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Abstract
Developing robot controllers capable of achieving dexterous nonprehensile manipu-
lation, such as pushing an object on a table, is challenging. The underactuated and
hybrid-dynamics nature of the problem, further complicated by the uncertainty resulting
from the frictional interactions, requires sophisticated control behaviors. Reinforce-
ment Learning (RL) is a powerful framework for developing such robot controllers.
However, previous RL literature addressing the nonprehensile pushing task achieves
low accuracy, non-smooth trajectories, and only simple motions, i.e. without rotation
of the manipulated object. We conjecture that previously used unimodal exploration
strategies fail to capture the inherent hybrid-dynamics of the task, arising from the
different possible contact interaction modes between the robot and the object, such as
sticking, sliding, and separation. In this work, we propose a multimodal exploration
approach through categorical distributions, which enables us to train planar pushing
RL policies for arbitrary initial and target object poses, i.e. different positions and
orientations, and with improved accuracy. We show that the learned policies are robust
to external disturbances and observation noise, and scale to tasks with multiple pushers.
Furthermore, we validate the transferability of the learned policies, trained entirely
in simulation, to a physical robot hardware using the KUKA iiwa robot arm. The
behavior of the policies in the physical robot can be seen in our supplemental video:
https://youtu.be/mOgibE-qv3k.
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Chapter 1

Introduction

1.1 Motivation

With the current trend of an aging population, and the ambition to automate dangerous
jobs, developing versatile robots that can interact intelligently in diverse environments
is becoming ever more important. Recent advancements have greatly enhanced the
capabilities of robots to execute complex tasks. However, most industrial and assistive
robots are currently limited to pick-and-place tasks. In contrast, humans and animals
demonstrate a broader range of contact-rich manipulation skills that extend beyond the
scope of prehensile manipulation.

Nonprehensile manipulation is defined as manipulation without grasping [1]. Humans
are constantly performing nonprehensile manipulation tasks in their everyday lives, for
example, when pushing a box on the floor, rolling or throwing a ball, and balancing a
tray. We are interested in studying robot control for nonprehensile manipulation since
it endows robots with versatile behaviors, enabling them to perform a wide range of
motions on objects with different properties [1]–[3].

In particular, choosing not to grasp the object allows the robot to realize a broader
class of object motions that might not be feasible by the end-effector itself [2]. The
end-effector is the device attached at the end of a robotic arm, such as a gripper or a
pusher. Furthermore, suppose that we wish to develop a robot capable of manipulating
a wide range of objects, with different sizes, shapes, and weights. Manipulating these
objects exclusively through grasping would require a highly complex and dexterous
gripper that can adapt to the characteristics of the objects; however, nonprehensile
manipulation allows us to use simpler end-effectors, with the only requirement being
to be able to apply forces to the object [2], [3]. Nonprehensile manipulation leverages
features of the external environment, such as gravitational and frictional forces, to
realize complex motions, and can expand the effective workspace of the robot through
throwing motions [3].

Nevertheless, this versatility comes at the expense of increased complexity. Allowing the
pose of the object relative to the end-effector to change requires the robot to constantly
adapt the contact positions, leading to different possible contact modes in the form

1



Chapter 1. Introduction 2

Figure 1.1: Experimental robotic hardware set-up for the planar pushing task. The robot
uses a pusher to move an object to a specified target pose.

of sticking, sliding, and separation. Sticking occurs when the end-effector and the
manipulated object are in contact, but not sliding relative to each other. Additionally,
sliding occurs when the end-effector and the manipulated object are in contact and
sliding relative to each other. Finally, separation occurs when the end-effector and the
manipulated object are not in contact. We highlight three key challenges that arise in
nonprehensile manipulation:

• Underactuation. The system is underactuated, which means that the robot
is unable to realize arbitrary motions of the object [4]. Therefore, reasoning
about the long-term robot behavior required to perform certain tasks with the
manipulated object is complex.

• Hybrid-dynamics. The transition between different contact modes results in
hybrid-dynamics [4]. A hybrid-dynamical system is characterized by exhibiting
both continuous-time and discrete-time dynamics [5]. This leads to discontinuities
in the dynamics which can be problematic for gradient-based optimizers [6].

• Frictional Uncertainty. The frictional interactions between the robot, the manip-
ulated object, and the environment are hard to model [6]–[8]. This exacerbates
the uncertainty in the contact modes and the behavior of the object during the
interaction with the robot.

In this work we consider the task of planar pushing, widely studied in the nonprehensile
literature [1], [4], [8]–[10]. The task, as seen in Figure 1.1, consists of using a robotic
pusher to control the motion of an object sliding on a flat surface. In order to address the
aforementioned challenges in nonprehensile manipulation, previous works developed
robot controllers for planar pushing generally following one of two approaches: model-
based via Model Predictive Control (MPC) [4], [10], or model-free via Reinforcement
Learning (RL) [11]–[14]. The notion of prediction and feedback is a key characteristic
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of both MPC and RL methods, which addresses the challenges of the planar pushing
task by anticipating the outcomes of the actions and making adjustments in real-time.

These approaches typically face different open problems. MPC lacks scalability to
more complex scenarios, such as multiple contacts and switching contact faces [4],
[6], while RL methods tend to produce non-smooth robot motions and, in the case of
planar pushing, show limited range of sub-optimal, idiosyncratic motions. Specifically,
the current literature on the application of RL methods to planar pushing achieve low
accuracy and only simple motions, i.e. without orientation of the manipulated object
[11]–[14], which we aim to consider.

1.2 Goals and Contributions

The primary goal of this project was to investigate the application of RL methods to the
task of planar pushing. In particular, we were interested in using RL to develop a robot
controller that can accurately push an object to an arbitrary target pose (position and
orientation). Lastly, we aimed to validate the developed controller on a physical planar
pushing robotic hardware.

As discussed in the previous section, the current RL literature addressing the planar
pushing task achieves simple motions that are only capable of pushing an object
to a target position, disregarding the orientation of the object [11]–[14]. These RL
methods share a common trait: they perform exploration using a multivariate Gaussian
distribution, with diagonal covariance, defined in the action space (Section 3.2.1).
This limits the exploration to unimodal policies across each action space dimension.
However, the model-based literature identifies the planar pushing problem as a hybrid-
dynamic system due to the different possible contact modes (sticking, sliding left,
sliding right, and separation). This provides us with the insight that perhaps planar
pushing is fundamentally a multimodal control problem. Therefore, we ask the question:

Can multimodal exploration enable us to learn robust, scalable, and accurate planar
pushing RL policies that incorporate object orientation?

In this work, we address this question and make the following contributions:

• We propose a multimodal exploration approach, with categorical distributions on
a discrete action space, which enables us to learn planar pushing RL policies for
arbitrary initial and target object poses, i.e. different positions and orientations.

• We demonstrate that the proposed framework is robust to disturbances and obser-
vation noise, scalable to two pushers, and exhibits smooth pushing motions.

• We validate the policies, trained only in simulation, on a physical hardware set-up
using the KUKA iiwa robot.

We submitted these contributions for publication in the 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), one of the major conferences
for robotics research. The following is our submitted paper, which is currently under
review:
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[15] J. Del Aguila Ferrandis, J. Moura, and S. Vijayakumar, “Nonprehensile planar
manipulation through reinforcement learning with multimodal categorical explo-
ration,” in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), [Under review], 2023

1.3 Report Structure

Chapter 2 presents the previous literature on dynamics modelling, MPC, and RL for
planar pushing, and discusses their limitations and open problems. Furthermore, it
defines the planar pushing task for arbitrary initial and target object poses, and provides
the background on the RL algorithm used within the proposed multimodal categorical
exploration framework. Chapter 3 describes how the RL task is constructed in order to
learn planar pushing policies, as well as the techniques used to achieve accurate policies
with good transferability to the physical hardware. It also presents the Gaussian explo-
ration approach used in previous literature, and our proposed categorical exploration
approach. Chapter 4 details the procedure to train the policies in simulation and deploy
them on the physical robot. Chapter 5 describes the design of the experiments con-
ducted, presents the results, and discusses the findings. Finally, Chapter 6 summarizes
the contributions, highlights the key insights from this work, discusses the limitations,
and outlines possible avenues for future work.



Chapter 2

Background

2.1 Literature Review

Since the work of Mason [1], planar pushing has generally been considered one of the
fundamental problems to study nonprehensile manipulation. We conduct a literature
review of the previous works in dynamics modelling and robot control for planar
pushing. In general, robot control systems can be model-based or model-free. Model-
based controllers rely on a mathematical model of the system in which they act, which
may include models of the environment, the robot, contact interactions, and more.
On the other hand, model-free controllers do not require such models of the system
and instead generally make use of data-driven methods to learn the desired behaviors.
Previous works have explored both model-based and model-free controllers for planar
pushing. The state-of-the-art model-based controllers formulate the task using MPC,
while the state-of-the-art model-free controllers utilize RL. We now discuss the current
literature on dynamics modelling, MPC and RL for planar pushing.

2.1.1 Dynamics Modelling

Various works have developed analytical models of the dynamics of planar pushing.
To begin with, Mason [1] proposed the voting theorem, which models the direction of
rotation of an object experiencing a pushing force at a particular contact point, without
requiring information about pressure distribution between the object and the support
surface. Later on, Goyal et al. [9] introduced the concept of the limit surface, which
provides a geometrically interpretable model of the interaction between the frictional
forces and the motion of a flat object sliding on a planar surface.

Data-driven models of the dynamics of planar pushing have also been developed. Zhou
et al. [16] proposed a physics-informed data-driven model of the surface frictional forces
as well as the object velocities in planar pushing scenarios by optimising a convex
polynomial representation. Additionally, Bauza and Rodriguez [8] used Gaussian
processes to model the expected position and orientation, and their corresponding
variance, of an object after applying a particular pushing motion. These data-driven
models are limited to the specific objects and surface material that were used for model

5



Chapter 2. Background 6

learning. Additionally, they assume continuous contact between the pusher and object.

The previously discussed works on dynamics modelling, with the exception of the work
of Bauza and Rodriguez [8], have a key limitation since they rely on the quasi-static
assumption. The quasi-static assumption involves a regime where, at low pushing
velocities, frictional forces are balanced and inertial effects are negligible [4], [17].
Therefore, these dynamics models are unsuitable for pushing tasks requiring nimble
interactions between the robot end-effector and the object due to the increased sliding
velocity. The quasi-static assumption is also unsuitable in scenarios where the robot
exerts a throwing motion on the object since inertial effects become non-negligible.
Bauza and Rodriguez [8] managed to side step the quasi-static assumption by providing
the pusher velocity as a model input. A key conclusion of their work is that the
quasi-static assumption does not hold with pushing velocities greater than 0.08 ms−1.

2.1.2 Model Predictive Control

Model Predictive Control (MPC) is a control technique that uses a dynamics model to
predict the future behavior of the system, over a finite time horizon, in order to generate
a sequence of actions that optimizes this forecast [18]. The first action in the sequence
is applied and then the process is repeated for the next control step using the updated
system state information [18]. This receding horizon strategy enables MPC to account
for the longer-term effect of the actions throughout the prediction horizon, as well as
react to changes in the environment and inaccuracies in the dynamics model. Overall,
MPC is a widely adopted technique in robotics since it leverages knowledge about the
dynamics and constraints of the system to produce sophisticated control behaviors [19].

Hogan and Rodriguez [4] proposed a mixed integer MPC formulation for offline track-
ing of nominal trajectories in planar pushing. They used a mixed integer quadratic
programming approach within their MPC to formulate the decision between sticking
and sliding contact modes. However, this MPC formulation is too computationally ex-
pensive to be used for online tracking of nominal trajectories. In the same work, Hogan
and Rodriguez [4] used a deep neural network to learn an approximation of the contact
mode transitions within the MPC prediction horizon. The deep neural network was
trained using optimal solutions computed offline with their mixed integer formulation.
This learned approximation of the contact mode selection enabled an online deployment
of the MPC. Nevertheless, only the sticking and sliding contact modes are considered,
which is appropriate when the pusher remains in contact with the object throughout the
interaction; however, scaling this approach to more complex scenarios, for example
involving switching contact faces or controlling multiple pushers, could be problematic.

Recently, Moura et al. [10] proposed a complementarity constraint MPC formulation
for offline planning and online tracking of planar pushing nominal trajectories. They
used a Mathematical Program with Complementarity Constraints (MPCC) formulation
within a trajectory optimisation framework to plan trajectories with sticking and sliding
contact modes. This framework was used within a closed-loop MPC to achieve online
tracking of the planned nominal trajectories, i.e. without pre-learning the contact mode
selection as in [4]. A limitation of this approach is that the MPCC assumes that it
is feasible to transition between contact modes instantaneously. However, this is not
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always the case, for example, when there is a large separation between the pusher and
the object and we want the pusher to make contact.

The MPC formulations proposed by Hogan and Rodriguez [4] and Moura et al. [10]
are capable of tracking nominal trajectories and achieving target object poses with
significant accuracy, while recovering from moderate disturbances. Nevertheless, they
only incorporate the sticking and sliding contact modes within a fixed object face, and
therefore are unable to switch contact faces during the interaction, which limits the
range of feasible object motions. Additionally, both methods rely on offline planning
and online tracking of nominal trajectories. This involves computing a valid trajectory,
and then using an MPC with a short time horizon to follow this trajectory. The trajectory
planning stage cannot be solved online due to its computational complexity. When
a disturbance is applied to the pushed object, the short time horizon MPC is used to
regain control of the object and return to the nominal trajectory. However, with large
disturbances, the MPC might fail to converge due to its short time horizon, leading to
failure to regain control of the object. In such cases, it would be necessary to re-plan the
trajectory offline. Finally, both MPC formulations rely on dynamics models that make
the quasi-static assumption. This suggests that their performance would significantly
degrade with higher pushing velocities. In fact, as previously discussed, the quasi-static
assumption does not hold with pushing velocities greater than 0.08 ms−1 [8].

2.1.3 Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning that focuses on enabling
agents to learn through interactions with the environment in order to take actions that
maximize a cumulative reward signal [20]. The agent discovers the actions that lead
to greater rewards through trial and error, which requires a careful balance between
exploitation of previously effective strategies and exploration of new strategies, aiming
to improve the current behavior. This is known as the exploration-exploitation trade-off.
RL systems generally rely on the notion of value functions, which attempt to capture
how good is a particular environment state, or state-action pair, in the long term [20].
Actions can have long-term effects on future rewards, so one of the key challenges in
RL is determining which actions were responsible for the eventual success or failure.
Finally, the aim is to learn a policy function that maps the current state of the agent and
the environment to an optimal action.

Throughout recent years, RL has achieved impressive results in various robot control
tasks such as manipulation [21] and locomotion [22], [23]. In particular, RL has proven
to be a powerful framework to solve complex tasks in simulation due to the availability
of large sample sizes of diverse scenarios. However, transferring the learned policies
to a physical robot can be challenging. There have been significant efforts to reduce
the sim-to-real gap and one of the most successful techniques, which we use in this
work, is called dynamics randomization [11]. It consists on randomizing the physical
properties that might differ between the simulation and real world environments. This
leads to learning more robust RL policies that can cope with the dynamics of unfamiliar
environments [11].

Peng et al. [11] used dynamics randomization to transfer planar pushing RL policies
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learned in simulation to a physical robot. They implemented a Recurrent Deep Deter-
ministic Policy Gradient (RDDPG) [24] algorithm, and randomized various properties
of the simulation, such as friction coefficients and the mass of different components.
The learned policy demonstrates complex behaviors such as making and breaking
contact with the manipulated object to make adjustments and reach a target position.
Nevertheless, they define episode success as pushing the object within 7 cm of a target
position. Hence, the policy achieves significantly low accuracy and disregards the
orientation of the manipulated object. Finally, the policy exhibits non-smooth motions,
presumably due to the learning taking place in the configuration space, which means
that the policy actions correspond to target joint angles of the robot. This could lead to
non-smooth and unstable behavior due to the high dimensionality of the output, as well
as the complexity involved in coordinating multiple joints to achieve a particular object
motion. In our work, we avoid this issue by learning the RL policies in the task space,
meaning that the policy actions correspond to target motions of the robot end-effector.
We then use an Inverse Kinematics (IK) solver to map policy actions to robot joint
configurations.

Later on, Jeong et al. [12] learned a state dependent Generalized Force Model (GFM)
to capture the difference between the real-world and simulation environments, and used
it to transfer planar pushing RL policies learned in simulation to a physical robot. They
trained the RL policies in the configuration space using Maximum a Posteriori Policy
Optimisation (MPO) [25]. Furthermore, the policies are trained first in simulation,
then deployed on the physical robot to collect data, next the GFM is learned with
this data, and finally the policies are re-trained using the GFM. However, the policies
exhibit low accuracy and only simple motions. In particular, an episode is defined as
successful when the object is within 2.5 cm of the target position, again disregarding
object orientation. Additionally, the policies are only trained for a fixed starting position,
and ten fixed possible target positions. Finally, Jeong et al. [12] attempted to extend
their approach to incorporate object orientation. They restricted the task to a fixed
starting pose and ten fixed possible target poses, and considered an episode successful
when the object is within 5 cm and 20 deg of the target pose. Even in this simplified
scenario, the best policy only completes the task on 44% of its attempts.

Recently, Cong et al. [13] used RL with a vision-proprioception model to learn planar
pushing policies for objects with different shapes. They extract information about the
object’s shape, pose, and target position from raw images by segmenting an object
mask and extracting a latent representation through a Variational Autoencoder (VAE).
Furthermore, they combine this latent representation with the robot’s proprioception and
use Soft Actor Critic (SAC) [26] to learn control policies in the task space. However,
this approach disregards the orientation of the object and exhibits poor accuracy, with
an average distance between the target position and the final object position of around
4 cm. Finally, when completing the same tasks in simulation and in the real-world, the
policy takes on average four times longer in the real-world, indicating that the policy
generalizes poorly to unfamiliar dynamics.

These model-free RL methods manage to overcome some of the online scalability
limitations of model-based MPC through extensive offline exploration during training.
In particular, they can switch contact faces and generally recover from significant
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external disturbances. There are challenges in scaling model-based MPC to handle
these more complex scenarios due to the increased computational complexity, as well
as the difficulty in modelling them. Furthermore, the model-free RL methods do not
rely on the quasi-static assumption so they can use higher pushing velocities.

Nevertheless, the RL methods exhibit low accuracy. They reach the target position
with errors around 2.5 cm [12] or greater, while MPC achieves errors around 0.5 cm
[10]. Additionally, MPC methods perform longer pushing motions, demonstrating
skillful control of the object, and resulting in more efficient trajectories. On the other
hand, RL methods rely on short pushes to approximate the object to the target position
over multiple attempts. Most importantly, previous RL methods addressing the planar
pushing task are unable to handle arbitrary initial and target object poses, i.e. different
positions and orientations [11]–[14]. These methods perform exploration using a
multivariate Gaussian with diagonal covariance, which is unimodal across each action
space dimension (Section 3.2.1). In this work, we propose a multimodal exploration
approach through categorical distributions on a discrete action space. This approach
enables us to train planar pushing RL policies for arbitrary initial and target object poses
across the entire workspace, with significantly improved accuracy.

2.2 The Planar Pushing Task

We consider the task of pushing a box to a specified target pose, composed of the
box position and orientation, from a random initial system configuration, composed of
the initial box pose and robot pusher position, all within a bounded planar workspace.
Figure 2.1 illustrates the planar pushing system, where (vx,p,vy,p) is the current velocity
of the robot pusher, located at (xp,yp). Additionally, (xb,yb,θb) is the current pose of
the box, and (xtarg,ytarg,θtarg) is the target box pose.

θb

(xb,yb)

θtarg

(xtarg,ytarg)
(xp,yp)

(vx,p,vy,p)

x

y

Figure 2.1: Illustration of the planar pushing system.
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2.3 Formulation of the Reinforcement Learning Problem

We consider a finite horizon goal-conditioned Partially Observable Markov Decision
Process (POMDP) defined by the tuple (S ,Ω,G ,A ,O,P ,R ,H,ρ0,ρg) [13], [23]. At
each time step t, the environment has state ssst ∈ S , we receive an observation ooot ∈ Ω, our
goal is gggt ∈ G , and we take an action aaat ∈ A . Note that the goal remains fixed during an
episode. Additionally, O : S ×A → Pr(Ω) is the observation model, P : S ×A → Pr(S)
is the transition dynamics, and R : S ×A ×G → R is the reward function. We limit
episodes to have a maximum horizon H. Finally, the initial state and goal of an episode
are distributed according to ρ0 and ρg respectively.

We consider a POMDP because the observation ooot of the policy does not capture all
the information in the environment state ssst . For example, external forces as well as
frictional forces between the robot end-effector, the box, and the planar surface are not
observable.

We wish to learn a stochastic policy πφφφ : Ω×G → Pr(A), parametrized by φφφ, that
maximizes the expected cumulative reward, given by

Eπφφφ

[
H−1

∑
t=0

γ
trt

]
, (2.1)

where rt is the reward at time step t, and γ ∈ [0,1] is a discount factor.

2.4 Proximal Policy Optimisation

In order to learn the policy πφφφ, we use Proximal Policy Optimisation (PPO), a popular
model-free on-policy RL algorithm proposed by Schulman et al. [27]. We use PPO
since it was designed to be used both for continuous action spaces and discrete action
spaces [27]. This is important for our investigation since we compare: (a) PPO with
multimodal exploration through categorical distributions on a discrete action space, our
proposed approach, against (b) PPO with unimodal exploration through a multivariate
Gaussian with diagonal covariance on a continuous action space, the previously used
exploration approach. Additionally, there are various reliable implementations of PPO
available [28]–[30], and PPO has already been successfully applied to various control
tasks, including in-hand manipulation [21] and locomotion [23], [31].

PPO is an on-policy algorithm because it updates the policy during training using data
collected from the current policy [20]. It belongs to a class of RL methods called Policy
Gradient Methods. Let f (φφφ) be an objective function that measures the performance of
the policy. Policy Gradient Methods attempt to maximize f (φφφ) through gradient ascent,
making policy updates of the form

φφφi+1 = φφφi +η ̂∇( f (φφφi)), (2.2)

where i denotes the gradient ascent iteration, η is the learning rate, and ∇̂( f (φφφ)) is
an estimate of the gradient of f (φφφ) [20]. In practice, a more complex gradient ascent
formulation, such as Adam [32], is usually used.
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PPO uses an actor-critic architecture. The actor corresponds to the policy function πφφφ,
while the critic corresponds to an estimate of the state value function, which measures
how good is a particular environment state [20], [27]. Since we consider a goal-
conditioned POMDP, we define the estimated state value function as Vψψψ : Ω×G → R,
where ψψψ are the parameters of the function. PPO learns φφφ and ψψψ through gradient ascent,
so πφφφ and Vψψψ must be differentiable. As a result, πφφφ and Vψψψ are usually implemented
using deep neural networks due to their differentiability and large learning capacity.

Additionally, PPO relies on the notion of an advantage function, which measures the
additional performance with respect to the current policy that is obtained by taking
a particular action [27], [33]. PPO uses a truncated form of Generalized Advantage
Estimation (GAE) [33] to estimate the advantage function for time step t ∈ [0,T ], which
is given by

Ât =
T−t

∑
i=0

(γλ)i
δt+i, (2.3)

with
δt = rt + γVψψψ(ooot+1,gggt+1)−Vψψψ(ooot ,gggt), (2.4)

where λ is the GAE parameter [27], [33]. The γ and λ parameters control the bias-
variance tradeoff in the advantage estimation [33].

We now turn to the objective function. PPO seeks to maximize the following objective:

Lt(φφφ,ψψψ) = Êt

[
L

πφφφ

t + c1LVψψψ

t + c2S
πφφφ

t

]
, (2.5)

where the expectation is computed as the empirical average over a mini-batch of time
steps t, L

πφφφ

t is the objective of the policy function, LVψψψ

t is the objective of the state value
function, S

πφφφ

t is an entropy bonus, and c1,c2 are weights [27].

The objective of the policy function is given by

L
πφφφ

t = min
(

πφφφ(aaat | ooot ,gggt)

πφφφold
(aaat | ooot ,gggt)

· Ât , clip
(

πφφφ(aaat | ooot ,gggt)

πφφφold
(aaat | ooot ,gggt)

, 1− ε, 1+ ε

)
Ât

)
, (2.6)

where ε controls the clip range, and φφφold are the policy parameters before the policy
update [27]. The intuition is that, for a given observation ooot and goal gggt , if the action
aaat leads to a positive advantage, then we want the probability of the policy taking this
action, given by πφφφ(aaat | ooot ,gggt), to increase. Indeed, if Ât > 0, then the objective L

πφφφ

t
increases if πφφφ(aaat | ooot ,gggt) increases. The purpose of clipping the probability ratio to
the interval [1− ε,1+ ε], and then taking the minimum, is to restrict how much the
objective can increase, thereby preventing excessively large updates to the policy that
could be detrimental. In the case that the action leads to a negative advantage, then we
want the probability of the policy taking this action to decrease. Accordingly, if Ât < 0,
then the objective L

πφφφ

t increases if πφφφ(aaat | ooot ,gggt) decreases.

The objective of the state value function is given by

LVψψψ

t =−(Vψψψ(ooot ,gggt)−V̂targ(ooot ,gggt))
2, (2.7)
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where V̂targ is an estimate of the true state value function [27]. Note that we aim
to minimize the squared difference between the current state value function and the
estimated true state value function, but we perform gradient ascent on the overall
objective Lt(φφφ,ψψψ), which is why LVψψψ

t is explicitly formulated as a negative objective.
There are various techniques to compute the estimate of the true state value function,
but a common choice [28], [34] is

V̂targ(ooot ,gggt) = Ât +Vψψψ(ooot ,gggt), (2.8)

such that
LVψψψ

t =−Â2
t . (2.9)

The definition of the true advantage function is A(sss,aaa) = Q(sss,aaa)−V (sss), where Q(sss,aaa)
is the true state-action value function, and V (sss) is the true state value function [33].
Note that PPO does not explicitly use a state-action value function. Therefore, the
intuition behind Equation (2.9) is that, if the expected value of the squared advantage
increases, this is an indicator that the accuracy of our estimated state value function Vψψψ

has decreased.

Lastly, the entropy bonus S
πφφφ

t can be used to encourage a stochastic policy function with
a higher entropy [27], which leads to a greater degree of exploration of new behaviors,
and a lower degree of exploitation of known information. The calculation of the entropy
depends on the formulation of the stochastic policy. In practice, it is common for
PPO implementations to set c2 = 0, such that the entropy bonus is disregarded, since
sufficient exploration is provided by the stochastic actions of the policy [27]–[29]. We
also disregard the entropy bonus in our experiments.



Chapter 3

Method

3.1 Definition of the Learning Task

Beyond the algorithm used to train the policy, RL tasks have four primary components:
the observation of the environment received by the policy, the model architectures of
the policy and value functions (or any functions required by the learning algorithm), the
set of possible policy actions, and finally the reward function. In this section, we define
each of these components for the planar pushing task studied.

In our case, since we consider a goal-conditioned setting, at each time step t the policy
receives an observation of the environment ooot , as well as the goal of the episode gggt .
The observation of the environment consists of the current box pose (xb,yb,θb) and the
current pusher position (xp,yp). Additionally, the goal of the episode consists of the
target box pose (xtarg,ytarg,θtarg).

As discussed in Section 2.3, we formulate the problem as a POMDP because there is
important information from the environment state ssst that the policy observation ooot fails
to capture, such as the frictional contact forces and the velocity of the box. We consider
two model architectures that attempt to enable the policy and state value functions in
PPO to capture this hidden information. Both architectures have been widely used in
the RL literature with multiple tasks and learning algorithms. The first architecture
consists of a Multilayer Perceptron (MLP) [35] which receives as an input a stack of
previous observations {ooot ,ooot−1, ... ,ooot−l} in addition to the goal gggt [11], [36]. Since
MLPs have no memory, providing a stack of previous observations allows the MLP to
observe the evolution of the pusher position and box pose over a fixed time period, and
hence learn to extract feature representations that are predictive of the hidden dynamics
of the environment. The second architecture consists of a Long Short-Term Memory
(LSTM) model [37], which receives as an input the current observation ooot and goal gggt ,
as well as the hidden state vector of the model [11], [21]. The LSTM model can update
its hidden state during policy interaction with the environment such that it is predictive
of the dynamics of the environment.

In general, the MLP architecture is simpler and less computationally expensive at
training time and inference time than the LSTM architecture. However, the MLP

13
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architecture is limited since it can only access a fixed amount of previous information
at any given time step. On the other hand, the LSTM architecture can capture long-term
dependencies, learning what information to store and what information to forget during
policy interaction with the environment. Therefore, it may be able to capture more
useful information about the hidden dynamics of the environment. Previous work [11]
has found the LSTM architecture to provide faster convergence and better sim-to-real
transfer of the learned policies.

Given an observation ooot (or stack of observations) and a goal gggt , the policy function
outputs the parameters of a probability distribution over the set of possible actions.
During training, the action aaat is sampled from this probability distribution, which
enables the policy to explore different behaviors. The formulation of the probability
distribution shapes the exploration strategy of the policy, which is central to our work
and will be discussed in Section 3.2. We learn the RL policies in the task space and
therefore the policy action is aaat = (vx,p,vy,p), which consists of the x and y velocity of
the pusher. We limit the velocity on each axis to the range [−0.1,0.1] ms−1.

The reward at time step t is calculated as follows:

rt =


α successful episode,
−β unsuccessful episode,
k1(1−dx,y)+ k2(1−dθ)+ k3(1− vp) otherwise.

(3.1)

In particular, if the box reaches the target pose, then the episode terminates successfully
with a large positive reward rt = α. Alternatively, if the object fails to reach the target
within the maximum horizon, or the workspace boundaries are violated by the pusher or
box, then the episode terminates unsuccessfully with a large negative reward rt =−β.
Otherwise, while the episode has not finished and the policy is working on the task,
the reward is given by rt = k1(1− dx,y)+ k2(1− dθ)+ k3(1− vp), where dx,y is the
normalized distance to the target position, dθ is the normalized angular distance to the
target orientation, vp is the normalized magnitude of the pusher velocity, and k1,k2,k3
control the weights of the three terms. The normalization calculations for dx,y, dθ, and
vp are performed using min-max scaling to map the original values to the range [0,1].
The first two terms, corresponding to k1 and k2, provide signals reflecting the desirability
of the current box pose relative to the target pose. The last term, corresponding to k3,
acts as a regularizer designed to encourage efficient motions of the pusher.

We use a combination of sparse and dense signals in the reward function. A sparse
signal is given when the episode terminates, while a dense signal is given throughout
the episode before it terminates. A purely sparse reward function can provide signals
that accurately indicate policy success or failure; however, the sparsity of the rewards
can create a challenging learning environment for the policy [11]. On the other hand,
a purely dense reward function can help guide the policy towards the goal; however,
designing the function can be challenging and it can lead the policy to learn suboptimal
behaviors [11]. Therefore, we use a combination of both, with significantly larger sparse
reward signals at episode termination to provide the ground truth of episode success and
failure, and a smaller dense reward signal throughout the episode to improve learning
efficiency by guiding the policy towards the episode goal.
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3.2 Exploration Strategies

3.2.1 Gaussian Exploration

As discussed in the Literature Review, previous works on RL for planar pushing
perform exploration using a multivariate Gaussian with diagonal covariance. The
formulation of this exploration strategy varies across different RL algorithms. Peng et
al. [11] use RDDPG to learn deterministic planar pushing policies and, during training,
add Gaussian exploration noise with mean zero and fixed standard deviation to each
dimension of the policy actions. Jeong et al. [12] use MPO to learn stochastic policies
where the policy function outputs the values of the mean vector µµµ and positive diagonal
elements of a Cholesky factor FFF , which together define a multivariate Gaussian N (µµµ,ΣΣΣ)
with diagonal and positive definite covariance ΣΣΣ = FFFFFFT . Exploration is therefore
performed by sampling actions from the multivariate Gaussian. Lastly, Cong et al. [13]
use SAC to learn stochastic planar pushing policies which output the values of the mean
µµµ and diagonal covariance ΣΣΣ that define the multivariate Gaussian N (µµµ,ΣΣΣ) from which
the actions are sampled.

In this work, we use PPO, which can also be formulated to perform exploration through
a multivariate Gaussian with diagonal covariance. In this case, PPO learns a stochastic
policy that outputs the mean vector µµµ. The diagonal entries of the covariance matrix
ΣΣΣ are learnable parameters, but they are not determined by the policy function, which
means that they are state-independent [27]. Since we learn the policy in the task space,
we have

µµµ = (µx,µy), ΣΣΣ =

(
σ2

x 0
0 σ2

y

)
, (3.2)

where µx,µy are the mean velocities in x and y, and σ2
x ,σ

2
y are their corresponding

variances. Hence, with this formulation, PPO performs exploration during training by
sampling aaat ∼ N (µµµ,ΣΣΣ), where µµµ is determined by the policy function based on the
observation ooot and the goal gggt , and ΣΣΣ contains the current learned variances. Figure 3.1
illustrates this procedure.

Observation: ooot
Goal: gggt

Policy: πφφφ(aaat = (vx,p,vy,p)|ooot ,gggt) vx,p

vy,p

Figure 3.1: Exploration through a multivariate Gaussian with diagonal covariance.

We also conduct experiments with Gaussian exploration using SAC as this provides
a valuable baseline for comparison with previous works applying RL to the planar
pushing task. SAC is an off-policy algorithm with a maximum entropy objective, and
therefore attempts to maximize the cumulative reward and the entropy of the policy
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simultaneously [26]. Note that SAC was designed for continuous control tasks and
hence uses Gaussian exploration as this is the standard exploration approach in the
RL literature for continuous action spaces. As previously discussed, Cong et al. [13]
recently used SAC for planar pushing. Additionally, the other aforementioned works
on RL for planar pushing utilize off-policy algorithms with Gaussian exploration [11],
[12], which are key characteristics of SAC. Therefore, SAC serves as an informative
baseline for comparison with these works. Finally, in task that we consider, SAC
learns a stochastic policy that outputs µx, µy, σ2

x , and σ2
y , which define the multivariate

Gaussian used for exploration. Note that, in contrast to PPO, SAC uses a diagonal
covariance matrix that is state-dependent [26].

The multivariate Gaussian distribution has domain (−∞,∞) in each dimension; however,
as previously discussed, we restrict the policy action such that vx,p,vy,p ∈ [−0.1,0.1]
ms−1. PPO implementations generally constrain the action space by clipping the
sampled action to the desired interval [28]. On the other hand, SAC implementations
generally constrain the action space by applying a squashing function such as tanh to
the sampled action, which maps the action to the interval (−1,1), and then re-scaling to
the desired interval [13], [28]. We use the same approaches in our experiments with
PPO and SAC.

3.2.2 Categorical Exploration

We now discuss our proposed approach for multimodal exploration. A straightforward
way to formulate a stochastic policy capable of multimodal exploration is to discretize
the action space and construct the policy function such that it outputs the parameters of
a categorical distribution for each action space dimension. In our case, we discretize
vx,p and vy,p using 11 equally sized bins for each velocity. During training, given
an observation ooot and the goal gggt , the policy function outputs 11 logits that define a
categorical distribution over vx,p, and 11 logits that define a categorical distribution over
vy,p. We then sample the action aaat = (vx,p,vy,p) from these distributions. Figure 3.2
illustrates this procedure.

Observation: ooot
Goal: gggt

Policy: πφφφ(aaat = (vx,p,vy,p)|ooot ,gggt) vx,p

vy,p

Figure 3.2: Multimodal exploration through categorical distributions.

Increasing the number of bins allows the policy to learn more precise behaviors; however,
the learning task becomes more complex since the number of learnable parameters
increases. In our case, it is important to use an odd number of equally sized bins in order
to allow the possibility of zero velocity. Additionally, we use 11 bins for each action
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space dimension since this has been found to provide a good compromise between
precision and learning complexity in previous works that discretize continuous action
spaces for RL [21], [38].

Finally, when training finishes and the policies are deployed, there is no need for
stochastic exploration. As a result, we do not sample the actions from the policy-defined
distributions. Instead, if the policy function outputs the parameters of a multivariate
Gaussian, we use the mean vector as the action. On the other hand, if the policy function
outputs the logits of categorical distributions, we use the mode of the categorical
distribution for each action space dimension to define the action. This is a common
practice in RL implementations [28], [29].

3.3 Sim-to-Real Transfer

We train the policies entirely in simulation and use dynamics randomization, observation
noise, and synthetic disturbances to bridge the sim-to-real gap. At the start of every
episode during policy training, we sample random values for:

• The coefficients of friction and restitution of the floor, box, and pusher.

• The dimensions of the box and the pusher.

• The mass of the box.

• The time duration of the action.

Note that the coefficient of restitution describes the behavior of two bodies that collide.
In particular, it is calculated as the magnitude of the relative velocity between the two
bodies before the collision, divided by the magnitude of the relative velocity after the
collision. Additionally, the time duration of the action refers to the amount of time
during which a particular action selected by the policy is executed in the environment
before the policy can select a different action. Dynamics randomization enables us to
learn more robust policies that can handle environments with a wide range of dynamics,
therefore improving the sim-to-real transfer of the policies [11], [13], [21]–[23]. Lastly,
when the policy function has memory, either through an LSTM architecture or a stack
of previous observations, dynamics randomization enables the policy function to learn
how to infer the dynamics of the current environment using its memory, and therefore
adapt the policy behavior based on the inferred dynamics [11].

We also add independent Gaussian noise to each element of the policy observations
during training in order to improve the robustness of the policy to sensor uncertainty in
the real world [11], [21]–[23]. In particular, we add correlated noise, sampled at the
beginning of each episode, and uncorrelated noise, sampled at every time step, to the
policy observations of the box pose and pusher position. Correlated noise simulates
sensor bias and incorrect calibration, while uncorrelated noise simulates sensor noise.
For example, let O(xb) be the policy observation of xb, the current x position of the
box. Then, during training, O(xb) = xb +δ

episode
xb +δ

step
xb , where δ

episode
xb is sampled at

the beginning of each episode and then kept fixed, while δ
step
xb is sampled at every time

step.
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Finally, we apply random synthetic disturbances to the manipulated box throughout
each training episode. Random disturbances have been shown to improve the robustness
of the learned policies to external forces and unmodeled dynamics in the real world, and
also enables the policy to explore more diverse scenarios [21]–[23]. We generate the
disturbances by applying random forces on random locations in the box, and at random
time steps throughout an episode.

3.4 Curriculum Learning

The goal of the policy is to move the box to the target pose. If the box reaches
the target pose within the maximum horizon, and the box has velocity 0 ms−1, then
the episode terminates successfully. Therefore, we define success thresholds Tx,y
and Tθ, corresponding to the position and the orientation respectively, such that, if
∥(xb,yb)− (xtarg,ytarg)∥ ≤ Tx,y and |θb − θtarg| ≤ Tθ, then the episode terminates suc-
cessfully. Overall, the policy achieves the goal of the episode if the distance between
the box position and the target position is at most Tx,y, the angular distance between the
box orientation and the target orientation is at most Tθ, and the box has velocity 0 ms−1.

Note that the magnitude of the success thresholds Tx,y and Tθ determines the accuracy
of the learned policy. This is because there is no incentive for the policy to reduce the
position or orientation error of the box pose, relative to the target pose, once the success
thresholds are satisfied. Smaller Tx,y and Tθ lead to more accurate learned policies;
however, this is at the expense of increased task complexity and a sparser reward signal,
which could lead to significantly slower training or lack of convergence entirely. To
mitigate this issue, we use curriculum learning, which involves using a simpler task at
the beginning stages of training, and then increasing the difficulty [39]. In particular, we
define a curriculum such that the policy learning starts with larger thresholds Tx,y and Tθ,
which are reduced to Tx,y/2 and Tθ/2 if the policy reaches a 90% average success rate.
We refer to this reduction in the success thresholds as a curriculum step. Finally, we
use a maximum of one curriculum step when training each policy, allowing the policy
to acquire a success rate beyond 90% with the reduced success thresholds, in order to
avoid an excessive increase in training complexity.
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Implementation

4.1 Policy Training

4.1.1 Training Set-up

We develop a custom simulation environment in which to train the RL policies for
planar pushing. This enables us to define a workspace with similar characteristic to the
real robot and implement key functionalities in order to utilize dynamics randomization,
correlated and uncorrelated observation noise, as well as synthetic external disturbances
during training. Additionally, our training environment allows us to enforce the defined
curriculum and supports observation stacking, which is necessary when using an MLP
architecture for the policy and value functions. We use PyBullet [40] as the physics
engine for the environment since it is open source and it has been widely used to train
RL policies for robot control [41], [42]. PyBullet also has rendering capabilities which
allow us to visualize the behavior of the policies in simulation. Lastly, we use the
PyBullet physics engine in the training environment in order to maintain a consistent
implementation of the robot workspace since, as will be discussed in Section 4.2.3, we
test the controller for policy deployment on the robot hardware using the ROS-PyBullet
interface [43].

Our custom training environment follows the Gym [44] interface so as to be compatible
with Stable Baselines3 [28], a collection of open source implementations of RL algo-
rithms based on PyTorch [45]. We use the PPO and SAC implementations from Stable
Baselines3 since they are reliable, well tested, and have been widely used in previous
works [13], [46], [47]. Stable Baselines3 also provides functionalities to develop custom
policy and value functions, which we leverage for our work.

The default configuration of the robot workspace in the training environment consists
of a bounded planar surface of size 60× 35 cm, a 10× 12× 7 cm box, and a spher-
ical pusher of radius 1.25 cm. This is designed to be relatively similar to the robot
workspace in the real world. Furthermore, the planar pushing policies are executed in
the environment at a frequency of 30 Hz. A higher frequency enables more precise con-
trol; however, it requires a greater number of policy executions in order to complete the
same number of training episodes, which slows down training. We selected a frequency

19
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Observation: {ooot ,ooot−1, . . . ,ooot−9}
Goal: gggt

Linear Layer (512)

Linear Layer (512)

Action Distribution

Observation: {ooot ,ooot−1, . . . ,ooot−9}
Goal: gggt

Linear Layer (1024)

Linear Layer (1024)

Value

Figure 4.1: MLP architecture for the policy function (left) and value function (right).
Observation stacking is used and the size of each hidden layer is shown in parenthesis.

of 30 Hz after performing experiments with different frequencies and concluding that
it provides a good compromise between precision and computational complexity at
training time. Note that the first two dimensions of the box, corresponding to the x and y
axis, the radius of the pusher, and the policy execution frequency, are randomized during
training, which will be further discussed in Section 4.1.4. Additionally, we abstract
away the robot control during training and apply the policy actions to the spherical
pusher directly. In particular, the pusher remains at a constant height of 3.5 cm in the
z axis and, at each time step, its planar velocity (vx,p,vy,p) is updated according to the
selected policy action. This significantly improves the computational complexity of the
training environment, which enables us to train the RL policies with a larger amount of
environment interactions.

We train the policies with data collected from 128 actors. This involves deploying the
current policy in 128 parallel instantiations of our custom planar pushing environment
to collect data, using the data to update the policy, and then repeating this process.
Furthermore, we define a maximum episode length of H = 300 time steps, which
corresponds to 10 seconds in real-time since the policy execution frequency is 30 Hz.
Therefore, if the policy does not accomplish the episode goal within 300 time steps, the
episode terminates unsuccessfully. We determined that H = 300 is suitable for our task
after experimentally validating that the vast majority of the possible pushing tasks in
our environment can be completed within this time limit given the velocity constraints
of the pusher. Our reward function is as defined in Equation (3.1) and we use parameter
values α = 50, β = 20, k1 = 0.1, k2 = 0.02, and k3 = 0.004. We evaluated various
reward function formulations, including purely dense and purely sparse functions, as
well as various parameter values within these formulations, and concluded that the
aforementioned reward function leads to the best performance and training efficiency.
Lastly, we train all policies using a workstation with an Intel Core i9 (3.60GHz) CPU,
an Nvidia GeForce RTX 2080 GPU, and 64 GiB of RAM.

4.1.2 Network Architectures

As discussed in Section 3.1, we experiment with two different neural network archi-
tectures of the policy and value functions in PPO: an MLP architecture that receives
a stack of previous observations, and an LSTM architecture. Figure 4.1 illustrates the
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Observation: ooot
Goal: gggt

Linear Layer (128)

LSTM Layer (256)

Linear Layer (128)

Action Distribution

Observation: ooot
Goal: gggt

Linear Layer (128)

LSTM Layer (256)

Linear Layer (128)

Value

Figure 4.2: LSTM architecture for the policy function (left) and value function (right). The
size of each hidden layer is shown in parenthesis.

MLP architecture. We use a stack of 10 observations in order to provide substantial
information to infer the hidden dynamics, without excessively increasing the dimension-
ality of the input. This is a similar configuration to the observation stacking previously
used by Peng et al. [11] for RL planar pushing policies. In the policy function, we use 2
hidden linear layers, each of size 512, while in the value function we use 2 hidden linear
layers, each of size 1024. Furthermore, Figure 4.2 illustrates the LSTM architecture.
The policy and value functions have the same structure of hidden layers, specifically, a
linear layer of size 128, an LSTM layer of size 256, and a linear layer of size 128.

We empirically evaluated different depths and widths of the policy and value functions
in both architectures, and concluded that the illustrated architectures work well for our
task. In general, we found that smaller networks led to slower convergence and a lower
asymptotic performance, while larger networks created an unstable training regime. It
is worth mentioning that we normalize the observation and goal before feeding them
through the policy and value functions. Additionally, the output action velocities are in
the range [−1,1], which we then scale to the range [−0.1,0.1]. Finally, we use tanh
nonlinearities in both architectures as this is common practice in PPO [27]–[30], [48].

For our experiments with SAC, we only use the MLP architecture due to the unavail-
ability of an open source implementation with LSTM models compatible with our
training environment. Cong et al. [13] also used SAC with an MLP architecture to train
planar pushing policies. Additionally, when using the same RL algorithm with MLP
(stacking observations) and LSTM architectures, if the algorithm converges with one of
the architectures, it generally converges with the other as well, the main difference being
in convergence speed and final performance [11], [21]. We use the same architecture
for SAC as in Figure 4.1 with minor adjustments since we did not find alternative archi-
tectures to yield any significant advantages. In particular, we use ReLu nonlinearities
since this is more common across SAC implementations [26], [28]. Additionally, SAC
learns two separate state-action value functions (also referred to as Q-functions), rather
than a single state value function as is the case with PPO [28]. The architecture for the
Q-functions in SAC is the same as the value function in Figure 4.1, except that the input
includes the action aaat in addition to the observation stack and the goal.
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Hyperparameter Value
Clip range (ε) 0.2
GAE parameter (λ) 0.95
Discount factor (γ) 0.99
Value function coefficient (c1) 0.5
Entropy bonus coefficient (c2) 0
Epochs 10
Optimizer Adam [32]
Learning rate 3 ·10−4

Batch size 7680
KL divergence threshold 0.01

Table 4.1: PPO hyperparameters.

4.1.3 Policy Hyperparameters

We select the hyperparameter values of PPO and SAC based on previous works as well
as our own hyperparameter exploration to ensure that they are well suited for the planar
pushing task. Table 4.1 summarizes the hyperparameters used in PPO. We select the
clip range, GAE parameter, discount factor, optimizer, and learning rate based standard
values used in previous works [21], [27], [48]. The coefficients of the value function and
entropy bonus are also common across PPO implementations [27]–[29], [49]. Given the
importance of policy exploration for our work, we evaluated alternative values of the
entropy bonus coefficient, namely c2 ∈ {0.005,0.01,0.02}; however, we did not find
the entropy bonus to have a positive effect on policy training.

During training, we deploy the policy for 300 time steps on each parallel environment,
then run the optimizer on the objective function to update the policy and value functions
using using the data collected from these interactions, and repeat this process. The num-
ber of epochs and batch size are hyperparameters of the optimizer and they are highly
dependent on the characteristics of the task being solved. We conducted hyperparameter
exploration for the number of epochs using values {5,10,15}, as well as the batch size
using values {1920,3840,7680,12800}, and concluded that 10 epochs and batch size
7680 are well suited for the planar pushing task.

PPO uses a clipped policy objective in order to prevent excessively large updates of
the policy function. Nevertheless, during training we observed abrupt increases in the
Kullback-Leibler (KL) divergence [50] between the updated policy and the previous
policy, which were closely followed by a collapse in the performance of the policy.
Such behavior is an indicator of excessively large updates of the policy function causing
instability and failure to converge. Here, the KL divergence is a measurement of the
mean difference between the action distributions generated by the updated policy and
the previous policy in the environment states encountered during policy deployment.
Note that this unstable behavior persisted even when decreasing the clip range. A
common technique to mitigate excessively large policy updates in PPO is early stopping
of the optimizer when the KL divergence between the updated policy and the previous
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policy exceeds a certain threshold, usually around 0.01 [28], [30]. We also use this
technique since we found it to be highly effective when training our policies.

For our experiments with SAC we use the same optimizer, batch size, and learning
rate as in PPO. We evaluated alternative options but did not find them to yield any
significant advantages. Furthermore, SAC is an off-policy algorithm and hence stores
data from previous environment interactions in a replay buffer, which is then used to
update the policy and Q-functions. We use a buffer size of size 106 for our experiments
as in previous implementations [26], [28], [30]. The remaining hyperparameters are
standard as originally proposed for SAC [26].

4.1.4 Learning Task Implementation

We now discuss the characteristics of the task that we aim to solve during policy training.
In particular, we aim to solve planar pushing tasks for arbitrary initial and target box
poses. Furthermore, we aim to reach the target box pose with significant accuracy, for
which we leverage curriculum learning. Finally, we aim to learn policies in simulation
that can adapt to the dynamics of different environments, including our physical robot
hardware. To this end, we use dynamics randomization, observation noise, and external
disturbances during training.

At the beginning of every episode, we generate a random initial configuration of the
box and the pusher, as well as a random target box pose. The initial and target box
positions are independently and uniformly sampled from the available planar workspace.
Additionally, the initial and target box orientations are independently sampled from
U([−π,π]) rad. Lastly, the initial pusher position is sampled uniformly from a perimeter
around the initial box pose. This enables us to facilitate exploration in the beginning
stages of training and hence reduce training time. Specifically, since the pusher is
close to the box, the policy actions are more likely to lead the pusher to interact with
the box and receive feedback from the reward function. Nevertheless, as can be seen
in the supplemental video, this does not prevent the policy from learning how to act
when there is a large separation between the pusher and the box, presumably due to the
synthetic disturbances encountered during training.

Recall from Section 3.4 that we consider an episode successful if the box reaches the
target pose within certain position and orientation thresholds Tx,y and Tθ, respectively,
and the box has velocity 0 ms−1. We define a curriculum such that if the policy exceeds
a 90% success rate, averaged over the 128 parallel environments and the previous 100
episodes, the success thresholds are reduced to Tx,y/2 and Tθ/2. In particular, during
the first stage of the training process we use thresholds

T (1)
x,y = 1.5cm, T (1)

θ
= 0.34rad ≈ 19.5deg. (4.1)

Then, if the curriculum step is taken, the success thresholds become

T (2)
x,y = 0.75cm, T (2)

θ
= 0.17rad ≈ 9.7deg. (4.2)

Finally, we consider an episode unsuccessful if the maximum episode length is reached
without successfully completing the task as previously described, as well as if at any
point the pusher or the box leave the bounded planar workspace.
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Parameter Sampling Distribution
Friction U([0.5,0.7])
Restitution U([0.4,0.6])
Box Length U([0.115,0.125]) m
Box Width U([0.095,0.105]) m
Box Mass U([0.4,0.6]) kg
Pusher Radius U([0.012,0.013]) m
Action Duration N (1/30,(1/320)2) s
Position Noise N (0,0.0012) m
Orientation Noise N (0,0.022) rad

Table 4.2: Dynamics randomization and observation noise parameters.

Table 4.2 shows the parameters and corresponding sampling distributions for the dy-
namics randomization and observation noise. We sample the dynamics parameters
from their respective distributions at the beginning of each episode. Additionally, we
independently sample correlated (per episode) and uncorrelated (per time step) noise
for the observation of the position of the box and the position of the pusher from the
Position Noise distribution in Table 4.2. Similarly, we add correlated and uncorrelated
noise to the observation of the box orientation by sampling from the Orientation Noise
distribution in Table 4.2. Finally, at every time step we apply a disturbance to the box
with probability 1%, in a uniformly random location throughout the box, and with force
in x and y independently sampled from U([−25,25]) N.

4.1.5 Planar Pushing Environment with Two Pushers

In order to evaluate the scalability of our framework with respect to the number of
pushers, we develop a custom planar pushing training environment which enables the
RL policy to control two pushers. This environment has similar characteristics to the
main training environment with one pusher as discussed in Section 4.1.1. Nevertheless,
several important modifications are required.

We augment the action space such that aaat =
(

v(1)x,p,v
(1)
y,p,v

(2)
x,p,v

(2)
y,p

)
in order to include

the x and y velocity of the two pushers. Additionally, to guarantee that the policy only
explores motions that are feasible for a bi-manual manipulation platform, we add two
constraints:

(a) Each pusher can exert pushing forces with a maximum magnitude of 75 N.

(b) The distance between pushers in the x coordinate must be at least 5 cm.

If the policy violates any of these constrains, the episode terminates unsuccessfully.
With a single pusher, the magnitude of the pushing force is naturally limited by the
dynamics of the environment and the velocity of the pusher; however, with two pushers
the policy can exert forces of arbitrary magnitudes, such as by moving the pushers
toward each other when they are in opposite sides of the box. Hence, the purpose of
constraint (a) is to prevent excessive forces. On the other hand, constraint (b) prevents
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Figure 4.3: Robot hardware set-up for planar pushing. Motion capture cameras are
labeled with solid red squares. Reflective markers are labeled with dotted blue squares.

pusher trajectories that would be unrealizable when using two robotic arms to control the
pushers. An example of an unrealizable trajectory is one pusher rotating around the other.
We require one pusher to be always to the right of the other, which should be sufficient
to guarantee the realizability of the trajectories. Finally, we sample the starting position
as well as the dynamics randomization and observation noise parameters corresponding
to each pusher independently.

4.2 Policy Deployment on the Robot

4.2.1 Hardware Set-up

We assemble a planar pushing robot set-up, depicted in Figure 4.3, in order to evaluate
the transferability of the trained policies to the real-world. The robot we use is a KUKA
LBR iiwa robot arm, which has 7 degrees of freedom and is mounted on a planar
workspace. The end-effector of the robot is a cylinder with a spherical pusher at the end.
Note that we only use one pusher for our real-world experiments as this is the main task
explored in this work. Additionally, we use a wooden box as the manipulated object.
The workspace, pusher, and box have similar dimensions to those in our simulated
environment, as described in Section 4.1.1. Furthermore, in order to maneuver and
visualize the target pose, we use an acrylic plastic sheet with a marked rectangle that
represents the target pose. One of the sides of the box is marked with green tape, and
the rectangle corresponding to the target pose also has a green side. This is done to
illustrate the orientation of the box pose and the target pose. The functionality of the
robot, the manipulated box, and the target pose is best seen in the supplemental video.
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We use a Vicon motion capture system to track the state of the environment. Some
of the Vicon cameras used are shown in Figure 4.3, and there are several more at the
sides and behind in order to obtain a complete view of the environment from multiple
angles. We have a total of 22 active cameras around the robot platform, which enables
us to obtain significantly accurate readings and avoid occlusions. Some cameras were
already mounted to the ceiling; however, these did not provide sufficient coverage of
the environment, so we added new cameras using temporary stands. Since this was
a new camera set-up, we calibrated the Vicon system to ensure that the position and
orientation of each camera is known with significant accuracy, which is crucial to obtain
accurate readings of the environment state.

The Vicon cameras track the position of spherical reflective markers relative to a world
coordinate frame, which is located around the center of the floor of the environment.
These reflective markers can be seen in Figure 4.3. We are interested in tracking the
current box pose, the target box pose, and the robot pose. Therefore, we place clusters
of reflective markers on the base of the robot, on the top of the manipulated box, and
on the acrylic sheet with the target pose. We use three markers for the robot and four
markers for the box and the acrylic sheet since the latter experience more movement.
Most importantly, we use these clusters of markers to define the coordinate frames
Fr,Fb, and Ftarg relative to the world frame. Fr lies at the origin of the robot, where
the base is anchored to the workspace, Fb lies at the center of the box, and Ftarg lies at
the center of the target pose. Finally, we align the orientations of Fr,Fb, and Ftarg with
those of the robot, the box, and the target, respectively. Overall, these coordinate frames
enable us to obtain the robot pose, box pose, and target pose in the environment.

4.2.2 Robot Controller

In order to deploy the trained RL policies on the physical robot set-up, we develop a
controller using the Robot Operating System (ROS) [51], the most widely used software
framework for robot applications. We had access to an existing code base to control
the robot, which we modify so as to track the state of the planar pushing environment
and generate the control commands using the RL policy. Figure 4.4 illustrates the
high-level functionality of the robot controller. Our primary addition to the code base
is the implementation of the controller interactions with the RL policy and the Vicon
motion capture system. We now discuss the functionality of the controller.

We begin with the task of tracking the state of the environment. The controller receives
the current box pose, target box pose, and robot pose from the Vicon system. As
discussed in the previous section, these are in the form of coordinate frames Fb,Ftarg,
and Fr, respectively, relative to the world frame of the Vicon system. Furthermore,
we define a workspace coordinate frame Fw, relative to Fr, which lies at the origin of
the planar pushing workspace of the robot. This enables us to determine the box pose
(xb,yb,θb) and the target pose (xtarg,ytarg,θtarg) relative to the workspace frame. This is
necessary since the RL policy was trained using observations relative to Fw.

The robot pose Fr received from the Vicon system only tells us the location of the robot
in the external environment; however, the state of the robot arm remains unknown. The
controller uses forward kinematics to compute the position of the pusher relative to Fr
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Figure 4.4: Functionality of the robot controller for planar pushing.

based on the joint states qqq ∈ Q received from the robot. Note that Q is the configuration
space, the set of possible joint states of the robot. Then, we can calculate the pusher
position (xp,yp) relative to the workspace frame Fw. Overall, we use the Vicon system
and robot joint states to determine the box pose, target pose, and pusher position relative
to Fw, and hence construct the observation and goal of the RL policy.

Once we have the observation and goal, we normalize them and feed them to the RL
policy to obtain the predicted action (vx,p,vy,p). The robot is position controlled in the
configuration space at a frequency of 100 Hz. Hence, we send target joint states to the
robot at 100 Hz. However, the RL policy outputs 2D velocities of the pusher and, as
discussed in Section 4.1.1, it runs at 30 Hz. In order to determine the target joint states
required to realize the policy actions on the robot, we integrate the pusher velocity from
the policy action to obtain target pusher positions, and then use an IK solver to map
the target pusher positions to joint configurations. In particular, the RL policy updates
the predicted pusher velocity (vx,p,vy,p) at 30 Hz. On the other hand, the change in the
pusher position corresponding to every target joint state sent to the robot is given by
(∆xp,∆yp) = (vx,p ·∆t,vy,p ·∆t), where ∆t = 1/100 in our case since we send target joint
states at 100 Hz. Note that we enforce a fixed vertical position of the pusher zp = 5cm
such that ∆zp = 0. Using the current joint states qqq and the desired change in pusher
position (∆xp,∆yp,∆zp), the IK solver calculates the change in joint states ∆qqq required
to achieve the desired change in pusher position. The IK solver is implemented using
OpTaS [52]. Finally, we send to the robot the target joint states qqq+∆qqq.

We use a 3Dconnexion SpaceMouse Compact device to teleoperate the robot. It has
two buttons and a joystick sensor with 6 degrees of freedom. This enables us to start
and stop the execution of the RL policy, as well as to move the robot to different desired
locations in the workspace for our experiments. When using the SpaceMouse to move
the robot, the user inputs specify the motion of the robot pusher, which is mapped to
target joint states by the controller using an IK solver as previously discussed.
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Figure 4.5: Simulation environment to test the robot controller. The yellow box is the
manipulated object and the green box is a visualization of the target pose.

4.2.3 Testing Environment

Finally, we develop a testing environment using the ROS-PyBullet interface [43] in order
to validate the implementation of the robot controller in simulation before deploying
it on the real robot. Figure 4.5 shows the testing environment, which we design
such that it closely matches the real-world planar pushing set-up. The environment
is simulated using PyBullet and we represent the KUKA robot arm using a Unified
Robot Description Format (URDF) model. The ROS-PyBullet interface enables the
communication between the robot controller, implemented on ROS, and the PyBullet
simulation environment. To test the developed controller, we keep its entire functionality
the same, as shown in Figure 4.4, except for two components:

• We re-map the communication between the Vicon motion capture system and the
controller such that the box pose, target box pose, and robot pose received by the
controller are from the corresponding elements in the simulation environment.

• We re-map the communication between the robot and the controller such that the
current joint states received by the controller are from the simulated robot, and
the target joint states sent by the controller are executed on the simulated robot.

Overall, this testing environment enables us to run our robot controller, with minimal
adaptations, in a simulated representation of our real-world robot set-up for planar
pushing.
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Experiments and Results

5.1 Simulation Experiments

5.1.1 Learning the Planar Pushing Task

We begin with the process of training the RL policies in our simulated planar pushing
environment, using the standard set-up with one pusher. We train PPO policies with
the MLP and LSTM architectures and, for each architecture, we compare our proposed
categorical exploration approach against the previously used Gaussian exploration ap-
proach. We also train a SAC policy with the MLP architecture and Gaussian exploration.
Figure 5.1 illustrates the resulting learning curves.
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averaged over 128 parallel environments and the previous 100 episodes.
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We find that only the policies using our proposed categorical exploration approach
manage to learn the planar pushing task for arbitrary initial and target object poses. The
policies using Gaussian exploration are unable to make any meaningful progress in the
learning task. In particular, the PPO policies enable us to compare the categorical and
Gaussian exploration approaches while maintaining the underlying learning algorithm,
function approximation architectures, and hyperparameters constant. Therefore, our
findings suggest that the failure of the Gaussian policies to make progress in the learning
task may be attributed to poor exploration of the state-action space. We believe that
this is due to the inherently unimodal Gaussian preventing effective exploration of the
different possible contact modes required to control the orientation of the pushed object.

The SAC policy serves as a baseline for comparison with previous works applying
RL to the planar pushing task. Cong et al. [13] recently used SAC with an MLP
architecture and Gaussian exploration for planar pushing. Furthermore, the other
previously discussed works on RL for planar pushing employ off-policy algorithms
with Gaussian exploration [11], [12], which are essential attributes of SAC. We use the
same SAC implementation as Cong et al. [13]; however, we were unable to evaluate
additional approaches from previous works since their code implementation is not
publicly available. Figure 5.1 shows that similar to the other policies with Gaussian
exploration, the SAC policy fails to make any meaningful progress in learning the planar
pushing task for arbitrary initial and target object poses. This is expected since the
previous works applying RL to the planar pushing task disregarded the orientation of the
pushed object [11]–[13]. As previously discussed, we believe the Gaussian exploration
used in these works prevents effective exploration of the different contact modes.

Focusing on the policies with categorical exploration, the learning curves in Figure 5.1
show that both policies converge with significant stability. The LSTM architecture
provides substantially faster convergence and hence reaches the curriculum step, which
is expected since, as discussed in Section 3.1, it can capture long-term dependencies
as well as learn to store and forget certain information during the interactions. Despite
the slower convergence of the MLP architecture with frame stacking, which prevented
it from reaching the curriculum step, it was still capable of obtaining considerable
performance during training. Overall, our best policy is PPO (LSTM + Categorical). It
converges rapidly and reaches a 90% average success rate early on. This triggers the
curriculum step, which reduces the position and orientation success thresholds to half
of their initial values. The curriculum is effective at providing rapid initial convergence
in the first stage, and then guiding the policy to learn significantly accurate planar
pushing motions in the second stage. In particular, the PPO (LSTM + Categorical)
policy consistently achieves over 98% average success rate with a position threshold of
T (2)

x,y = 0.75cm and an orientation threshold of T (2)
θ

= 0.17rad ≈ 9.7deg.

We trained all policies for 4 ·109 time steps in our simulated planar pushing environment.
Figure 5.1 omits the last few time steps of two Gaussian policies to improve the
visualization. On average, each policy required around seven days to train in our RL
workstation. As a result, we were unable to repeat the policy training experiments with
multiple random seeds for more robust results due to computational constraints. This
also applies to the policy training experiments in Section 5.1.4 and Section 5.1.6.
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5.1.2 Pushing Trajectories

In this experiment, we analyse the pushing trajectories generated by the PPO (LSTM +
Categorical) policy in simulation. We use the reduced position and orientation success
thresholds T (2)

x,y and T (2)
θ

. Figure 5.2a shows the resulting trajectory for a relatively
simple pushing task that does not require sharp rotations of the box. The policy manages
to maneuver the box such that it follows a smooth and efficient trajectory reaching the
target pose with significant accuracy, thereby successfully completing the task. The
pusher remains in contact with the box throughout the entire trajectory. Figure 5.2b
shows the resulting trajectory for a more difficult pushing task where the policy performs
a face switch. The policy first re-orients the box, breaks contact at point 2, makes contact
again at point 3, and finally pushes the box to the target and completes the task. Note
that the boundary in the plot corresponds to the workspace boundary, so here a face
switch is necessary in order to solve the task. The policy successfully executes the
required phase switch in an efficient manner and exhibits smooth pushing trajectories.
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Figure 5.2: Trajectories generated by the PPO (LSTM + Categorical) policy in simulation.
The pusher numbers indicate chronological order and the plot boundaries correspond to
the workspace boundaries.
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Based on our simulation experiments, we observe that the PPO (LSTM + Categorical)
policy not only solves the planar pushing task for arbitrary initial and target object poses,
unaddressed by previous RL works, but also significantly improves upon the sub-optimal
idiosyncratic pushing trajectories exhibited by the previous methods. As discussed in
Section 2.1.3, previous RL methods for planar pushing achieve low accuracy, deeming
episodes with a position error of 2.5 cm and greater as successful, and they rely on
repeated sub-optimal short pushing motions to approximate the object to the target
position over multiple attempts [11]–[13]. The PPO (LSTM + Categorical) policy
consistently solves the task under position and orientation success thresholds of 0.75cm
and 0.17rad, and exhibits significantly smooth and efficient pushing trajectories. In
particular, it achieves improved control over the manipulated object, purposefully
maintaining contact throughout longer pushing motions, and thereby avoiding the use of
sub-optimal short pushes to approximate the object to the target over multiple attempts.

5.1.3 Observation Noise

We are interested in evaluating the robustness of the PPO (LSTM + Categorical) policy to
observation noise. To this end, we evaluate the performance of the policy under various
combinations of correlated and uncorrelated observation noise levels. The noise levels
are measured by the standard deviations of the Position Noise and Orientation Noise
sampling distributions, which we introduced in Section 4.1.4. For each combination of
correlated and uncorrelated observation noise, we set-up our simulated planar pushing
environment with the corresponding noise levels and calculate the success rate and time
to target of the policy, averaged over 1000 episodes with random starting configurations
and target poses. Note that the dynamics are randomized and external disturbances are
generated as during policy training. We use the reduced position and orientation success
thresholds T (2)

x,y and T (2)
θ

. Additionally, we increase the time limit from 10 to 30 seconds
to allow the policy to make adjustments if necessary, which can be particularly relevant
in settings with significant observation noise. The results are recorded in Table 5.1.
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98.5 ± 0.4 %
4.9 ± 0.1 sec

99.4 ± 0.3 %
4.8 ± 0.1 sec

98.6 ± 0.4 %
5.0 ± 0.1 sec

98.7 ± 0.4%
5.4 ± 0.1 sec

0.1 cm
0.02 rad

99.1 ± 0.3 %
4.8 ± 0.1 sec

98.6 ± 0.4%
4.7 ± 0.1 sec

98.5 ± 0.4 %
5.1 ± 0.1 sec

98.6 ± 0.4 %
5.4 ± 0.1 sec

0.3 cm
0.06 rad

94.4 ± 0.7 %
5.6 ± 0.1 sec

96.9 ± 0.5%
5.8 ± 0.1 sec

98.0 ± 0.4 %
6.0 ± 0.1 sec

96.0 ± 0.6 %
6.5 ± 0.1 sec

0.45 cm
0.09 rad

84.2 ± 1.2 %
6.5 ± 0.1 sec

89.2 ± 1.0 %
6.8 ± 0.1 sec

90.2 ± 0.9 %
7.5 ± 0.1 sec

88.4 ± 1.0 %
8.2 ± 0.2 sec

Table 5.1: Average success rate and time to target, and corresponding estimated
standard error, with correlated (per episode) and uncorrelated (per step) observation
noise. Results for the training set-up are underlined.
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We find that the policy is significantly robust to both correlated and uncorrelated
observation noise. Increasing the uncorrelated noise generally leads to a slight increase
in the time to target. Additionally, the success rate seems to be slightly higher with
some uncorrelated noise rather than none, especially with larger correlated noise levels.
This could be because the uncorrelated noise results in the policy receiving more diverse
observations of the environment, some of which could trigger certain policy behaviors
that are beneficial for solving the task. Moderate levels of uncorrelated noise should
not pose major challenges since the noise is centered around zero and it is generated at
every time step.

On the other hand, we expect correlated noise to significantly increase the difficulty
of the task since it remains fixed throughout the episode and hence causes the policy
to receive an observation of the environment that is consistently shifted relative to the
true state. For example, the policy may need to make contact with a particular corner
of the box in order to execute a sharp rotation; however, the correlated noise might
cause the policy to perceive the corner always shifted by a significant amount, which
could potentially result in the policy failing to make contact with the box and therefore
executing the required rotation of the box. We observe in Table 5.1 that increasing the
correlated observation noise indeed generally leads to a decrease in the success rate and
an increase in the time to target, which becomes more noticeable at larger noise levels.

Overall, the policy exhibits significant robustness, consistently achieving over 95%
success rate and a time to target below 6 seconds, even in settings with considerable
correlated and uncorrelated observation noise. The worst success rate was 84.2%
and the worst time to target was 8.2 seconds, obtained under different settings. This
also demonstrates significant robustness considering the large amount of observation
noise, with standard deviations for the position and orientation sampling distributions
of 0.45 cm and 0.09 rad respectively, which often lead to noise levels of comparable
magnitudes to the success thresholds T (2)

x,y = 0.75cm and T (2)
θ

= 0.17rad.

5.1.4 Limits of Gaussian Exploration

In order to better understand why the policies with Gaussian exploration did not manage
to learn the planar pushing task for arbitrary initial and target object poses, we examine
their training performance in a simplified setting. To this end, we modify our planar
pushing simulation environment as follows. The initial position of the box is uniformly
sampled from the left side of the workspace (x < 0), while the target position of the
box is uniformly sampled from the right side of the workspace (x > 0). Additionally,
we restrict the sampling distribution for the initial and target orientations of the box to
U([−π/4,π/4]) rad. This results in a significantly simpler pushing task since the initial
box pose is always approximately oriented towards the target pose, thereby eliminating
the need for complex maneuvers of the box in order to complete the task, such as sharp
rotations or phase switching. In other to preserve this simplified setting throughout
the task we also remove the synthetic external disturbances. Furthermore, the initial
position of the pusher is uniformly sampled such that it is in contact with the backside
of the box. This enables the policy to naturally push the box towards the target in the
right side of the workspace without needing to break contact with the box. We use
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constant success thresholds T (1)
x,y = 1.5cm and T (1)

θ
= 0.34rad ≈ 19.5° throughout.

For this experiment, we define a different curriculum than previously used. In particular,
if the policy reaches a 90% average success rate, we increase the width of the uniform
sampling distribution for the initial and target box orientations by π/2, still remaining
centered around zero. For example, in the first curriculum step, the sampling distribution
transitions from U([−π/4,π/4]) rad to U([−π/2,π/2]) rad. The maximum number of
curriculum steps is three as this would result in the sampling distribution U([−π,π])
rad, which encompasses the entire range of orientations. This curriculum enables us
to gradually increase the complexity of the pushing task once the policies develop
sufficient skills in the simpler settings. Specifically, in the first setting the policies can
solve the task without requiring any complex maneuvers of the box. As the width of the
sampling distribution increases, the policies must learn to perform sharper rotations of
the box as well as phase switching in order to master the task and proceed to the next
curriculum step. We can examine the progression of the policies through the curriculum
to determine at which point the task complexity hinders further improvement, and hence
analyze the planar pushing features that are problematic for these policies. The learning
curves obtained by the policies with Gaussian exploration are shown in Figure 5.3.
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Figure 5.3: Training performance of the policies with Gaussian exploration on a simplified
planar pushing task. A different curriculum is used which increases the range of starting
and target orientations upon reaching 90% average success rate.

We can see that the PPO policies do not manage to improve beyond 80% average success
rate and, in fact, experience a collapse in performance. The SAC policy manages to
reach 90% average success rate once, which triggers the first curriculum step, thereby
increasing the range of starting and target orientations to [−π/2,π/2] rad. However, the
SAC policy is not able to reach the next curriculum step. Most pushing tasks in this
simplified setting, especially when the starting and target orientations remain within
[−π/2,π/2] rad, do not require significant object rotations and hence phase-switching,
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Figure 5.4: Evolution during training of the categorical exploration distribution for the
pusher velocity in the y axis (vy,p) when the policy receives the observation correspond-
ing to the environment state above.

so they can be performed in a smooth trajectory without the pusher breaking contact
with the box. Therefore, the reason why the policies with Gaussian exploration do not
manage to progress further in the curriculum could be that they struggle with the tasks
that require phase switching since their exploration strategy is not able to effectively
capture this additional modality.

5.1.5 Multimodal Exploration

In this experiment, we investigate whether our proposed categorical exploration ap-
proach indeed leads to multimodal strategies. We examine the evolution during training,
under various environment states, of the categorical exploration distribution for the
action vy,p generated by the PPO (LSTM + Categorical) policy. We find that the ex-
ploration distribution is multimodal in many environment states. Figure 5.4 shows the
results for one of these environment states.

The exploration distribution broadly contains two modes which correspond to upward
(vy,p > 0) and downward (vy,p < 0) motions of the pusher. Considering the environment



Chapter 5. Experiments and Results 36

0 1 2 3 4 5
Training Time Step 1e9

0

10

20

30

40

50

60

70

80

90

100

Av
er

ag
e 

Su
cc

es
s R

at
e 

(%
)

PPO (LSTM + Categorical)
Curriculum Step

Figure 5.5: Training performance of the PPO (LSTM + Categorical) policy on a planar
pushing environment with two pushers.

state in which these distributions where generated, this is reasonable since there are
two primary ways of solving the task, each requiring different contact modes. The first
option consists of a single continuous trajectory, without the pusher breaking contact
with the box. This option first requires the pusher to slide left (vy,p < 0), relative to the
box, in order to rotate the box towards the target. The second option consists of a phase
switch. This option first requires the pusher to slide right (vy,p > 0), relative to the box,
in order to align the orientation of the box with the target orientation, and then switch
to the left phase of the box in order to push it towards the target.

Overall, as hypothesized, the policy leverages our proposed categorical exploration
approach to establish multimodal exploration strategies. We believe that this enables
the policy to explore different possible contact modes concurrently during training.

5.1.6 Scalability with Two Pushers

To evaluate the scalability of our framework, we train the PPO (LSTM + Categorical)
policy on a planar pushing task with two pushers. The results are shown in Figure 5.5.
We use the same curriculum as described in Section 4.1.4 such that the success thresholds
are T (1)

x,y ,T
(1)

θ
in the beginning and, if the policy reaches 90% success rate, these

are reduced to T (2)
x,y ,T

(2)
θ

. We also use dynamics randomization, observation noise,
and synthetic disturbances during training as in the planar pushing task with one
pusher. Since this task is significantly more complex, we increase the size of the LSTM
architecture for the policy and value functions. The shape remains the same as in
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Figure 5.6: Key frames of the KUKA iiwa robot pushing the box to a target pose. (a)
shows the starting configuration, a large disturbance is applied in (b), and (c)-(f) exhibit
the RL policy recovering from the disturbance and reaching the goal.

Figure 4.2; however, we use linear layers of size 256 and LSTM layers of size 512.

We find that our framework scales well to the planar pushing task for arbitrary initial
and target object poses when using two pushers. The policy reaches the curriculum
step and achieves over 96% average success rate under the reduced success thresholds.
Learning this task is significantly more complex than the task with one pusher due to
the increased dimensionality of the problem. In particular, the state-action space is
significantly larger, so the policy must explore a wider range of possibilities in order to
identify effective pushing behaviors. Indeed, we observe that the convergence of the
policy is slower than in the task with one pusher.

5.2 Real Robot Experiments

We investigate the performance of the PPO (LSTM + Categorical) policy, after the
training process in Section 5.1.1, on our physical planar pushing hardware set-up.
Figure 5.6 shows a sequence of key frames of the robot pushing the box to a target
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pose and recovering from an external disturbance. Furthermore, the supplemental
video clearly demonstrates the resulting behavior of the policy. We find that the policy
translates well to the real world and is able to effectively cope with the dynamics of
the new environment. Additionally, the policy is robust to large external disturbances
and changes in the target pose. Figure 5.7 shows a sample trajectory generated by the
robot. The policy manages to remain within the workspace boundaries and generates a
significantly smooth and efficient trajectory towards the target box pose.
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Figure 5.7: Trajectory generated by the PPO (LSTM + Categorical) policy in the real
robot.

We also obtain statistics for the average success rate and time to target of the policy on
the real robot. We use the reduced success thresholds T (2)

x,y ,T
(2)

θ
and enforce a time limit

of 30 seconds to complete the task. To collect the data, we generate 5 random target
box poses and, for each target pose, we run the policy starting from 15 random initial
configurations of the box and pusher. The target box poses and initial configurations
were generated using the same criteria as in our simulated planar pushing environment.
Overall, this results in 75 planar pushing tasks with arbitrary initial and target object
poses. The policy achieves an average success rate of 97.3±1.9 % (SE) and an average
time to target of 6.5±0.3 sec (SE).

The policy manages to consistently solve the planar pushing task for arbitrary initial
and target object poses in the physical hardware. It achieves a significantly high success
rate while preserving a low time to target, which indicates that the policy does not
require multiple corrections to complete the task. Additionally, recall that the position
and orientation success thresholds are 0.75 cm and 0.17 rad, so the policy demonstrates
highly accurate pushing motions. Overall, we find that our framework leads to learned
policies with a good transferability to the physical hardware.

While previous RL methods for planar pushing disregard the orientation of the manipu-
lated object [11]–[14], we manage to learn policies that incorporate object orientation,
and therefore realize more sophisticated pushing motions. Our policies adapt well to
the unfamiliar dynamics of the physical robot set-up, successfully recover from external
disturbances, and exhibit significantly accurate and smooth planar pushing motions.



Chapter 6

Conclusions

6.1 Summary and Contributions

The primary goal of this project was to investigate the application of RL methods to
the planar pushing task. More specifically, we were interested in learning RL policies
that could control the position and orientation of the manipulated object, previously
unaddressed by the RL literature [11]–[14]. This led us to propose a multimodal
exploration approach, through categorical distributions on a discrete action space,
which enables us to learn planar pushing RL policies for arbitrary initial and target
object poses, i.e. different positions and orientations. Our experiments show that even
while maintaining the underlying algorithm, function approximation architectures, and
hyperparameters constant, the previously used exploration approach leads to failure in
the learning task, while our proposed exploration approach enables the policy to learn
the task with significant accuracy and success rate.

In addition, we analysed the pushing trajectories as well as the behavior under different
levels of correlated and uncorrelated observation noise of a planar pushing RL policy
learned through the proposed framework. Our experiments demonstrate that the learned
policy is robust to observation noise and produces smooth and efficient trajectories.
Furthermore, we showed that our framework scales well when increasing the number of
pushers.

Finally, we assembled a planar pushing physical robot set-up and developed a robot
controller to deploy the RL policies. This enabled us to validate that our proposed
framework leads to learned policies with good transferability to the physical hardware,
achieving high success rate, smooth pushing trajectories, and small target error.

6.2 Discussion and Future Work

One of the key realizations in this work was that, when attempting to learn planar
pushing RL policies for the case of arbitrary initial and target object poses, the use
of a multivariate Gaussian with diagonal covariance for exploration, as per previous
literature [11]–[14], would lead to the RL policies failing to converge. Borrowing

39
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the insight from the model-based literature [4], [10], that planar pushing has hybrid-
dynamics reflected in a set of different contact modes that constraint the control actions,
we hypothesised that we can reason about planar pushing as a multimodal control
problem. Therefore, we proposed describing the action space through categorical
distributions to capture the multimodal nature of the problem, potentially leading to
more effective exploration of different contact modes during training. We have shown
that indeed, during training, the categorical action distributions exhibit multimodal
exploration strategies.

Although the proposed framework enabled us to learn RL policies that incorporate
object orientation, it is important to address several notable limitations. To begin with,
our policies require significant computational resources to learn the task. In particular,
the best policy required around 1 day of training to reach 90% success rate in the
task with one pusher, and around 8 days to reach 90% success rate in the task with
two pushers. Furthermore, if we wished to change the set-up of the planar pushing
environment, for instance in order to use a different object, we would need to develop a
simulation environment with the new set-up and re-train the policies. Future work could
leverage recent advances in distributed training of RL algorithms in order to improve
the training time of the planar pushing policies [21], [31].

In terms of scalability, even though we showed that our framework manages to learn
the planar pushing task with two pushers in simulation, we were unable to validate
its transferability to the physical hardware. Additionally, we constrained the control
output of the RL policies to the 2D plane, which limits the range of behaviors that
can be realized by the policy. In future work, we intend to evaluate the scalability of
our framework when moving beyond planar pushing to more complex nonprehensile
manipulation tasks requiring policy actions in the 3D world. In this work, we used a
box as the manipulated object, which has a relatively simple geometry. Furthermore,
as previously discussed, changing the manipulated object necessitates re-training the
policies. Future work could explore whether our framework can be scaled to manipulate
objects requiring more complex contact surface selection as well as previously unseen
object geometries. The latter could potentially be achieved by training the policies with
a diverse range of objects.

Our proposed approach for multimodal exploration requires the action space to be
discretized. However, this restricts the motion of the robot and thereby hinders the
precision of the pushing trajectories. Therefore, we believe that investigating multimodal
exploration strategies capable of preserving the continuity of the action space is an
interesting avenue for future work. In particular, we believe that Gaussian mixture
models could be leveraged to achieve this.

Finally, we used a motion capture system for our experiments in the physical hardware,
which provides significantly accurate readings of the environment state. In future work,
we intend to use onboard vision-based perception, eliminating the need for a motion
capture system. However, this would significantly exacerbate the noise and uncertainty
in the policy observations, thereby hindering the dexterity of the pushing motions
realized by the RL policies. We believe this could be largely mitigated by integrating
force feedback, measured at the robot end-effector, into the RL policies.
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