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Abstract
Coercion-resistance is one of the most important security properties in an electronic
voting protocol. In this report, we analyse and find problems in a definition of coercion-
resistance and two protocols claiming to be coercion-resistant. The problems in the
definition of coercion-resistance defined in [2] are related to a value in the definition that
is not clearly specified. These problems mean that the definition cannot be used in its
current state to analyse the incoercibility of electronic voting protocols. The first attack
is against the protocol defined in [34], the attack shows that the paper makes incorrect
assumptions which result in the protocol not being coercion-resistant. The second attack
is against the protocol defined in [13]. The attack shows that the adversary can gain a
non-negligible advantage and even confirm whether the voter followed the coercion in
some cases. These attacks minimise the contributions of the protocol definitions.
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Chapter 1

Introduction

1.1 Electronic Voting and Coercion-Resistance

Voting is an important method used in a democratic group, allowing the members of
the group to have an impact on the decisions the group makes. These groups can be
small scale like university societies or large scale nationwide groups. Electronic voting,
often referred to as e-voting, is a more modern approach to voting. E-voting can be
roughly divided to two types: one requiring a form of in-person involvement and one
done completely remotely. In this paper, we are focusing on remote e-voting.

Electronic voting protocols and their properties are usually defined and proved in one
of two frameworks: game-based security and universal composability (UC). In the
game-based framework, the adversary is trying to distinguish the ideal protocol from
the real in a game situation. In this paper, we will focus on the UC framework as it
has not been discussed and analysed to the same level that the game-based security
has. The universal composability framework aims to define different functionalities as
black-boxes which can be combined with other functionalities. The basic idea is that the
environment cannot tell apart the behaviour of the ideal functionality interacting with a
simulator from the behaviour of the introduced protocol interacting with an adversary.
The framework will be introduced in detail in the Preliminaries section of Chapter 2.

Coercion-resistance in electronic voting is a complicated problem many have tried to
solve. It is difficult to formally define all aspects of coercion and adversarial behaviour,
which can range from observing the election to corruption of the election authorities.
Since defining the concept of coercion-resistance is difficult, providing a protocol that
would satisfy such definitions is at least as challenging. This difficulty is explored
in this report by analysing an introduced definition of coercion-resistance and two
protocols that have attempted to solve the problem and claim to be coercion-resistant.
The definition introduced in the paper [2] has some problems that prevent it from being
usable in analysing e-voting protocols. These problems will be discussed in detail in
Chapter 3. The two protocols [34] and [13] fail to satisfy the property of coercion-
resistance as shown in Chapters 4 and 5, respectively. The attacks which break the
defences in the protocols are discussed in detail.
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Chapter 1. Introduction 2

1.2 Completion Criteria

The original objectives of this report were to look at coercion-resistance and self-tallying
and whether the two properties are compatible with the following methodology:

1. Review existing definitions of coercion resistance in voting

2. Formalise the class of self-tallying protocols

3. Establish if self-tallying and coercion resistance are compatible properties

However, the problem of coercion-resistance and how to define it turned out to be more
complex than expected. As will be shown in this paper, the existing definitions and
protocols often contain omissions or other problems. This meant that trying to find or
formalise a definition which sufficiently captures this is very difficult. In addition to
the field not being at a suitable state, the project involved learning a lot of concepts and
frameworks outside the undergraduate syllabus, such as the universally composable
framework and in general formalising electronic voting protocols and attacks against
them, which meant that completing the first step of the original criteria was already a lot
of work. Thus, the objectives were adjusted to focus on coercion-resistance as follows:

1. Explore definitions formalised in the universally composable framework

2. Analyse protocols that claim to be coercion-resistant

The first modified objective was chosen as universally composable coercion-resistance
has not been discussed to the same level as the definitions in the game-based security
model, as we already mentioned. The second modified objective was chosen since there
are protocols that have been defined and claim coercion-resistance but have not been
properly analysed to confirm these claims. These two objectives were completed to an
acceptable level by completing the following steps:

• Pointing out problems in a definition of coercion-resistance in the paper [2] in
Chapter 3

• Introducing an attack against a protocol defined in [34] in Chapter 4

• Introducing an attack against a protocol defined in [13] in Chapter 5



Chapter 2

Background

This chapter discusses the previous work done in electronic voting and how this fits
together with the work done in this report. We will look at different security properties
and how those have been informally and formally defined with the focus being on
different forms of coercion-resistance. In the preliminaries section, a simple example
voting protocol will be introduced to help with discussing different formal definitions
and frameworks throughout this paper. We will go into more detail about the universally
composable framework since the definition discussed later in the paper will be in this
framework. Additionally, we will briefly discuss the JCJ protocol as it is an important
coercion-resistant protocol and will be mentioned throughout this report.

2.1 Related Work

Whether electronic or not, and whether a small or a large group the basic expectations
for the voting system are the same. Some of these expected properties are correctness,
fairness, verifiability, democracy, and eligibility. Additionally, there are the three levels
of coercion-resistance: privacy, receipt-freeness, and coercion-resistance. Examples of
informal definitions for all of these are listed below.

• Correctness: ”Every honestly cast vote will be included in the tally set which is
the same for all honest voters.”[3]

• Verifiability: ”Voters and possibly external auditors should be able to check
whether the votes were actually counted, and whether the published election
result is correct.”[19]

• Fairness: ”During the Cast phase, no party can learn some partial result.”[3]

• Democracy or one voter – one vote: ”Only one vote per (eligible) voter can be
included in the tally set of each honest voter.”[3]

• Eligibility: ”Only authorized voters should be able to vote.”[32]

• Privacy or Input/Output Coercion: ”The (honest) voters’ identities cannot be
linked to their votes.”[3]

3



Chapter 2. Background 4

• Receipt-freeness: ”The inability of a voter to prove to an attacker that she voted
in a particular manner, even if the voter wishes to do so.”[26]

• Coercion-resistance: ”An honest voter can cast her vote even if she is, during
some time, fully under the control of an attacker.”[15]

There have been many attempts to formally define these properties and many of the
properties have been defined in both the universal composability framework and the
game-based framework. Some of these definitions are more successful than others
as there are many aspects to consider and making one property stronger might make
another one weaker. For example, improving privacy by making the votes completely
disconnected from the voter might mean that the voter cannot verify whether their
vote was tallied correctly or not. Thus, finding a balance between all these properties
is important and often depends on what is valued in the specific type of election in
question.

We will briefly discuss some of the formal definitions of correctness and verifiability
which are often consider as the main properties with privacy. Additionally, some papers
consider that for example eligibility and democracy fall under correctness [26, 35] and
on the other hand that the privacy implies fairness [27, 35]. Firstly, correctness has
been defined and formally proved in [3, 35] and more trivially proved or assumed true
in [21, 23, 26]. Verifiability has also been formally defined in a large group of papers,
such as [3, 15, 16, 26, 35, 36]. Again some papers [3, 28, 35] prove verifiability more
formally than others [15, 16, 26]. [19] discusses the definitions of verifiability and
protocols that satisfy these definitions. Additionally, they discuss problems with some
of these definitions like [5, 18, 33].

2.1.1 Privacy

Privacy can be considered as the first level of coercion-resistance.[25] Without privacy
the coercer can link the votes to the voters and thus know immediately whether the
coerced voter followed the coercion or tried to evade it.[32] Another name for privacy
is thus input/output coercion which is used by [2]. Privacy is often a core requirement
for a voting protocol since without it, anyone can access how any voter voted.

There are a lot of different ways to discuss privacy. Firstly, there is the perfect ballot
secrecy also known as full vote confidentiality as discussed in [35]. Perfect-ballot
secrecy is satisfied when ”knowledge about the partial tally of the ballots of any set of
voters is only computable by the coalition of all the remaining voters” [27]. Another
notion of privacy is the ideal privacy, which is defined in the universally composable
framework like in [21, 23, 31]. Following this, we have the ballot privacy in the game-
based framework like in [1, 6]. The entropy based privacy, like in [7, 17], focuses on
the information that can be learned by an adversary and whether this depends on the
actions of the voter.

In the end, some of these definitions attempting to formalise privacy end up having
problems in them, some of these problems are shown in [8]. For example [6, 9] define
notions of privacy that are too weak. This means that they can be satisfied by protocols
which do not actually preserve privacy. Alternatively, other definitions like [10] end
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up too strong. This means that they prevent the voter from verifying that their vote
has been correctly tallied. Another problem is that some definitions are too limited or
restrictive such as [7, 4, 5]. These definitions do not necessarily have flaws but the limit
the class of protocols or privacy breaches that can be considered.

2.1.2 Receipt-Freeness

The second level of coercion-resistance is usually called receipt-freeness. Where privacy
mostly concerns honest voters, receipt-freeness extends to dishonest ones. Mainly, it
focuses on whether the voter can provide a verifiable receipt to the adversary that
proves how they voted. Therefore, in some cases, receipt-freeness is also discussed as
vote-selling resistance since with this receipt the voter could easily sell their vote if
they wanted to.[26, 34] A receipt-free protocol must be vote-selling resistant, since if a
voter can sell their vote using a receipt, the adversary can also force an honest voter to
produce a similar receipt. The paper [34] attempts to provide a vote-selling resistant
protocol which still provides a receipt. However, as we will show in Chapter 4, the
protocol fails to be vote-selling resistant.

Different protocols differentiate between the three levels of coercion-resistance differ-
ently. For example, [28] discusses privacy and receipt-freeness more interchangeably
than for example [15]. Additionally, [15] extends receipt-freeness to a stronger defi-
nition which includes cases where the adversary interacts with the voter more than in
traditional receipt-freeness. There are quite a few protocols that satisfy receipt-freeness
such as [15, 26, 31] to list a few. This is likely due to the definition of receipt-freeness
being more restricted and thus easier to formalise when compared with the next level of
coercion-resistance.[2, 35]

2.1.3 Coercion-Resistance

The third level of coercion-resistance is the active coercion which includes all the
stronger adversaries. For example, the JCJ protocol [26] defines an adversary that
will ask the voters for their credentials and then vote using these. Alternatively, the
definition in [2] allows the adversary to ask the voters to complete arbitrary steps and
provide receipts or proofs for these. Overall, coercion-resistance includes a large range
of adversaries and as will be showed in the later chapters this makes it difficult to
formalise. There are many ways to define these adversaries. For example, [1] introduces
a protocol that provides protection in a case where coercion is not a serious concern
and another protocol [11] provides receipts for voters even for candidates they did not
vote for. Alternatively, the paper [22] goes about the problem differently by allowing
coercion but instead recording it and publishing these records.

There are currently three main frameworks in which coercion-resistance has been
worked in and analysed. Firstly, we will discuss the game-based security framework.
The JCJ protocol introduced in 2002 [26] is considered in the words of [20] ”the
reference paradigm” for coercion-resistance in the game-based security framework.
For example, [16, 30] build on the JCJ protocol and aim to improve aspects of it. The
paper [25] shows how the definition of JCJ is flawed in that it could never be realised.
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Furthermore, another paper in 2022 [20] found that JCJ leaks too much information
when voters are allowed to revote, which is often necessary in receipt-freeness and
coercion-resistance. We will discuss the JCJ protocol and the fix offered in [20] in the
preliminaries section and in Chapter 6.

The second framework used with coercion-resistance is the universal composability
framework which we discuss in detail in the preliminaries section. Additionally, we
analyse a definition of coercion-resistance introduced in the UC framework by [2] in
Chapter 3. An example of a receipt-free protocol in the UC framework is offered by [31].
The third framework is defined by [29]. It focuses on the probability that an adversary
can distinguish whether the voter followed the coercion or a deception strategy. Thus,
the framework is able to quantitatively analyse whether a protocol is coercion-resistant,
rather than the property only being satisfied or not. This framework is more complex
than the two other frameworks and therefore, it is used a lot less in literature.

2.1.4 Concepts

Some concepts or terms that will used throughout the paper are defined here. Firstly,
we will define the difference between the uses of the words corrupt and coerce. With
a corrupted party, we mean that the party is fully under the influence of the adversary.
Whereas, a coerced party can either follow the coercion, thus acting similarly to a
corrupted party, or attempt to evade the coercion by somehow deceiving the adversary.

We will use the phrase a trivial attack to indicate an attack against coercion-resistance
where the adversary can break coercion-resistance when the tally is published. Such
an attack is possible if the adversary for example has corrupted all but a single voter
that they have coerced, in this case they know how all the other parties have voted and
can immediately infer how the coerced party voted after the tally is published. Usually
in proofs and definitions it is somehow indicated as to how the trivial attack should be
dealt with. For example, [34] states that such cases are not considered.

Besides attempting to coerce a party to vote for a certain candidate, the adversaries can
also launch so called forced absence attacks. In such attacks, the adversaries require
the coerced voters to not participate in the elections.[25] These are often considered
under the coercion-resistant definitions, like in [26]. However, some weaker definitions
of coercion-resistance do not consider these.[25]

Sometimes called the trivial protocol is one where all the security properties rely on a
single trusted authority to be honest.[24] While a protocol with this trust assumption
is easy to define theoretically, the assumption is too strong to be realistic in real-life.
Thus, most introduced protocols aim to provide improvements in one way or another,
for example by offering distributed trust.

When we discuss coercion-resistance in electronic voting, we usually do not consider
scenarios where the adversary is physically in the same space as the voter.[35] This is
acceptable since such attacks are not scalable to a majority of the voters in large scale
elections.
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2.2 Preliminaries

2.2.1 Example Protocol

To help with discussing the definitions and concepts introduced in the paper, we will
use the following example protocol. The protocol is a simple voting protocol where
each of the voters can choose between two options α1 and α2. In this protocol, the
eligible voters have credentials that they have received through some process that we
will not include as this is only an example protocol focused on the voting aspect. Each
eligible voter vi can then use their credentials to securely and privately receive a ballot
bi from the trusted authority T which is either

bi =

∣∣∣∣Ci
1 α1

Ci
2 α2

∣∣∣∣ or bi =

∣∣∣∣Ci
2 α1

Ci
1 α2

∣∣∣∣
where Ci

1 and Ci
2 are secure random values specific to the voter vi. The voter will then

vote by sending the random value, i.e. Ci
1 or Ci

2, that corresponds to their chosen vote to
the bulletin board. The bulletin board then shows either∣∣∣∣Ci

1 Voted
Ci

2

∣∣∣∣ or
∣∣∣∣Ci

1
Ci

2 Voted

∣∣∣∣
depending on how the voter voted. Now since the random value codes are personal to
each voter, the authority can verify that the votes on the bulletin board were sent by
eligible voters. At the end of the election, the authority will remove the incorrect votes
from the bulletin board. Based on the votes on the bulletin board, the authority can then
tally and publish the result of the election. Basic-level of privacy is preserved as an
adversary would not be able to tell based on the votes on the board, how each individual
voter voted, as long as the authority is honest. The trust assumption here is quite strong
since there is just one authority that needs to be fully trusted. The trust assumption
could also be improved by creating a group of authorities that jointly create the ballots
for the voters and tally the result of the election. A method of this kind was used in the
JCJ* protocol, which will be introduced in the subsection 2.2.3.1. However, as this is
only an example protocol such considerations are not necessary at this stage.

In order to deceive against an adversary asking for a receipt of how the voter voted, the
voter should with some probability d flip their ballot, i.e. swap the places of C1 and C2,
and send this to the adversary with the code they used to vote. The voter can also just
flip the ballot in a way that confirms their story to the adversary. In other words, this
would mean that a deceiving voter would always flip (d = 1) and a coerced voter would
never flip (d = 0). Since the two voting codes are equal from the perspective of the
adversary, it can be informally seen that the protocol should be receipt-free. Essentially,
the adversary has no way of confirming whether the voter is lying or not.

On the other hand, this protocol is not coercion-resistant since in that case the adversary
can ask the voter to perform arbitrary steps and provide them with more information.
For example, the adversary could just ask the voter to send over their credentials used to
verify the voter’s eligibility to the authority. Using this credential, the adversary could
receive the ballot directly from the authorities and vote on behalf of the voter. An even
stronger adversary could corrupt the authority and thus be able to control the whole
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election. Alternatively, if the adversary can corrupt all the voters except one then they
would be able to just tell based on the result whether this one voter followed the coercion
or not. This shows, that under coercion there are many different types of adversaries
and as we will show in this paper, this makes it difficult to define coercion-resistance
and what it should include.

2.2.2 Universally Composable Security

Canetti introduces universally composable security in [14]. The universal compos-
ability framework is used ”for describing cryptographic protocols and analysing their
security”[14]. In this section we will look at this definition in detail as it is neces-
sary background knowledge in order to understand the next chapters. To help with
understanding the main idea, we will discuss the framework with the example protocol
introduced in the last subsection.

For a property to be universally composable under the framework, it needs to satisfy the
definition we will formally introduce in the next section. The parts in the framework are
the environment Z, the voters vi ∈V for i ∈ [n], the adversary A and the corresponding
simulator S, the ideal functionality F, and the real-life protocol π. The environment Z is
interacting with the ideal process and the real-life model and is trying to distinguish
between the two executions. In the ideal process, the ideal functionality F of the
property is interacting with the voters V and a simulator S. In the real-life model, the
voters V are running the introduced protocol π and interacting with an adversary A.
The environment can freely interact with the voters as well as the simulator and the
adversary. Thus, the information that the simulator and the adversary have access to
has an important meaning, mainly that the ideal functionality and the protocol must
leak the same information. In the end, if the environment cannot distinguish between
the executions happening in the two processes, the property is securely realised by the
protocol.

2.2.2.1 Formal definition

In this section, we will look at the formal details of the framework. Before introducing
the definition for universally composable properties, we need to look at the definition 1
in [14] which defines indistinguishability for binary distributions as follows

”Definition 1 Two binary distribution ensembles X and Y are indistinguishable (written
X ≈ Y ) if for any c ∈ N there exists k0 ∈ N such that for all k > k0 and for all a we
have

|Pr(X(k,a) = 1)−Pr(Y (k,a) = 1)|< k−c.”

This means that X and Y are indistinguishable if the advantage of being able to tell them
apart is negligible. Now, the definition 2 from [14] defines how protocols can be proved
to satisfy different universally composable properties.

”Definition 2 Let n ∈ N. Let F be an ideal functionality and let π be an n-party protocol.
We say that π securely realizes F if for any adversary A there exists an ideal-process
adversary S such that for any environment Z we have
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IDEALF,S,Z ≈ REALπ,A,Z .”

Essentially, this means that the protocol π securely realises the ideal functionality F if
the ideal and real executions are indistinguishable to the environment. In this paper, we
will use the following notation to indicate the same thing:

EXECF,S,Z ≈ EXECπ,A,Z

Notice that the environment is the only participant that is shared between the two sides
of the equation. This is because the environment is trying to distinguish whether it is
interacting with the real or the ideal process. Putting these two together and using a
slightly different notation we get that π securely realizes F if for any adversary A there
exists an ideal-process adversary S such that for any environment Z we have

|Pr(EXECF,S,Z(1λ) = 1)−Pr(EXECπ,A,Z(1λ) = 1)|< negl.

where 1λ notates the randomness in the execution and negl indicates a negligible
function. An illustration of how the framework works is shown in Figure 2.1. It shows
the interactions between the different participants as well as the differences between the
two processes. The biggest difference is that in the real-life model, the participants of
the protocol, i.e. the voters, run the protocol π, shown by having the voters inside the
protocol box, whereas in the ideal process the functionality is a participant on its own.

Figure 2.1: Illustration of universally composable framework

2.2.2.2 Example protocol and the UC framework

We can now look at the definition with an example property and the example protocol
introduced in the previous section. We will choose the property to be privacy, since that
is related to coercion-resistance but is easier to define. Now, the ideal functionality F
will define the wanted level of privacy. The protocol π will be the protocol that was just
defined in the section 2.2.1. The environment Z is the input provider and it would also
be the coercer but as we are discussing privacy, this is not necessary. In privacy, the
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adversary is trying to find out how the voter voted based on the public information, but
in this protocol they should not be able to. The environment tries to distinguish the two
processes by communicating with the adversary A and the simulator S.

The Functionality FPrivacy
• Upon receiving input (Init,sid,Ci

j) from party Pi, send (sid,Ci
j,Voted)

to the simulator.
• Upon discarding ineligible votes {Ci

j}, send (sid,{Ci
j},Discarded) to

the simulator.
• Upon finding the tally T , send (sid,T,Tally) to the simulator.

Figure 2.2: The Privacy Functionality used with the example protocol.

To talk about whether the protocol securely realises the property, we have to define the
ideal functionality. In order to do this, we need to decide what is the level of privacy we
wish to achieve. We know that the protocol will reveal some values to the adversary so
we must consider what values can be revealed to the simulator while still preserving
the wanted level of privacy. The behaviour of the functionality is shown in Figure 2.2.
Upon receiving a vote the protocol will take the vote and put it on the bulletin board. As
this is public information, this needs to be revealed to the simulator by the functionality
since the environment can freely communicate with the adversary and the simulator and
it will be able to distinguish between the two processes if the simulator is not sent this
information. Therefore, after receiving a vote from a voter the functionality will send
this information to the simulator. This is also shown in Figure 2.2. In the end of the
election, the removal of any incorrect votes and the result of the tally are shown on the
board. Thus, as these are public information, the simulator must be informed of them.
Leaking all this information to the simulator is acceptable as privacy is still preserved
because with all the information given to the simulator one cannot find out how any one
voter voted.

We can now discuss the information leaked by the protocol π to the adversary. Firstly,
the adversary receives no information about the credentials of the voter or the initial
ballot that the voter receives. After the voter posts their vote on the bulletin board, the
adversary can see what random value the voter voted for. However, this reveals no
information about the actual contents of the vote to the adversary. At the end of the
election, the adversary can see which votes get discarded but receives no additional
information about these votes. Finally, the adversary can see the result of the election
when it is published to the board. Again the adversary receives no additional information
at this stage.

Now, this means that the functionality FPrivacy and the protocol π leak the same informa-
tion to the simulator S and the adversary A. Thus, the environment will not be able to tell
the simulator and the adversary apart from just interacting with them, meaning that the
two situations appear indistinguishable to the environment. Based on this discussion it
would seem that the example protocol securely realizes the defined privacy functionality
FPrivacy. A formal proof would be needed if we wanted to be certain of this. However,
as we are only illustrating the framework, this is not necessary.
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2.2.3 JCJ Protocol

In this subsection, we will briefly discuss the protocol called JCJ introduced by [26].
This protocol has an important role in the area of coercion-resistant electronic voting,
which is why it is important to understand the basic idea of it for the following chapters.

The main idea behind the coercion-resistance in the JCJ protocol is that the voters can
produce fake credentials and give these to the adversaries attempting to coerce them.
The adversaries can then vote with these fake credentials and will not be able to verify
whether or not the vote was counted in the final tally. The downside of JCJ is that it
requires a large overhead, i.e. quadratic in the number of voters in the tally phase.

The paper [26] uses the game-based security framework and so do many other coercion-
resistant papers that follow the main idea used in JCJ. The definition of coercion-
resistance in JCJ ”centers on a kind of game between the adversary A and a voter
targeted by the adversary for coercive attack” [26]. This game is defined in terms of the
ideal and real behaviour, where there is a coin flipped to decide whether the voter will
try to evade the coercion or just submits to it. The adversary will then have to guess
whether the coin was flipped or not.

2.2.3.1 JCJ*

The paper [20] shows that the JCJ protocol is vulnerable to an attack if the voters are
allowed to revote. This is because the protocol will reveal not only the number of
revotes but also the distribution of them to the adversary. This allows the adversary to
gain a non-negligible advantage and [20] even demonstrates that in certain cases the
adversary is able to verify how the coerced voter voted. The paper [20] then provides
an improved of version JCJ, from now on referred to as JCJ*, which aims to solve this
problem by hiding the distributions for the removed votes and instead just allowing
the adversary to receive the total number of removed votes. This is done by changing
the ballot cleaning phase into one which discards all the ballots, that failed any of the
checks, at the same time after all the checks have been completed.

JCJ* also improves the definition of coercion-resistance in JCJ by better modelling revot-
ing and addition of fake votes. It acknowledges that revoting and the addition of fake
votes is often done by the authorities rather than the honest voters, since usually honest
voters will not revote randomly at random times which would be required. We will
discuss some aspects regarding the deception strategies that [20] leaves underspecified
in Chapter 6.



Chapter 3

Definition of Coercion-Resistance

Alwen, Ostrovsky, Zhou and Zikas introduce a way to show if a universally composable
protocol is incoercible.[2] However, this definition leaves some aspects unclear and in
other parts is too broad to capture the wanted functionality; it captures the trivial attack
in active coercion and the definition does not properly capture the distinguishability
between the coercion and deception scenarios, i.e. the value of ∆. This chapter discusses
the definition and the ambiguities in it. The discussion will be done with respect to two
of the types of coercion defined by the paper, active coercion and receipt-freeness.

3.1 Definition

To understand the definition of UC incoercibility, it is necessary to define the parts
it consists of. There are two universal composability scenarios used in the definition,
these are the coercion and the deception. In the coercion scenario, the ideal and real-life
processes capture the behaviour where the coerced parties follow the instructions given
by the coercer. Similarly, the ideal and real deception scenarios model the behaviour
where the coerced parties do not wish to follow these instructions.

Before moving onto the definition of incoercibility, we will discuss the notation and
participants used in the definition. We will use the example protocol introduced in
section 2.2.1 to illustrate the different parts of the definition. First, we have the set of
coerced parties J , in particular J ⊆ [n]. This set is chosen by Z in the beginning of
the protocol execution. In the example protocol, this could be any set of voters. In the
ideal coercion situation, the coerced parties will behave as instructed. This behaviour is
described using the dummy protocol dumJ . This protocol ensures that the simulator
handles all the communication not intended for the functionality. The dummy protocol
in the example protocol could be for example providing a receipt for how they voted or
providing the credentials to the adversary. In the corresponding real-life situation, this
is defined as CJ . This means that for a coerced party πi = π(pi), the C(πi) has the same
set of communication tapes as πi and it models the behavior the coercer is attempting
to enforce upon a party pi running protocol π. In the example protocol, this would be
similar to the dummy protocol so giving over the receipts or credentials. However, here
the party is doing the work and whereas in the ideal process the simulator is. For the

12
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deception scenario there is a deception strategy Di(πi) = (D1
i ,πi,D2

i ). This triple does
not change the messages between πi and the adversary but D1

i is placed between πi
and Z and D2

i is placed between πi and its hybrids. From this it follows that we can
write the ideal and real deceptions as follows: DIi = Di(dumi) and DRi = D′

i(Ci(π)). In
the example protocol, these could be for example flipping the ballot or lying about the
credentials.

”Definition 1 (UC Incoercibility). Let π be an n-party protocol and for an n-party
functionality F let φ denote the dummy F -hybrid protocol, and let C be a coercion.
We say that π C -IUC realizes F if for every i ∈ [n] and every ideal deception strategy
DIi there exists an real deception strategy DRi with the following property. For every
adversary A there exists a simulator S such that for any set DIJ = {DIi : i ∈ J } and
every environments Z:

EXECφ,dumJ ,S ,Z
c
≈ EXECπ,CJ ,A ,Z (1)

EXECφ,DIJ ,S ,Z
c
≈ EXECπ,DRJ ,A ,Z (2)

where dum denotes the dummy coercer described above.” [2]

While the definition captures the two UC scenarios separately in (1) and (2), it fails
to include the relationship between these two scenarios. This is vaguely discussed in
the paper outside the definition as follows: ”if the advantage of the best environment
(i.e., the one that maximizes its advantage) in distinguishing the top-left world from
the bottom-left world is 0 ≤ ∆ ≤ 1, then the advantage of the best environment in
distinguishing the top-right world from the bottom-right world is also ∆′=∆ (plus/minus
some negligible quantity)”. Here the top-left and bottom-left worlds are the ideal
coercion and the ideal deception scenarios, respectively. The right side is equally the
real coercion and deception. From this description, it would seem that ∆ = 1 is bad
and ∆ = 0 is good since ∆ is said to be the advantage in distinguishing between the UC
scenarios (1) and (2).

The interpretation of the meaning of ∆ can be further emphasised by looking at a figure
given in the paper [2]. This figure has four individual figures representing the four
situations, however for Figure 3.1 these figures were changed to the equations defined
in Definition 1 in [2] to make it easier to understand. The top two boxes in the figure
show equation (1) from the definition and the bottom two show equation (2). The figure
also includes ∆ and aims to illustrate its meaning. However, while the figure does not
necessarily further clarify the meaning of ∆, it does point towards the interpretation
that ∆ describes the distance between the two situations within the ideal world. Thus, it
seems that the only mentions of ∆ imply that 0 is good and 1 is bad. However, we will
show that ∆ = 0 can be true in a scenario where the protocol is not incoercible and also
that ∆ can always be made 1 in active coercion, meaning that no protocol could satisfy
it. Thus, the meaning of the value ∆ is left unclear.

3.2 Active Coercion and the Value of ∆

From the way the value ∆ is defined, it is possible to make the value of it always 0 and
1 for any protocol in an active coercion situation. First, we can always have ∆ = 0 by
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Figure 3.1: Modified version of a figure in [2], the four small figures in the boxes were
changed to the equations from Definition 1 [2].

having a deception strategy that makes the top and the bottom world the same. This
means that the ideal deception strategy is equal to the dummy protocol. In the example
protocol from section 2.2.1, this would mean that when asked for the credentials the
voter would send the credentials to the adversary, even if they are trying to evade
the coercion. This would be included in the definition as it requires ”for every ideal
deception strategy” and does not provide restrictions for what counts as a deception
strategy. Using such a deception strategy would make the advantage in distinguishing
between the worlds zero. However, this strategy is the same as no deception strategy in
the sense that the coerced voters are just instructed to follow the coercion, thus it goes
against the intentions of the definition.

On the other hand, if the tally function is non-constant in active coercion, there exists
an adversary for every scenario that can make ∆ = 1 meaning that the environment can
always tell from the tally whether the participants followed the coercion or not. This is
the trivial attack which was discussed in the background chapter. In the general case,
the tally function can be defined as

f s.t. ∃< x1, ...,xn >,< x′1, ...,x
′
n >: f (x1, ...,xn) ̸= f (x′1, ...,x

′
n)

meaning that for different inputs the tally will be different. Now, the environment Z is
the input provider and the coercer. As an input provider, Z gives the voters the inputs
< x1, ...,xn > and as a coercer it gives the voters the inputs < x′1, ...,x

′
n >. Now, in

ideal coercion the voters send < x′1, ...,x
′
n > to the functionality and in ideal deception

they send < x1, ...,xn > to the functionality. The functionality sends the results of the
tally function to the environment when the result of the election is announced. Now as
these two sets of inputs will tally to different results, the environment can always tell
whether the voters followed the coercion or not. Therefore, the value ∆ becomes 1. This
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is true for any non-constant tally function without even knowing more details about
the system, meaning that this does not depend on the simulator, the protocol, or the
deception strategy. As discussed this is the trivial attack and usually this is not captured
in definitions. However, in this definition, this will be captured as shown above.

We can further illustrate this by using the example protocol defined in section 2.2.1.
We consider a situation where there are two voters being coerced and the environment
provides the first voter with the input to vote for candidate α1 and the coercion to vote
for candidate α2 and the second voter with the input and coercion to vote for candidate
α2. The deception strategy here is to vote for the input rather the coercion. Now, if
the first voter follows the coercion, there will be no vote for candidate α1 when the
tally is announced, but if they evade the coercion there will be a vote for candidate α1.
Therefore, the adversary will always be able to tell from the result of the tally whether
the first voter followed the coercion or not. Thus, the environment can distinguish
between the adversary and the simulator and the advantage of the environment in being
able to distinguish the ideal deception from the ideal coercion is always 1.

3.3 Receipt-Freeness and the Example Protocol

In the last section, we saw that the meaning of ∆ is unclear in a situation with active
coercion. As the paper [2] also discusses receipt-freeness, we will see how the ∆

behaves in such a situation. We will do this by using the example protocol from section
2.2.1. We have already defined the strategy in the protocol to be the following: the voter
must flip the ballot with some probability d and send this ballot to the adversary with
the code they used to vote. Alternatively, we also discussed the option that the voter
could just flip the ballot in a way that confirms their story to the adversary. In other
words, this would mean that a deceiving voter would always flip (d = 1) and coerced
voter would never flip (d = 0).

We can construct the following maths to find a value for ∆ in this receipt-free situation
where the voters will always flip their ballot with probability d, no matter if they are
following the coercion or attempting to deceive the adversary. For convenience, we
indicate that u = 0 if we do not flip the ballot and u = 1 if we do flip the ballot. First,
we can write the ∆ as follows based on the definition of the UC framework introduced
in the section 2.2.2

∆ =
1
2 ∑

u∈0,1

∣∣∣Pr[EXECφ,dumJ ,S ,Z(1
λ) = 1]−Pr[EXECφ,DIJ ,S ,Z(1

λ) = 1]
∣∣∣ (3)

This means that ∆ is the sum of the advantages in the two situations where in the first we
do not flip the ballot and in the second we do. For the first probability in the equation
(3) we can construct the following

∑
u∈0,1

Pr
[
EXECφ,dumJ ,S ,Z(1

λ) = 1
]

= Pr
[
u = 0 in EXECφ,dumJ ,S ,Z(1

λ)
]

Pr
[
EXECφ,dumJ ,S ,Z(1

λ) = 1|u = 0
]

+Pr
[
u = 1 in EXECφ,dumJ ,S ,Z(1

λ)
]

Pr
[
EXECφ,dumJ ,S ,Z(1

λ) = 1|u = 1
]

(4)
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Now since the probability that the ballot is flipped in this ideal coercion scenario is d,
we can rewrite this as

∑
u∈0,1

Pr
[
EXECφ,dumJ ,S ,Z(1

λ) = 1
]

=(1−d)Pr
[
EXECφ,dumJ ,S ,Z(1

λ) = 1|u = 0
]

+dPr
[
EXECφ,dumJ ,S ,Z(1

λ) = 1|u = 1
] (5)

We can indicate the two probabilities left as q and p. Now we have that

∑
u∈0,1

Pr
[
EXECφ,dumJ ,S ,Z(1

λ) = 1
]
= (1−d)q+d p (6)

The second part of the equation in (3), is nearly identical with (4), as we have that

∑
u∈0,1

Pr
[
EXECφ,DIJ ,S ,Z(1

λ) = 1
]

= Pr
[
u = 0 in EXECφ,DIJ ,S ,Z(1

λ)
]

Pr
[
EXECφ,DIJ ,S ,Z(1

λ) = 1|u = 0
]

+Pr
[
u = 1 in EXECφ,DIJ ,S ,Z(1

λ)
]

Pr
[
EXECφ,DIJ ,S ,Z(1

λ) = 1|u = 1
]

(7)

Now again the ballot is flipped with probability d and the equation becomes

∑
u∈0,1

Pr
[
EXECφ,DIJ ,S ,Z(1

λ) = 1
]

=(1−d)Pr
[
EXECφ,DIJ ,S ,Z(1

λ) = 1|u = 0
]

+dPr
[
EXECφ,DIJ ,S ,Z(1

λ) = 1|u = 1
] (8)

Due to the simulator being the same for both scenarios, the probabilities for this equation
are also q and p. This is because from the environment’s point of view the two scenarios
are equal, and it is equally likely to guess correctly given that the input was flipped or
not. Thus, the equation becomes

∑
u∈0,1

Pr
[
EXECφ,DIJ ,S ,Z(1

λ) = 1
]
= (1−d)q+d p (9)

Now putting the equations (6) and (9) together in (3), we get that

∆ =
1
2
|(1−d)q+d p− ((1−d)q+d p)|= 0 (10)

This means that no matter what the value of d is, we will always have ∆ = 0 if the all
the voters flip their ballot with this probability d. Now, as we discussed before ∆ = 0
is supposed to be good. However, even if we chose d = 0 or d = 1 meaning that we
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would always flip or never flip, we would get ∆ = 0. Now, if we were to never flip
then in the coercion scenario the voter could be verified to follow the coercion and the
deceiving party could be caught in trying to evade the coercion. On the other hand,
always flipping would result in a similar situation, where it would seem like the voter
who actually followed the coercion tried to evade and the deceiving party followed the
coercion. Thus, these situations would not actually lead to a good incoercible protocol
execution even though ∆ = 0. We know that for example d = 1/2 would be okay since
in that case all the voters might be telling the truth or lying and thus the situation is
more difficult for the adversary. However, it is not simply enough to find one value
for d that makes sense, because the definition requires the properties ”for every ideal
deception strategy”.

3.4 Conclusion

The points made in the discussion highlight the issues with the meaning of ∆. We have
shown that the value ∆ can be made 0 by removing the deception strategy, thus resulting
in a situation which clearly is not coercion-resistant. We have also looked at how the
trivial attack is captured in the definition, meaning that an active coercer could find out
whether the voters followed the coercion based on the result of the tally. We showed
that this is true for all protocols no matter what the specifics of the simulator or the
deception strategy are. We also discussed a receipt-free protocol that cannot be properly
analysed using this definition due to the unclear meaning and definition of ∆. These
examples indicate that the intended meaning of ∆ and the ideal values for it do not
translate meaningfully to the actual protocols. They also show that the meaning of ∆

needs to be clarified before the definition in [2] can be used properly to analyse the
incoercibility of voting protocols.

Besides needing clarification on the meaning of ∆, the definition also should not capture
the trivial attack. Usually different coercion-resistant papers either state that it is not
included or somehow otherwise include it in the definition. This is because as shown it
is not possible for the protocol to be coercion-resistant if the adversary can determine
whether they followed the coercion just by looking at the result of the election.

Another way to attempt to fix the problem with the definition, is to look at limiting
the scope of it. As shown in this chapter even bad deception strategies are included in
the definition, as it requires ”for every ideal deception strategy”. This is likely due to
the fact that it is very difficult to formalise what is a good deception strategy. A good
deception strategy would in general need to allow the voter to vote for their choice
of a candidate rather than the following the coercion. This would remove the option
of choosing a deception strategy that is equal to the coercion. Additionally, a good
deception strategy would need hide from the adversary that the voter did not follow
the coercion. This would remove the option of flipping the ballot in a way that still
makes it noticeable from the perspective of the adversary. Even though stating such
requirements for a good deception strategy is fairly easy, formalising them is difficult.
A formal definition would need to be applicable to a large range of different protocols
and deception strategies. Due to all of this, it is unclear how to best fix the definition
introduced by [2].



Chapter 4

Blockchain-based protocol

An attempt at creating a coercion-resistant protocol was made by Spadafora, Longo, and
Sala in [34]. The paper defines a coercion-resistant blockchain-based e-voting protocol
that has receipts. We will focus on the two-candidate version of the protocol but the
paper also discusses the possibility to generalise it to multiple candidates. The paper
claims that the protocol is coercion- and vote-selling -resistant. However, in this chapter
we will show that the voter can sell their vote to the adversary with a proof that it is
correct. This means that the protocol is not vote-selling resistant which in turn means
that the protocol is not coercion-resistant since the adversary can force everyone to
provide such proof of their credentials or of the way they voted.

4.1 Attack Overview

Firstly, let us introduce the protocol. The participants of the protocol are the voters
V = {v1, ...,vn}, the candidates C1 and C2, and the trusted authorities T1 and T2. The
protocol consists of four stages: setup, registrar, voting, and tallying phases. In the setup
stage, each of the authorities generate different random values that are required for the
running of the protocol. These values are only known to the respective authorities. In
the registrar stage, the authorities create a fake and a valid voting token and give the
voter proofs that these tokens are correct. All of this is done via a private and untappable
channel. In the voting phase, the voter must spend the two tokens together and they
have to go to distinct candidates. The voter receives a receipt of spending the tokens. It
is assumed that each candidate receives at least one legitimate vote to avoid the trivial
attack. In the tallying phase, the votes are processed and the number of valid and fake
votes received by each candidate is revealed. The authorities also publish proofs for
these results.

We will show that the voter can sell their vote with the proofs provided to them in the
registrar stage. These proofs are interactive zero-knowledge proofs (ZKPs) which are
secure against an adversary that is trying to fool others by pretending to be the creator
of the proofs and to know the secrets. However, in this scenario the voter is not trying
to fool the adversary, instead the voter is just trying to show that the information he
shares with the adversary is correct. Thus, the voter can just provide the adversary with
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all of the information and transcripts he has. Due to the construction of ZKPs used,
these transcripts are enough for the adversary to verify that the information provided
is correct. It also is not possible for the voter to create fake proofs due to the way the
ZKPs are constructed. In the end, this means that the attacker can force the coerced
party to send over these transcripts as well as all the receipts and since the coerced party
cannot fake these it means that they cannot evade the coercion. Therefore, the protocol
is not vote-selling resistant nor coercion-resistant.

4.2 Zero-Knowledge Proofs

Zero-knowledge proofs (ZKPs) are an important part of the protocol definition in [34].
However, as the paper makes incorrect assumptions about the strength of the ZKPs
used, it is possible to construct as adversary that breaks the coercion-resistance in the
protocol. The paper claims that the transcripts of the ZKPs cannot be used to provide
proof to a third party. However, in this section we will show that the ZKPs used allow
more information to be shared by the voter to the adversary than is assumed in the paper.
This section discusses the ZKPs used in the paper as well as introduces a way the voter
can share these proofs with the adversary.

The paper defines its ZKPs as follows

”Protocol 1. Let G be a cyclic group of prime order p, let u, ū be generators of G, and
let z, z̄ ∈G, ω ∈ Zp. The prover knows ω and wants to convince the verifier that:

uω = z and ūω = z̄,

without disclosing ω. The values of u, z, ū and z̄ are publicly known.

1. The prover generates a random r and computes t = ur and t̄ = ūr , then sends (t,
t̄) to the verifier.

2. The verifier computes a random c ∈ {0,1} and sends it to the prover.

3. The prover creates a response s = r+ c ·ω and sends s to the verifier.

4. The verifier checks that us = zc · t, ūs = z̄c · t̄ . If the check fails the proof fails and
the protocols aborts.

5. The previous steps are repeated τ = poly(log2(p)) times, i.e. the number of
repetitions is polynomial in the length of p (the security parameter).” [34]

We will use the following short notation to indicate this zero-knowledge proof protocol:
ZKP(ω,z, z̄) = ZKP(ω,uω, ūω).

Now in this protocol in all the ZKPs used, the voter is the verifier and one of the
authorities is the prover. This means that the voter will have all of the following
information for each of the ZKPs they participate in: u, z, ū, z̄, and t, t̄, c, and s for each
of the runs of a single ZKP. Due to this, the voter can reproduce a proof to the adversary,
not to fool them that they know the secret but to prove that the information is correct.
More formally after the verifier V has finished the interaction described in Protocol 1
with the prover P, he can perform the following Protocol 1b with another party A:
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Protocol 1b. Again the values of u, z, ū and z̄ are publicly known.

1. V sends (t, t̄) to A.

2. V sends c to A.

3. V sends s to A.

4. A checks that us = zc · t, ūs = z̄c · t̄ . If this passes, then A will be convinced that
uω = z and ūω = z̄.

5. The previous steps are repeated necessary number of times depending on the
initial interaction between V and P.

This interaction would not convince A that V knows the secret ω since in step 2 V
provides A with the random value instead of A creating such a value. However, this
interaction is enough to convince A that uω = z and ūω = z̄ which is what the initial
interaction between V and P was used to show. Thus, such a transcript can be used by
the voter to send verifiable receipts to the adversary. We will use the short notation
FZKP(ω,z, z̄) = FZKP(ω,uω, ūω) for forged zero-knowledge proof to indicate the
Protocol 1b.

Now in order to fake Protocol 1b the verifier V could state that c is always 0. This
would means that A cannot actually verify z and z̄ meaning that the voter could lie
about the values of these. Such a proof would allow the voter to for example swap
the places of the valid and fake tokens, thus being able to fake a vote for the opposite
candidate. The specifics of this are in the appendix A since this is not a very strong
evasion strategy against an adversary. We can easily construct an adversary that can
spot such an evasion strategy. This is because such an evasion strategy would require
faking, i.e. making the c equal 0 for all the repetitions of the ZKP, for two specific ZKPs.
Thus, the adversary could easily notice this evasion strategy and we can construct the
adversary to not accept ZKPs that have c = 0 for all repetitions in a single ZKP. It is fine
to construct the adversary in this way since the voter would not initially be convinced
by a proof with just c = 0 for all the repetitions. This is because when c = 0 the proof
does not require the prover to know the secret. It would also be very unlikely for the
two specific ZKPs to both have all c chosen randomly to equal 0, i.e. if we have 20
repetitions per ZKP we have the probability (1/2)20 per ZKP that all the c are 0, thus
for it to happen to both of the ZKPs we have the probability (1/2)40. Another way to
fake a ZKP would be for the voter to construct a ZKP that suitably matches with the
initial ZKP, however this is not possible due to the discrete logarithm assumption.

4.3 Formal Attack

We will first discuss the formal definition of the protocol, we will focus on the registrar
stage since the attack described will happen at that stage. In the setup stage, the authority
T1 will create α′

1 and α′
2 one for each of candidates, the pair x′i and y′i for each of the

voters and k for valid v-token and λ for fake. Similarly, the authority T2 will create
α′′

1 and α′′
2 one for each of candidates and the pair x′′i and y′′i for each of the voters.

The authorities T1 and T2 will also commit to these values in a safe way to ensure that
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The registrar phase
1. The voter vi creates a wallet in a safe and controlled way.
2. The voter vi registers this wallet with the authorities T1 and T2.
3. T1 creates the preliminary ballot: b̄i = (gy′i(x

′
i+k),gy′i(x

′
i+λ)) and sends it to

the voter vi.
4. T1 will now send vi the values gx′iy

′
i , gy′ik, and gy′iλ with the following

ZKPs to prove their correctness: ZKP(x′i,g
x′i ,gx′iy

′
i), ZKP(y′i,g

y′i,gx′iy
′
i),

ZKP(k,gk,gy′ik), and ZKP(λ,gλ,gy′iλ).
5. T2 sends vi the value gx′′i y′′i and has the interactions ZKP(x′′i ,g

x′′i ,gx′′i y′′i )

and ZKP(y′′i ,g
y′′i ,gx′′i y′′i ).

6. T2 sends gx′′i y′′i to T1. T1 computes (gx′′i y′′i )y′i , sends it to vi and completes
the interaction ZKP(y′i,g

y′i,(gx′′i y′′i )y′i) with vi
7. The voter vi flips a random coin ci ∈ {0,1} and defines b̃i = b̄i if ci = 0,

b̃i = (b̄i,2, b̄i,1) if ci = 1. Then vi sends b̃i and (gx′′i y′′i )y′i to T2.
8. T2 confirms with T1 that these values are correct and then com-

putes (b̃i,l)
y′′i for l ∈ {0,1}. T2 sends this to vi and completes

ZKP(y′′i ,g
y′′i ,(b̃i,l)

y′′i ) with vi.
9. Finally, T2 flips a random coin c′i ∈ {0,1} and sends the final ballot bi

to the voter vi. This will be bi = ((b̃i,1)
y′′i · (gx′′i y′′i )y′i,(b̃i,2)

y′′i · (gx′′i y′′i )y′i) if
c′i = 0 and bi = ((b̃i,2)

y′′i · (gx′′i y′′i )y′i,(b̃i,1)
y′′i · (gx′′i y′′i )y′i) if c′i = 1. The voter

vi knows which token is valid due to the proofs and intermediate values.

Figure 4.1: The registrar phase for the voting protocol in [34].

the values stay secret but the authorities cannot forge different values for them. This
commitment means that the values gα′

1 , gα′
2 , gα′′

1 , gα′′
2 , gk, and gλ as well as the pairs (vi,

gx′i), (vi, gy′i),(vi, gx′′i ), and (vi, gy′′i ) for every voter vi are made public. The exact details
of the setup stage and the commitment scheme used are not necessary as they do not
impact the attack in any way.

The formal definition of the registrar stage is shown in Figure 4.1. Since this is the
stage where the attack can be conducted, it is shown in detail. First, the voter will create
a wallet and then register it with the authorities. This is required since the protocol
is run in a blockchain environment, however the details of it are not necessary in the
attack we introduce. After this, the authority T1 creates the preliminary ballot which is
made using the values for the fake and valid token k and λ as well as the values (x′i,y

′
i)

which are specific to the voter vi. T1 then sends this ballot to the voter vi. Following
this there are some interactions between the different parties with ZKPs to prove the
correctness of these steps. In the end, the voter has the final ballot and the authorities
can not distinguish the valid and fake token in the ballot.

Now the protocol the voter can follow to sell their vote is described in Figure 4.2.
This shows that all the information sent to the voter is sent to the adversary with the
corresponding FZKPs. The adversary is able to verify all the information shared with
them by the voter, thus they can be convinced that the ballot is the real one. The values
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The vote-selling protocol on the registrar phase
1. Upon receiving the preliminary ballot from T1, the voter vi sends it to the

adversary A.
2. After finishing the initial ZKP interactions with the authority T1, the

voter vi will do the following with the adversary A: FZKP(x′i,g
x′i ,gx′iy

′
i),

FZKP(y′i,g
y′i,gx′iy

′
i), FZKP(k,gk,gy′ik), and FZKP(λ,gλ,gy′iλ).

3. Upon receiving gx′′i y′′i from T2, the voter vi sends it to the adversary A.
The voter vi will also have the interactions FZKP(x′′i ,g

x′′i ,gx′′i y′′i ) and
FZKP(y′′i ,g

y′′i ,gx′′i y′′i ) with A after finishing the corresponding interac-
tions with T2.

4. Upon receiving (gx′′i y′′i )y′i from T1, the voter vi sends it to the adversary
A. After completing the ZKP interaction with T1, the voter vi completes
FZKP(y′i,g

y′i,(gx′′i y′′i )y′i) with A.
5. The voter vi sends b̃i to the adversary A. Since A received the initial

ballot, he can confirm that this is a correct permutation of it and he will
know which token is valid and which is not.

6. Upon receiving b̃i,l)
y′′i from T2, the voter vi sends it to A and completes

FZKP(y′′i ,g
y′′i ,(b̃i,l)

y′′i ) with A.
7. Upon receiving the final ballot from T2, the voter vi sends it to the

adversary A. Now, since the adversary A knows everything the voter
does, he will know which token is valid.

Figure 4.2: The attack against the voting protocol introduced in [34].

used in the proofs need to be unforgeable in order for the protocol to be safe against a
malicious authority, which means that the voter cannot lie to the adversary.

The attack works by the voter specifically sending all of the information received from
the authorities to the adversary and then repeating all the ZKP completed with the
authorities as the respective FZKP with the adversary. The steps are shown in Figure
4.1 for the real protocol and in Figure 4.2 for the attack. Because the first two steps in
the voting protocol are only to do with the wallet, the steps in the two figures match so
that the third step in the real protocol is followed by the first step in the attack protocol,
fourth is followed by the second and so on. At the end of the two protocols the voter
has the final ballot and the authorities cannot distinguish between the valid and fake
tokens but the adversary can. Thus, the adversary can then vote on the behalf of the
voter or verify how the voter voted using these tokens.

4.4 Fixes and Conclusion

There is a possible way in which the voter could try to lie to the adversary, which we
already briefly discussed in the previous section. In this method, the voter is faking a
ZKP in step two of the attack protocol. Specifically, instead of doing FZKP(k,gk,gy′ik),
and FZKP(λ,gλ,gy′iλ) they would swap them and always have c = 0. Then, the voter
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would lie to the adversary after step 7 in the real protocol, in step 5 in the attack
protocol about the value of the coin flip ci and b̃i. These two steps would result in the
the adversary believing that the initial ballot was the opposite of what it really was.
However, like we already stated, the adversary constructed requires that in the FZKP the
c are not 0 for all the repetitions. The detailed description is included in the Appendix
A.

Now, since there is not a working evasion strategy the voter could execute, this means
that the voter can verifiably sell their vote to the adversary. In turn, this results in the
protocol not being coercion-resistant as the adversary can require all the coerced parties
to provide this verifiable proof of their ballot. As this problem with the protocol is in the
key contributions of the paper [34], it would not be possible to fix it without changing
the whole idea tried to convey.



Chapter 5

Minimal Anti-Collusion Infrastructure

Vitalik Buterin introduces a voting protocol called minimal anti-collusion infrastructure
(MACI) in [13]. This protocol attempts to solve issues related to collusion which is
very similar to coercion and receipt-freeness. However, the contribution offered by
the protocol is unclear since it does not seem to improve the known coercion-resistant
protocols in any way. In this chapter, we will first discuss collusion and coercion, then
the MACI protocol introduced in [13] and finally a way we can construct an adversary
that breaks coercion-resistance in the protocol.

5.1 Collusion and Coercion

Collusion as described by Vitalik Buterin on his website in [12] comes down to a
situation where a user wants to prove that they took some action in order to collude with
other users or sell their vote in order to impact the result of the election. The collusion
between voters is not a concern in an election if there is no coercion involved. This is
since without coercion the participants of the collusion can only change their own vote
which they can use how they prefer anyway. For example, being part of a political party
can be seen as a collusion, but this is acceptable and often done by voters. However,
having a verifiable receipt the voters can use to prove how they voted is not something
that can be allowed in elections due to it making vote-selling and coercion possible.

Thus, when coercion is involved in collusion, it becomes very similar to coercion as
we have discussed it and specifically receipt-freeness. It receipt-freeness, the voters are
required to provide a receipt to their coercer whereas in collusion, the voters wish to
or are asked to have a receipt they can provide to other participants of the collusion or
the person they want to sell their vote to. Thus, in order to fight collusion and coercion
from a receipt asking adversary, the measures are very similar, the protocol should not
allow the voters to create or have a verifiable proof of how they voted in the election.
Meaning that in the case where a receipt is provided it should be easy to forge a receipt
and thus, the coercer cannot verify and be certain that the proof is valid.

24



Chapter 5. Minimal Anti-Collusion Infrastructure 25

5.2 Protocol

The MACI protocol consists of two stages the setup stage and the execution stage.
During the setup stage the different participants are initiated and the protocol state is
prepared for the execution stage. In the execution stage, the voters are allowed to cast
their votes. In the end of the execution stage, the election result is tallied and published.

The protocol has the following parties: n voters each of which has a private and a public
key, registry R, operator O, and mechanism M. The registry R acts as a public bulletin
board since it keeps track of the list of eligible voters as well as the messages posted on
the board. In the end of the election, the operator O processes the actions performed by
the voters and the mechanism M is used to tally the result of the election.

5.2.1 The Setup Stage

First, we have the setup stage as shown in Figure 5.1. This stage starts with every
voter registering with the registry R. After this, the operator O, mechanism M, and
the timings are initialised. Meaning that at the end of the setup stage the participants
have the following states. Each of the voters i ∈ 1...n has a private key ki and a public
key Ki. The registry contains a list with the public keys of the eligible voters, i.e.
K1, ...,Kn. The operator has an initial internal state Sstart = {i : (key = Ki,action = /0)}
for i ∈ 1...n which is a list of keys and actions for each of the voters. Since no actions
have been taken yet, the action parameter equals an empty set for each of the voters.
The mechanism is initialised as the tally function which depends on the requirements
for the elections. In a simple case it takes all the actions given to it by the operator
and then outputs the action that has been taken most frequently, i.e. the candidate or
decision that received the largest amount of votes. Lastly, the start and end times for the
execution stage are initialised and set.

The setup stage
• Each eligible voter sends their public key to the registry. In the beginning

of the execution stage, the registry contains a list of public keys K1, ...,Kn.
• The operator has a private key kw and a public key Kw. The operator has

the initial internal state Sstart = {i : (key = Ki,action = /0)} for i ∈ 1...n.
• The mechanism is defined as a function actionn → Out puts. The input

is the actions taken by the participants and the output is the action that
appear the most, meaning the winner of the election.

• The times Tstart and Tend are initialised. These define the timing for the
execution stage.

Figure 5.1: The setup stage for the MACI protocol.

5.2.2 The Execution Stage

Next we have the execution stage as shown in Figure 5.2. The execution stage starts
by making sure that the timings are correct before moving onto accepting messages
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The execution stage
• Between times Tstart and Tend anyone can publish messages into an on-

chain registry.
• The message can be of two types:

1. Actions of form enc(msg = (i,sign(msg = action,key =
ki)), pubkey = Kw), where ki is the user’s private key and i is the
user’s index in R.

2. Key changes of form enc(msg = (i,sign(msg = NewKi,key =
ki)), pubkey = Kw), where NewKi is the user’s desired new pub-
lic key, ki is the user’s private key and i is the user’s index in R.

• The operator will process these messages as follows:
1. Decrypt the message. If the decryption does not result in a message

of one the defined types, the operator will skip over the message.
2. Verify the internal signature using state[i].key.
3. If the message is an action, set state[i].action = action. If the

message is a new-key, set state[i].key = NewKi.
• After time Tend the operator must publish

M(state[1].action...state[n].action) and the ZK-SNARK proving
that this is the correct result of processing the messages.

Figure 5.2: The execution stage for the MACI protocol.

from anyone. Now, the two accepted types of messages are an action and a key change
message. In an election, the action messages would be votes for either a candidate or a
decision depending on the type of election in question. These messages are encrypted
using the operators public key and signed using the voters private key. The key change
messages allow the voters to change their key for whatever reason. These messages
differ from the action messages in that they include the new public key rather than an
action to be taken.

The operator will process the messages in the order that they have been published. First,
the operator will decrypt the message and try to match it to one of the message types,
otherwise it will skip over the message. Next, the operator will verify the signature used
in the message using the key stored in the operator’s internal state. Finally, the operator
will update its internal state S according to the message, i.e. for an action message
it updates the action taken by the voter and for the key change message it updates
the voter’s key. Now something to consider, is that it is unclear from the protocol
description in [13] whether this processing is done after the end of the execution phase
or during the execution phase. This has different implications on security as processing
during the execution stage might allow an adversary to receive additional information
from the number or type of messages that have been disregarded and stored, similar to
how JCJ was attacked in [20]. Therefore, we will use the interpretation that the message
processing happens after the end of the execution stage.

Finally, the operator must publish the result of the election with a proof of its correctness.
After the processing there will be a list of actions representing the votes of the eligible
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voters, the result of the election is then found using the mechanism M on this list. To
prove the correctness of this result, the operator will have to provide a zero-knowledge
proof, specifically a ZK-SNARK, to show that all the processing and tallying was
done accurately. The argument for the collusion-resistance of the protocol is that the
voter could point to their actions in the registry and provide the adversary with a zero-
knowledge proof that the action corresponds to what was required. However, as the
voter could have changed their key before doing the mentioned action, the adversary
cannot be certain that the given vote is valid.

Problem with MACI
• If the voter with the index i has a way to add the first two actions to the

registry, then he can add the following two messages
1. Vote according to the coercion: enc(msg = (i,sign(msg =

action,key = ki)), pubkey = Kw)
2. Invalidate their key: enc(msg = (i,sign(msg = 0x0,key =

ki)), pubkey = Kw)
• Now the voter can point to these actions on the registry and the adversary

can verify their vote and be certain that they will not be able to change it
afterwards.

Figure 5.3: The problem in the MACI protocol introduced in [13].

5.3 Correction to Initial Definition

After the initial description of the protocol, an attack described in Figure 5.3 was
introduced by another writer in [13]. The attack is based on the idea that if someone is
able to publish the first vote on the public chain, then this first voter could sell their vote.
However, since they could just revote afterwards, they would also have to make their
key invalid, by changing it to 0x0. This could also be extended to other early voters as
long as all of them give their receipts to the adversary since the adversary would have
access to all the messages on the chain. For example, if the adversary receives the first
four messages from two voters in this way, then he can verify these two votes to be as
shown by the receipts.

In order to avoid this attack, a correction was offered in [13]. This correction requires
each of the voters to change their key before they are allowed vote. This means that it is
more difficult for any voter to be able to send all those first 3 messages, i.e. key change,
vote, and key invalidating, without honest voters appearing in between. Since all the
voters can change their key at any point as long as it is the first message they post on the
chain, this fix is different from requiring all the voters to change their key before anyone
is allowed to vote, which would just move the attack to a later point in the registry.
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5.4 Attack Against the protocol

We will use a similar attack to what was used in [20] to attack the JCJ protocol. After
the fix discussed in the last section, each voter is required to send at least two messages
to the registry. For an honest voter the total amount of messages sent will be exactly two
as they have no reason to send more messages, i.e. they do not have a reason to revote
or change their key after the initial key change. Of course an honest voter could change
their mind and want to revote due to that but in general most voters will not do this.

For this attack, we will assume that the adversary knows the number of honest voters n
and the adversary knows that the number of messages posted by these voters should be
2n as none of the voters are revoting. Thus, if the adversary coerces the voter vi, then he
will expect the total number of published messages to be 2n+2 if the voter follows the
coercion. If the total number of message is not 2n+2, then the adversary will detect
that the voter has not followed the coercion. The advantage the adversary will gain in
such a scenario is more than is allowed and thus this will break coercion-resistance in
the protocol.

Additionally, since we already saw before that the voter can provide the adversary with
receipts, i.e. pointing to a message on the chain and proving this with a zero-knowledge
proof. This means that after the adversary sees that there are additional messages on
the registry, he can request the voter to send him these as well. Now, the voter could
attempt to lie and claim that these are not theirs. However, as discussed the honest and
non-coerced voters do not really have a reason to revote and thus the adversary would
not believe that the additional messages are not the coerced voter’s. All of this, means
that coercion-resistance and receipt-freeness in the protocol are broken.

5.5 Fixes and Conclusion

One way to attempt to fix the protocol, could be the addition of a random number of
fake votes or revotes to the registry. However, in general the voters cannot be trusted
to do this, since a random number of votes posted at random times is required and not
something an average voter will be able to properly complete. Therefore, this would
need to be done by the authorities. However, modelling such behaviour is quite difficult.
An attempt in such modelling was made by VoteAgain [30] where the authorities added
dummy ballots to hide the revoting done by the voters. However, another paper [24]
showed that this resulted in VoteAgain needing a trusted authority for all of the security
properties. As discussed in the beginning, this is not wanted as it means that the protocol
is not improving a simple voting protocol in a meaningful way.

Another way to fix the protocol would be to limit the voters’ access to their randomness
and keys. This could be done by having a trusted hardware for each voter which
stores these values and the voter cannot access them. This would prevent the voter
from sharing their messages with the authority. However, as this would not allow key
changing, it would totally change the idea tried to convey by the protocol MACI [13].
Thus, it would not really be possible to fix the protocol without completely changing it,
similar to the result we got in the previous chapter.
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Other Work

There are a lot of protocols that try to improve the existing class of coercion-resistant
e-voting protocols. However, as we have shown this task is not an easy one and there
are often some problems that get overlooked. We already showed attacks against two
introduced protocols [34] and MACI from [13]. In this chapter, a few other protocols
and points that were looked at throughout working on the project, will be discussed
more informally.

6.1 Other Protocols

We already mentioned VoteAgain [30] in the previous chapter. It aims to improve
the cost of tallying when compared with JCJ, however it was proved to rely on a
single trusted authority by [24]. This means that the protocol has a lot stronger trust
assumptions than JCJ even if the cost is better in the cleaning stage. Additionally, as
discussed due to these trust assumptions it does not meaningfully improve a simple
coercion-resistant protocol. Another paper that was looked at is E-cclesia [3]. However,
it is not even receipt-free and as it is a self-tallying protocol, trying to make it coercion-
resistant is even more difficult than with distributed trust assumptions.

6.2 Other Problems

The two protocols MACI [13] and the blockchain-based protocol [34] were compared
with JCJ [26] and JCJ* [20] in order to see whether they were performing better than
the JCJ protocol in any aspect. While this comparison is not necessary after the attacks
provided against the protocols in the previous chapters, it will still be briefly discussed
here. Specifically, this is not necessary since the attacks introduced break or remove the
need for the main contributions in each paper: key changing in MACI and providing a
receipt in the blockchain-based protocol.

While JCJ and JCJ* can have distributed trust with a threshold for the number of
corrupted authorities, MACI needs a single trusted third party in order to satisfy the
security properties. On the other hand, the protocol in [34] claims to be decentralised,
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but in reality has two trusted authorities where, according to their proofs, at least one
of them needs to be honest. Additionally, this protocol requires a private, untappable
channel between the voter and each of the authorities, whereas JCJ only requires an
anonymous channel at some point in the election. According to our fix, MACI would
also need a trusted hardware which is not something required by JCJ.

6.3 JCJ* Underspecification

We have discussed JCJ* already and while the protocol is very thoroughly described and
proved, it lacks in the description. Mainly the deception strategy used in the protocol
in a receipt-free situation is underspecified. The evasion strategy discussed in JCJ* is
that the voter casts one vote for the desired party and then provides a fake credential
to the adversary. The paper mentions that ”a coercer may ask the voter to cast some
specific vote or to perform some specific computations, but this is not considered in the
definition as the adversary might as well do it herself”[20]. However, since we want to
discuss receipt-freeness, we have to specify a different, more restricted adversary as
well as an appropriate evasion strategy. These are included in the definition, they are
just not properly specified so we will do that here. This is to show that there is a large
variety of adversaries and the deception strategies change a lot in different situations.

The receipt-free adversary we will discuss is weaker in that they cannot request the
credential and use this to vote but rather they will ask the voter to vote for a certain
candidate and then send all the receipts to the adversary. The adversary then tries to
verify how the voter voted based on these receipts. In JCJ*, in order to avoid such
an adversary, the voter can create a fake credential and vote with this. Thus, being
able to send these receipts to the adversary. Alternatively, the voter could first vote
according to the coercion and then vote again according to their own wishes. Again,
the voter could send the receipts to the adversary. Now, as we know that the protocol is
coercion-resistant, we know that the adversary cannot distinguish between a real and a
fake credentials, thus the adversary is not able to verify the receipts sent by the voter in
any way.

Now, we know that revoting and addition of fake ballot is difficult to model and create,
as described in the previous chapter. The protocol JCJ* in [20] mathematically models
this behaviour by including in their vote distribution the factor of revoting and addition
of fake votes, whether by the voters or the authorities. The paper does not further
discuss how this can be done in a secure way. However, as the protocol hides the
reasons why any single vote is dropped from the final tally, this might just be done by
the multiple authorities adding random ballots at random times. Thus, the protocol
would avoid the issues found by [24] in the VoteAgain protocol [30], while also hiding
the evasion strategies from the adversary. However, these details should be specified in
the paper [20] in order for it to have a meaningful evasion strategy against a receipt-free
adversary.
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Conclusions and Future Work

In this report, we have shown problems in a definition of coercion-resistance and attacks
against two electronic voting protocols. The problems in the definition of coercion-
resistance defined in [2] were related to the value ∆ that was not clearly specified. We
discussed how these problems mean that the definition cannot be used in its current
state to analyse the incoercibility of e-voting protocols. The first attack we presented
was against the protocol defined in [34], the attack showed that the paper assumed the
ZKPs to be stronger than they actually were. The second attack presented was against
the MACI protocol defined in [13]. The attack showed that the adversary can gain a
non-negligible advantage and even confirm whether the voter followed the coercion in
some cases. As discussed, these attacks break the coercion-resistance in the protocols
and result in the contributions of the protocol definitions to be minimised.

The report provides insight to the problems with formalising and actualising coercion-
resistance. The omissions and attacks discussed show that sufficiently considering the
relevant aspects of coercion-resistance is very difficult and more work is needed before
coercion-resistance can be a property of a scalable e-voting protocol. Scalability is not
currently possible since the current coercion-resistant protocols often rely on similar
methods as JCJ which has a large overhead, i.e. quadratic in the number of voters.
Additionally, in order to use electronic voting protocols in large elections, coercion-
resistance is a necessary property since coercion is a real and serious problem in such
elections.
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Appendix A

Evasion Strategy in the
Blockchain-based protocol

An evasion strategy was discussed in the chapter 4. This evasion strategy is not a valid
one due to the reasons discussed in the chapter but the details for the evasion strategy
are included here.

The evasion strategy starts by the voter vi swapping the places of the valid and
fake token in the ballot, i.e. changing the ballot from b̄i = (gy′i(x

′
i+k),gy′i(x

′
i+λ)) to

b̄i = (gy′i(x
′
i+λ),gy′i(x

′
i+k)). Now, since the adversary knows gk and gλ from the ini-

tial commitments published by the authority T1, the voter vi needs to lie about the ZKPs
that include these, i.e. ZKP(k,gk,gy′ik) and ZKP(λ,gλ,gy′iλ). Lying about these ZKPs
means that the voter claims that the random value c is 0 for all the repetitions of each of
the proofs and thus they can lie about the value of the secret since it never gets checked.
This was discussed in section 4.2.

Now after this the voter vi can move on with the real and the attack protocols as
described until step 7 in Figure 4.1 and step 5 in Figure 4.2. In this step, the voter
vi needs to lie about the value of the coin flip ci to the adversary and send over the
respective ballot. This is because the voter flipped the initial ballot and the adversary
will find out the real final ballot from the protocol. Thus, the final ballot the voter sends
must equal to that one, meaning that the ballot must be flipped again if the real ballot is
not flipped at all and not flipped if the real ballot is flipped at this stage. The voter can
then finish the protocols as defined. Since the adversary got all the receipts and proofs,
they believe they have verified knowledge of which token in the final ballot is valid and
which is fake. However, the ballot is the opposite to what the adversary believes since
the voter swapped the places of the tokens in the proofs.

However, as already stated in the main paper, this is not a valid strategy due to the
adversary being constructed in a way that does not accept a ZKP that has c = 0 for all
the repetitions.
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