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Abstract
Slay the Spire is a digital roguelike card game that involves building a deck of cards
while progressing through different levels. In this project, we try to replicate some of
the strategies that professional players use for drafting cards. The first algorithm we
propose will try to pick cards in a way that creates synergies which are often present in
good decks. The second algorithm will try to dynamically evaluate card rewards based
on their predicted performance in the future. The effectiveness of the algorithms will be
evaluated, and possible applications to other games and decision-making scenarios will
be discussed.
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Chapter 1

Introduction

Slay the Spire [20] is a popular roguelike deck-building video game developed by
American studio MegaCrit. Roguelike is a subgenre of video games, which typically
involve characteristics such as producedurally generated levels, turn-based gameplay,
grid-based movement, and permanent death of the player character. This means that
every playthrough of a roguelike is independent. However the player can unlock items,
characters, additional levels, which become available in future playthroughs.

1.0.1 Motivation

Building a good deck is one of the most important parts in playing Slay the Spire. It is
a difficult challenge for a human player and an even greater one for a computer. In a
game like chess, it is possible to evaluate a set of neighboring states to decide which
move to make, however in a highly complex game like Slay the Spire, this would not
even scratch the surface of possibilities. Nevertheless, some human players are able to
play the game at an incredible proficiency, reaching high win rates on even the most
difficult settings. Successfully mimicking the decision processs of a human player in
Slay the Spire would give us a framework for applying similar methods to other card
games and decision problems.

1.0.2 Goals

We will only be focusing on the first class - the Ironclad. The goal of the project is
to develop intelligent strategies for one of many parts of the game - picking the best
cards to add to a deck. Consequently, we may not arrive at a solution which is able to
consistently win the game, however, we wish to be able to find similarities between
the algorithm and human reasoning. We would like to be able to compare different
approaches in terms of strengths and weaknesses. Finally, we wish to obtain an agent
which works not only on paper, but one that can be replicated and tested on the real
game.

The main hypotheses which we are putting to the test are:

• It is important to consider synergies between cards in order to build a good deck.

1



Chapter 1. Introduction 2

• Short-term decisions are more important than long-term decisions on a high
difficulty setting.

• By making good short-term decisions, we will be able to construct a deck which
scales well into the more difficult fights of the game.

• We can focus solely on preparing for the most difficult enemies in the game, while
ignoring the easier ones.

1.0.3 Contributions

We will propose two algorithms, based on a bottom-up and top-down approach respec-
tively.

The bottom-up approach will give us an algorithm which is able to build decks with
strong synergies and win conditions. This proof of concept can be extended to consider
more uncommon types of synergies, as well as the interaction between the deck and
other parts of the game, such as relics.

The top-down approach will employ an original framework for evaluating cards. Some
of the traits of the approach are shared by algorithms in Hearthstone research, however,
there are no papers discussing the use of the specific algorithm that we propose. The
card drafting agent will show promise on the highest difficulty setting in the game by
consistently being able to survive act 1 and will be able to occasionally win games
on easier difficulties. The structure of the proposed algorithm is quite general, which
means that it could be applied for other decisions in the game, such as card upgrades
and removals. Similarly, it is possible to apply the same idea to create a deck building
policy for other strategy card games like Monster Train [21] and Griftlands [19].

1.0.4 Structure of the Report

In the remainder of the introduction, we will introduce the reader to the rules and most
important aspects of the game, which we will be referring to throughout the report. In
the background chapter we will explore previous research on Slay the Spire and similar
games. We will examine guides for the game, which will give us an insight into how
good players make decisions. Then we will look at the the tools and mods that have
been developed for the game, many of which will be utilized in our algorithms. Chapter
3 will provide an in-depth explanation the bottom-up and top down algorithms, the
reasoning behind them, and the various decisions made throughout their development.
Furthermore, we will outline the technical setup that was built in order to test them. In
Chapter 4, we will evaluate the performance of the algorithms on different difficulty
settings and analyze the patterns displayed. Finally, in Chapter 5 we will reflect on the
algorithms’ performance, trade-offs, potential applications and future work.
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1.1 The Game

1.1.1 Overview

In Slay the Spire, each playthrough or ”run” begins with the player being given a base
deck of 10-12 cards. The goal is to complete 3 acts, in each act navigating through 16
floors of a procedurally generated map, while modifying the deck by adding new cards
and removing existing ones. There also exists an optional 4th act, which acts as an extra
challenge, but it requires specific conditions to enter and is not necessary to beat the
game. Throughout each act, the player needs to defeat various monsters while keeping
their health above 0.

1.1.2 The Map

As the player navigates through the map (Figure 1.1), they may enter different types of
rooms, which can can be categorized into a few types:

• Monster encounter - the player needs to use their existing deck to defeat some
monsters. Winning the encounter awards the player with some gold, a selection
of up to 1 of 3 random cards and sometimes a potion. Losing the encounter ends
the run. Monsters are chosen from a pool of possible ones, based on the current
act and the number of encounters completed in the act so far.

• Elite Monster encounter - the player needs to defeat a stronger monster, chosen
randomly from 3 elite monsters specific to the current act. Winning the encounter
awards the player with some gold, a relic, which provides a passive bonus for the
rest of the run, and a selection of up to 1 of 3 random cards. Losing the encounter
ends the run.

• Rest Site - allows the player to either heal for 30% health or permanently upgrade
a card of their choice.

• Treasure Room - located at the halfway point of each act, rewards the player with
1 random relic.

• Merchant - allows the player to spend gold to buy some of the available cards,
potions, relics, and/or remove a card from their deck.

• Event - randomly chosen from a pool of events based on the current act, they
usually require the player to choose from a few options, which give the player
some bonus, penalty, or both.

• Boss encounter - located at the penultimate floor of each act. The player needs
to defeat an incredibly difficult monster chosen randomly from 3 bosses specific
to the current act. Winning the encounter rewards the player with some gold, a
choice between 3 rare cards, a choice between 3 boss relics and sometimes a
potion. The floor before a boss encounter is always a rest site.

Some of the locations on the map are unknown. When a player visits one of these
rooms, they may encounter an Event, a Monster, a Shop or a Treasure Room.
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Figure 1.1: Procedurally generated map for act 1. The player chooses a starting room
from one of the 5 rooms at the bottom and works their way up. Various types of rooms
are marked using different symbols.
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At the start of act 1, before proceeding to the 1st floor, the player must choose a blessing
from 2 - 4 possible choices as part of a special event.

1.1.3 Battles Against Enemies

Figure 1.2: Monster Encounter

In encounters, the player uses their current deck to face off against a set of enemies,
trying to defeat them, while minimizing damage taken. Each turn, the player gains a
set amount of energy (3) and draws a hand of cards from their deck. At the end of the
turn, any cards remaining in the player’s hand are placed on the discard pile. When the
deck becomes empty and the player needs to draw cards, the discard pile is shuffled and
becomes the new draw pile.

It is worth noting that there exists another pile of cards called the exhaust pile, containing
cards that are no longer usable for the duration of the encounter. Some cards are
immediately exhausted after playing, others can be exhausted through other card or
relic effects. Ethereal cards are exhausted if they remain in the player’s hand at the end
of their turn. Cards can sometimes be retrieved from the exhaust pile through the use of
specific cards.

During their turn, the player can play cards while they have some in their hand and
have enough energy. The player can always see what actions the enemies intend to
take on their turn, in order to prepare accordingly. After the player’s turn, the enemies
perform actions according to their intents. Intents can be actions such as attacking,
creating block, casting positive status effects on themselves or negative status effects on
the player. The player and the enemies alternate turns until either one of the sides is
defeated.



Chapter 1. Introduction 6

1.1.4 Cards

Note: In this section and for the rest of the report, the word buff refers to some kind of
positive effect, while the word debuff refers to a negative effect.

There are 5 main types of cards:

• Attack - deals damage to an enemy and may have a secondary effect.

• Skill - provides an effect, such as block, utility, buff or debuff. Unlike an attack,
it cannot deal direct damage.

• Power - a permanent upgrade that lasts for the entire encounter.

• Status - these cards can only be added to the deck during an encounter and are
removed from the deck at the end. They are designed to bloat the deck and prevent
the player from drawing beneficial cards, with some of them having additional
negative effects.

• Curse - an unplayable card that is added through an event. Most curses have
negative effects and are designed to bloat the deck, similarly to status cards. They
remain in the deck permanently until removed.

Cards also have different rarities - common, uncommon and rare - which have different
probabilities of appearing in card rewards. The player starts each run with a set of basic
(starter) cards, which cannot be obtained through card rewards.

In this report we will often be referring to cards by names. A list of Ironclad cards,
along with their descriptions is provided in Appendix A, if necessary.

1.1.5 Relics

Relics can be obtained from Elite and Boss combat rewards, Shops, Treasure Chests,
Events. They usually provide a passive bonus for the rest of the run, such as giving
the player one extra energy in combat, increasing the damage of the first attack each
combat, making shops cheaper, etc. Some of the relics come with a negative effect,
which forces the player to take risks and adapt their playstyle.

1.1.6 Status Effects

There are many different status effects in Slay the Spire, which can either be applied
on/by both the enemies and the player. It is useful to know the main types of status
effects.

• Dexterity - can be either positive or negative. Increases/decreases block gained
from cards by X.

• Strength - can be either positive or negative. Increases/decreases attack damage
by X.

• Vulnerable - target takes 50% more damage from attacks. Lasts for X turns.

• Weak - target deals 25% less damage. Lasts for X turns.
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Figure 1.3: Card Reward

• Frail - can only be applied by enemies. Block gained from cards is reduced by
25%. Lasts for X turns.

1.1.7 Potions

Potions are single-use items, that can only be used in combat, with a few exceptions.
Once consumed, a potion grants an immediate effect, such as attack, block, dexterity,
random card.

1.1.8 Difficulty

Ascension mode provides extra difficulty to the game by adding 20 different Ascension
levels. Each Ascension level introduces a modifier on top of the previous ones, which
makes certain aspects of the game more difficult. We will refer to the default game
difficulty setting as Ascension 0 throughout the report and Ascension levels by their
numbers. The modifiers for each Ascension level can be found in Appendix B.



Chapter 2

Background

2.1 Existing Research

There is little existing research relating particularly to Slay the Spire. A paper by
Mikolaj Trojanowski and Johan Andresson [24] analyses the effects of randomness in
the game and how much player skill impacts success at the game. In order to evaluate
a deck, the authors calculated a deck score, based on a card tier list created by the
community. They found that the final deck score in winning runs was twice that of the
non-winning groups. The analysis also showed that even though winning runs had a
higher card count than losing ones, these runs had twice less cards per floor reached.
This means that winners did not prefer having very large decks, because that would give
them less control over the gameplay and which cards they were going to draw.

There has been some more research around deck building in collectible card games
(CCGs), such as Hearthstone [2] and Magic the Gathering [25]. An interesting approach
is presented in [15]. The authors suggest an algorithm that starts with a set of random
decks. At each step, the worst decks are discarded and the best ones are mutated to
create a new set of decks. In order to evaluate decks, the authors used an automatic
Hearthstone battle AI, which is similar in spirit to the tool we will use to run battle
simulations for our top-down algorithm.

In a paper about a learning deck-building algorithm for Hearthstone [7], the authors
explain that deck building algorithms can be divided into two categories - heuristics and
metaheuristic searches. They claim that the former requires intensive human knowledge,
whereas for the latter only Genetic Algorithms (GAs) are used. The algorithm described
in the paper similarly requires to be trained beforehand, but is then able to make fast
deck-building decisions.

Another interesting approach that has been taken in order to analyse deck types in
CCGs is learning contextual similarity between different cards [17]. This allows the
construction of decks that are alike in quality by replacing some cards in one deck with
other cards having similar benefits.

Comparably, in the paper ”Hearthstone deck-construction with a utility system” Stiegler
et al. [23] propose an algorithm which is able to complete decks with suitable cards

8



Chapter 2. Background 9

using heuristics such as Cost Effectiveness, Synergies, Mana Curve and Strategic Deck
Parameters. Some of these heuristics are specific to the game of Hearthstone. According
to the results, the algorithm was able to find sufficient replacements for cards more than
97% of the time.

Although there are some similarities, it is important to understand some fundamental
differences between Slay the Spire and CCGs. CCGs are games between two players,
who use their constructed decks, while in Slay the Spre the player has to battle enemies,
who use relatively predictable sets of moves, instead of card decks. Moreover, in CCGs,
the deck is finalized before the game even starts, while in Slay the Spire it evolves
throughout the run as the challenges evolve simultaneously.

2.2 How Good Players Approach Deck Building

There exist other types of the game’s analysis, other than research. For instance,
an article by Ethan Gach [9], among other things, provides suggestions for some
deckbuilding related aspects of the game. Firstly, it suggests adding some power cards
to the deck early on and picking cards that synergize well with the powers as early as
possible. Additionally, it suggests that based on the options in act 1, the player must
decide to go for one of two deckbuilding approaches. The first one being trying to create
a deck with a powerful core of around 15 cards. It is mentioned that in this approach, it
is important to remove weak cards, such as the basic cards that the Ironclad starts with
(Strike, Defend in particular). The second approach is to create a thick deck which has
less powerful cards on average but is easier/cheaper to achieve and provides some more
flexibility. The article also mentions an important fact – it is sometimes best to skip a
card reward. Forcibly adding weak cards to the deck can decrease its overall power and
dilute the synergy between existing cards. However, it is often not a good idea to skip
card rewards early into act 1, because they will most likely be better than the starter
cards. Finally, the article suggests that the Ironclad cards Armaments, Battle Trance
and Inflame should be picked up almost any time they are offered.

There is also a highly rated guide [13] by over 950 users on the steam game page by
the user Forgotten Arbiter. It goes into detail about the strategy that the author uses to
to get series of consecutive wins (win streaks) with the Ironclad class. The main deck
building aspects covered by the guide are:

• Decks should be defense-oriented, only containing a minimum amount of offen-
sive cards required to win fights.

• Players should keep the deck small, only taking as many cards as they can upgrade.
In order to achieve this, card removals should be utilised, removing Strike cards
first, followed by Defends.

• Upgrading Whirlwind, True Grit and Body Slam first, generally followed by
powers, utility skills, defensive skills and finally attacks.

• A spreadsheet [12] is included with the guide, listing the priority of different
cards in each act. The spreadsheet outlines 3 cards as win conditions, around
which a deck must be focused around. These cards are Limit Break, Barricade,
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and Demon Form. Importantly, the spreadsheet mentions that these cards should
only be picked in act 1 if the player can afford to have a dead card in their deck,
as they don’t provide much value in the beginning of the game, however these
cards become the top priority in the second and third acts.

It is not mentioned explicitly, which ascension level this guide targets. It is quite
unlikely (but not impossible), that the win streaks were obtained on ascension 20, as a
win streak of 16 runs is mentioned, which is extremely difficult to achieve even for the
most skilled Slay the Spire players.

Concerning Ascension 20 in particular, an article by Harry Alston [16] highlights the
various aspects that are crucial to master in order to win on the most difficult setting.
The author recommends to ”build a deck that deals with your short-term goals and
scale it later”. These short term goals are most often either an elite or boss battle in the
current act, which can end the run if the player is not prepared. However, it is important
to try to find opportunities to add cards that provide scaling, which means improving
the ability to generate block, gain attack, draw cards or similar.

2.3 Data-Based Ironclad Card Tier List

An online tier list [1] has been made for Ironclad (and other character) cards, based on
data collected from thousands of Ascension 17+ runs. It provides a score for each card
based on the act it is offered in. The scores for cards are calculated based on their win
rate. What is noticeable, is that all cards have relatively similar scores for act 1, but the
score disparity is much more clear for act 3.

2.4 Mods

Most of the existing tools for Slay the Spire are in the form of mods. In general, the term
mod, which is short for modification, refers to user created in-game content which may
change or improve various aspects of the game. Mods for Slay the Spire can be loaded
using the ModTheSpire [18] mod loader. Steam - one of the most popular video game
digital distribution services allows users to install ModTheSpire and other mods easily
from the game’s Steam workshop page. However, it is also easy to build mods into
JAR files manually from source code, which is particularly useful for making custom
changes to the mods. Additionally, ModTheSpire provides the @SpirePatch annotation,
which can be used to make changes to methods inside the mod’s or even the game’s
source code.

For the purpose of building a Slay the Spire AI, the following mods are useful:

• BaseMod [8] provides an extra layer on top of ModTheSpire’s low-level API to
make the creation of mods easier. Most of the other mods require this mod as a
dependency.

• CommunicationMod [10] provides a protocol for allowing another process to
control the game. The command for launching the process must be specified in
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a configuration file. The process sends commands to the game using standard
output and receives a JSON representation of the current game state whenever
it is determined to be stable (no longer changing without external input). The
author of this mod has also created a simple AI in python called spirecomm [11].
Spirecomm works by listening for game state notifications from Communication-
Mod. After each received message it calculates and sends the action to be played
back to the game. It makes decisions based on simple heuristics and can rarely
win Ascension 0 runs.

• SuperFastMode [22] adds the possibility to speed up the game by up to 1000%
by accelerating bottleneck animations and actions.

• LudicrousSpeed [4] is a Slay the Spire mod that allows a calling library to
execute execute commands very quickly for use in AI projects. It is crucial for
time-efficiency reasons.

• STSStateSaver [6] allows the creation and loading of in-battle save states. It
extends the base game saving functionality, which only allows to save and resume
the game from the start of a battle.

• scumthespire [5] is a battle AI mod, which uses a search-based algorithm to
simulate possible sequences of moves and find one that ends the combat with
the most remaining health. The mod utilises a server, which also runs a separate
instance of the game and must be launched by the user either via command line or
UI. The client (game) sends a request to the server to process a battle. The server
then calculates a good sequence of moves and sends the sequence of commands
back to the client. The commands are then performed in the game. The mod
makes use of the State Saver mod to revert to previous states during the search
process, while the Ludicrous Speed mod enhances the processing speed. Battles
take up to a few seconds to process. Notably, the sequence of moves generated
by the algorithm is not always optimal, especially in later parts of the game, due
to the very large search space.

• CommunicationModExtension [3] extends the list of commands supported
by the CommunicationMod, by adding savestate and loadstate commands from
STSStateSaver mod.
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Figure 2.1: Steam workshop page for Slay the Spire, from where users can install mods
for the game

Figure 2.2: The in-game mod menu, where mods can be configured and the external
process can be launched to interact with the communication mod.
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2.5 Decompiling the Game

In order to develop mods or patches for the game, it is important to understand how the
different classes in the game’s source code work. The source code can be obtained by
decompiling the game’s JAR using a Java decompiler such as JD-GUI.

2.6 Headless version of the game

Alternatively, there exists a headless version of Slay the Spire, called sts lightspeed
[14] written in C++ 17, which can be compiled and played in the command line. The
project supports everything necessary for playing the Ironclad class. According to the
description, it 100% accurately mimics the randomization of the real game and it can
perform 1 million playouts in 5 seconds using 16 threads. Additionally, it contains
an implementation of a Monte Carlo tree search algorithm for the battles. There is
work in progress for integrating this project with CommunicationMod, however it is not
currently usable.



Chapter 3

Methods

We consider two main approaches to constructing a deck, which differ in the way we
evaluate each card reward. In a bottom-up approach we consider how useful a card
would be, given the current state of the character. A top-down approach considers
possible future states of the deck and evaluates card choices based on how likely they
are to lead to one of the strong decks.

Why do we explore these approaches in particular? We could instead use machine
learning to train a model on data collected from runs of human players. However, one of
our goals was to create an algorithm which draws inspiration from the human decision
process. Moreover, there is no one correct way of playing the game. Different players
use different strategies and favour certain cards, which means that it would be difficult
for a model to converge to a consistent strategy.

3.1 Bottom-up approach

The primary challenge in developing an effective deck building policy via a bottom-up
approach is the need to address a multitude of diverse factors. These could be, but
are not limited to, the current deck state, relics, player health, map options, gold, act
boss. In this approach, we will focus only on the current deck and the current act,
because these are likely the most important things to consider. Additionally, it will
allow us to more easily see the logic behind decisions and keep the algorithm from
being overloaded with various conditions/heuristics.

We build on top of the existing Spirelogs Ironclad card tier list. Note that the Spirelogs
tier list essentially consists of three different tier lists, for each of the first 3 acts.

Why is it not a good idea to just pick cards based on the tier list? The reason is that
a card’s value can greatly differ depending on what other cards are present in a deck.
Consider the following scenario:

We are on act 2, our deck consists of the starter cards, as well as Evolve, 2 copies of
Power Through, 2 copies of Wild Strike and 2 copies of Reckless Charge.

Now we are offered a choice of either adding Reaper or Fire Breathing to our deck.

14
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Figure 3.1: The in-game mod menu, where mods can be configured and the external
process can be launched to interact with the communication mod.

If we just look at the Spirelogs tier list, we may think that Reaper (score 84) is clearly
a better card than Fire Breathing (score 29). However, considering that the cards in
our deck generate a lot of status cards, Fire Breathing would be an extremely valuable
addition. On the other hand, Reaper is a very weak card on its own, and we do not have
ways to generate strength, which would make the card more powerful.

3.1.1 Synergies

This motivates an approach that tries to add cards in a manner that creates synergies in
our deck. However, this is not a very easy task. Cards have various different effects,
which makes for a lot of cases that we would need to consider. In order to simplify
the problem, we will define 4 groups of synergistic cards (synergy classes) and try
to encourage our agent to achieve these synergies. Experienced Ironclad players will
likely recognize these synergy classes, as they commonly make up the core of winning
Ironclad decks. The synergy classes we define are:

1. High Strength Synergy This class is made up of cards that either produce
strength, or greatly benefit from it.

Strength generating cards include Demon Form, Flex, Inflame, Spot Weakness
and Limit Break.

Cards that uniquely benefit from strength include Heavy Blade, which becomes a
reliable high-damage attack, and Reaper, which provides damage and sustain by
healing the Ironclad based on damage dealt.

Other cards that synergize well are multi-hit attacks like Sword Boomerang, Twin
Strike, Pummel and Whirlwind.

2. High Block Synergy This class of cards utilizes the Barricade power to retain
block between turns.

Cards that generate a lot of block, like Impervious and Power Through synergize
very well with Barricade and combined with Entrench, the Ironclad can build up
enough block to negate all enemy attacks.
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Body Slam allows the player to utilize block to cheaply deal high damage, whereas
Juggernaut provides a way to deal consistent damage to enemies.

3. Exhaust Synergy Corruption is a centerpiece of this synergy class, because it
is a very powerful card, which allows the Ironclad to cast skills for free, at the
expense of them being exhausted.

Additionally, cards that add benefits to exhausting, such as Dark Embrace, Feel
No Pain and Sentinel make cards with this effect more useful.

Exhume also works well here, since it allows to pick and play an exhausted card
again.

4. Status Synergy Cards like Wild Strike, Power Through, Reckless charge and
Immolate provide a stronger effect than other cards of the same cost, at the
expense of filling up the deck with unusable status cards.

The Evolve and Fire Breathing powers mitigate the negative effects of these cards
by improving card draw and damage.

Second Wind and Fiend Fire allow the player to remove unusable status cards for
lots of block/attack.

The full list of cards for each Synergy class can be seen in the table.

Synergy Classes
High Strength High Block Exhaust Status
Flex Barricade Corruption Evolve
Demon Form Body Slam Dark Embrace Wild Strike
Limit Break Entrench Feel No Pain Fire Breathing
Spot Weakness Impervious Sentinel Power Through
Inflame Power Through Exhume Second Wind
Pummel Juggernaut Fiend Fire
Twin Strike Immolate
Whirlwind Reckless Charge
Sword Boomerang
Reaper
Heavy Blade

Obtaining enough cards from either of these synergy classes can be enough to achieve a
winning Ironclad deck.

3.1.2 Algorithm

When considering a card reward, we will use the following evaluation scheme for new
cards to encourage the formation of synergies:

1. Suppose the card we are evaluating is C.

2. The score for C is initialized to a base value equal to its Spirelogs score for the
current act, lets call it BASE(C).
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3. We define a synergy multiplier MULT , which is a real value in the range (1,∞).
We will use MULT = 1.5. Picking a low value of MULT would not make our
algorithm very different from one that simply follows the Spirelogs tier list, due
to the high score variance within the list. On the other hand, selecting a value
of MULT greater than 2 would be impractical since it would imply that a card’s
quality is more than twice as good due to a single synergy.

4. The score is multiplied by MULT k, where k is the sum of the number of cards in
each of the synergy classes that C is in.

5. Hence the adjusted score for C is BASE(C)×MULT k.

As a toy example, lets assume that we are on Act 2 and our deck currently contains only
the cards Limit Break, Reaper, Pummel and Wild Strike. The card reward consists of
Demon Form, Power Through and Disarm.

1. We initialize the base scores from Spirelogs scores. BASE(Demon Form) = 24,
BASE(Power T hrough) = 43, BASE(Disarm) = 60.

2. Count the number of existing synergies for each card. k(Demon Form) = 3,
because Demon Form belongs to the High Strength synergy class, just like Limit
Break, Reaper and Pummel. k(Power T hrough) = 1, because Power Through
shares the Status Synergy class with Wild Strike. k(Disarm) = 0, because it
doesn’t synergize with anything in the deck.

3. We calculate the adjusted scores:

Score(Demon Form) = 24×1.53 = 81.

Score(Power T hrough) = 43×1.51 = 64.5.

Score(Disarm) = 60×1.50 = 60.

4. We pick Demon Form, as it has the highest adjusted score (81 > 64.5 > 60).

As we can see, our evaluation of a card scales exponentially with the number of synergies
that are already in the deck. Logically, this makes sense. Having multiple cards that fit
well together usually allows for more complex interactions. Moreover, it becomes more
probable that we will be able to draw and play cards in a way that exploits the benefits
of their synergy. Since the game has random elements, unlucky card draws may be the
difference between a win and a loss.

3.1.3 Early Game Insurance

There is one more important thing that we need to do. While it is important to consider
synergies, we also need to survive the first act. In order to accomplish this, we need
to give some priority to cards that can increase our blocking capabilities and damage
output in the short term, even if they are not very valuable in the long term. So we will
create an extra 5th class of Early Priority cards.
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Early Priority
Pummel Strike
Rampage
Bludgeon
Hemokinesis
Shrug It Off
Cleave
Wild Strike
Carnage

As we can see, these cards are an improvement over the starter cards, but will likely not
provide much scaling to our deck.

How should we adjust our evaluation formula? If a card belongs to early priority cards,
we will simply adjust its evaluation using an extra multiplier EP, which will be a value
in the range (1,∞). We will use EP = 1.75. The reasoning for this is again related
to the high variance in Spirelogs tier list. We want to very strongly encourage early
priority cards to be picked in act 1, unless we are offered cards which are vastly superior.
This approach is by no means perfect, but it will hopefully increase our algorithm’s
survivability in the first act.

Hence our final formula for evaluating cards is:

Score(C) =

{
EP×BASE(C)×MULT k, if C is an Early Priority card
BASE(C)×MULT k, otherwise

3.2 Top-down approach

If we consider how a skilled player plays the game, a bottom-up approach only accounts
for a part of the decisions that go into making a card choice, mainly the current state
of the character. We propose an innovative idea for a top-down algorithm, which will
be able to implicitly account for the considerations that a human player would take.
Neither this idea, nor similar ideas have been explored yet in Slay the Spire research,
mods, or tools.

If we think very abstractly at what we need to do to win a Slay the Spire run, it simply
boils down to winning all of the enemy combats. Hence all of our decisions in game
should in some way lead to minimizing our health loss in enemy battles. We will base
our algorithm around this observation.

3.2.1 Algorithm

Assume that we are currently considering a card reward. The algorithm will use the
following subroutine:

1. Denote c as the number of cards in the current card reward. Lets pick a number N
- the number of card rewards we will look at into the future, including the current
card draw. We will also call this the lookahead.
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2. Since we don’t know what card rewards we will receive in the future, we will
mimic the game’s random number generation algorithm to produce N −1 imagi-
nary ones.

3. We then select an enemy encounter, which would be likely after this many card
draws.

4. We will consider all ways of selecting an option (picking one of the cards or
skipping) at each of the card rewards.

5. For each combination of options, we will simulate a battle against the enemy
encounter pretending that we start with full health, and we will write down the
amount of health remaining after.

6. As a result, we will have produced (c+1)N battle results. We will represent each
result as a key-value pair, where the key is the option we picked at the first card
reward (the one we are actually offered in game), and the value is the amount of
health remaining after simulating the encounter.

In step 2 we need to decide what type of card rewards we are going to generate. Card
rewards in the game are rewarded based on the type of encounter - normal, elite or boss.
For our subroutine, we will only restrict ourselves to generating normal combat rewards.
The reasons for this are:

1. Normal combat rewards are the most common.

2. All of the card rarities have a chance of appearing in a normal card reward.

3. The base probability of each card type appearing in a normal/elite combat reward
are very similar. They don’t differ by more than 10%.

4. Even though boss combats are unique because they contain 3 rare cards, they are
only awarded once per act. Moreover, they only impact our deck in the next act,
whereas we only focus on the current act.

5. It allows us to isolate deck building from other aspects of the game. In particular,
we may not know for sure what the future card reward types will be. This could
happen if the map traversal logic is decided step-by-step or is isolated from the
deck building logic. We also cannot predict whether future unknown locations
will contain monster encounters (and hence card rewards).

How can we effectively use the results from this subroutine? Lets use the average
of the cnt best results for each starting card as a representation of how good the card
pick is with respect to the set of card rewards that we were given. We should only
consider small values for cnt, as an optimal agent would be able to draft in a way
that only leads us to (one of) the best deck states. This gives us c+1 different values
avg0,avg1, ...,avgc+1.

We can also extend the subroutine to test the current combination of options on not just
one, but many different enemy encounters. We first calculate the amount of remaining
health after each battle. Then we write down the minimum remaining health after any
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encounter as he score for this combination. To get the final score for one of the initial
options, we use the same averaging as before.

The pseudocode (similar, but not 1:1 with python) for the modified subroutine looks as
follows:

e x t r a c a r d s = [ ]
c a r d r e s u l t s = d i c t ( )

# a l l c a r d r e w a r d s c o n t a i n s a l l card rewards
# t h e r e a l card reward i s a t i n d e x 0
# o t h e r card rewards are g e n e r a t e d ones

def r e c s e a r c h ( c u r p i c k , m o n s t e r s ) :
i f c u r p i c k == l e n ( a l l c a r d r e w a r d s ) :

# g e t c a r d s t h a t were added ( i g n o r e s k i p s )
a d d e d c a r d s = [ ]
f o r card name in c u r e x t r a c a r d s :

i f card name != ” ” :
a d d e d c a r d s . append ( card name )

# e v a l u a t e s e l e c t i o n
m i n h e a l t h = 1000000000
f o r mons te r in m o n s t e r s :

e n d h e a l t h = s i m u l a t e b a t t l e (
mons te r name = monster ,
e x t r a c a r d s = a d d e d c a r d s )

m i n h e a l t h = min ( m i n h e a l t h , e n d h e a l t h )

c a r d r e s u l t s [ e x t r a c a r d s [ 0 ] ] . append ( m i n h e a l t h )
e l s e :

f o r card name in a l l c a r d r e w a r d s [ c u r p i c k ] :
e x t r a c a r d s . append ( card name )
r e c s e a r c h ( c u r p i c k + 1 , m o n s t e r s )
e x t r a c a r d s . pop ( )

# s k i p
e x t r a c a r d s . append ( ” ” )
r e c s e a r c h ( c u r p i c k + 1 , m o n s t e r s )
e x t r a c a r d s . pop ( )

Looking at the average values obtained from a single subroutine might already give us
some idea of which options are the best, however, to improve accuracy, we can simply
run the subroutine multiple times and average the results to receive our final scores for
each option. This gives us a complete algorithm for evaluating rewards.
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Figure 3.2: Illustration of an iteration of the top down algorithm for lookahead 3. For each
combination of options, we simulate it against a set of enemies and find the minimum
health remaining out of all of the encounters. For the chosen options in the example
(Pommel Strike + Inflame + Skip), the minimum remaining health is 49 after the fight
against 3 Sentries. Note that if we picked the hardest encounter for our deck beforehand,
we would only test on that encounter.

3.2.2 Optimizing Execution Speed

Unfortunately, in practice with our setup (see Setup section), an algorithm like this
is very slow. We will propose some efficiency improvements, which will allow us to
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test a single Ironclad run in around 3 hours on average. So how can we optimize this
algorithm while still retaining the essence of it?

Let’s take a closer look at monster encounters. Both elite monster and boss encounters
are a significantly more difficult challenge than normal monster encounters. While boss
encounters are unavoidable, good players will also try to fight many elites during their
run, since they provide relics, which may significantly strengthen the character. Hence
we will not lose much accuracy in our evaluation if we only simulate battles on elites
and bosses. Now, a natural way to pick an encounter is to pick elite battle when we are
in the first part of the act and boss battle when we are in the second half. This makes
sense, because a boss battle will likely be too difficult at the start of the act, whereas
elites might not be a big enough challenge in the second half, assuming that our deck is
improving smoothly.

Unfortunately, this might still be slow. We can get a threefold improvement by first
simulating an encounter against all relevant elites/bosses depending on whether we are
in the first or second half of the act and then picking the hardest of these encounters to
run our actual simulations on. As a result of this, we will lose some accuracy, but the
essence of our algorithm will remain the same.

As far as parameters go, we will be using lookahead 3 in our implementation. The
number of combinations we need to evaluate is exponential in terms of the lookahead
and this will already give us 43 combinations (16 for each option), assuming that we
don’t have any relics that affect the number of cards in a reward. To obtain the score for
an option with respect to a set of rewards, we will average the 4 best out of 16 scores
from our subroutine. In total, we will only be generating 5 imaginary scenarios, i.e.
doing 5 runs of the subroutine per card reward. We do this in order to be able to evaluate
a reward in reasonable time (which still takes a few hours for a whole run). With better
computational resources or evaluation framework we would consider more scenarios,
as this would give us a more accurate average, but in order to evaluate the algorithm as
a proof of concept, 5 will be enough.

To summarize the whole algorithm (including optimizations):

1. Consider either current act elites (if we are in first half of the act) or current act
bosses.

2. Find the hardest encounter by simulating a battle against all relevant elites/bosses.
We will use only this encounter for simulations in the subroutine.

3. Perform the subroutine 5 times, each time generating 2 extra imaginary card
rewards.

4. For each subroutine, average the scores of the 4 best combinations (out of 16) to
obtain a score for each option in the card reward.

5. Average the scores from all 5 subroutine runs for each option to obtain its final
score.
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3.2.3 Special Cases and Considerations

• Because boss battles are the last encounter of each act, we will only be able
to use the reward in the next act. Because of this, it makes sense to simulate
battles against the elites of the next act. However, we need to account for the fact
that we also receive a powerful relic reward after the boss card reward. In my
exploration I found that without this relic, the simulations produced poor results
and often even resulted in skipping the card reward. I fixed this by increasing
maximum energy by 1 for the simulations, which accounts for the relic reward,
which often gives a similar in-battle effect. This makes our simulations more
accurate, especially considering that rare cards are often slower or consume more
energy.

• Potion usage might affect the end health of a battle. A good deck that uses no
potions may end the simulation with less health than a deck that uses all potions.
In order to avoid this, we will always perform simulations without potions. Note
that an alternative would be to modify the Battle AI, but we treat the Battle AI as
a black box algorithm, because it is out of the project scope.

• Some relics might also lead us to getting inaccurate card scores. For instance a
deck that consumed Lizard Tail during simulation might get a better end health
score than a deck which did not. With the relic Meat on the Bone, the best strategy
might be to end the battle just below 50% health in order to heal. However, this
can cause two decks of different strengths to get a similar score. We will run
simulations without these relics whenever they are present in our inventory.

• In each act we know for sure which boss we are going to face, so does it make
sense to test our future decks on other bosses as well? We will consider all bosses
in acts 1 and 2, because this will prepare our deck for a more diverse range of
enemy combats and make it stronger overall. However, in act 3, there is no need
to simulate against the other bosses, because the boss will be the last encounter
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of the game (unless the player somehow acquired the key to act 4, which is out of
our control).

• We will not consider the card ’Clash’ when evaluating card rewards. This card
is an attack, which can only be played if all other cards in hand are attacks. It
is considered by many to be the worst Ironclad card and has a score of 0 on the
Spirelogs tier list. But the real reason is that it works poorly with our algorithm.
When the card is being evaluated and our current deck is small, it is quite easy
to find ways to play this card, so the algorithm thinks that it is good. However,
as the deck gets bigger, there are almost no opportunities to play the card, so it
basically becomes an extra curse in the deck.

3.3 Setup

So far, we’ve only described the theoretical side of the algorithms. In reality, we need
to build a framework which will allow us to implement and test the described deck
building algorithms in real Slay the Spire runs. The difficult part was building the
required setup for the top-down algorithm, due to the fact that similar deck building
algorithms have not been implemented by others in the past. Some parts of the setup
were relevant to the bottom-up approach as well, which was otherwise not too difficult
to implement.

We will make use of the CommunicationMod, which allows an external program to
communicate with the game by sending commands and receiving game state changes.
Additionally, spirecomm is a good starting point for us, because it is a functional Slay
the Spire agent, and it takes care of other decisions in the game, which are out of our
project scope. However, we are still missing various components.

1. We need a strong Battle AI. For the top-down algorithm, this is a crucial part,
because otherwise we will not be able to run accurate simulations.

2. We need to be able to perform simulations on a custom encounter with extra
cards.

3. We need to be able to invoke these commands from spirecomm.

We will achieve this by making use of and modifying some existing mods.

Figure 3.3: Interaction between spirecomm and the game using CommunicationMod
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3.3.1 Custom States

We will make use of the existing STSStateSaver mod. As explained in the background
chapter, this mod allows us to create and load in-game states. We will extend the mod
by creating a method with the signature

p u b l i c vo id l o a d C u s t o m B a t t l e (
S t r i n g monsterName ,
A r r a y L i s t <A b s t r a c t C a r d> e x t r a C a r d s ,
i n t p l a y e r H e a l t h ,
i n t e x t r a E n e r g y )

which mimics most of the logic from the method

p u b l i c vo id l o a d S t a t e ( )

which is used for loading saved states. In our custom method, we will apply the changes
indicated by the parameters. We will distribute the extra cards randomly throughout the
deck and refresh our hand with a new card draw. We also need to carefully make sure
that all relic effects are consistent with the newly loaded encounter. For instance, some
relic effects only apply in elite battles - Sling of Courage and Preserved Insect, and
some only apply in elite and boss battles - Slaver’s collar. This is important to consider
in cases such as when we want to load an elite enemy encounter onto a saved normal
enemy battle state.

3.3.2 Battle AI

As mentioned in the background chapter, there already exists a strong battle AI mod
called scumthespire, which uses STSStateSaver. Normally, it requires a separate
instance of the game running in server mode, which does all of the calculations and
sends them back to the client to be executed. The autobattler is invoked by clicking
a designated button during an encounter. We will make use of scumthespire for both
regular battles and battle simulations.

For regular battles, we introduce some custom methods. The most important ones are:

• p u b l i c vo id c a l c u l a t e B a t t l e ( )

This is the method to be called by CommunicationMod when we want to calculate
a battle.

• p u b l i c vo id s e n d S t a t e N o P l a y ( )

This method is called from calculateBattle after some boilerplate code and
initializations. It sends the current in-battle state to the server which returns a
JsonArray containing the command list back to the client. We then parse and
write the commands to a file which can be read by spirecomm. We cannot
simply execute the commands, because it would interfere with the execution flow
of spirecomm, which would still receive game state updates and try to find an
appropriate action.
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We also introduce some new methods for custom battle simulation. The most important
ones are:

• p u b l i c vo id s i m u l a t e C u s t o m B a t t l e ( )

This is the method to be called by CommunicationMod when we want to simulate
a custom battle. It accepts no parameters, because all of the properties will be
written to a file by spirecomm.

• p u b l i c vo id s e n d C u s t o m S t a t e ( )

This method works similarly to the general one. It sends a game state to the
server, which applies the custom changes by using the loadCustomBattle method
from STSStateSaver and performs calculations. In this case we are not concerned
about the command list, just the remaining health after the battle, which is written
to a file that can can be read by spirecomm.
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It is important to note that if we try to apply custom battle changes to the card reward
screen, it will not work. We need to instead save an in-battle state at the start of the
encounter and apply our changes to that state.

3.3.3 CommunicationMod

The changes related to CommunicationMod are relatively simple. We just add custom
commands for starting the server, calling calculateBattle and simulateCustomBattle
methods. We name the commands ”startserver”, ”calcbattle” and ”simulatebattle”.
CommunicationMod can be extended by either modifying the source code directly
or by patching the relevant CommunicationMod code using @SpirePatch annotation,
similarly to how it is done for save state commands in CommunicationModExtension.
To make our life easier, we also implement a fourth command which allows us to
resume a game from save file when starting spirecomm, however we will not describe it
here as it is not in the project scope.

3.3.4 Spirecomm

Finally, we need to make use of the new functionality in spirecomm. We will start the
server once before executing any other commands. We wait for the server to be fully
initialized by listening to a flag which will be set to true inside a predefined file. Inside
an encounter, we will use the ”calcbattle” commmand, which will write the command
sequence into a file. Then we will simply send these commands to the game one by
one. When offered a card reward, the top-down algorithm will be able to utilise the
”simulatebattle” command to test custom encounters and read the remaining health from
a file.



Chapter 3. Methods 28

3.3.5 SuperFastMode

We utilised the SuperFastMode mod to speed up animations and actions in Slay the
Spire runs. It did not make as much of a difference on the top-down algorithm, as
simulating battles was a bigger bottleneck, but it made playing out runs slightly faster.

3.3.6 Notes

Unfortunately, due to some animations that happen during Hexaghost battle, it is not
possible to load a custom state into server and simulate battles against this act 1 boss.
However, it is still possible to use the battle AI to fight Hexaghost in a real encounter.
Luckily, no other bosses or elite enemies caused issues. Our top-down algorithm will be
slightly worsened by this fact, but it is still very usable and there should be no problems
past the first act.

Additionally, it’s important to note that the scumthespire battle AI does not perfectly
mimic how a human player would play. Due to the fact that it utilises loading and
saving of states, it will implicitly get information about some random factors in the
game. Effectively, the battle AI will more or less ’know’ how cards are ordered in a
player’s deck. This does not make the AI unrealistically good. In fact, it still does not
perform as well as a human when given a complex deck and difficult encounter. When
evaluating the top-down algorithm we will need to keep in mind that it may be slightly
biased towards cards with random effects.
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Evaluation

In this chapter we will evaluate the performance and decision process of the two
algorithms. Playing out Slay the Spire runs with the algorithms was a time-consuming
process. The bottom up approach took about 10 minutes per a victorious run, whereas
the top-down algorithm was much slower, taking as much as 3 hours. Because of this,
the amount of statistical analysis we will be able to do is very limited, especially for the
top-down approach. The algorithms should mostly be viewed as a proof of concept and
we will not be evaluating the execution speed, as it is something that can be improved
with a different testing setup. Nevertheless, we will be able to do some meaningful
analysis by taking a look at the decision process and other specifics, which will give us
an insight into how good the algorithms are.

4.1 Performance on Different Ascensions

In this section we examine how well the algorithms perform on different Ascension
levels. Firstly, let’s look at the performance of the bottom-up algorithm, which we were
able to get a moderate amount of results for. We simulated runs on Ascensions 0, 10
and 20, by using Spirecomm with the bottom-up deck-building algorithm. Note that by
Ascension 0, we refer to the base game difficulty without any Ascension modifiers. The
results can be seen below. The bar plots depict the number of runs that ended on act
1/2/3/won for each of the 3 different Ascension settings.

29
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As expected, the best results were achieved on Ascension 0, whereas Ascension 20 was
by far the most challenging setting. The results for Ascension 0 and 10 are surprisingly
not very different, with the most notable distinction being the 2 extra wins achieved on
the easiest setting.

Why is there such a small difference between Ascension 0 and Ascension 10? Firstly, it
might be due to the fact that we were only able to test on a moderately large sample size
of 20 runs, which does not give us a perfectly accurate representation of the difference
in difficulty. Secondly, the first Ascension modifier, which causes approximately 60%
more elite enemies to spawn on the map, may be a blessing in disguise. By fighting
more elites, we are able to get more relics, which makes us significantly stronger and
able to survive longer.

We can see how harsh the difficulty is on Ascension 20. None of the runs were able
to reach act 3 and only half of the runs reached act 2. It is expected that the algorithm
would be unable to win any runs on Ascension 20, because it requires making very high
level decisions for all aspects of the game. However, the fact that the agent was often
defeated so early could mean that our algorithm was not picking cards well enough to
deal with short-term problems.

Let’s take another look at the results, but this time with a bit more granularity.

Note that floors 16, 33 and 50 are boss battles, which explains why so many runs ended
there.

In the plot, we can see more clearly that a larger amount of runs successfully reached
act 2 and 3 bosses on Ascension 0 than Ascension 10.

We can also see that a lot of the Ascension 20 runs actually reached the act 1 boss, but
the deck was not good enough to beat it. In theory, our top-down algorithm should
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usually be able to get further on Ascension 20, since it evaluates cards based on their
usefulness in the short term. Playing out all 20 runs would take a very long time, but
we were able to get results for 10 of the runs.

Run number Floor reached (bottom-up) Floor reached (top-down)
1 22 27
2 16 18
3 16 22
4 16 21
5 16 33
6 16 16
7 7 16
8 16 24
9 23 33
10 33 33

As we can see, the top down approach performs consistently better on Ascension 20,
which means that the algorithm utilises the evaluations well for short term decisions.
The most drastic difference is the increase from floor 16 to 33 (act 1 to act 2 boss) in
run 5. The bottom-up algorithm entered the Slime Boss fight with 75/75 health and lost.
The top-down algorithm entered the fight with 74/75 health and ended with 45. Let’s
see which cards the two algorithms picked on act 1 to determine why the top-down
algorithm performed so much better.

Firstly, Neow granted Reaper as a random card reward at the start of the game. The
card rewards offered in act 1 were:

1 Bloodletting Perfected Strike Shrug It Off
2 Shrug It Off Wild Strike Whirlwind
3 Heavy Blade Shrug It Off Entrench
4 Cleave Flex Bludgeon
5 Havoc Flex Thunderclap
6 Cleave Carnage Flame Barrier
7 Rupture Clash Reckless Charge

The bottom-up algorithm chose Shrug It Off, Shrug It Off, Shrug It Off, Bludgeon,
Havoc, Carnage, Reckless Charge.

The top-down algorithm chose Perfected Strike, Wild Strike, skip, Flex, Havoc, Flame
Barrier, skip.

As we can see, the top-down algorithm added a nice variety of cards. Wild Strike is a
source of cheap damage and it synergizes with the effect of Perfected Strike, which is a
good damage option for a higher cost. Flex amplifies the damage output with the only
drawback being that it takes up a space in the hand. Flame Barrier is a good option for
shielding strong attacks and dealing some extra damage, whereas Havoc is a situational
card that can exhaust some of the worse cards. Skipping card rewards 3 and 7 makes
sense, except arguably picking Shrug It Off could have been a good idea, as none of the
other cards provide much additional value in the short term.
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The problem with the bottom-up deck is that it does not have a very reliable damage
source. The amount of Shrug It Off cards is excessive and does not help in fights that
require high damage output, like Slime Boss. On the other hand, a card like Bludgeon is
luck dependent and is only good on certain turns, since it uses all of the player’s energy,
making them unable to block on the same turn. Bludgeon is strong when played on a
vulnerable enemy, but the only way to add vulnerable is through Bash, which is not a
very reliable setup. Reckless Charge is a pretty good card, but it can bloat the deck with
generated status effects. Carnage is probably the best attack card, but it is not cheap and
must be played when drawn, due to the Ethereal effect (exhaust if unplayed).

As we can see, the top-down algorithm added cards that provided more versatile and
reliable damage options, which is why it was much more successful on the Boss fight.

We also provide results of some runs by the two algorithms on some lower Ascensions.
Note again, that the sample size is not very large due to the long running time of the
top-down algorithm.

Ascension Floor reached (bottom-up) Floor reached (top-down)
0 31 Victory
5 Victory Victory
5 16 16
5 Victory Victory
5 Victory Victory
10 42 33
10 50 50
10 33 33
10 33 22

As we can see, the performance of the two algorithms is very similar. The bottom-up
approach outperforms the top-down one in two runs, whereas the opposite is true in one
of the runs. The lower difficulty setting does not punish bad short-term decisions made
by the bottom-up approach as well as Ascension 20, which is why the algorithm is able
to create decks with stronger scaling.

4.2 Card Pick Rates

Below is a table detailing the pick rates of different cards when using the top-down
algorithm. It is made of a small sample size of Ascension 0-10 runs. Nevertheless we
might still be able to draw some conclusions from it.

Card Type Card Name Offered/Picked Pick Rate
Skill Battle Trance 3/3 100%
Attack Feed 1/1 100%
Skill Power Through 3/4 75%
Skill Ghostly Armor 6/9 66.6667%
Attack Double Tap 3/5 60%
Skill Spot Weakness 4/7 57.1429%
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Power Inflame 3/6 50%
Attack Fiend Fire 2/4 50%
Attack Hemokinesis 1/2 50%
Attack Carnage 4/8 50%
Skill Burning Pact 2/4 50%
Attack Offering 1/2 50%
Power Berserk 2/4 50%
Attack Twin Strike 4/8 50%
Attack Pommel Strike 8/17 47.0588%
Attack Blood for Blood 3/7 42.8571%
Skill Armaments 6/15 40%
Attack Exhume 2/5 40%
Power Metallicize 1/3 33.3333%
Attack Wild Strike 4/12 33.3333%
Skill Shrug It Off 3/9 33.3333%
Attack Pummel 1/3 33.3333%
Attack Clothesline 5/15 33.3333%
Skill Disarm 1/3 33.3333%
Power Dark Embrace 1/3 33.3333%
Skill Entrench 1/3 33.3333%
Attack Thunderclap 5/16 31.25%
Attack Iron Wave 4/13 30.7692%
Skill Second Wind 3/10 30%
Attack Perfected Strike 2/7 28.5714%
Skill Shockwave 2/7 28.5714%
Skill True Grit 3/11 27.2727%
Attack Uppercut 1/4 25%
Attack Impervious 1/4 25%
Skill Infernal Blade 1/4 25%
Attack Sever Soul 2/8 25%
Skill Seeing Red 1/4 25%
Power Juggernaut 1/4 25%
Skill Havoc 3/14 21.4286%
Skill Rage 1/5 20%
Attack Anger 2/12 16.6667%
Attack Immolate 1/6 16.6667%
Skill Sentinel 1/6 16.6667%
Power Rupture 1/6 16.6667%
Attack Heavy Blade 2/13 15.3846%
Attack Cleave 3/20 15%
Attack Sword Boomerang 2/15 13.3333%
Skill Warcry 2/17 11.7647%
Skill Flex 1/9 11.1111%
Attack Body Slam 1/13 7.69231%
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Skill Intimidate 0/5 0%
Power Evolve 0/6 0%
Attack Whirlwind 0/5 0%
Attack Headbutt 0/8 0%
Attack Clash 0/21 0%
Power Corruption 0/2 0%
Power Barricade 0/3 0%
Power Combust 0/5 0%
Power Feel No Pain 0/3 0%
Power Brutality 0/2 0%
Skill Flame Barrier 0/3 0%
Skill Dual Wield 0/5 0%
Attack Searing Blow 0/4 0%
Attack Limit Break 0/2 0%
Attack Reckless Charge 0/3 0%
Attack Reaper 0/3 0%
Attack Rampage 0/4 0%
Power Demon Form 0/2 0%
Attack Dropkick 0/2 0%
Skill Bloodletting 0/11 0%
Attack Bludgeon 0/4 0%
Power Fire Breathing 0/4 0%

One thing that immediately stands out is the low pick rate of power cards. There is
a good probability that part of this is due to the Battle AI algorithm we used, which
might have not been able to utilize these cards effectively. However, it could also
be due to the fact that we only looked at 2 future card rewards. This could have
prevented the algorithm from seeing the usefulness of these cards in the bigger picture
and consequently more consistent, low-risk alternatives were favoured. We can see that
similarly cards like Reaper and Whirlwind were not picked, even though they can be
win conditions with good supporting cards.

Interestingly, we can see that the cards which were mentioned as ”must pick” in the
first article - Armaments, Battle Trance and Inflame, all had high pick rates. Without
any external influence, the algorithm was able to achieve a similar conclusion to that of
human analysis.

The low pick rate of cards like Bloodletting, Body Slam, Warcry is not very surprising,
as they do not provide a lot of value by themselves. However, if were to analyze runs
that were defeated less often in the early floors we would expect them to be more
popular.

Strangely, cards with random effects were around/below average in popularity, even
though the battle AI should have in theory been able to use them better than a human
player. Perhaps this could be attributed to their unpredictable nature. Even if we
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know exactly what these cards will do, there is no guarantee of them frequently being
beneficial in encounters.

4.3 Example Run Analysis

We will take a closer look at a victorious Ascension 5 run by the top-down algorithm,
highlighting some key card reward choices.

After an elite fight on floor 10, the agent was offered a card reward consisting of
Exhume+, Dual Wield, Wild Strike.

The current deck, excluding basic cards, consisted of Thunderclap+, Shockwave+,
Uppercut, Ghostly Armor+.

After running simulations on the Guardian boss encounter, the algorithm calculated the
following scores.

Exhume+: 73.45, Dual Wield: 52.25, Wild Strike: 57.2, Skip: 56.5 .

The algorithm was able to spot how powerful Exhume+ was in this situation. It could
allow playing Shockwave+ twice, which would be really powerful against the boss. It
would also be able to retrieve Ghostly Armor+ from the exhaust pile, if necessary.

At the beginning of act 3, the deck was doing poorly in simulations against elite en-
counters. At that point the deck consisted of the cards 2x Thunderclap+, Shockwave+,
Uppercut+, Ghostly Armor+, Exhume+, Armaments+, Havoc+, Double Tap+, 2x
Flex+, Iron Wave+, Infernal Blade+, Seeing Red+, Immolate+.

The agent was offered a card reward consisting of Battle Trance+, Cleave, Rage+.

The scores from simulations on Giant Head were:

Battle Trance+: 46.65, Cleave: 11.0, Rage+: 9.3, Skip: 8.3 .

As we can see, the algorithm correctly deduced that the deck was lacking card draw,
making Battle Trance+ and invaluable addition to the deck.

Finally, after adding a few more cards to the deck - Power Through+, Pommel Strike,
Second Wind+, Iron Wave it was offered Spot Weakness+, Ghostly Armor+, Sever
Soul+.

The scores from simulations on Donu and Deca were:

Spot Weakness+: 79.5, Ghostly Armor+: 76.75, Sever Soul: 76.45, Skip: 73.75 .

Here, even though the deck was already strong, the algorithm was able to infer that the
deck lacked scaling the most and added Spot Weakness+, as a source of extra strength.

As we can see, the top-down algorithm is able to perform intelligent decisions at critical
parts of the game, which we can find explanations for using reasoning.
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Conclusions

In this chapter, we summarize our findings from evaluating the two proposed algorithms.
We will first justify whether the results achieved were good or did not meet expectations.
Secondly, we will discuss the strengths and weaknesses of the two approaches. Thirdly,
we will mention potential applications of the algorithms. Finally, we will consider areas
of further work that could be done.

5.1 Performance

Judging by the results, the performance of the algorithms was even better than expected.
The algorithms were able to get far and create winning decks on Ascension 10, which
is a substantial achievement. Moreover, the top-down algorithm showed potential in
Ascension 20 runs by being able to consistently beat the first act. It is important to
keep in mind that the project only focused on one element of the game - card drafting.
Hence it would be unreasonable to expect victories on Ascension 20, which requires
harmoniously optimizing all parts of the gameplay and making as few mistakes as
possible. The agent is still not intelligent enough to make choices that are good enough
in various other aspects in the game. This includes knowing when we can smith at rest
sites instead of resting, how to spend gold, what to do in events, what map route to take,
what relics to choose.

We can conclude that short term decisions were more important than long term decisions
on Ascension 20, as displayed by the difference in performance between the two algo-
rithms. However, we also saw that simply taking short term decisions was not always
enough, because it would result in the deck not having enough scaling. Consideration
of synergies made our deck stronger when it was able to survive the early portion of the
game.

We made the correct decision by deciding to only run simulations on elite and boss
combats as almost all of the runs ended on these types of encounters.

37
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5.2 Strengths and Weaknesses

As expected, the two algorithms showed different strengths and weaknesses. The
top-down algorithm was able to make good short-term decisions. In the comparison
of Ascension 20 runs, we saw that it outperformed the bottom-up algorithm quite
consistently. However, the top down algorithm was prone to overly favouring cards
with immediate value, and hence did not pick power cards as often as necessary. The
opposite was true for the bottom-up approach. It excelled in runs where it could add
good scaling cards without fully optimizing in the short-term, which is why we saw it
mostly perform as well and sometimes even better than the top-down algorithm on the
lower Ascensions.

5.3 Applicability

Apart from Slay the Spire card drafting, the exact bottom-up algorithm cannot be applied
elsewhere. However, the fundamental idea of valuing cards higher depending on the
number of synergies could be applied to other games. The only caveat is that it requires
research and/or a deep understanding of the game in order to pick good synergy classes.

On the other hand, the idea of the top-down algorithm is mostly independent of the
game’s specifics. Hence the structure of the method for evaluation could be applied in
other decision making problems. Below is a list of potential applications.

• Card drafting for other classes.

• Figuring out the best card to upgrade.

• Choosing which card to remove.

• Choosing between different relics (assuming they alter in-combat elements).

• Choosing between different potions.

• Creating a deck building algorithm for a similar roguelike card game, such as
Monster Train or Griftlands.

The template of the algorithm would be used as follows:

• Consider the modified state after each choice.

• Generate future scenarios with imaginary changes to the state that could happen
in the future.

• Evaluate these future states and calculate scores for choices based on their success
in the future.

• Run for many times and average results in order to get more accurate scores.

5.4 Future Work

The following improvements could be done in the short-medium term:
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• Using the headless version of the game, sts lightspeed. This would require us
to adapt and reimplement most of the code we are using currently as well as
most of Spirecomm. As a result, we would be able to do millions of playouts
in seconds. This would greatly increase the speed at which we can test the
algorithms. Moreover, we would not need to resort to using optimizations for the
top-down algorithm and we could tweak the parameters to increase the quality of
decision making.

• Combining strengths of both approaches. For instance, we could draft cards using
the top-down algorithm until we were strong enough against the currently relevant
elites and bosses. Then we could switch to the bottom-up algorithm, which is
better at picking long-term scaling cards.

• Dynamically increasing the difficulty of encounters we simulate on. We could
monitor how well the deck performs against a current set of elites/bosses and we
would switch to using harder enemies as the deck becomes better instead of this
being tied to the current act.

• Evaluating cards with respect to the potential increase in value we get from
upgrading them.
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Appendix A

Ironclad card list

Figure A.1: Ironclad starter cards
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Figure A.2: Ironclad common cards
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Figure A.3: Ironclad common cards
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Figure A.4: Ironclad uncommon cards
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Figure A.5: Ironclad uncommon cards
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Figure A.6: Ironclad uncommon cards
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Figure A.7: Ironclad rare cards
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Figure A.8: Ironclad rare cards
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Ascension modifiers

Figure B.1: Modifiers for Ascensions 1-20
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