is a summary y.

3.2.1.1 Extractor

RoBERTa is a pre-trained transformer-based language model designed for various NLP
tasks, including text classification, question answering, and natural language inference
(Liu et al. [2019]). In the context of the locator, it is used to encode the input data and
produce embeddings that can be used for similarity matching with the query, making it
a suitable choice for a locator model.

The extractor module takes in the input document snippets X = (x1, ...,xL) and the
query q, and outputs a score si = Eη(q,xi) for each snippet xi, where η represents the
parameters of the extractor. The K most relevant snippets are extracted and used as the
input for the generator:

XK = top−K(Eη(q,xi),xi ∈ X) (3.2)

For our implementation, we chose K = 20. Figure 3.4 illustrates the process by which
the top K snippets are extracted.
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Figure 3.4: Figure provided by Mao et al. [2022]. Long-input extractor. Each document is
divided into chunks, each containing consecutive snippets. A shared RoBERTa encodes
each chunk independently.

3.2.1.2 Generator

BART is a pre-trained sequence-to-sequence model used in generation tasks, such as
text summarization, machine translation, and dialogue generation (Lewis et al. [2019]).
In the context of the generator, it is used to generate the summary based on the encoded
document and query representations produced by the retriever.

Thus, BART is better suited for generation tasks such as summarization, which is the
task of the generator in this case.

The generator module takes in the extracted snippets XK = (xk1, ...,xkK), the query q,
and the previously generated tokens y<t , and generates the next token yt using the
conditional probability Pθ(yt |q,XK,y<t). As mentioned earlier, in contrast to previous
work, DYLE’s generator incorporates a dynamic weighting mechanism, which assigns
a weight wi = Pθ(xi|q,XK,y<t) to each extracted snippet xi at each decoding time step
t. The dynamic weighting mechanism allows the model to understand how it uses
the extracted snippets and helps improve the extraction process by down-weighting
irrelevant snippets.

3.2.1.3 Loss functions

DYLE uses various loss functions both for the extractor and the generator, such as the
oracle loss, the consistency loss and the generation loss, as seen in Figure 3.3:

• Oracle loss: DYLE uses extractive oracles, denoted as Xo, to supervise the
extraction component of the model. The extractive oracle loss Lηoracle is calculated
based on the cross-entropy loss between the text snippets selected by the extractor
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and the extractive oracle.

• Consistency loss: DYLE uses dynamic weights to train the extractor, where the
averaged dynamic weights represent the overall importance of the snippet. The
consistency loss measures the distance between the averaged dynamic weights
distribution and the extractor distribution.

• Generation loss: The generation loss is defined as the negative log-likelihood of
the gold summary: Lθgen =− logPθ(y|q,XK)

The overall training objective of the model is a combination of these three losses:

Lθ,η = λgLgen
θ

+λcLconsist
η +λoLoracle

η , (3.3)

where λg, λc, and λo are hyperparameters that control the weights of each loss com-
ponent. The generator is optimized using the generation loss, while the extractor is
optimized using both the consistency loss and the oracle loss.

In the next section, we will present the specific hyperparameters and training process
used in our experiments.

3.2.2 Implementation details

We trained our model on a single NVIDIA A100 GPU using gradient checkpointing to
save memory, with an effective batch size of 8.

We used the Adam optimizer for both the locator and generator components, with a
learning rate set to 5× 10−5 for the locator, and a learning rate of 5× 10−6 for the
generator.

As explained in Section 3.2.1.3, DYLE uses three loss functions during training, each
with its own hyperparameter: generation loss (λg), oracle loss (λo), and consistency
loss (λc).

Here are the following hyperparameters that we used:

• λg = 1: The coefficient for the generation loss in the training objective (Equation
3.3). DYLE performed a 2-step binary search between 0 and 2 to find the optimal
value.

• λo = 1: The coefficient for the oracle loss in the training objective. DYLE
performed a 2-step binary search between 0 and 2 to find the optimal value.

• λc = 1: The coefficient for the consistency loss in the training objective. DYLE
performed a 3-step binary search between 0 and 10 to find the optimal value.

3.2.3 Evaluation Metrics

We use the ROUGE (Recall-Oriented Understudy for Gisting Evaluation) metric family,
a common automatic metric used for summarisation tasks (Lin [2004]) that we employ
to evaluate the locator and the summariser. For the locator, ROUGE measures the
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overlap between the extracted text spans and the gold relevant text spans, whereas
for the summariser, it measures the overlap between the generated summary and the
reference summary at the n-gram level. Specifically, we use:

• ROUGE-1 (R-1), which measures the overlap between unigrams.

• ROUGE-2 (R-2), which measures the overlap between bigrams.

• ROUGE-L (R-L), which measures the longest common subsequence (LCS)
between the summary and the reference.

The ROUGE score is calculated as the ratio between the number of overlapping n-grams
and the total number of n-grams in the reference summary (for the summariser) or gold
spans (for the locator). The ROUGE scores are computed for each summary-meeting
pair and then averaged over the entire test set. When presenting our results in Chapter
4, we use the standard ROUGE-1, ROUGE-2, and ROUGE-L F1 scores.

3.3 Data augmentation

In this chapter, we present and justify our choices regarding the data augmentation
techniques we used to attempt improving DYLE’s out-of-domain performance for
query-based meeting summarization using the QMSum dataset. We will then provide
a description of the implementation details of the selected techniques, along with a
discussion regarding the benefits and limitations of these techniques.

3.3.1 Back-Translation

Back-translation is a commonly used technique in NLP for augmenting training data
with the aim to generate new text and add diversity to the training set by introducing
sentences with new phrasing and structure while conveying the same meaning (Liu et al.
[2022]). This method consists in translating the original text into a different language,
and then translating it back to the original language using machine translation models.
Figure 3.5 illustrates how back-translation works with an example sentence that is
translated from English to French, and then back from French to English.

Figure 3.5: Back-Translation example of converting a sentence from English to French,
and then back from French to English.
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3.3.1.1 Implementation Details

To implement the back-translation technique, we used the Google Translate API 5 to
translate the original English meeting transcripts and query-answer pairs into French,
and then back to English. We used the following hyperparameters for the Google
Translate API:

• Source language: English

• Target language: French

• Translation model: Neural Machine Translation (NMT)

• Batch size: 32

Regarding the other hyperparameters, we used the default values provided from the
Neural Machine Translation (NMT).

After translating the original English text into French, we then translated the foreign
language version back into English. An example of such augmented query-answer pair
from QMSum is shown in Table 3.7.

To ensure the quality of the generated data, we manually reviewed a subset of the
translated text to ensure that it accurately reflected the meaning of the original English
text.

Original Input Augmented Output

Query

Why did Marketing recommend
to specify the target market when
discussing details of button de-
sign and location function?

Why did marketing recommend
specifying the target market when
considering button design details
and placement function?

Answer

Project Manager thought that the
interface design was still not intu-
itive and useful enough for now.
Marketing agreed and pointed
out that the present target group
might be too large. Marketing
suggested that the team should
figure out specifically for whom
they intended to design the inter-
face in case the customers were
confused about the remote con-
trol and got dissatisfied.

The project manager felt that the
interface design was not intuitive
and useful enough yet. Marketing
agreed and pointed out that the cur-
rent target group might be too large.
Marketing suggested that the team
should determine specifically who
they intended to design the interface
for in case customers were confused
about the remote and dissatisfied.

Table 3.7: Example of an augmented query-answer pair with back-translation with
French related to a Product meeting (ID ES2003b). Substitutions are marked in orange,
deletions are marked in red and additions are marked in blue.

5https://cloud.google.com/translate
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3.3.2 Data augmentation with GPT

In this section, we present the other data augmentation technique used in our study,
namely paraphrasing with GPT. We first discuss the various approaches that could
have been used and justify the choices we made. We then proceed to describe the
implementation details for this technique we chose.

3.3.2.1 Various approaches

Paraphrasing is a useful technique for data augmentation in the context of query-based
meeting summarization. In our case, we used GPT, a state-of-the-art language model
(Floridi and Chiriatti [2020]), which can be used in various ways. One approach is to
use GPT to paraphrase the original input, whereas another approach is to use GPT for
text generation, which would generate new output based on the original input.

Using GPT to paraphrase the original data involves inputting the text into the GPT
model and generating new text that is similar in meaning but contains different words
and phrasing. However, the generated text may not be diverse enough, especially if the
original text is complex or contains specialized vocabulary. Using the text generation
approach could instead provide more variety, as it is creating something new, rather than
modifying an existing input. Table 3.8 shows an example of an augmented query-answer
pair from the QMSum dataset using paraphrasing with GPT, and Table 3.9 shows the
same query-answer pair augmented twice using the text generation approach.

Original Input Augmented Output

Query

Why did Marketing recommend
to specify the target market when
discussing details of button de-
sign and location function?

What was the reason behind Mar-
keting’s suggestion to identify the
target audience when discussing the
specifics of button design and loca-
tion function?

Answer

Project Manager thought that the
interface design was still not intu-
itive and useful enough for now.
Marketing agreed and pointed
out that the present target group
might be too large. Marketing
suggested that the team should
figure out specifically for whom
they intented to design the inter-
face in case the customers were
confused about the remote con-
trol and got dissatisfied.

The Project Manager believed that
the interface design was not cur-
rently user-friendly and effective.
Marketing agreed and mentioned
that the current target audience
might be too broad. Marketing sug-
gested that the team should deter-
mine the specific target audience for
whom the interface is intended to
avoid confusion and dissatisfaction
among customers who might have
trouble using the remote control.

Table 3.8: Example of an augmented query-answer pair using paraphrasing with GPT
related to a Product meeting (ID ES2003b). Substitutions are marked in orange, deletions
are marked in red and additions are marked in blue.
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Query Answer

Input

Why did Marketing rec-
ommend to specify the
target market when dis-
cussing details of button
design and location func-
tion?

Project Manager thought that the inter-
face design was still not intuitive and use-
ful enough for now. Marketing agreed
and pointed out that the present target
group might be too large. Marketing sug-
gested that the team should figure out
specifically for whom they intented to de-
sign the interface in case the customers
were confused about the remote control
and got dissatisfied.

Invalid augmented
query-answer pair

How did Project Manager
describe the voice recog-
nition service embedded
on the computer during
the discussion of button
design and location func-
tion?

Project Manager exemplified the robust
voice recognition service embedded on
the computer, indicating that it would
drag and dictate but also require a lot of
memory.

Valid augmented
query-answer pair

Were there any concerns
expressed during the dis-
cussion of button design
and location function re-
garding the incorporation
of voice recognition?

Yes, Project Manager expressed con-
cerns about the power required and the
cost.

Table 3.9: Example of two generated query-answer pairs by GPT using as input a
query-answer pair from a Product meeting (ID ES2003b). The first row corresponds
to the original query-answer pair present in the dataset. The second row corresponds
to an augmented query-answer pair that is irrelevant, thus incorrect, and has to be
removed from the augmented data. The third row corresponds to a valid query-answer
pair generated that is relevant to the meeting.

To obtain augmented data in Table 3.9, we used GPT to generate a new query-answer
pair based on an existing one. However, we encountered an issue with the ”Invalid
augmented data” row, where the generated query and answer were completely unrelated
to the meeting transcript. GPT generated a fictional query that theoretically could
have been asked, but the answer to the query did not exist in the meeting transcript.
This resulted in a fictional answer being created, rendering the data irrelevant, which
is a problem that occurred recurrently when exploring this technique. However, the
”Valid augmented data” shows that this technique can sometimes be effective, as the
generated query was similar to the original one, and the corresponding answer was
correct. To address the issue of irrelevant data caused by text generation, we would
need to monitor and filter out the produced data which is irrelevant. However, this
would require human evaluation, which was not feasible for our research due to time
and resource constraints. Hence, we opted not to use the text generation approach and
instead employed the paraphrasing method, which ensured that the generated queries
and answers were relevant to the meeting transcripts.
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3.3.2.2 Implementation details

In this section, we describe the specific implementation details and hyperparameters
used for paraphrasing using GPT. We chose to use OpenAI’s GPT, specifically the
Davinci model 6, due to its exceptional performance in natural language understanding
and generation.

To ensure the quality of the paraphrased text, we have set various hyperparameters that
control the generation process:

• Model: We used the text-davinci-003 model, which is one of the larger models in
the GPT family, providing higher accuracy and fluency in the generated text.

• Temperature: We set the temperature parameter to 0.7, creating a balance
between diversity and coherence in the model’s output. As the temperature
increases, the model produces more diverse and creative output.

• Max tokens: We limited the maximum number of tokens in the generated output
to be equal to the input length to ensure that the paraphrased text and the input
had similar lengths.

• Prompt: To ensure that the model understands our task, we experimented with
various prompts and decided to append ”Paraphrase the following text and provide
the output in 1 line: ” before the input text to provide clear instructions to the
model.

3.3.3 Data Augmentation Pipeline

We employed back-translation and paraphrasing to all thee types of data of the dataset,
namely meeting transcripts, queries, and answers. In this section, we provide a descrip-
tion of the data augmentation pipeline that we implemented to augment this data, along
with a description of the review process we used to ensure that the augmented data was
of good quality.

3.3.3.1 Procedure for augmenting data

Given that GPT has a limit of 2048 tokens, and the Google Translate API has a limit
of 5000 characters for their input, we had to divide the meeting transcripts in chunks,
as they exceeded these limits. We thus opted to take each speaker utterance to be a
chunk. We noticed that the models produced better variations of the data with smaller
chunks, which is why we didn’t choose to divide the entire meeting transcripts into
chunks with lengths that are equal to the models’ limit of input tokens. Furthermore, to
avoid overloading the GPT and back-translation models, we iterated through each turn
of the meeting transcripts, paraphrasing the text only if it exceeded 15 characters, and
refrained from sending requests for short text. After various experiments, we concluded
that the text had to contain at least 15 characters for the models to produce a variation
of the input.

6https://platform.openai.com/docs/models/overview
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We applied data augmentation before the processing steps outlined in Section 3.1.4 to
allow the models to make use of the entire input to generate new data, to make it more
interpretable for the back-translation and GPT modules. After augmenting the data, we
followed the normal preprocessing steps as described in Section 3.1.4, which included
cleaning the data, tokenization, and encoding.

Using this process for both data augmentation techniques, we doubled the amount of
query-answer pairs, and increased by 95% the number of characters in the meeting
transcripts.

3.3.3.2 Review process

Once the augmented data was generated, we had to ensure it was of good quality and that
it conveyed the same meaning as the original data, without introducing inconsistencies.
Hence, we implemented a manual review process, where we randomly sampled 100
augmented sentences for each domain and manually reviewed it to ensure its quality.
However, this approach doesn’t completely guarantee the quality of the augmented data
due to the small size of the selected sentences we had to choose for our review process,
due to limited human resources.

3.3.4 Benefits and Limitations

As discussed in this section, two data augmentation techniques were employed, which
both have their advantages and disadvantages. Both techniques offer the advantage of
increasing the amount of training data. However, using back-translation can result in
the generation of text that does not offer meaningful changes to the input’s structure.
On the other hand, the versatility of GPT increases the risk of generating data that is
too different from the original input, as explained previously.

A comparison between the example of query-answer pair augmented using French, as
shown in Table 3.7, and the example augmented using paraphrasing with GPT, depicted
in Table 3.8, reveals that the back-translation method does not add much variety for this
particular example. The modifications mainly consist of synonym replacements, which
does not alter the sentence structures much. In contrast, the paraphrasing with GPT
technique introduces new sentence structures and word choices that are not present
in the original text, potentially improving the model’s performance. However, this
approach comes at a cost, as it requires more resources, as it is more time-consuming
and costly.

In the following chapter, we will examine the results of our study and investigate
how these differences between the data augmentation techniques affected our model’s
performance.



Chapter 4

Results And Discussion

After having described the dataset, the model and the data augmentation techniques
we used along with our implementation details, we will now report the experimental
results that we obtained with a thorough analysis. We begin by presenting the results
we achieved by using our baseline implementation, while comparing these results with
QMSum. We then present the results obtained after performing back-translation and
paraphrasing using GPT, while examining the similarities and differences observed.
Finally, we end this chapter with an analysis of the variety of augmented data introduced
by both augmentation techniques, which contributes to explaining the differences
observed in both approaches.

4.1 Baseline Experiments

In this section, we present our baseline experiments using the DYLE (Mao et al. [2022])
model on in-domain and out-of-domain settings. We compare these results with those
obtained by QMSum (Zhong et al. [2021]) and show that both results show a real lack
of performance in out-of-domain settings. We then proceed to a brief analysis of the
unexpected results obtained in our baseline experiments, which we will explain in later
sections.

Datasets
Product Academic Committee

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L
Pro. 35.43 10.99 31.37 22.59 3.41 19.82 24.48 3.84 21.94
Aca. 27.19 4.86 24.09 26.69 4.32 22.58 27.84 4.29 25.10
Com. 25.56 3.48 22.17 23.91 2.99 20.23 32.52 6.98 27.71

Table 4.1: QMSUM results from their paper (Zhong et al. [2021]): Performance of
QMSum on the various domains using R-1, R-2, and R-L metrics. Each row represents
the training set, and each column represents the test set
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Product Academic Committee
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Pro. (S) 34.63 10.33 30.89 25.59 5.25 22.48 31.77 7.22 27.87
Aca. (S) 30.93 7.67 27.51 26.24 5.34 23.52 31.52 6.77 27.33
Com. (S) 27.94 6.71 25.12 23.71 4.25 21.33 32.51 7.73 28.65
Pro. (R) 20.30 5.34 18.41 13.39 2.16 12.05 6.55 3.24 6.36
Aca. (R) 23.44 3.63 21.33 20.25 2.21 17.88 8.72 2.31 8.1
Com. (R) 15.05 1.93 13.65 10.00 1.04 9.11 5.58 1.93 5.21

Table 4.2: Baseline Experiments: In-domain and out-of-domain ROUGE scores for
the Summariser (S) and Retriever (R). Each row represents the training set, and each
column represents the test set.

4.1.1 Comparison with QMSum

We evaluated our baseline model across the three domains available in the QMSum
dataset (Zhong et al. [2021]), namely Product, Committee, and Academic. The results
obtained are shown in Table 4.2, where we used the same evaluation metrics as QMSum,
namely ROUGE-1, ROUGE-2 and ROUGE-L, to ensure a thorough evaluation and
comparison with QMSUM, whose results are presented in Table 4.1.

As QMSum did not provide results for their retriever for in-domain and out-of-domain
settings, we were only able to compare the performance of the generated summaries.
Our in-domain performance is comparable with QMSum’s results, while our model
largely surpasses QMSum in out-of-domain settings when tested on the Product and
Committee domains, where it beats QMSum on all the ROUGE metrics. For instance,
when trained on Product and tested on Committee, our model achieved R-1, R-2, and
R-L scores of 31.77, 7.2, and 27.87, respectively, while QMSUM only achieved scores
of 24.48, 3.84, and 21.94 for the same metrics. This represents an improvement of 30%
for R-1, 88% for R-2, and 27% for R-L.

We believe this is due to the fact that QMSum trains the locator and summariser
separately, which can lead to cascading errors from the locator to the summariser. In
contrast, our model uses dynamic weights and jointly trains the locator and summariser,
which allows optimising both the locator and the summarizer together, instead of
treating them as two separate components. This change is one of the novel contributions
of DYLE (Mao et al. [2022]) in their paper, where they presented the model that we use
as our baseline.

4.1.2 Baseline results overview

4.1.2.1 Out-of-domain performance

Despite the improvements seen by DYLE for in-domain settings, we observe for both
models significantly lower results for out-of-domain settings, as seen in Table 4.2. For
instance, when trained on Committee and tested on Product, the summariser leads to
R-1, R-2 and R-L scores of 27.94, 6.7 and 25.12, which are significantly lower than
when tested in-domain with Committee, with scores of 32.51, 7.7 and 28.65.
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These differences are not due to the variations between the Product and Committee test
sets, which could be a potential reason, as proven by the fact that training on Product
and testing on Product results in scores of 34.63, 10.3 and 30.89, proving that the drop
in performance is due to the model’s lack of domain adaptation capability. We also
observe the same phenomena when evaluating the retriever with other test sets. Indeed,
when training the model on Academic, the retriever obtains R-1, R-2 and R-L scores of
20.25, 2.2 and 17.88 when tested on Academic, respectively, but obtains much poorer
scores when tested out-of-domain, such as with the Committee test set, obtaining scores
of 8.7, 2.3 and 8.1.

4.1.2.2 Unexpected results

We observe surprising results when training our baseline model on the Academic
domain, as the in-domain performance is significantly lower for the summariser than
when tested out-of-domain. For instance, our model obtains an R-1 score of 26.24 for
in-domain, but performs better in out-of-domain settings, achieving an R-1 score of
30.93 when tested on Product, and 31.52 when tested on Committee.

We will see in the following sections that training our model on the Academic domain,
with or without data augmentation, often leads to unexpected results that don’t follow the
same trend as the results we obtain when training our model on Product and Committee.
After performing a thorough analysis of academic, product and committee meetings, we
concluded that these results are due to the overall complexity of the Academic domain.
Firstly, the tone of the Academic meetings is more relaxed and conversational, while
the Committee meetings are more formal and structured. Product meetings also have
a more structured and goal-oriented approach, with a clear and defined goal in the
dialogue utterances, with the participants working collaboratively towards achieving it.
In contrast, the academic transcripts are unstructured and focus on more general and
abstract discussions without a clear or defined goal.

Further analysis on the structure of meetings shows a clear difference between the
Academic and Committee meetings. Table 4.3 shows the average character and word
count for each speaker’s utterance. On average, an utterance in an Academic meeting
only has 74.58 characters, compared to 374.32 characters for Committee meetings.
Hence, the Academic meetings contain many short utterances that do not convey much
information, which results in the model struggling to form summaries of great quality
as it fails to identify the relevant text spans that answer a specific query. However, the
structure of the meetings is not the only factor causing a poor performance when testing
on the Academic domain, as we see that the utterances for the Product meetings are
even shorter than those in Academic meetings.

Our analysis on the character and word count would lead to suppose that the results
obtained when testing on the Product domain should be poor, yet our model achieves
great results in this setting. As explained previously, this is due to the fact that despite
Product meetings being more informal, they are more goal-oriented, thus most of the
occurrences can contain key information to form a valid summary.
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Datasets Average Character Count Average Word Count
Product 50.79 10.52
Academic 74.58 15.89
Committee 375.34 64.49

Table 4.3: Average character and word count contained in a speaker’s utterance for each
domain.

4.2 Data Augmentation Experiments

In this section, we will discuss the results obtained after performing our data augmenta-
tion techniques on the datasets, namely back-translation and paraphrasing with GPT. We
will begin by presenting an overview of our results. We will then proceed to discuss the
differences that both of these techniques bring in our model’s performance. Finally, we
will further justify these differences by analysing the differences between the augmented
data generated by both techniques across all the domains.

4.2.1 Results Overview

Product Academic Committee
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Pro. (S) 34.92 10.52 31.03 26.31 5.64 23.04 32.25 7.67 27.27
Aca. (S) 30.87 7.61 27.40 26.43 5.43 23.85 30.81 6.74 26.75
Com. (S) 28.45 7.08 25.59 23.47 4.27 20.68 30.63 7.06 27.44
Pro. (R) 20.87 5.09 19.01 13.7 2.18 12.48 6.94 3.33 6.7
Aca. (R) 22.69 3.64 20.30 18.36 2.21 16.00 7.64 2.15 7.03
Com. (R) 15.67 2.62 14.22 10.13 1.38 9.27 4.61 1.64 4.40

Table 4.4: Back-translation Experiments: In-domain and out-of-domain ROUGE
scores for the Summariser (S) and Retriever (R). Each row represents the training set,
and each column represents the test set.

Product Academic Committee
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Pro. (S) 35.30 10.61 31.11 26.84 5.53 23.66 30.89 6.84 27.15
Aca. (S) 30.59 7.33 27.34 26.86 5.66 23.98 30.12 6.47 26.52
Com. (S) 30.36 7.46 26.79 24.55 4.52 21.67 32.69 8.44 29.29
Pro. (R) 21.02 4.99 19.12 14.77 2.08 13.23 6.64 3.25 6.40
Aca. (R) 23.21 3.62 20.99 19.50 2.14 17.37 8.85 2.41 8.18
Com. (R) 20.33 4.20 18.42 15.6 1.95 14.14 12.37 5.27 11.73

Table 4.5: Paraphrasing with GPT Experiments: In-domain and out-of-domain ROUGE
scores for the Summariser (S) and Retriever (R). Each row represents the training set,
and each column represents the test set.

We applied back-translation to the training data of all three domains, namely Product,
Academic and Committee, and evaluated our model on the test sets with three metrics,
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namely R-1, R-2, and R-L. We reported the results achieved by the retriever and the
summaries in Table 4.4 and Table 4.5 for back-translation and paraphrasing, respectively.

A major distinction we observe between the two techniques is that after paraphrasing
with GPT, the best results are always achieved in the context of in-domain settings,
except for one exception, for the retriever when tested on Product. However, Table 4.5
shows that this is not the case for back-translation, as for instance the best R-1 score for
the Committee test set is achieved by the model trained on Product, with an R-1 score
of 32.25, whereas the model trained on Committee only achieved 30.63.

We will dive into an explanation for these differences in the following section. As we
progress, we will discuss various other differences in performance that require a deeper
analysis.

4.2.2 Comparison between data augmentation techniques

The results obtained from paraphrasing with GPT and back-translation vary, and a
closer examination of the specific improvements and changes in data they bring can
explain the results obtained.

4.2.2.1 Overview

Figure 4.1 and Figure 4.2 bring us more insights regarding the variations of the
ROUGE scores when applying back-translation and paraphrasing. We observe that
back-translating did not bring any significant improvement on any test set, although
some small improvements were made. These slight improvements do not follow a
clear pattern and do not exceed a high magnitude, with the best improvement being an
increase of 0.72 for the summariser when trained on Product and tested on Academic, as
seen in Figure 4.1. Back-translation can lead to occasional drops in performance, which
are also sometimes present with paraphrasing. In contrast, GPT shows a wider range of
variations ranging from -1.4 to +6.87, showing that when paraphrasing improves the
scores, it has the potential to do so in a substantial manner.

4.2.2.2 Performance variation spikes

Figure 4.2 depicts significant improvements when paraphrasing the Committee data
with GPT. All three ROUGE metrics are significantly improved for the retriever, with
R-1 and R-L scores increased by at least 4.5 units for all test sets, even reaching an
improvement of 6.87 for the R-1 score when tested in-domain. The summariser scores
also improved for all test sets, with particularly good results when tested on Product
meetings, with an R-1 score improving by 2.42 units.

Hence, compared to augmenting other domains, augmenting the Committee domain
had a significant impact, especially for the retriever. The key difference between the
Committee meetings and the other meetings is that Committee meetings are much
more lengthy, well-structured and formal. This could suggest that for the paraphrasing
approach to be effective, the data aimed to be augmented needs to be well-structured and
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Figure 4.1: Variations for the R-1, R-2 and R-L scores between the baseline results
and the results obtained after augmenting the data with back-translation. Each row
corresponds to the train domain and the model (S for Summariser, R for Retriever). Each
column corresponds to the metric (R-1, R-2, R-L) for a test domain. For instance, the top
row corresponds to the variations of ROUGE scores for the Summariser when trained
on Product.

more formal, rather than informal, as it is the case for Product and Academic meetings,
which haven’t seen a significant improvement in their scores.

The results indicate the both in-domain and out-of-domain improved using the paraphras-
ing approach, especially for the Committee data. However, this does not necessarily
mean that this technique reduced the gap in scores between in-domain and out-of-
domain evaluation. Indeed, in order to further analyse the variation of the gap between
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Figure 4.2: Variations for the R-1, R-2 and R-L scores between the baseline results and
the results obtained after augmenting the data using paraphrasing with GPT. Each
row corresponds to the train domain and the model (S for Summariser, R for Retriever).
Each column corresponds to the metric (R-1, R-2, R-L) for a test domain. For instance,
the top row corresponds to the variations of ROUGE scores for the Summariser when
trained on Product.

in-domain and out-of-domain performance, we direct our attention to Figure 4.3, which
shows for example that the gap between in-domain and out-of-domain performance
decreased by 50% when the summariser is evaluated on Product. These results in-
dicate that data augmentation using paraphrasing can improve both in-domain and
out-of-domain performance, while reducing the gap between them.

It is worth noting that the same visualisations illustrating the variations in the out-
of-domain performance gap for the Product and Academic domains can be found
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in the Appendix A.1. We do not include these results here as they did not provide
any meaningful information, considering that as concluded now, only augmenting the
Committee data resulted in a significant improvement in out-of-domain performance.

Figure 4.3: Comparison of the out-of-domain gap before and after performing para-
phrasing with GPT when trained on Committee for the summariser (left) and the
retriever (right). Each bar represents the magnitude of the difference between the score
achieved by Committee (in-domain test set) and the corresponding out-of-domain test
sets (Product and Academic).

Looking back at Figure 4.2, we also notice that when there is a significant improvement,
the spikes are mostly limited to a single test set, except for the Committee retriever,
which increased for all test sets and metrics, as discussed previously. For instance,
augmenting the Product data particularly improved its performance when tested on the
Academic set. Similarly, augmenting the Committee domain had a significant impact on
the Product test set for the summarizer.

These observations show that augmenting the Product data made its summariser perform
better on the Academic test set, and vice versa. Augmenting both of these train sets
also led to a significant decrease in the performance when evaluated on the Committee
domain. As explained earlier, Academic and Product share the characteristic that they
are informal and contain more relaxed conversations with short dialogue utterances,
which is not the case for Committee. Hence, this shows that augmenting a domain that
contains an informal structure leads to an improvement of out-of-domain scores for
domains that also contain informal meetings. They however perform worse on domains
that contain formal discussions, probably because the model has not seen this kind of
meeting during training and has overfitted to informal meetings.

However, augmenting Committee (which contains formal meetings) does not lead to a
drop in performance when evaluated on Product and Academic. It even considerably
improves the ROUGE scores for the Product set. This shows that augmenting a domain
with formal meetings containing long utterances still improves out-of-domain perfor-
mance, even for informal meetings. However, the opposite is not true. This shows a
crucial conclusion in our study, which is that the data that is chosen to be augmented
needs to be carefully selected in order for the paraphrasing augmentation technique to
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be successful.

4.2.3 Variety of augmented data

Our results indicate that back-translation did not bring any noticeable improvement at
all. In contrast, paraphrasing our data with GPT has proved to improve both in-domain
and out-of-domain performance. The reason for these observations lies in the diversity
introduced by the augmentation techniques, which can be visualised by plotting the
UMAP projections onto a 2D space through dimensionality reduction of the original
text from the training set, and compare these projections with the augmented text.

These UMAP projections are presented in Figure 4.6, which shows the projections of
the training text from the Committee domain, as well as in Figure 4.4 and Figure 4.5
for the Product train set, and Academic train set, respectively. Analysing these figures
allows us to visualise the degree of similarity between the augmented data and the
original data.

These figures indicate that for all three domains, the augmented text using back-
translation is very similar to the original text, as all the data points are really close
to each other. In contrast, when visualising the similarity between the original data
and the augmented data using paraphrasing, we observe two clusters for Figure 4.4
(Product) and Figure 4.5 (Academic). We also see in Figure 4.6 (Committee) that
the augmented text produced by GPT provides more diversity than when augmented
with back-translation, although the clusters are less distinct than for the Product and
Academic train sets.

These observations show that GPT introduced new variations to the training data, as it
is capable to generate new sentences that convey the same meaning but with different
structures. The addition of these variations to the training data made the model more
capable to handle new variations of data, hence being able to generate more accurate
summaries on meetings from other domains.

These figures also bring an explanation towards some results observed in Figure 4.1,
where we see that the in-domain performance is the one that decreased the most for all
domains when applying back-translation. Indeed, this is the case for the summariser
trained on Committee, and the retrievers when trained on Product, Academic and Com-
mittee. After analysing the UMAP projections for these domains, we can explain these
drops for in-domain performance: because the augmented data with back-translation is
very similar to the original text, it causes the corresponding summariser or retriever to
overfit on the train set as we are essentially doubling the train set size with almost the
exact same data.

Regarding back-translation, we can already conclude from these results that it is not a
suitable technique to improve the in-domain or out-of-domain performance for query-
based meeting summarisation models, if used within the same conditions as in our
study. However, a limitation can immediately be defined regarding our work on back-
translation: we have only augmented the data once, using French. The lack of diversity
introduced by our usage of back-translation could be explained by the fact that English
and French have a really close linguistic distance. Back-translating our data using
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Japanese, for instance, could result in a greater diversity of training data, as Japanese
has a more distinct grammar structure, vocabulary, and syntax compared to English.

Figure 4.4: UMAP projection on a 2D space of original and augmented sentences
contained with the Product train set using paraphrasing with GPT (left) and back-
translation (right) encoded with RobertaTokeniser (used by our locator).

Figure 4.5: UMAP projection on a 2D space of original and augmented sentences
contained with the Academic train set using paraphrasing with GPT (left) and back-
translation (right) encoded with RobertaTokeniser (used by our locator).
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Figure 4.6: UMAP projection on a 2D space of original and augmented sentences
contained with the Committee train set using paraphrasing with GPT (left) and back-
translation (right) encoded with RobertaTokeniser (used by our locator).
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Conclusions

5.1 Summary

In this thesis, we have explored the limitations in out-of-domain performance encoun-
tered by existing models for the query-based meeting summarisation task. We conducted
our research using QMSum (Zhong et al. [2021]), a benchmark dataset that contains
meetings associated with query-answer pairs for three domains, namely Product, Aca-
demic and Committee. Using DYLE (Mao et al. [2022]) as our baseline model, which
already showed outstanding results on the QMSum dataset, we investigated whether
applying data augmentation techniques to the existing data could improve the in-domain
and out-of-domain performance of the model.

We chose two data augmentation techniques which were the most relevant for our task
according to our analysis, namely back-translation with French, and paraphrasing with
GPT (Floridi and Chiriatti [2020]).

Our findings indicate that performing back-translation with French did not introduce
enough variety to training data to allow our model to show any improvements. We
indeed showed that the data augmented using back-translation was very similar to the
original data, thus rendering the data augmentation process inefficient. We however
suspect that this can be due to the choice of the foreign language used, namely French.
Using a foreign language that differs vastly from English could allow the augmented text
to be sufficiently altered to have an impact on the performance of the model. Further
work would have to be performed in order to definitively conclude whether back-
translation is indeed an inefficient technique for query-based meeting summarisation.

On the other hand, our experiments showed that using a pre-trained GPT model for
generating paraphrased versions of the data led to significant improvements for both
in-domain and out-of-domain settings. We showed that the resulting augmented data
contained new sentence structures and a new vocabulary, which resulted in the model
being able to handle a wider variety of data, leading to better performance when being
tested on unseen data from other domains that differ from the domain’s data it was
trained on.

Furthermore, our results indicate that augmenting the data using the GPT paraphras-
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ing approach was particularly successful on a specific domain, namely Committee.
Committee meetings are much more structured, more formal and contain much longer
dialogue utterances than meetings from other domains. This led us to understand the key
characteristics in a domain-specific dataset to take into consideration when performing
data augmentation on it. Indeed, if the data is formal and structured with lengthy
content, then augmenting it gives better performance when evaluating on both informal
and formal meetings. The opposite is however not true, as augmenting unstructured and
informal data didn’t lead to an improvement in neither formal nor informal data.

We also observed that paraphrasing the data using GPT affected the performance of
the retriever more than the summariser. This can suggest that the problem with out-of-
domain performance is mainly related to the retriever. A limitation to our approach is
that to validate this hypothesis, we would need to test the summariser on gold spans.

In conclusion, our paper shows that back-translation did not bring any improvements,
compared to GPT which has shown to be a powerful tool that can improve both in-
domain and out-of-domain performance when applying it to carefully selected data.
The improvements we observed with GPT can lay ground to further work using this
model.

5.2 Future Work

For future work, we suggest further exploring the capabilities of GPT for query-based
meeting summarisation. Using the text generation approach instead of paraphrasing
could bring even more variety to the augmented data, but this would require a heavy
manual review process of the augmented data, as explained in our paper. Furthermore,
one could consider using GPT for the retriever and summariser, instead of RoBERTa
and BART. The performance of the resulting model would then need to be evaluated
and used to assess the trade-offs of this technique. Indeed, this would result in a much
larger model that would require large resources to train and use, whereas the approach
we offered can be used on relatively small hardware. In addition, our approach is more
interpretable and precise components can be changed for different needs, which would
not be as feasible with a model using GPT for the locator and summariser. Finally,
there would also be some privacy and confidentiality concerns when using GPT for
predictions, as organisations tend to be protective with their meeting transcripts.

Another avenue for future work is to investigate alternative evaluation metrics that better
capture the nuances of meeting summarization. While automatic evaluation metrics
such as ROUGE have been widely used, they may not always accurately reflect the
quality of a summary. Human evaluation can provide a more comprehensive assessment
of the summary quality (Lloret et al. [2018]), but is more time-consuming and resource-
intensive.

We also suggest exploring the use of domain adaptation techniques to further improve
out-of-domain performance. One approach could be to use transfer learning to leverage
knowledge from a pre-trained model for a specific domain to improve the performance
of a model in another domain (Kouw and Loog [2018]). Another approach would be
to use domain adversarial training, which involves training the model to learn features
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that are domain-invariant, potentially leading to a better generalisation across domains
(Ganin et al. [2016]). Additionally, unsupervised domain adaptation techniques such
as domain adaptive pre-training can be used, where a model is pre-trained on a large
amount of data from different domains and then fine-tuned on the target domain data
(Wu et al. [2021]). Finally, we could explore the use of ensemble methods to combine
models trained on different domains to improve overall performance (Nozza et al.
[2016]), with the training data containing much more variety than if it was trained on a
single domain.
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Appendix A

Additional result visualisations

A.1 Out-of-domain performance gap variations

This section contains figures illustrating the out-of-domain performance gaps before
and after applying paraphrasing with GPT and back-translation. These visualisations
can however be misleading. For instance, Figure A.3 shows that the out-of-domain
performance gap decreased for the summariser. This in indeed the case, but it is not
due to back-translation improving out-of-domain performance, as it is due to back-
translation worsening the in-domain performance, with no significant improvement for
out-of-domain. Hence, by definition, the out-of-domain performance gap decreased.

Figure A.1: Comparison of the out-of-domain gap before and after performing back-
translation when trained on Product for the summariser (left) and the retriever (right).
Each bar represents the magnitude of the difference between the score achieved by
Product (in-domain test set) and the corresponding out-of-domain test sets (Academic
and Committee).
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Figure A.2: Comparison of the out-of-domain gap before and after performing back-
translation when trained on Academic for the summariser (left) and the retriever (right).
Each bar represents the magnitude of the difference between the score achieved by
Academic (in-domain test set) and the corresponding out-of-domain test sets (Product
and Committee).

Figure A.3: Comparison of the out-of-domain gap before and after performing back-
translation when trained on Committee for the summariser (left) and the retriever (right).
Each bar represents the magnitude of the difference between the score achieved by
Committee (in-domain test set) and the corresponding out-of-domain test sets (Product
and Academic).
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Figure A.4: Comparison of the out-of-domain gap before and after performing para-
phrasing with GPT when trained on Product for the summariser (left) and the retriever
(right). Each bar represents the magnitude of the difference between the score achieved
by Product (in-domain test set) and the corresponding out-of-domain test sets (Academic
and Committee).

Figure A.5: Comparison of the out-of-domain gap before and after performing paraphras-
ing with GPT when trained on Academic for the summariser (left) and the retriever
(right). Each bar represents the magnitude of the difference between the score achieved
by Academic (in-domain test set) and the corresponding out-of-domain test sets (Product
and Committee).


