
Compiling Discrete Probabilistic Programs
for Vectorized Exact Inference

Jingwen Pan
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

MInf Project (Part 2) Report
Master of Informatics
School of Informatics

University of Edinburgh

2023

Abstract
Although probabilistic programming has existed for decades, the implementation of
probabilistic programming languages (PPLs) and related inference algorithms are lim-
ited in scope, and their usage has yet to be widely explored. The current stage of
probabilistic programming can only achieve at most two of the three characteristics:
(1) User-friendly, (2) fast, and (3) general. A competitive state-of-the-art PPL, Dice
[14], specializes in fast exact discrete probabilistic programs but obtains a subopti-
mal inference performance over Bayesian Networks. In this project, we propose a
framework, BayesTensor, that supports fast exact inference in discrete probabilistic
programs, particularly optimizing inference over Bayesian Networks. Furthermore, we
demonstrate three critical applications supported by BayesTensor, including addressing
database tasks such as CardEst and AQP. We conduct experiments for each application
supported by BayesTensor. Although BayesTensor does not outperform its competitor
DeepDB [13] in the AQP application, BayesTensor shows its potential to be fast in
AQP. For other applications, we observe an outstanding performance of BayesTensor
compared to corresponding competitors.

i

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Jingwen Pan)

ii

Acknowledgements
I sincerely appreciate my supervisor Professor Amir Shaikhha for his outstanding
mentorship and great encouragement. In addition, I would like to thank my friends and
parents, who supported me in maintaining both physical and mental health throughout
this project.

iii

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 MInf Part 1 . 2
1.3 Problem Statement . 2
1.4 Solution . 2
1.5 Contribution . 3
1.6 Dissertation structure . 3

2 Background Chapter 5
2.1 Probabilistic Programming Languages 5
2.2 Bayesian Networks . 5

2.2.1 Chow-Liu Tree . 7
2.2.2 Variable Elimination . 8

2.3 Cardinality Estimation . 8
2.3.1 BayesCard . 8

2.4 Tensor Libraries . 9
2.5 Approximate Query Processing . 9

2.5.1 DBEst . 10
2.5.2 DeepDB . 10

3 Compiling Discrete Probabilistic Programs 11
3.1 Overview . 11
3.2 Frontend Language . 12

3.2.1 Core BTL . 12
3.2.2 High-level Extensions . 13
3.2.3 Examples . 15

3.3 Normalization . 15
3.3.1 Observe Hoisting . 16
3.3.2 Desugaring . 16
3.3.3 Flattening . 16
3.3.4 Query Inference . 17

3.4 Tensorization . 17
3.4.1 Tensor Construction . 17
3.4.2 Filtering . 17
3.4.3 Normalization . 18

iv

3.4.4 Contraction . 18
3.4.5 Examples . 18

3.5 Code Generation . 18
3.5.1 Examples . 18

4 Applications 24
4.1 Simple probabilistic programs . 24
4.2 Cardinality Estimation . 24
4.3 Approximate Query Processing . 25

4.3.1 SUM . 26
4.3.2 AVG . 27
4.3.3 GROUP BY aggregates . 27

5 Experiments 29
5.1 Experimental Setup . 29

5.1.1 Datasets and query workloads 29
5.1.2 Competitors . 30
5.1.3 Experimental environment 31

5.2 Simple probabilistic programs . 31
5.2.1 Dice’s Discrete Probabilistic Programs 32
5.2.2 Single marginal Inference on Bayesian Networks 32

5.3 Cardinality Estimation . 33
5.4 Approximate Query Processing . 34
5.5 Productivity . 35

6 Conclusions 37
6.1 Project Contributions . 37
6.2 Result overview . 37
6.3 Future Work . 38

Bibliography 39

v

Chapter 1

Introduction

This chapter aims to provide readers with an overview of this project and explain the
thesis of this project in high-level aspects.

1.1 Motivation

Graphical models benefit scientists with statistical modeling, which help model real-
world problems. Bayesian Networks (BNs) are one of the popular graphical models
widely used. In the recent decade, probabilistic programming has renewed scientists’
interests. The applications of probabilistic programming have been widely explored
in various fields, such as computer vision [17, 19], query optimization in database
systems [33, 31], medical diagnosis [8], particle physics [3], and astrophysics [18].
By probabilistic programming, graphical models can be transformed into programs.
However, inference over graphical models is challenging. As a result, Probabilistic
programming languages (PPLs) are introduced, which are natural tools for probabilistic
programming. PPLs are programming languages that automate inference over graphical
models.

Prior work [5, 4, 21, 12] primarily focuses on PPLs in continuous distribution. PPLs
in discrete distribution are waiting to be explored further. Recently, there has been a
state-of-the-art PPL [14] specialized in discrete distribution but leading to sub-optimal
performance in inference over BNs. This project aims to support fast, exact infer-
ence over discrete distribution, including discrete probabilistic programs and BNs. In
addition, this project supports database tasks such as CardEst and AQP.

In MInf part 1, we benchmark the performances of four probabilistic programming
frameworks (i.e., Dice [14], Pgmpy [2], BayesCard [33], and SPPL [27]) in a database
application called Cardinality Estimation (CardEst) in terms of latency and accuracy. In
part 1’s experiments, We train BNs with datasets and formulate each query of CardEst
as an inference over related BNs.

This project extends the MInf part 1 and is inspired by prior work [33, 14]. [33] shows
the efficiency, potential powerfulness, and conciseness of probabilistic programming
in database fields. In MInf part 1, it is found out that although BayesCard [33] is

1

Chapter 1. Introduction 2

the fastest among four probabilistic programming frameworks in CardEst, BayesCard
is unable to support exact inference over discrete probabilistic programs and general
BNs. BayesCard is limited to CardEst and inference over Chow-Liu tree-structured
BNs. Meanwhile, Dice [14] is a relative competitor we have benchmarked within
the MInf part 1. Dice specializes in fast, exact inference over discrete distribution by
exploiting logical expressions and local structure. Nevertheless, Dice obtains subprime
performance of inference over BNs [14].

Compared to MInf part 1, which is limited to the Cardinality Estimation, this project
aims to support fast, exact inference over discrete distribution with applications in
discrete probabilistic programs, Cardinality Estimation, and Approximate Query Pro-
cessing (AQP).

1.2 MInf Part 1

BayesCard [33] is a competitive state-of-the-art CardEst framework that utilizes prob-
abilistic programming in CardEst. BayesCard reveals the efficiency and succinctness
of PPLs in handling database applications. MInf part 1 is motivated to find efficient
and appropriate PPLs for DB researchers. In part 1’s experiments, we evaluate the
performance of four PPLs in the database component, CardEst. The four PPLs used to
benchmark are Dice [14], Pgmpy [2], SPPL [27] and Infer.NET [21]. The evaluation
metrics are the latency in milliseconds and the estimation accuracy in Q-error. As an
implementation of MInf part 1, we adapt the CardEst algorithm from BayesCard with
the four selected PPLs. In a nutshell, it is found that Dice outperforms the other three
PPLs in CardEst.

1.3 Problem Statement

Although probabilistic programming has existed for decades, the implementation of
probabilistic programming languages (PPLs) and related inference algorithms are still
suboptimal, which can be further investigated. The current stage of PPLs can only
achieve at most two out of three characteristics: (1) User-friendly, (2) fast, and (3)
general. Beyond that, prior work primarily researched the continuous distribution
[5, 4, 21, 12] while discrete distribution started to receive more attention in recent
years. Discrete distribution estimates the uncertainty of a particular outcome. The
importance of discrete distribution is noticeable as it commonly exists in the real world
(e.g., Bernoulli distribution, Poisson distribution, and binomial distribution). There
are many real-world applications of discrete distribution, such as disaster and market
recessions forecasting and financial options pricing. This project aims to support the
fast, exact inference of discrete probabilistic programming.

1.4 Solution

In this project, we propose a framework, BayesTensor, to achieve fast, exact inference
over discrete probabilistic programs, including BNs. Our framework largely benefited

Chapter 1. Introduction 3

from tensor libraries to handle high-dimensional data distribution and inference over
general BNs. There are three applications of our framework: (1) discrete probabilistic
programs, (2) CardEst, and (3) AQP.

Cardinality Estimation (CardEst) is a particular case of Approximate Query Process-
ing (AQP). Although we have explored CardEst using PPLs in MInf part 1, AQP is
more complex than CardEst by including different aggregation functions (e.g., AVG(),
SUM(), and Group By) in database languages. In this project, we will explain how to
support fast, exact inference in discrete probabilistic programs, CardEst and AQP. The
main architecture of our framework is demonstrated in Chapter 3, and corresponding
applications are explained in Chapter 4. The evaluation process of each application
supported by our framework is presented in Chapter 5.

1.5 Contribution

Reminder: The work presented in Chapters 3-4.2, and 5.2-5.3 is accepted by the
Compiler Construction (CC) Conference (2023) [24].

Our main contributions are the following:

1. We propose a framework, BayesTensor, to tackle the fast, exact inference over
discrete probabilistic programs and general BNs by taking advantage of tensor
libraries.

2. We present three applications of our framework: (1) Discrete probabilistic pro-
grams, (2) CardEst, and (3) AQP.

3. We show the evaluation processes of each application with corresponding com-
petitor(s) in topics on single table datasets.

4. We discuss potential extensions that can be made to our framework.

1.6 Dissertation structure

This dissertation comprises six main chapters, expounding important information about
the implementation of this project.

Chapter 2: This chapter includes the fundamental background knowledge required to
understand this project and the literature review of two critical research topics concerned
by the database (DB) community: (1) CardEst, and (2) AQP.

Chapter 3: This chapter elucidates the architecture of our framework, BayesTensor,
and explains how it targets fast, exact inference over discrete probabilistic programs and
general BNs. This work [24] is accepted by the Compiler Construction (CC) Conference
(2023).

Chapter 4: This chapter presents three applications supported by our framework:
Discrete probabilistic programs and two database tasks, i.e., CardEst and AQP.

Chapter 1. Introduction 4

Chapter 5: This chapter demonstrates the setup and evaluation details of each experi-
ment in this project.

Chapter 6: This chapter summarizes our contributions and the practical work in this
project and reveals possible future work to improve the current work.

Chapter 2

Background Chapter

This chapter explains the fundamental knowledge that helps to understand this project
and includes the literature review of CardEst and AQP related to this project.

2.1 Probabilistic Programming Languages

Probabilistic programming is a powerful tool enabling scientists to model real-world
problems with graphical models incorporating uncertainty. However, performing infer-
ence over graphical models is complex, which has led to the development of probabilistic
programming languages.

Probabilistic programming languages (PPLs) are domain-specific languages that au-
tomate inference over graphical models. Table 2.1 shows some popular PPLs and
their specialized domains. Like machine learning with general-purpose programming
languages like Python, PPLs have a similar pattern, presented in Figure 2.1.

The training of graphical models in PPLs involves two main components: (1) Structure
learning and (2) parameter learning. Structure learning is a process that learns the
dependence relationships among variables and constructs the corresponding graphical
model. Parameter learning involves learning the distribution for each variable within
the graphical model. PPLs encode the graphical model specified by the user and train
the graphical model based on training datasets.

During the evaluation, PPLs parse input queries and perform inference over the trained
graphical model using selected inference algorithms, where the predictions generated
by PPLs are computed distributions.

2.2 Bayesian Networks

Graphical models are probabilistic models that use graphs to represent the dependencies
among random variables. The two main types of graphical models are Markov Hidden
Fields and Bayesian Networks (BNs). This project focuses exclusively on BNs.

5

Chapter 2. Background Chapter 6

PPL name Host language Specializations

PyMC [26] Python Bayesian inference, mixed-type modelling
Infer.NET [21] .NET Framework mixed-type modelling

Stan [5] C++ Mixed-type modelling, various inference algorithms
Pgmpy [2] Python Bayesian Networks, exact inference
Pyro [4] Python Bayesian inference, mixed-type modelling

Table 2.1: Examples of PPLs.

Pr obabi l i s t i c
model Pr edi ct i ons

Tr ai ni ng
dat aset

St r uct ur e
def i ni t i on

Tr ai n I nf er ence

Par amet er s
l ear ni ng

St r uct ur al
l eanr i ng

Pr obabi l i s t i c
quer i es

Par se

Tr ai ni ng

Test i ng

Eval uat i on

Figure 2.1: The overall workflow of PPLs

BNs are directed acyclic graphs (DAGs) that are widely used in data science. In a BN,
each node represents a variable, and each directed edge indicates a dependence between
two variables. A node that has an incoming edge is a parent node, while a node that has
an outgoing edge is a child node. The joint distribution of a BN can be computed using
the equation 2.1 by chain rule:

IP(X1,X2, ...,Xn) =
n∏

i=1

IP(Xi | Par(Xi)) (2.1)

where Par(Xi) is the parent node(s) of Xi.

To illustrate the concept of BNs, we will use a well-known example from Kevin Murphy,
shown in Figure 2.2. The BN structure can be visualized in Figure 2.2a. This example
contains four nodes which are Cloudy, S prinkler, Rain, and WetGrass. Since there
is no arrow pointing towards Cloudy, Cloudy is the root node that does not have any
parent. Cloudy points to two nodes S prinkler and Rain, which are its child nodes.
Table 2.2b summarizes dependence among variables within this example corresponding
to Figure 2.2a. The joint distribution of this example is interpreted using the equation
2.1:

IP(C,S ,R,W) = IP(C)∗ IP(S |C)∗ IP(R |C)∗ IP(W | S ,R) (2.2)

where C, S , R, W refers to variables Cloudy, S prinkler, Rain, and WetGrass in Fig-
ure 2.2a respectively.

Chapter 2. Background Chapter 7

Spr i nkl er

Cl oudy

Wet Gr ass

Rai n

(a) Wetgrass/sprinkler/rain Bayesian Network.

Node Parent node(s) Child node(s)

Cloudy - Sprinkler, Rain
Sprinkler Cloudy WetGrass

Rain Cloudy WetGrass
WetGrass Sprinkler, Rain -

(b) Relationships of nodes in 2.2a.

Figure 2.2: Kevin Murphy’s wetgrass/sprinkler/rain: An example of BN.

2.2.1 Chow-Liu Tree

Chow-Liu tree [7] is a dependence tree structure proposed by Chow and Liu in 1968.
Chow-Liu tree can be seen as a special structure of BNs. Chow-Liu tree efficiently
approximates discrete distribution by computing the joint distribution as a product of
second-order conditional and marginal distributions. In our implementation related to
database components such as CardEst and AQP, we construct BNs in the Chow-Liu
structure to speed up the inference by sacrificing some accuracy. The main property of
the Chow-Liu tree is that its structure is a first-order dependence tree. In other words,
each node in the Chow-Liu tree has only one parent at most. Figure 2.3 below shows an
example of the Chow-Liu tree.

A

B C

D E F

Figure 2.3: An example of Chow-Liu tree

Based on the Chow-Liu tree structure, the joint distribution of the BN shown in Fig-

Chapter 2. Background Chapter 8

ure 2.3 can be computed as Equation 2.3:

IP(A,B,C,D,E,F) = IP(A)∗ IP(B | A)∗ IP(C | A)∗ IP(D | B)∗ IP(E | B)∗ IP(F | B) (2.3)

2.2.2 Variable Elimination

There is a wide range of inference algorithms in probabilistic graphical models. This
project explores a general exact inference algorithm called Variable Elimination (VE)
[16].

VE performs two operations on factors which are summation and multiplication. A
factor of variables, also called the potential, declares the conditional distribution of the
related variables. There are three kinds of probability we might be interested in, which
are: (1) Marginal probability, (2) conditional probability, and (3) joint probability. By
eliminating a variable in VE, we sum out that variable from factors containing that
variable and multiply the sum-out result by the remaining factors. To marginalize a
variable X, we aim to get IP(X) by eliminating all other variables. To compute the
conditional probability, such as IP(X | Y) or IP(X | Y = 1), instead of eliminating Y by
summing all values of Y , we sum over the observation values of Y . The result of a joint
probability is a single value that all variables should be eliminated during the VE. When
having observation(s), normalization needs to be performed, and the constant used for
normalization is also called the partition function Z.

Let us look back to Kevin Murphy’s wetgrass/sprinkler/rain example in Figure 2.2a. For
this example, according to its joint probability equation 2.2, factors are IP(C), IP(S |C),
IP(R |C), and IP(W | S ,R). For a query such as IP(W = w) can be computed as below:

IP(W = w) ∝
∑

C

∑
R

∑
S

IP(C)∗ IP(S |C)∗ IP(R |C)∗ IP(W = w | S ,R)

Z =
∑

C

∑
R

∑
S

IP(C,S ,R,W = w)

IP(W = w) =
∑

C
∑

R
∑

S IP(C)∗ IP(S |C)∗ IP(R |C)∗ IP(W = w | S ,R)
Z

(2.4)

2.3 Cardinality Estimation

Cardinality Estimation (CardEst) is a critical component of query optimizer in the
database management system (DBMS) concerned by the DB community. CardEst
approximates the total number of rows to return the final answer for a query to assist
the query optimizer in generating the high-quality optimal query plan. In practice,
CardEst queries are COUNT(*) queries in database languages (with filter predicates).
A summary of the literature review of CardEst is presented in 2.2.

2.3.1 BayesCard

BayesCard [33] is a state-of-the-art framework that utilizes PPL in CardEst and achieves
fast CardEst compared to prior work [13, 37, 34, 35, 15]. BayesCard learns a BN in

Chapter 2. Background Chapter 9

the Chow-Liu tree structure for every table included in the dataset. If the dataset is a
single table, then the inference of CardEst queries of that dataset will be performed on
the learned BN based on that dataset. A multi-table dataset comprises multiple tables
with data dependent on each other based on the schema. The join condition(s) defined
in the database schema declares the dependency among tables in a multi-table dataset.
In the case of CardEst on a multi-table dataset, BayesCard constructs a BN ensemble
such that each BN in the ensemble is learned based on the join condition. Based on the
BN ensemble, the inference of CardEst on the multi-table dataset can be decomposed
to multiple single-table queries over each related BN in the ensemble. Up to this stage,
the inference of CardEst needs to be normalized because BN in the ensemble can share
overlaps of records in the database. As a result, BayesCard applies the fanout method
from prior works [37, 34, 13] as a normalization to the inference results for CardEst on
multi-table datasets.

2.4 Tensor Libraries

In the recent decade, scientists have widely explored tensor libraries to handle high-
dimensional data. For instance, Pytorch, Numpy, Numba, Tensorflow, and Pytensor
are well-known tensor libraries. Tensors are high-dimensional arrays with specific
types. Tensor libraries support data structures such as arrays and matrices, and provide
extensive collections of high-dimensional mathematical operations over arrays and
matrices. In this project, we represent data distributions with Numpy arrays and
empower Opt_einsum [1] to fasten the inference where Opt_einsum is a tensor library
that specializes in fast tensor contraction.

2.5 Approximate Query Processing

Framework Year CardEst AQP Approach

IDEA [11] 2017 ✗ ✓ IDEA, Online aggregation, Query rewrite, Tail Indexes
VerdictDB [25] 2018 ✗ ✓ Online analytical processing engine, Variational subsampling

MSCN [15]
2019

✓ ✗ Multi-set convolutional network
Naru [35] ✓ ✗ Deep autoregressive models, Progressive sampling

DeepDB [13] ✓ ✓ Relational Sum Product Netorks (RSPNs)
FLAT [37]

2020

✓ ✗ Factorize-sum-split-product network (FSPN)
BayesCard [33] ✓ ✗ Bayesian Networks, JIT compilation
EntropyDB [23] ✗ ✓ Multi-linear polynomial Maximum Entropy (MaxEnt) Model
VAE-AQP [31] ✗ ✓ Variational Auto-encoders, Variational Inference
ML-AQP [28] ✗ ✓ Gradient Boosting Machines (GBM), XGBoost, LightGBM

PGMJoins [30] 2021 ✗ ✓
Probabilistic graphical models (PGMs),

Sum-Product Message Passing Algorithm (SP-MPA)
Factorjoin [32] 2023 ✓ ✗ Bayesian Networks, Join-histograms

Table 2.2: Literature review of CardEst and AQP

As computing exact answers for queries with large databases is costly, Approximate
Query Processing (AQP) is introduced. AQP achieves fast approximate query answers

Chapter 2. Background Chapter 10

by sacrificing reasonable accuracy, whereas CardEst is a particular case of AQP. Com-
pared to CardEst, AQP enables answering queries with aggregations such as COUNT(),
SUM(), AVG(), and GROUP BY.

2.5.1 DBEst

DBEst [20] is a model-driven AQP engine composed of supervised-machine-learning
(SML) models. DBEst supports aggregations including COUNT(), SUM(), AVG(),
GROUP BY, VARIANCE, STDDEV, and PERCENTILE. Although DBEst can answer
a broad range of aggregation functions, due to DBEst being model-driven (i.e., queries
are answered by the model(s) of the data. However, not the data itself), the accuracy
of unseen queries can be unreliable due to biased sampling to ensure that categorical
columns can meet certain conditions.

2.5.2 DeepDB

DeepDB [13] a competitive framework that supports both CardEst and AQP. DeepDB
is a data-driven AQP framework that benefits from Relative Sum-Product Networks
(RSPNs). RSPNs is a probabilistic model extended from Sum-Product Networks
(SPNs) to optimize the usage in the relational database. RSPNs enable capturing data
distribution from the dataset and NULL value handling in the database. The model
training of DeepDB is similar to BayesCard, where each table from the dataset is
learned as an RSPN. DeepDB also employs the fanout method as BayesCard to handle
multi-table datasets and joins in database languages. The main difference between
BayesCard and DeepDB is that DeepDB provides AQP, whereas BayesCard is limited
to CardEst. Our framework, BayesTensor, is inspired by BayesCard and DeepDB to
achieve CardEst and AQP by PPLs.

Chapter 3

Compiling Discrete Probabilistic
Programs

This chapter will introduce our framework, BayesTensor, and how it can support fast
exact inference over discrete distributions and Bayesian Networks.

3.1 Overview

Our framework, BayesTensor, contains a front-end and a back-end. The front-end
compiles discrete probabilistic programs in BayesTensor Language (BTL) and simplifies
the program where possible. The back-end transforms the program from BTL to Tensor
Intermediate Language (TIL) to generate Python code that empowers tensor libraries and
performs the inference with the generated code. The overall workflow of BayesTensor
is shown in Figure 3.1.

Probabilistic
programs

BTL TIL
Code

generation

Tensor
libraries

Figure 3.1: The workflow of our framework BayesTensor.

BayesTensor has four main components: A front-end, Normalization, Tensorization,
and a back-end. The main architecture of our framework is shown in Figure 3.2. The
core grammar of BTL is shown in Figure 3.3.

11

Chapter 3. Compiling Discrete Probabilistic Programs 12

Dice
Program

Probabilistic
Query

BTL expression

TIL expression

Code Generator

Tensorisation

Tensor libraries

High-level BTL Expression

Normalised BTL Expression

Observe Hoisting

Desugaring

Flattening

Condition Statement

S
im

pl
ifi

ca
tio

n

A
N

F
 conversion

Figure 3.2: The overall architecture of our framework BayesTensor with detailed
normalisation steps

e ::= x | v | fst e | snd e | (e, e) | f(e)
| let x=e in e | match e with { v -> e | ... }
| discrete [p, ..., p] | observe e [v, ..., v]
| query [x, ..., x] [x, ..., x]

P ::= e | fun f(x: T): T { e } P
T ::= int | (T , T)
v ::= n | (v, v)

Figure 3.3: Grammar of the core BTL language. The meta-variables p, n, x, and f
range over real numbers in the range [0,1], natural numbers, variable names, and
function names.

3.2 Frontend Language

The front-end of BayesTensor accepts inputs in BayesTensor Language (BTL), a tensor-
centric PPL. This section demonstrates the main functionalities of the front-end language
BTL with its core grammar and extensions in Section 3.2.1 and 3.2.2, respectively.

3.2.1 Core BTL

The core grammar of BTL is shown in Figure 3.3 and explained in the following sections.
observe is the only effectful construct in BTL, which considers observations in query
construct.

3.2.1.1 Generic constructs

BTL provides features of variable access, constant value representation, tuple projection,
tuple creation, and functional call by the term e which can be further expanded by terms
P, T and v. The let-bindings syntax let x=e1 in e2 avoids redundant computations
of the same expression for later reuse.

Chapter 3. Compiling Discrete Probabilistic Programs 13

3.2.1.2 Control flow

BTL enables pattern matching by control flow constructs through the syntax match
e0 with{ v1 -> e1 | ... }, where e0 represents scrutiny and the symbol | separates
each unique case of the control flow.

3.2.1.3 Distribution

BTL defines a distribution by the syntax discrete [p1, ..., pn], where p1, ...,

pn are numbers in range of 0 to 1 such that
∑n

i=1 pi= 1. This syntax represents a
prior distribution of a discrete random variable, a marginal distribution, or a posterior
distribution.

3.2.1.4 Conditional Distribution Tables (CDTs)

BTL provides the representation of conditional distributions by defining a prior distribu-
tion with discrete [p1, ..., pn] and specifies the dependency among variables by
pattern matching. An example of the usage is shown in Figure 3.7.

3.2.1.5 Conditioning

To make observations with certain variables, BTL provides the conditioning operation
observe and supports range conditioning referring to observing a variable e with
multiple unique states v1, ..., vk by the syntax observe e [v1, ..., vk].

3.2.1.6 Querying

BTL enables unconditional and conditional probabilistic queries. To query for a
marginal probability such as IP(X), specify the variable to be marginalized by its
name at the end of the program. If multiple variables are specified for the query, a joint
probability of the specified variables will be computed. To query conditional probability,
BTL provides the syntax query [x1, ..., xk] [y1, ..., yd], where [x1, ..., xk]

declares variables to be queried and [y1, ..., yd] states the list of observations.

3.2.2 High-level Extensions

In order to recognize a wider range of discrete probabilistic programs, such as discrete
probabilistic programs in Dice [14], we extend BTL to make representations in proba-
bilistic programs more flexible and concise. The extended grammar of BTL is shown in
3.4, and the full desugar patterns are presented in Figure 3.5.

e ::= cf. Figure 3.3 | if(e) then e else e
| e && e | e || e | e ~> e | ~e | e == v
| flip p | observe e | observe e n:n

v ::= cf. Figure 3.3 | true | false

Figure 3.4: Extended high-level constructs for BTL. These constructs are syntactic
sugar extensions that make BTL source-compatible with Dice [14] programs.

Chapter 3. Compiling Discrete Probabilistic Programs 14

⟦true⟧ = 1

⟦false⟧ = 0

⟦flip p⟧ = discrete [(1-p), p]
⟦if e1 == 0 match ⟦e1⟧ with {
then e2_0 = 0 => ⟦e2_0⟧
... ...

else if e1 == n | n =>

then e2_n ⟦e2_n⟧
else e3⟧ | n+1 => ⟦e3⟧ }

⟦if e1 match ⟦e1⟧ with {
then e2 = 1 => ⟦e2⟧
else e3⟧ | 0 => ⟦e3⟧ }

⟦e1 && e2⟧ = ⟦if e1 then e2 else false⟧
⟦e1 || e2⟧ = ⟦if e1 then true else e2⟧
⟦e1 ~> e2⟧ = ⟦if e1 then e2 else true⟧
⟦~e1⟧ = ⟦if e1 then false else true⟧
⟦observe e1⟧ = observe ⟦e1⟧ [1]
⟦observe e1 v1:v2⟧ = observe e1 [v1, ..., v2]

Figure 3.5: Syntactic sugars for the BTL.

3.2.2.1 Logical expression

To encode logical expressions, BTL is extended with operations &&, ||, and ~ to
represent logic operations AND, OR, and NOT respectively, presented in Figure 3.4. BTL
also provides logical implication by the syntax e ~> e, equivalent to the syntax ~e
|| e. To express an equivalence comparison, BTL offers the syntax e == v where v is
extended express boolean values true and false, presented in Figure 3.4.

3.2.2.2 Control flow

To simplify the decision representations in BTL, we replace match-statements with
if-statements in high-level BTL.

3.2.2.3 Boolean distribution

Boolean distribution can be expressed using the syntax flip θ in the extended BTL,
where θ represents the probability of a condition is true while 1-θ refers to the proba-
bility that the condition is unsatisfied. The syntax flip θ can be further desugared to
discrete [θ, (1-θ)] using the core grammar of BTL.

3.2.2.4 Boolean conditioning

Inspired by Dice [14], the extended BTL simplifies the expression of observing a
variable e with boolean distribution to observe e, presented in Figure 3.4.

Chapter 3. Compiling Discrete Probabilistic Programs 15

3.2.2.5 Range conditioning

In extended BTL, we shorten the range conditioning syntax observe e [n, n+1,
..., m] in the core grammar of BTL to observe e n:m, where n<m, shown in Fig-
ure 3.4.

3.2.3 Examples

This section illustrates two discrete probabilistic programs that can be expressed in
BTL.

3.2.3.1 Simple probabilistic programs

Figure 3.6 defines a simple probabilistic program called Observe1. This example is
taken from Dice [14]. In this example, we are curious about the marginal probability of
the evidence, with the condition that when the evidence is true, considering that we will
get a head while flipping an unbiased coin.

let evidence = flip 0.5 in
let coin = flip 0.5 in
if evidence then
let obs = observe coin in
evidence
else
evidence

Figure 3.6: Observe1: A discrete probabilistic program in BTL.

3.2.3.2 Bayesian Networks

BNs can be seen as a special case of discrete probabilistic programs. We show how
to express BNs using BTL with Kevin Murphy’s wetgrass/sprinkler/rain example
introduced in Section 2.2 in Figure 3.7. Figure 3.7 demonstrates the BTL construct
of this example. The distribution of this BN is presented in Figure 3.7a, and the
corresponding BN definition is shown in Figure 3.7b.

3.3 Normalization

This section explains the transformations used to normalize BTL expressions. The
normalization process transformed BTL programs to be prepared for the tensorization
(i.e., lowering to tensor representations) and the code generation processes. The right-
hand side of Figure 3.2 illustrates the main normalization steps to convert high-level
BTL expressions, which may contain side-effect observe statements, into normalized
purely functional code.

In the following sections, we will show how BayesTensor performs normalization steps
with the example Observe1 presented in Figure 3.6.

Chapter 3. Compiling Discrete Probabilistic Programs 16

3.3.1 Observe Hoisting

Observe hoisting addresses semantics ambiguities during the inference such that out-
comes of the same probabilistic query are always consistent. An example of semantics
ambiguities can be referred to the program Observe1 originated from Figure 3.6.

In the example Observe1, there is a semantics ambiguity caused by the presence of a
non-deterministic choice defined by the syntax flip θ and an observe statement inside
an if-statement. The main ambiguity arises from the non-deterministic choice flip
0.5 statement, which can be interpreted as either true or false with equal probability.
Defining non-deterministic choice statements can result in multiple execution paths and
outcomes during the inference.

Moreover, the conditional let obs = observe coin in is nested in the if-statement
if evidence then such that the conditional will be considered only when the evidence
is true. However, if the evidence is false, the conditional of coin flip does not contribute
to the program’s outcome since the conditional of the coin flip will never be reached
and executed in this case.

Observe hoisting contains three main steps: (1) Analyzing and collecting the context of
each observe statement, (2) analyzing and collecting all statements that each observe
statement is dependent on, and (3) pushing all statements collected in steps (1) and
(2) outside the conditionals, as well as the observe statement itself. The result of
performing observe hoisting to the example Observe1 is shown in Figure 3.8.

3.3.2 Desugaring

Desugaring decomposes high-level BTL constructs in terms of BTL core grammar.
The desugaring transformation rules are depicted in Figure 3.9. Figure 3.9 shows the
desugaring result of Observe1 originated from Figure 3.6.

3.3.2.1 Simplification

Various simplifications can be performed during the desugaring, such as partial eval-
uation, constant propagation, β-reduction, and dead-code elimination. Possible sim-
plification details can be found in Sections 4.3-4.5 in [24]. An example of dead-code
elimination is shown in Figure 3.9: In Figure 3.9, lines 4-7 at the left-hand side repeat
querying over the variable evidence, which can be simplified to line 10 at the right-hand
side of the same Figure.

3.3.3 Flattening

This transformation aims to flatten nested pattern matching. Considering expressions
in Figure 3.10a, flattening transformation is composed of two steps: (1) Compensat-
ing missing pattern scrutinies if it happens, and (2) performing the permutation and
combination of possible outcomes that can be generated within each nested branch
and pushing those combinations to form integrated homogeneous pattern matching
expression. Step (1) inspects all patterns if any pattern scrutiny is missing and records

Chapter 3. Compiling Discrete Probabilistic Programs 17

the range and symbol of each pattern scrutiny in case value expansion is needed, which
happens in Figure 3.10a. The result of step (1) Figure 3.10a is shown in Figure 3.10b
where the missing pattern scrutiny when x is true is expanded. The result of performing
step (2) is shown in Figure 3.10c.

Figure 3.11 shows the result of flattening transformation on Observe1 based on Fig-
ure 3.9, where lines 1-2 and 8-9 at the left-hand side remain unchanged before and after
the flattening.

3.3.4 Query Inference

This transformation encodes conditionals within inference with the query statement in
high-level BTL construct (Figure 3.5). An example of a normalized query is presented
in Figure 3.12, where query inference transformation has been outlined with an arrow
to interpret related expressions before and after the query inference transformation.

3.4 Tensorization

With tensor representations, BayesTensor can support fast inference with high-dimensional
data distribution by tensor libraries. In this section, we introduce Tensor Intermediate
Language (TIL), used to transform a probabilistic program in normalized BTL into
tensor representations. The core grammar of TIL is shown in Figure 3.13. The usage
standard of variables and let-bindings within TIL is the same as BTL.

3.4.1 Tensor Construction

A distribution expressed in BTL discrete [r1, ..., rk] can be seemed as a ten-
sor of k real numbers r1, ..., rk. TIL provides tensor representations by the syn-
tax tensor([r1, ..., rk], [n1, ..., nd]), where [n1, ..., nd] specify the shape
and order of a tensor and each ni is a natural number representing the number of el-
ements over a specific dimension of a tensor and the number of nis (specified by d)
represent the tensor order. When defining conditional probabilities, each ri in TIL tensor
construct is a real number in the range of 0 to 1 and

∑n
i=1ri= 1.

3.4.2 Filtering

Incorporating observations of a variable in a query (i.e., a conditional query) can be
treated as a slice of the tensor representing the distribution of that variable to consider
only related observation values in the inference. TIL provides the syntax select(t,
[n1, ..., nk], d), where [n1, ..., nk] specify the indices of the elements to be
sliced at the specified dimension. This syntax can slice a tensor t based on dth dimen-
sion.

Chapter 3. Compiling Discrete Probabilistic Programs 18

3.4.3 Normalization

The inference result must be normalized with the partition function Z to correspond to a
probability distribution while incorporating observations within an inference. TIL pro-
vides normalization construct normalize(t) to ensure the summation over a normalized
tensor should be one.

3.4.4 Contraction

TIL offers tensor contraction by the syntax contract(s, t1, ..., tk), where s corre-
sponds to an einsum expression, and t1, ..., tk refers to corresponding inputs obtained
within the einsum expression separated by commas.

The einsum expression "i,...,i->i" indicates the indices of input tensors on the
left-hand side of the arrow and the indices of the output tensor on the right-hand side.
For instance, the dot product over matrices can be expressed as "ik,kj->ij", which
requires the column index of the first matrix and the row index of the second matrix to
be the same (denoted by the index "k"). Similarly, the Hadamard product (element-wise
multiplication) of two matrices can be represented as "ij,ij->ij". The transpose of a
matrix can be expressed as "ij->ji" in the einsum notation.

3.4.5 Examples

Examples of TIL programs are presented in Figure 3.14 by performing an unconditional
query (Figure 3.14a) and a conditional query (Figure 3.14b) over the Kevin Murphy’s
wetgrass/sprinkler/rain example.

3.5 Code Generation

In practice, we empower code generation to generate tensor programs in Python. The
main challenge is computing probability with high-dimensional distributions. Handle
shape matching with Numpy arrays during variable elimination (VE) is hard. As a
result, we utilize the einsum operation, which automatically handles the shape matching
in computing summation and factorization of distributions during the inference.

3.5.1 Examples

Figure 3.15 demonstrates the generated Python code of an unconditional query (Fig-
ure 3.15a) and a conditional query (Figure 3.15b) over the Kevin Murphy’s wet-
grass/sprinkler/rain example in Figure 3.14. Line 6-7 in Figure 3.15b conditions on that
grass is wet by extracting the conditional probability of WetGrass representing it is wet
with the Numpy function np.take.

Chapter 3. Compiling Discrete Probabilistic Programs 19

P(C=T)P(C=F)

0.5 0.5

P(S=T)P(S=F)

0.5 0.5

C

F

T 0.9 0.1

P(R=T)P(R=F)

0.8 0.2

C

F

T 0.2 0.8

P(W=T)P(W=F)

1.0 0.0

R

F

T

0.1 0.9

S

F

F

TF

T T

0.1 0.9

0.01 0.99

WetGrass

Sprinkler Rain

Cloudy

(a) Kevin Murphy’s wetgrass/sprinkler/rain example with distribution.
1 let Cloudy = discrete [0.5, 0.5] in
2 let Rain = match Cloudy with {
3 0 -> discrete [0.8, 0.2]
4 | 1 -> discrete [0.2, 0.8]
5 } in
6 let Sprinkler = match Cloudy with {
7 0 -> discrete [0.5, 0.5]
8 | 1 -> discrete [0.9, 0.1]
9 } in

10 let WetGrass = match (Sprinkler, Rain) with {
11 (0,0) -> discrete [1, 0]
12 | (0,1) -> discrete [0.1, 0.9]
13 | (1,0) -> discrete [0.1, 0.9]
14 | (1,1) -> discrete [0.01, 0.99]
15 } in
16 WetGrass

(b) BTL program with unconditional query over the corresponding BN in
3.7a.

1 let Cloudy = flip 0.5 in
2 let Rain =
3 if(Cloudy) then flip 0.8 else flip 0.2 in
4 let Sprinkler =
5 if(Cloudy) then flip 0.1 else flip 0.5 in
6 let WetGrass =
7 if(Sprinkler) then
8 if(Rain) then flip 0.99 else flip 0.9
9 else

10 if(Rain) then flip 0.9 else flip 0.0 in
11 WetGrass

(c) Corresponding high-level constructs of BTL in 3.7b.

Figure 3.7: An example of the Bayesian Network and its definition in different level
of BTL.

Chapter 3. Compiling Discrete Probabilistic Programs 20

l et evi dence = f l i p 0. 5 i n
l et coi n = f l i p 0. 5 i n
i f evi dence t hen

l et obs = obser ve coi n i n
evi dence

el se
evi dence

? ?
l et obs = obser ve (evi dence ~> coi n) i n
i f evi dence t hen

evi dence
el se

evi dence

Observe
hoisting

l et obs = obser ve coi n i n

mat ch evi dence wi t h {
 | 1 - > coi n

| 0 - > 0
}

evi dence ~> coi n

expand

2

1

3

4
5

6
7

3
4
5
6
7

l i ne l i ne

Figure 3.8: Performing observe hoisting on the example Observe1 originated from
Figure 3.6.

l et evi dence = f l i p 0. 5 i n

l et coi n = f l i p 0. 5 i n

l et evi dence = di scr et e [0. 5, 0. 5] i n

l et coi n = di scr et e [0. 5, 0. 5] i n

l et obs = obser ve (evi dence ~> coi n) i n

i f evi dence t hen
evi dence

el se
evi dence

l et cond1 = mat ch evi dence wi t h {
| 1 - > mat ch coi n wi t h {

 | 0 - > di scr et e [1. 0, 0. 0]
 | 1 - > di scr et e [0. 0, 1. 0] }

| 0 - > di scr et e [1. 0, 0. 0]
} i n

l et obs = obser ve cond1 [1] i n
evi dence

Desugar i ng

1

2

3

7

4
5
6

1

2

4
3

5

6
7
8

9

10

l i ne l i ne

Figure 3.9: Desugaring the example Observe1 based on the result of observe
hoisting transformation in Figure 3.8

Chapter 3. Compiling Discrete Probabilistic Programs 21

match x with {
| 0 -> match y with {
| 0 -> dist0
| 1 -> dist1 }
| 1 -> dist2 }
}

(a) An example of nested pattern matching needs to be flatten.
match x with {
| 0 -> match y with {
| 0 -> dist0
| 1 -> dist1 }
| 1 -> match y with {
| 0 -> dist2
| 1 -> dist2 }
}

(b) Compensation of mssing pattern scrutities in Figure 3.10a.
match (x, y) with {

| (0, 0) -> dist0
| (0, 1) -> dist1

| (1, 0) -> dist2
| (1, 1) -> dist2
}

(c) Final flatten result of 3.10a based on 3.10b.

Figure 3.10: An example of BTL expressions before and after the flattening transfor-
mation.

l et evi dence = di scr et e [0. 5, 0. 5] i n

l et coi n = di scr et e [0. 5, 0. 5] i n

l et obs = obser ve cond1[1] i n
evi dence

l et cond1 = mat ch evi dence wi t h {
| 1 - > mat ch coi n wi t h {

 | 0 - > di scr et e [1. 0, 0. 0]
 | 1 - > di scr et e [0. 0, 1. 0] }

| 0 - > di scr et e [1. 0, 0. 0] } i n

l et cond1 = mat ch (evi dence, coi n) wi t h
{

| (1, 0) - > di scr et e [1. 0, 0. 0]
| (1, 1) - > di scr et e [0. 0, 1. 0]
| (0, 0) - > di scr et e [1. 0, 0. 0]
| (0, 1) - > di scr et e [1. 0, 0. 0] } i n

.

.

Fl at t eni ng

1

2

3
4
5
6
7

8
9

l i ne

Figure 3.11: Flattening result of the example Observe1 based on its desugaring
result in Figure 3.9.

Chapter 3. Compiling Discrete Probabilistic Programs 22

l et evi dence = di scr et e [0. 5, 0. 5] i n

l et coi n = di scr et e [0. 5, 0. 5] i n

l et obs = obser ve cond1[1] i n
evi dence

.

1

2

3
4
5
6
7

8
9

l i ne

l et cond1 = mat ch (evi dence, coi n) wi t h
{

| (1, 0) - > di scr et e [1. 0, 0. 0]
| (1, 1) - > di scr et e [0. 0, 1. 0]
| (0, 0) - > di scr et e [1. 0, 0. 0]
| (0, 1) - > di scr et e [1. 0, 0. 0] } i n

l et obs = obser ve cond1[1] i n
quer y [evi dence] [obs]

Figure 3.12: The normalization on the query expression of the example Observe1.

t ::= tensor([r, ..., r], [n, ..., n])
| x | let x=t in t | select(t, [n, ..., n], n)
| normalize(t) | contract(s, [t, ..., t])

s ::= "i,...,i->i"

Figure 3.13: Grammar of TIL. The meta-variable r ranges over real numbers, x over
variable names, and n over natural numbers. The string literal i consists of letters
[a-zA-Z] corresponding to each dimension of a tensor.

1 let Cloudy = tensor([2], [0.5,0.5]) in
2 let Rain = tensor([2,2], [0.8,0.2,0.2,0.8] in
3 let Sprinkler = tensor([2,2], [0.5,0.5,0.9,0.1]) in
4 let WetGrass = tensor([2,2,2],
5 [1,0,0.1,0.9,0.1,0.9,0.01,0.99]) in
6 let prob = contract(’a,ab,ac,bcd->d’,
7 Cloudy, Rain, Sprinkler, WetGrass) in
8 prob

(a) Translated BTL program from Figure 3.7b in TIL. As there is no conditioning, there is no
need for normalizing the distribution.

1 let Cloudy = tensor([2], [0.5,0.5]) in
2 let Rain = tensor([2,2], [0.8,0.2,0.2,0.8] in
3 let Sprinkler = tensor([2,2], [0.5,0.5,0.9,0.1]) in
4 let WetGrass = select(tensor([2,2,2],
5 [1,0,0.1,0.9,0.1,0.9,0.01,0.99]), [0], 2) in
6 let prob = contract(’a,ab,ac,bcd->d’,
7 Cloudy, Rain, Sprinkler, WetGrass) in
8 normalize(prob)

(b) Query with conditioning in TIL over Kevin Murphy’s wetgrass/sprinkler/rain example
when grass is not wet

Figure 3.14: Translating the Kevin Murphy’s wetgrass/sprinkler/rain example of
Figure 3.7 from BTL to TIL.

Chapter 3. Compiling Discrete Probabilistic Programs 23

1 import numpy as np
2 from opt_einsum import contract
3 Cloudy=np.array([0.5,0.5])
4 Rain=np.array([0.8,0.2,0.2,0.8]).reshape((2,2))
5 Sprinkler=np.array([0.5,0.5,0.9,0.1]).reshape((2,2))
6 WetGrass=np.array([1.0,0.0,0.1,0.9,
7 0.1,0.9,0.01,0.99]).reshape((2,2,2))
8 prob=contract(’a,ab,ac,bcd->d’,
9 Cloudy, Rain, Sprinkler, WetGrass)

10 print(prob)

(a) Code generation of an unconditional query based on Figure 3.14a.
1 import numpy as np
2 from opt_einsum import contract
3 Cloudy=np.array([0.5,0.5])
4 Rain=np.array([0.8,0.2,0.2,0.8]).reshape((2,2))
5 Sprinkler=np.array([0.5,0.5,0.9,0.1]).reshape((2,2))
6 WetGrass=np.take(np.array([1.0,0.0,0.1,0.9,
7 0.1,0.9,0.01,0.99]).reshape((2,2,2)), [0], axis=2)
8 prob=contract(’a,ab,ac,bcd->d’,
9 Cloudy, Rain, Sprinkler, WetGrass)

10 print(prob / np.sum(prob))

(b) Code generation of a conditional query based on Figure 3.14b.

Figure 3.15: The generated Python code for the Kevin Murphy’s wetgrass/sprin-
kler/rain example.

Chapter 4

Applications

In this chapter, we will introduce a variety of applications supported by BayesTensor.

4.1 Simple probabilistic programs

BayesTensor supports the inference over discrete probabilistic programs written in
BTL. Chapter 3 demonstrates how BayesTensor decodes and compiles the discrete
probabilistic programs. An example of a simple probabilistic program is TwoCoins,
shown in Figure 4.1. This example is a benchmark in our experiment of simple
probabilistic programs in Section 5.2.1. TwoCoins queries the marginal probability of
the first coin when flipping two coins in order and getting heads from both coins. Line
8 and 9 in Figure 4.1b refer to the conditional bothHeads and the observation tmp in
Figure 4.1a at Lines 3 and 4, respectively. The evaluation results of simple probabilistic
programs are presented in Chapter 5.2.

4.2 Cardinality Estimation

BayesTensor also supports database tasks such as CardEst and AQP. In this section, we
will explain how to apply BayesTensor to do CardEst.

The model training process is similar to BayesCard. In our implementation, since
Pgmpy does not support any structure learning algorithm for the Chow-Liu tree, we
perform the structure learning from Pomegranate [29], a Python framework for PGMs
construction. Then, perform a parameter training with Pgmpy.

Since CardEst queries are COUNT(*) queries in database languages, each CardEst
query can be treated as an inference of joint probability with observations specified by
the query predicates. In Chapter 3, we have seen how BayesTensor encodes inference
of a joint distribution. In order to recognize the queries in database languages, we
adapt the query parser from the BayesCard [33], which decomposes queries in database
languages to help us generate the corresponding probabilistic programs.

24

Chapter 4. Applications 25

1 let firstCoin = flip 0.5 in
2 let secondCoin = flip 0.5 in
3 let bothHeads = (firstCoin && secondCoin) in
4 let tmp = observe !bothHeads in
5 firstCoin

(a) TwoCoin in BTL.
1 import numpy as np
2 from time import perf_counter
3 import opt_einsum
4 t_start = perf_counter()
5 firstCoin = np.array([0.5, 0.5])
6 secondCoin = np.array([0.5, 0.5])
7 bothHeads = np.array([1.0, 0.0, 1.0, 0.0, 1.0,

0.0, 0.0, 1.0]).reshape((2,2,2))
8 x13 = np.take(np.array([0.0, 1.0, 1.0,

0.0]).reshape((2,2)), [1], axis=-1)
9 normalized14 = np.einsum(’a,b,abc,cd->a’,

firstCoin, secondCoin, bothHeads, x13)
10 res15 = normalized14 / np.sum(normalized14)
11 res15

(b) Corresponding code generation of TwoCoins originated from
4.1a.

Figure 4.1: TwoCoins: An example of simple probabilistic program from Dice [14].

4.3 Approximate Query Processing

This section shows how BayesTensor supports AQP. BayesTensor provides three ag-
gregates (both scalar and group by aggregates), which are COUNT(*) (i.e., CardEst),
AVG(), SUM(), and GROUP BY aggregation in database languages. AVG and SUM
aggregates can only apply to numeric variables.

During the training process, since we train BNs over real-world datasets that contain a
mixture of the discrete and continuous distribution, before the training, we discretize
those datasets into discrete data distribution by histogram for each continuous variable,
where each bin represents a unique discrete state of that variable in integers. For each
discretized continuous variable, each bin in the histogram records a range based on
the related data from the dataset. There is no need to apply the histogram approach
for categorical variables because they already have discrete distributions with discrete
states. During querying, observations made with values of that variable that belong to
the same bin will be parsed to the same discrete state by the query parser.

Suppose we train on a continuous variable x and Figure 4.2 is the corresponding
histogram we construct during the training. In Figure 4.2a, the x-axis represents discrete
states, also called bins, that are used to bin the values of variable x, and the y-axis shows
the number of values that belong to each distinct bin from the dataset. Based on this
example, we will explain how we perform SUM() and AVG() on the single-table dataset

Chapter 4. Applications 26

0 1 2 3 4 5

10

20

30

Count

var i abl e st at es
(nt h bi n)

20

10

4

24

14

(a) The histogram of discretized continuous variable x.

Discrete state (nth bin) Value range

1 0-15
2 15-30
3 30-45
4 45-60
5 60-75

(b) The range of value for each bin corresponding to 4.2a

Figure 4.2: An example of discretizing a continuous variable x.

in the following two sections.

4.3.1 SUM

This section will show how to perform scalar SUM() (i.e., SUM aggregates without
GROUP BY) on a single-table dataset.

Based on the context demonstrated by Figure 4.2, scalar SUM aggregates can be
computed by summing up the product of the mean of the range from each bin and the
estimated count for each bin by doing a COUNT(*) GROUP BY on the variable x. If
each bin represents a single value instead of a range, then sum over the product of the
value represented by each bin with the corresponding COUNT value for that bin. For
instance, for variable x in Figure 4.2, we take means from each bin which are 7.5 for
1th bin, 22.5 for 2th bin, 37.5 for 3th bin, 52.5 for 4th bin, and 67.5 for 5th bin. Assume
results of perform a COUNT(*) GROUP BY on variable x are 19 for 1th bin, 6 for 2th
bin, 2 for 3th bin, 20 for 4th bin, and 16 for 5th bin. Then, we will get the SUM(x) as
below:

S UM(x) = 7.5∗19+22.5∗6+37.5∗2+52.5∗20+67.5∗16 = 2482.5 (4.1)

In our implementation, we perform AQP based on the Flights dataset, which has a
Chow-Liu tree BN visualization in Figure 4.3:

Chapter 4. Applications 27

or i gi n_st at e_abr

di st ance

Car r i er _i dor i gi n_i d dest i nat i on_i d

dest _st at e_abr

ar r _del ayt axi _out t axi _i nai r _t i me

year

dep_del ay

Figure 4.3: The BN visualization of the Flights dataset in our implementation.

An example of SUM() queries in the Flights benchmark is presented in Figure 4.4, where
Figure 4.4b is the generated Python program that performs inference according to the
query specified in PostgreSQL in Figure 4.4a. Since we use exec() command to execute
the generated Python code with the local environment, no distribution specification is
obtained in the generated code, presented in Figure 4.4b.

In Figure 4.4b, Line 5 incorporates the observation with the variable unique_carrier
is ’9E’. Line 6 performs the scalar SUM aggregate, SUM(distance), by pushing com-
putation of computing SUM(distance) and COUNT(*) GROUP BY distance into one
line of einsum operation. At line 6, since we want to sum over distance, we expect
the marginal inference of the variable distance and treats its total number of discrete
states at the output shape in einsum notation with the einsum inputs wf_carrier_id,
wf_distance, wf_year which are the variables from BN (Figure 4.3) used for VE. After
this, we multiply the cardinality of Flights (i.e., the input "nrows" in einsum operation
at line 6 in Figure 4.4b) with the marginal probability of distance which is performing
COUNT(*) GROUP BY distance. At line 6, the other einsum input "bins_avg" is the
pre-computed means from the histogram of distance, and we again multiply it with
results from COUNT(*) GROUP BY distance to get the result of SUM(distance).

4.3.2 AVG

In our implementation, we compute AVG() by dividing SUM by the COUNT. For
instance, for AVG(x), we divide the results from SUM(x) by the results of COUNT(*)
GROUP BY on x with Numpy function np.divide.

4.3.3 GROUP BY aggregates

BayesTensor supports GROUP BY aggregates on scalar aggregates COUNT(), AVG()
and SUM(). We treat GROUP BY aggregates as the variables that should not be
eliminated during the VE, such that the inference produces a marginal distribution of
variables obtained in scalar aggregates and GROUP BY aggregates.

Chapter 4. Applications 28

1 SELECT SUM(distance) FROM flights WHERE unique_carrier=’9E’;

(a) An example of SUM() queries from Flights benchmark.
1 import numpy as np
2 from time import perf_counter
3 from opt_einsum import contract
4 def infer(wf_distance,wf_carrier_id,wf_year,nrows,bins_avg):
5 wf_carrier_id = contract("AB->B", wf_carrier_id[[18]])
6 res = contract(’B,Bw,w,B,->w’,

wf_carrier_id,wf_distance,wf_year,bins_avg,nrows,
optimize=’dp’)

7 return res
8 t_start = perf_counter()
9 infer_res = infer(wf_distance,wf_carrier_id,wf_year,nrows,bins_avg)

(b) Corresponding code generation of 4.4a by BayesTensor.

Figure 4.4: An example of SUM() queries supported by BayesTensor.

Chapter 5

Experiments

This chapter demonstrates three experiments to evaluate the performance of different
applications introduced in Chapter 4. Experiments in this Chapter are conducted on
single-table datasets. In this chapter, we evaluate the performance of BayesTensor by
comparing it with corresponding competitors in topics.

5.1 Experimental Setup

In this section, we introduce the setup of our experiments, including the device used for
experiments and detailed insight into each dataset we used.

5.1.1 Datasets and query workloads

Three datasets are used for benchmarking: Census, DMV, and Flights. All datasets are
single-table datasets. The detail of each dataset is presented below.

5.1.1.1 Census

The Census dataset is generated using Data Extraction System by Microsoft and has
2,458,285 tuples and 68 categorical attributes. The data included is a segment of the
U.S. census survey carried out by the United States (U.S.) Department of Commerce
Census Bureau in 1990. This dataset obtains relatively data distribution complexity. We
use the same attributes and query workload from [33].

5.1.1.2 DMV

The DMV dataset involves vehicle, snowmobile, and boat registration records in the
State of New York (NYS). Although the local government of NYS continuously updates
this dataset, there is no noticeable shift in data distribution among versions. The DMV
snapshot we used has 12,593,240 tuples and 20 attributes. In experiments, we use the
same attributes as [36] and the same query workload from [33].

29

Chapter 5. Experiments 30

5.1.1.3 Flights

The Flights dataset aims to benchmark Interactive Data Exploration (IDE) systems
which have a majority of ad-hoc queries incrementally built by users during the query
process. The original Flights dataset is a real-world dataset that contains information
about the United States (U.S.) domestic flights managed by the Bureau of Transportation
Statistics (BTS). The Flights dataset we used is rescaled by the data generator of the
Interactive Data Exploration Benchmark (IDEBench) [10] with a scale factor of 1 billion
(SF=1,000,000,000). We use the same sampling rate of 0.01 and query workloads as
[13]. The sampled snapshot we experimented with has 12 attributes and 10002716
tuples.

5.1.2 Competitors

This section aims to introduce competitors for each experiment in this project. In
experiments, we did not include Pyro [4] and PyTAC [9]. In sections 5.1.2.2 and 5.1.2.3,
we will explain the reason for the exclusion of Pyro and PyTAC, respectively.

5.1.2.1 Dice

Dice [14] is a PPL specialized in discrete distribution. Dice supports fast, exact inference
by logical expressions and exploiting the local structure with weighted model counting
(WMC). Dice compiles a discrete probabilistic program into a binary decision diagram
(BDD), a compression of logical expressions, which naturally encodes independence
among variables within the program. The WMC approach exploits the BDD’s structure
to make inferences as a product of weights of the conjunctive normal form (CNFs) from
the BDD. The efficiency of Dice is linearly dependent on the size of the BDD. [14]
shows that Dice achieves fast inference over discrete probabilistic programs. However,
the inference of Dice over Bayesian Networks is suboptimal (compared with ACE in
[14] ’s Table 3). Dice has limitations led by binary decoding of discrete distribution
and point conditioning, while our framework supports range conditioning by integer
decoding. In this project, we compare the performance of our framework in simple
probabilistic programs and CardEst with Dice.

5.1.2.2 ACE

ACE is a Bayesian Networks (BNs) inference engine that uses similar techniques for
inference as Dice. Instead of using BDDs as Dice, ACE compiles BNs into ACs
in terms of CNFs with weights. ACE supports exact inference by exploiting the
deterministic local structure and amortizes the pre-compiled offline phase for online
queries. Nevertheless, ACE has the same problem as Dice: it only supports point
conditioning instead of range conditioning, which vastly slows the inference for range
queries.

Similarly, PyTAC [9] performs inference based on tensor-implemented Arithmetic
circuits (ACs). Since PyTAC is not publicly available, we omitted PyTAC in our
experiments.

Chapter 5. Experiments 31

5.1.2.3 Pgmpy

Pgmpy [2] is a Python framework for probabilistic graphical models (PGMs), particu-
larly Bayesian Networks, targeting three aspects: (1) learning (including structural and
parameters learning), (2) inference, and (3) simulation. The latest version of Pgmpy
empowers tensor contraction. In CardEst’s experiment, Pgmpy outperforms Dice for
most point and range queries.

In a similar vein, Pyro is a Python framework that supports a variety of inferences
(e.g., exact message passing, stochastic variational inference, etc.) with tensor variable
elimination [22]. However, Pyro does not have an official API clarification for BNs
construction. Hence, we omitted Pyro in our experiments as well.

5.1.2.4 DeepDB

DeepDB [13] is the state-of-the-art framework that supports CardEst, AQP, and Machine
Learning (ML). DeepDB is data-driven and implemented with Relational Sum-Product
Networks (RSPNs) to capture the data distribution. During the training, based on the
database schema, every single-table dataset will learn an RSPN, while the multi-table
dataset will learn an ensemble of RSPNs where each RSPN is learned based on a unique
join condition. The training of our framework is similar to that of DeepDB by replacing
RSPNs with BNs.

5.1.3 Experimental environment

This project conducts all experiments on Mac OS X, equipped with a 2.6GHz Intel Core
i7 CPU with 6-core, 16GB RAM, and 500GB SSD. In all experiments, we use Python
3.9.7, Numpy 1.21.5, and opt_einsum 3.3.0. In the CardEst experiment, we use ACE
3.0. For both simple probabilistic programs and CardEst experiments, we use Dice with
the latest version (2023-04-10).

5.2 Simple probabilistic programs

In this experiment, we evaluate two categories of discrete probabilistic programs: (1)
seven simple probabilistic programs implemented by Dice [14], and (2) nine well-known
discrete BNs from the online Bayesian Network Repository1. The evaluation results are
shown in Tables 5.1 and 5.2. For end-to-end latency measurement in this section, we
use the command line benchmarking tool hyperfine 2 to be consistent with Dice, with
a warmup of three runs and an evaluation averaged over five runs. In this section, we
used -determinism -eager-eval. The first flag optimizes deterministic, probabilistic
choices, e.g., flip 0 is replaced by false.

1https://www.bnlearn.com/bnrepository/
2https://github.com/sharkdp/hyperfine

Chapter 5. Experiments 32

5.2.1 Dice’s Discrete Probabilistic Programs

This experiment evaluates the inference performance of seven simple probabilistic
programs established by Dice [14].

The evaluation result of this experiment is presented in Table 5.1. Each row in Table 5.1
represents a different discrete probabilistic program as a benchmark. The "Benchmark"
column denotes the name of each benchmark. The "Dice" and "BayesTensor " columns
indicate the end-to-end performance time measurement in milliseconds for Dice and
our framework, respectively. For each simple probabilistic program, we observe an
outperformance of BayesTensor compared to Dice, with a modest gap between the
performances of the two systems.

Benchmark Dice (ms) BayesTensor (ms)
Grass 26.0 19.3
Burglar Alarm 26.1 18.1
Coin Bias 25.4 17.1
Noisy Or 28.7 19.8
Evidence1 25.2 16.9
Evidence2 25.3 17.1
Murder Mystery 26.0 16.9

Table 5.1: End-to-End time for simple probabilistic programs.

Size Number of Nodes Benchmark Dice (ms) BayesTensor (ms)

Small <20
Cancer 28.1 17.8
Survey 29.5 18.2

Medium 20-50
Alarm 480.9 46.6
Insurance 843.6 60.2
Water 655.7 343.6

Large 50-100
Hepar2 329.3 104.1
Hailfinder Time out 123.9

Very Large 100-1000 Pigs 621.8 430.1
Massive >1000 Munin 37692.0 1997.0

Table 5.2: End-to-End time for single marginal inference on Bayesian networks. We
consider a time out of two hours.

5.2.2 Single marginal Inference on Bayesian Networks

This experiment evaluates the performance of single marginal inference over nine
renowned BNs in different sizes from the bnlearn. In this experiment, we perform
inference over BNs of various sizes, from small to massive BNs. Table 5.2 shows
the number of nodes corresponding to each size. For each evaluation, we perform the
marginal inference of a specific node in each BN used by Dice.

Chapter 5. Experiments 33

The evaluation results are presented in Table 5.2. Unlike Dice’s Discrete Probabilistic
Programs experiment that performances between systems are similar, we observe a sig-
nificant outperformance of BayesTensor compared to Dice in single marginal inference
over BNs, particularly for BNs Munin and Hailfinder. BayesTensor is 19x faster than
Dice in marginal inference over the large BN Munin. For Hailfinder, Dice fails the
single marginal inference within two hours, represented as a timeout in Table 5.2, while
the inference latency of BayesTensor is within 125 milliseconds.

5.3 Cardinality Estimation

BayesTensor supports CardEst inspired by BayesCard [33] introduced in Chapter 2.3.1.
This experiment examines the performance of BayesTensor with three other competitors,
which are ACE [6], Pgmpy [2] and Dice [14], in the application of CardEst. In
this experiment, since we perform the exact inference supported by each system, the
accuracy of all four systems is approximately the same. The evaluation results of
CardEst are presented in Figure 5.1 and Figure 5.1.

Figure 5.1 demonstrates the performance of CardEst with point queries. There is a con-
siderable gap in Figure 5.1 where BayesTensor and ACE significantly outperform Dice
and Pgmpy for all Census’s point queries. In Figure 5.2, the difference among systems
is slightly reduced, but apparently, BayesTensor outperforms all other systems for all
DMV’s point queries. The latency of DMV point queries is observed as: BayesTensor
< ACE < Pgmpy < Dice, where < represents that the former system obtains a faster
inference than the latter system.

0 5 10 15 20 25
Query

100

101

102

La
te

nc
y

(m
s)

Census
BayesTensor
DICE

ACE
PGM.py

(a) Evaluation of Census with point queries

0 10 20 30 40 50
Query

100

101

102

La
te

nc
y

(m
s)

DMV

(b) Evaluation of DMV with point queries

Figure 5.1: Comparison of the latency performance for CardEst among systems on
queries with single value for unique selections.

Figure 5.2 compares the system performance among BayesTensor, ACE, Pgmpy, and
Dice of range queries on Census and DMV. The high density of results in Figure 5.2
illustrates that there are more range queries than point queries in the query workload
for both Census and DMV. Thanks to highly dense result points, it is apparent that

Chapter 5. Experiments 34

BayesTensor exceeds the other three systems in most cases for both Census and DMV
range queries. There is an increase in the latency of ACE performance because ACE
does not support range conditioning. In other words, to perform range conditioning,
ACE requires the user to manually write a batch of point queries, which is handled
by code generation in our case. For a range query, ACE performs a Cartesian product
of point queries with observation values of each distinct variable generated from that
range query, which is time-consuming during the inference. It is evident that as the
range conditions of queries increase, the performance of ACE deteriorates even more
compared to Dice and Pgmpy. However, for range queries of both Census and DVM
datasets, which have minimal predicates, ACE can infer in 2 milliseconds. While
Dice maintains a stable performance for Census and DMV queries, it falls significantly
short of BayesTensor. The overall performance of Pgmpy lags behind BayesTensor but
exceeds Dice in most cases.

0 100 200 300 400
Query

100

101

102

103

104

La
te

nc
y

(m
s)

Census
BayesTensor
DICE

ACE
PGM.py

(a) Evaluation of Census with range queries

0 500 1000 1500 2000
Query

100

102

104

106

La
te

nc
y

(m
s)

DMV

(b) Evaluation of DMV with range queries

Figure 5.2: Comparison of the latency performance for CardEst among systems on
queries with various values for unique selections.

5.4 Approximate Query Processing

This section describes how to conduct the AQP experiment. In this experiment, we
conduct 12 AQP queries based on the Flights dataset and compare the performance in
terms of accuracy and latency with the state-of-the-art AQP framework DeepDB. The
12 AQP queries in the Flights benchmark are: Two AVG() queries without GROUP BY
aggregates, five GROUP BY COUNT() queries, and four GROUP BY SUM() queries
where two GROUP BY SUM() queries includes arithmetic operations within the SUM()
function, such as SUM(A-B) and SUM(A*B). The evaluation results are averaged over
five runs with a warm-up of five runs.

AQP Results based on the Flights dataset are shown in Figure 5.3. In this experiment,
Q1-2 are scalar AVG() queries, Q3-5 and Q9-10 are COUNT() GROUP BY queries, Q6-
7 and Q11-12 are SUM() GROUP BY queries where Q11 contains a subtraction within
the SUM() and Q12 contains a multiplication within the SUM(). Figure 5.3a shows

Chapter 5. Experiments 35

the comparison of BayesTensor and DeepDB in the accuracy of each query from its
truth value computed by Postgres, and Figure 5.3b compares the inference performance
between BayesTensor and DeepDB, corresponding to queries in Figure 5.3a.

1 2 3 4 5 6 7 8 9 10 11 12
Query No.

0

1

2

3

4

5
Av

er
ag

e
re

la
tiv

e
er

ro
r (

%
)

0.0 0.2 0.3
0.6

0.9

0.2

1.9

0.0

1.3
0.8

0.3

3.1

0.0 0.0
0.3

0.6
0.9

0.2

1.9

0.0

5.3

2.1

4.2

3.1

DeepDB
BayesTensor

(a) Comparison of average relative error (in percentage).

1 2 3 4 5 6 7 8 9 10 11 12
Query No.

101

102

103

La
te

nc
y

(m
s)

3.2

1.5

3.9

14.4

6.2
11.2

16.5 14.3

345.6

737.3

31.7

15.7

8.2

2.3 2.9
5.0

3.1

10.8 8.7

34.0

3.2

61.2

9.2

45.6

DeepDB
BayesTensor

(b) Comparison of latency (in milliseconds).

Figure 5.3: Comparison of AQP experiment performance between DeepDB and our
framework.

As shown in Figure 5.3a, BayesTensor is less accurate for queries Q9, Q10, and Q11
than DeepDB. However, in Figure 5.3b, although BayesTensor does not exceed DeepDB
in most cases, BayesTensor maintains a stable performance for all benchmark queries,
especially for Q9, Q10, and Q11 compared to DeepDB. Considering only the latency
performance, it is found that BayesTensor is faster than Dice for all COUNT queries,
which are Q3-5 and Q9-10 in Figure 5.3b. However, the latency of BayesTensor for
SUM queries is suboptimal and so as affecting the AVG queries.

5.5 Productivity

This section presents our productivity events by timeline. The details of this project
management are shown in Table 5.3 below.

We first implement the AQP experiment. We reproduce the results of the Flights
dataset with DeepDB. Then, we implement our framework in order of COUNT, AVG,
SUM, and Group By aggregations. During the implementation, to maintain accuracy
consistency with DeepDB, we debug for parameters tuning with our framework for
around one week. Then, we do evaluations and comparisons for the CardEst experiment.

Chapter 5. Experiments 36

Since AQP includes CardEst, our framework adapts to datasets Census and DMV for
evaluation. For Dice and Pgmpy, in MInf part 1, we have already implemented CardEst
for those two systems in MInf part 1. As a result, we adapt the code from MInf part 1
with the latest Dice compiler and Pgmpy implementation. Finally, we implement and
evaluate the performance of ACE in CardEst, taking around two weeks. For simple
probabilistic programs benchmark, we reproduce the results of Dice in two days while
the implementation and evaluation with BayesTensor take around three weeks.

Experiment System Datasets Coding effort

AQP
Reproduce DeepDB

Flights
1 week

Implement our framework 2 months
Optimise our framework 5 months

CardEst

Evaluate our framework
Census

1 week
DMV

Implement and evaluate ACE
Census

2 weeks
DMV

Evaluate Dice
Census

1 day
DMV

Evaluate Pgmpy
Census

1 day
DMV

Simple probabilistic
Reproduce Dice

Dice benchmark
2 days

programs Evaluate our framework 3 weeks

Table 5.3: Productivity of our project

Chapter 6

Conclusions

In this chapter, we review our contributions to this project and summarize the main
achievements of our project and potential improvements to our current work.

6.1 Project Contributions

The main contributions of this project are:

1. We propose a framework, BayesTensor, that specializes in fast, exact inference
over discrete probabilistic programs and general BNs, capitalizing on tensors.

2. We demonstrate three applications of BayesTensor: (1) Discrete probabilistic
programs, (2) CardEst, and (3) AQP.

3. We evaluate each application with competitors of BayesTensor for that application
on single-table datasets (excluding the simple probabilistic programs benchmark
from Dice).

6.2 Result overview

In this project, we introduce our framework, BayesTensor, and demonstrate its main
applications in discrete probabilistic programs, CardEst and AQP. By evaluating three
experiments, which are simple probabilistic programs, CardEst experiment, and AQP
experiment, we prove that BayesTensor enables fast, exact inference over discrete
distribution. By evaluating the simple discrete probabilistic programs experiment
from Dice, we observe that BayesTensor outperforms Dice in inference over discrete
probabilistic programs and BNs. In addition, in the CardEst experiment, BayesTensor
exceeds the other three systems (i.e., ACE, Pgmpy, and Dice) in most cases with
benchmarking on single-table datasets Census and DMV. However, the performance
of BayesTensor shown in the AQP experiment is suboptimal, and the implementation
of this feature is limited to single-table datasets, not general to support AQP over
multi-table datasets, which can be improved as future work.

37

Chapter 6. Conclusions 38

6.3 Future Work

This section discusses the potential extensions that can be made to BayesTensor. Up to
this stage, we have performed AQP over a single-table dataset as DeepDB [13]. As a
future work, we intend to extend the AQP application of BayesTensor with multi-table
datasets, which contains more complex data distribution and dependencies caused by
the join operation in database languages. The idea of performing AQP on multi-table
datasets is similar to that of the DeepDB by replacing the RSPN ensemble with the BN
ensemble. In addition, the AQP aggregates that BayesTensor can perform are limited
to COUNT, AVG, SUM, and corresponding GROUP BY aggregates. In the future, we
intend to support as many aggregates with BayesTensor as possible.

Bibliography

[1] Daniel G. a. Smith and Johnnie Gray. opt_einsum - a python package for opti-
mizing contraction order for einsum-like expressions. Journal of Open Source
Software, 3(26):753, 2018.

[2] Ankur Ankan and Abinash Panda. pgmpy: Probabilistic graphical models using
python. In Proceedings of the 14th Python in Science Conference (SCIPY 2015).
Citeseer, 2015.

[3] Atilim Gunes Baydin, Lukas Heinrich, Wahid Bhimji, Bradley Gram-Hansen,
Gilles Louppe, Lei Shao, Prabhat, Kyle Cranmer, and Frank D. Wood. Efficient
probabilistic inference in the quest for physics beyond the standard model. CoRR,
abs/1807.07706, 2018.

[4] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj
Pradhan, Theofanis Karaletsos, Rohit Singh, Paul A. Szerlip, Paul Horsfall, and
Noah D. Goodman. Pyro: Deep universal probabilistic programming. J. Mach.
Learn. Res., 20:28:1–28:6, 2019.

[5] Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich,
Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell.
Stan: A probabilistic programming language. Journal of statistical software, 76(1),
2017.

[6] Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model
counting. Artif. Intell., 172(6-7):772–799, 2008.

[7] C. Chow and C. Liu. Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory, 14(3):462–467,
1968.

[8] Daniel-Ioan Curiac, Gabriel Vasile, Ovidiu Banias, Constantin Volosencu, and
Adriana Albu. Bayesian network model for diagnosis of psychiatric diseases.
In Vesna Luzar-Stiffler, Iva Jarec, and Zoran Bekic, editors, Proceedings of the
ITI 2009 31st International Conference on Information Technology Interfaces,
Cavtat/Dubrovnik, Croatia, June 22-25, 2009, pages 61–66. IEEE, 2009.

[9] Adnan Darwiche. An advance on variable elimination with applications to tensor-
based computation. arXiv preprint arXiv:2002.09320, 2020.

39

Bibliography 40

[10] Philipp Eichmann, Carsten Binnig, Tim Kraska, and Emanuel Zgraggen. Idebench:
A benchmark for interactive data exploration, 2018.

[11] Alex Galakatos, Andrew Crotty, Emanuel Zgraggen, Carsten Binnig, and Tim
Kraska. Revisiting reuse for approximate query processing. Proc. VLDB Endow.,
10(10):1142–1153, 2017.

[12] Timon Gehr, Sasa Misailovic, and Martin T. Vechev. PSI: exact symbolic inference
for probabilistic programs. In Swarat Chaudhuri and Azadeh Farzan, editors,
Computer Aided Verification - 28th International Conference, CAV 2016, Toronto,
ON, Canada, July 17-23, 2016, Proceedings, Part I, volume 9779 of Lecture Notes
in Computer Science, pages 62–83. Springer, 2016.

[13] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kris-
tian Kersting, and Carsten Binnig. Deepdb: Learn from data, not from queries
CoRR, abs/1909.00607, 2019.

[14] Steven Holtzen, Guy Van den Broeck, and Todd Millstein. Scaling exact inference
for discrete probabilistic programs. Proc. ACM Program. Lang. (OOPSLA), 2020.

[15] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and
Alfons Kemper. Learned cardinalities: Estimating correlated joins with deep learn-
ing. In 9th Biennial Conference on Innovative Data Systems Research, CIDR 2019,
Asilomar, CA, USA, January 13-16, 2019, Online Proceedings. www.cidrdb.org,
2019.

[16] F.R. Kschischang, B.J. Frey, and H.-A. Loeliger. Factor graphs and the sum-
product algorithm. IEEE Transactions on Information Theory, 47(2):498–519,
2001.

[17] Tejas D. Kulkarni, Pushmeet Kohli, Joshua B. Tenenbaum, and Vikash K. Mans-
inghka. Picture: A probabilistic programming language for scene perception.
In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015,
Boston, MA, USA, June 7-12, 2015, pages 4390–4399. IEEE Computer Society,
2015.

[18] Maggie Lieu, Will M. Farr, Michael Betancourt, Graham P. Smith, Mauro Sereno,
and Ian G. McCarthy. Hierarchical inference of the relationship between con-
centration and mass in galaxy groups and clusters. Monthly Notices of the Royal
Astronomical Society, 468(4):4872–4886, 03 2017.

[19] Jiebo Luo, Andreas E. Savakis, and Amit Singhal. A bayesian network-based
framework for semantic image understanding. Pattern Recognit., 38(6):919–934,
2005.

[20] Qingzhi Ma and Peter Triantafillou. Dbest: Revisiting approximate query process-
ing engines with machine learning models. In Peter A. Boncz, Stefan Manegold,
Anastasia Ailamaki, Amol Deshpande, and Tim Kraska, editors, Proceedings of
the 2019 International Conference on Management of Data, SIGMOD Conference
2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, pages 1553–1570.
ACM, 2019.

Bibliography 41

[21] T. Minka, J.M. Winn, J.P. Guiver, Y. Zaykov, D. Fabian, and J. Bronskill. /In-
fer.NET 0.3, 2018. Microsoft Research Cambridge. http://dotnet.github.io/infer.

[22] Fritz Obermeyer, Eli Bingham, Martin Jankowiak, Justin Chiu, Neeraj Pradhan,
Alexander Rush, and Noah Goodman. Tensor variable elimination for plated factor
graphs, 2019.

[23] Laurel J. Orr, Magdalena Balazinska, and Dan Suciu. Entropydb: a probabilistic
approach to approximate query processing. VLDB J., 29(1):539–567, 2020.

[24] Jingwen Pan and Amir Shaikhha. Compiling discrete probabilistic programs for
vectorized exact inference. In Proceedings of the 32nd International Conference
on Compiler Construction (CC), 2023.

[25] Yongjoo Park, Barzan Mozafari, Joseph Sorenson, and Junhao Wang. Verdictdb:
Universalizing approximate query processing. In Gautam Das, Christopher M.
Jermaine, and Philip A. Bernstein, editors, Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Conference 2018, Houston, TX,
USA, June 10-15, 2018, pages 1461–1476. ACM, 2018.

[26] Anand Patil, David Huard, and Christopher J Fonnesbeck. Pymc: Bayesian
stochastic modelling in python. Journal of statistical software, 35(4):1, 2010.

[27] Feras A. Saad, Martin C. Rinard, and Vikash K. Mansinghka. SPPL: probabilistic
programming with fast exact symbolic inference. In Stephen N. Freund and Eran
Yahav, editors, PLDI ’21: 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, Virtual Event, Canada, June
20-25, 2021, pages 804–819. ACM, 2021.

[28] Fotis Savva, Christos Anagnostopoulos, and Peter Triantafillou. ML-AQP:
query-driven approximate query processing based on machine learning. CoRR,
abs/2003.06613, 2020.

[29] Jacob Schreiber. Pomegranate: fast and flexible probabilistic modeling in python.
CoRR, abs/1711.00137, 2017.

[30] A. M. Shanghooshabad, M. Kurmanji, Q. Ma, Michael Shekelyan, Mehrdad
Almasi, and Peter Triantafillou. Pgmjoins : random join sampling with graphical
models. In ACM Sigmod Conference on the Management of Data, pages 1610–
1622. ACM, June 2021.

[31] Saravanan Thirumuruganathan, Shohedul Hasan, Nick Koudas, and Gautam Das.
Approximate query processing for data exploration using deep generative models.
In 36th IEEE International Conference on Data Engineering, ICDE 2020, Dallas,
TX, USA, April 20-24, 2020, pages 1309–1320. IEEE, 2020.

[32] Ziniu Wu, Parimarjan Negi, Mohammad Alizadeh, Tim Kraska, and Samuel
Madden. FactorJoin: A New Cardinality Estimation Framework for Join Queries.
In SIGMOD 2023, 2023. To Appear.

[33] Ziniu Wu, Amir Shaikhha, Rong Zhu, Kai Zeng, Yuxing Han, and Jingren Zhou.

Bibliography 42

Bayescard: Revitilizing bayesian frameworks for cardinality estimation. arXiv
preprint arXiv:2012.14743, 2020.

[34] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen,
and Ion Stoica. Neurocard: One cardinality estimator for all tables. Proc. VLDB
Endow., 14(1):61–73, 2020.

[35] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi Chen,
Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, and Ion Stoica. Deep
unsupervised cardinality estimation. Proc. VLDB Endow., 13(3):279–292, 2019.

[36] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi Chen,
Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, and Ion Stoica. Deep
unsupervised cardinality estimation. Proc. VLDB Endow., 13(3):279–292, 2019.

[37] Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian,
Jingren Zhou, and Bin Cui. FLAT: fast, lightweight and accurate method for
cardinality estimation. Proc. VLDB Endow., 14(9):1489–1502, 2021.

