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Abstract
Approaches that learn 3D scene representations using 2D supervision are a hot topic [11,
18]. These methods brought into the spotlight datasets such as SRN [41], which provides
2D renders of 3D objects. We propose Part-SRN, a novel dataset that augments SRN
with part segmentations from PartNet [27], the largest dataset of segmented 3D models.
With Neural radiance fields (NeRF) [23] at the forefront of current inverse graphics
research, addressing NeRF’s limitations is of particular importance. One such limitation
is their restriction to a single scene. CodeNeRF [16] and pixelNeRF [60] are two promis-
ing works that allow NeRF to capture multiple scenes. CodeNeRF relaxes supervision
requirements and is able to generate novel scenes at inference time, but it suffers from an
incomplete code release and performs worse than pixelNeRF [15, 16]. The pixelNeRF
architecture is more complex, and it does not support generating novel scenes [16, 60].
We present two methods to improve CodeNeRF’s performance: EnCodeNeRF and
SegCodeNeRF. EnCodeNeRF brings ideas from the better-performing pixelNeRF into
CodeNeRF, while keeping CodeNeRF’s distinguishing ability to generate novel scenes.
SegCodeNeRF builds on EnCodeNeRF to inspect the potential of incorporating part-
level information in NeRF-based architectures. While both modifications perform on
par with CodeNeRF, we suggest directions likely to yield improvements.
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Chapter 1

Introduction

Neural Radiance Fields (NeRF) [23] was a watershed work in the field of implicit
scene representations. NeRF was the first method to learn high-quality 3D scene
representations using only 2D images as supervision [23]. As of 2022, 250 follow-up
pre-prints based on NeRF were published, 100 of which were accepted in renowned
computer vision conferences [11]. These works either extend the use of NeRFs from
3D reconstruction and novel view synthesis to new domains [11] or target NeRF’s
shortcomings [24].

A particular limitation of NeRF is that it must be trained anew for every scene, incurring
significant computational cost [23]. pixelNeRF [60] offers a viable solution, albeit at the
cost of an impenetrable architecture. CodeNeRF offers a trivial extension of the NeRF
architecture [16]. While less performant than pixelNeRF, it relaxes inference-time
supervision requirements and offers a way to generate novel scenes.

We look for a way to keep CodeNeRF’s extensibility while achieving a pixelNeRF level
of performance. We then inspect how additional supervision in the form of part-level
segmentation impacts the performance of a NeRF-based architecture. To the best of our
knowledge, this has not been done for a NeRF-based architecture before.

1.1 Contributions

(a) Reference (b) Official CodeNeRF (c) Reference (d) Ours

Figure 1.1: We address numerous bugs in the open-sourced CodeNeRF implementa-
tion [15], such as omitted activation function and discarding training signal.

We make the following contributions:

1



Chapter 1. Introduction 2

1. We propose architectural modifications to improve CodeNeRF’s performance.
We introduce EnCodeNeRF and SegCodeNeRF. SegCodeNeRF translates ideas
from the better-performing pixelNeRF [60] into CodeNeRF, while keeping
CodeNeRF’s relaxed inference-time supervision requirements and ability to gen-
erate novel scenes [16]. SegCodeNeRF builds on EnCodeNeRF to inspect the
potential of incorporating part-level information in NeRF-based architectures
(Figure 1.2). While our work performs only on par with CodeNeRF, it highlights
the extensibility of CodeNeRF and suggests directions for potentially fruitful
follow-up work.

2. We rewrite CodeNeRF in a readable and extensible way that readily scales to
multiple accelerators (Figure 1.1).

3. We introduce Part-SRN, the first dataset to augment the popular SRN dataset [40]
with part annotations from PartNet [27], the largest collection of part-annotated
3D models. We also formalise the evaluation protocol for the popular SRN
dataset [40], which is not defined in literature.

1.2 Results

Reference CodeNeRF SegCodeNeRF

Figure 1.2: In the first half of the training procedure, SegCodeNeRF (ours) outperforms
CodeNeRF even in the face of complex geometry.

1.3 Report structure

Chapter 2 motivates NeRFs, explains their weaknesses, and covers the background
necessary to understand the proposed modifications. Chapter 3 explains existing datasets
and introduces the novel Part-SRN dataset. In preparation for experiments, Chapter 4
explains our implementation of CodeNeRF. Chapters 5, 6 then propose and evaluate
EnCodeNeRF and SegCodeNeRF, respectively. Finally, Chapter 7 proposes ways to
improve the performance of EnCodeNeRF and SegCodeNeRF.



Chapter 2

Background

To motivate implicit neural scene representations, we compare them to classical ap-
proaches (Section 2.1.2). In Section 2.2, we focus on NeRF, the state-of-the-art frame-
work in this area, and explain its shortcomings along with relevant follow-up work.
Targeting a particularly limiting shortcoming of NeRFs, we introduce pixelNeRF and
CodeNeRF in Sections 2.3 and 2.4. We conclude with a brief introduction of Efficient-
Net (Section 2.6), a family of convolutional encoders which lies at the heart of our
proposed architectural modifications.

2.1 Preliminaries

2.1.1 Rendering

Rendering is the process of generating images of a 3D scene. The scene is defined by
a scene representation (Figure 2.1, right) [17]. Differentiable rendering is a rendering
technique that allows one to compute the gradients of a rendered image with respect to
the input scene representation [17]. This makes the rendering technique optimisable
using gradient-based optimisation methods. Inverse rendering reverses the rendering
process. It is the process of reconstructing an unknown scene representation using
rendered images (Figure 2.1, left) [19, 22]. If the inverted renderer uses a gradient-based
method for optimisation, differentiable rendering can be used to obtain the gradients.

3



Chapter 2. Background 4

Figure 2.1: During rendering, a scene representation is used to produce views of a
scene (right). Inverse rendering takes such views and reconstructs the underlying scene
representation (left). (Figure adapted from [12].)

2.1.2 Scene representations

A scene representation describes a scene in terms of parameters such as geometry,
materials and light sources [17]. We discuss four data representation classes commonly
used in computer graphics in the context of differentiable rendering.

(a) Mesh (b) Voxel (c) Point cloud

Figure 2.2: Scene representations rely on different data representations. We illustrate
three of the four main ones, omitting implicit scene representations, whose representa-
tions are problem-specific. (Figure adapted from [12].)

2.1.2.1 Mesh-based scene representations

Meshes represent a scene using a set of vertices, interconnected using surfaces (Fig-
ure 2.2a). During rendering, the surfaces are projected onto the camera. Mesh-based
rendering methods are non-differentiable [17]. [17] identify methods to introduce
differentiability, though these compute approximate gradients.

2.1.2.2 Voxel grid-based scene representations

Voxel grids split 3D space into cubes of uniform size, called voxels (Figure 2.2b).
Each voxel encodes information about its point in space (e.g., transparency, material).
Voxel-based renderers are differentiable [17], however their space complexity depends
on resolution: a higher resolution requires a finer sampling of 3D space. Recent voxel
grid-based representations require over 15 GB to store a realistic scene [23].
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2.1.2.3 Point cloud-based scene representations

Similar to voxel grids, point clouds represent scenes using a set of points with feature
vectors (Figure 2.2c). Point clouds can be non-uniformly distributed in space. Thus,
points can be omitted on low-density regions, resulting in a lower memory footprint.
There are several rendering techniques for point clouds, some of which are differentiable.
However, the non-uniform representation of space requires modelling the influence of
point cloud points on a sampled point in space. This makes point cloud-based rendering
challenging [17].

2.1.2.4 Implicit neural scene representations

Implicit scene representations capture scene parameters in neural network weights.
Similar to voxel grids, implicit representations densely model scene parameters. Since
scene parameters are encoded in a fixed-size model, the memory footprint of implicit
scene representations is constant with respect to resolution [17]. If a differentiable
neural network is used, the rendering method can be designed to be differentiable.

In light of recent advancements in neural architectures, there has been increased interest
in implicit neural representations [17]. DeepSDF [30] uses neural networks to model
the distance to surface boundaries to obtain object silhouettes. SRN [41] models feature
vectors combined to produce renders. NeRF [23] simply outputs model volume density
and RGB colour, producing state-of-the art renders.

2.1.2.5 Summary of scene representations

Table 2.1 summarises our discussion of neural scene representations.

Representation Space-efficiency Render quality Differentiable rendering
Mesh ✓ ✓ ✗

Voxel grid ✗ ✓ ✓
Point cloud ✓ ✗ ✓
Implicit ✓ ✓ ✓

Table 2.1: From among the main scene representations, only implicit representations
offer space efficiency and good render quality while supporting differentiable rendering.

2.2 Neural radiance fields

Neural radiance fields (NeRF) presented the first implicit neural scene representation
able to render photorealistic views of real scenes and objects at high resolutions. NeRF
has since become the cornerstone of a rich body of research [11, 18].

2.2.1 Scene representation

NeRF represents a scene using a fully-connected network FΘ. FΘ maps a 3D spatial
location x and viewing direction d to volume density σ and RGB colour c= (r,g,b) [23].
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(a) View A (b) View B

Figure 2.3: The colour of a point in space depends on viewing direction. View A and B
display a point on the water surface and on the galleon’s hull, respectively. The viewing
direction in View A is aligned with incident light rays. In View B, it is at an angle, and the
points exhibit specular reflection. (Figure adapted from [23].)

Intuitively, volume density does not depend on the viewing direction d, while Colour
c does (Figure 2.3). Accordingly, the NeRF architecture is divided into a shape and a
texture subnetwork. The shape subnetwork FS

Θ
takes as input the 3D spatial location x

and outputs volume density and an intermediate feature vector v. The texture subnetwork
FT

Θ
takes as input v and the viewing direction d, and it outputs the RGB colour c.

FS
Θs

: x → (v, σ)

FT
Θt

: (v, d)→ c
FΘ : (x, d)→ (c, σ)

2.2.2 Positional encoding

The authors report that during initial experiments, NeRF was unable to model high-
frequency variation in color and geometry [23]. [32] have shown that deep neural
networks learn low-frequency functions. [46] discuss this in the context of fully-
connected networks learning to represent images by mapping 2D coordinates to pixel
colours. The authors propose to map MLP inputs into a higher-dimensional space
before passing them to the network in a technique called Fourier feature encoding.
Accordingly, in NeRF the spatial location x and viewing direction d are encoded in a
higher-dimensional space using the encoding function [23]:

γ(p) =
(
sin
(
20

πp
)
, cos

(
20

πp
)
, · · · , sin

(
2L−1

πp
)
, cos

(
2L−1

πp
))⊤

γ(·) is applied to each component in the input vector respectively, and the outputs are
concatenated. L was empirically determined to be 10 for γ(x) and 4 for γ(d).

2.2.3 Rendering

Having covered NeRF at a high-level, we now discuss how NeRF can be used to render
images. NeRF casts a ray through each pixel, queries the network FΘ at a sampled set of
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points and composes the outputs to obtain pixel colour. This technique is called volume
rendering (Figure 2.4).

Figure 2.4: To render an image, NeRF casts a ray through each pixel and samples points
along it (a). The network is queried at each point, producing a sequence of volume
densities and colours (b), combined to produce pixel colour (c) [23]. (Adapted from [23].)

2.2.3.1 Pixel colour

A ray is represented using the line segment:

r(t) = o+ td, t ∈ [tn, t f ]

where o is the camera’s centre of projection, and tn and t f delimit the points that are
visible by the camera [1]. The ray r(t) is partitioned into N equally-sized bins. Within
each bin, a sample ti is drawn uniformly at random:

ti ∼ U
[

tn +
i−1

N
(t f − tn), tn +

i
N
(t f − tn)

]
The sampling is repeated during each forward pass. Thus, in the limit, the network is
evaluated at continuous positions. The model is queried at the corresponding point r(ti).
This produces a sequence of volume densities and colours ((σi,ci))

N
i=1. The projected

pixel colour of r(t) is computed using:

Ĉ(r; Θ) =
N

∑
i=1

Tiαici (2.1)

where

αi = (1− exp(−σiδi)) , where δi = ti+1 − ti (2.2)

represents how much light is contributed by the segment from which ti was drawn, and

Ti =
i−1

∏
j=1

(1−α j) (2.3)

represents the amount of light blocked by preceding ray segments [23] (Figure 2.5).
We refer the keen reader to an illuminating tutorial [24] by the authors of NeRF for an
intuitive derivation of these equations using probabilistic concepts.
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Figure 2.5: For a ray cast from the camera, Ti represents how much light is blocked
by preceding ray segments, and αi captures how much light is contributed by the ray
segment from which the sample ti was drawn [23]. (Figure retrieved from [24].)

2.2.3.2 Differentiability

NeRF produces renders by casting rays through pixels, sampling points along each
ray, and compositing outputs of the model at each point onto a pixel, as shown in
Equation 2.1. We expand the equation used to produce pixel colours (Equation 2.1)
using its constituents (Equations 2.2, 2.3) to highlight the connection to model inputs:

Ĉ(r; Θ) = C(o+ td; Θ) =
N

∑
i=1

Tiαici

=
N

∑
i=1

(
i−1

∏
j=1

exp(−σ jδ j)

)
(1− exp(−σiδi))ci (2.4)

where (ci,σi)=FΘ(r(ti),d). By inspection, Equation 2.4 is differentiable with respect to
the model outputs (ci,σi). The model FΘ uses a differentiable neural architecture. Thus,
the NeRF rendering procedure is differentiable, and hence suitable for optimisation
using gradient-based methods.

2.2.3.3 Hierarchical sampling

NeRF trains a coarse and a fine network. The coarse network uses a uniform sampling
procedure and learns the distribution of volume in the 3D space. The fine network
uses the coarse network as a prior when sampling to allocate more samples to regions
with higher density and hence a larger impact on the final render (Equation (2.1)). The
hierarchical sampling procedure is of little relevance to our work, so we refer the reader
to the original work [23] for more details.
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2.2.4 Architecure

Figure 2.6: The NeRF architecture uses a fully-connected network to represent a scene.
At any given point in space, the scene is represented using volume density σ and colour
r.

The NeRF architecture uses a fully-connected model to represent scenes (Figure 2.6).
The network is queried and the outputs are combined as described in Section 2.2.3.1.
This architecture is strikingly simple compared to concurrent work, such as SRN [41].
SRN uses a fully-connected network to represent scenes, a recurrent model that dictates
the sampling process, and a convolutional network that combines scene representations
seen along a ray [41].

2.2.5 Training

Using a set of images with camera poses, NeRF minimises the L2 loss between the
observed and the predicted image:

min
Θ

∑
r∈R

∥Ĉ(r)−C(r)∥2
2 (2.5)

where R is the set of rays corresponding to the image, and C(r) is the observed pixel
colour [23]. We remark that pixels are usually processed in chunks:

∑
r∈R

∥Ĉ(r)−C(r)∥2
2 = ∑

c
∑

r∈Rc

∥Ĉ(r)−C(r)∥2
2︸ ︷︷ ︸

Chunk

where
⋃

c Rc = R . This limits the number of computational graphs stored in memory at
any time, reducing memory requirements.

2.2.6 Limitations and follow-up work

NeRF presented a paradigm shift in the field of implicit neural representations, out-
performing concurrent methods. NeRF is now the backbone of the majority of neural
rendering work. Yet, as we now discuss, it has several limitations.

We now discuss the ones relevant to our work. We refer the keen reader to a survey of
neural field-based methods [56]. For works based on NeRF, we refer the reader to a
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survey paper [11] and a code repository [18] that links the implementation for several
NeRF-based works.

2.2.6.1 Rendering and training speed

To render an image, the network must be queried at ∼ 100 points samples per pixel.
Generating a single render takes ∼ 30 seconds [23]. This limits the use of NeRF-
based models in real-time rendering pipelines, such as the ones used in the gaming
industry. Follow-up work has targeted the compute per sample, reducing rendering
time to fractions of a second. InstantNGP [28] cache network outputs using hash maps.
KiloNeRF [33] uses a divide-and-conquer approach, dividing the large network into
multiple smaller ones.

Training a NeRF takes at least 12 hours per scene on a single Tesla V100 research-grade
GPU. By contrast, some discretised approaches are trainable within minutes [23]. Since
training speed directly depends on the number of network queries, the approaches
targeting rendering speed simultaneously reduce training speed.

2.2.6.2 Generalisation across scenes

A NeRF model represents a single scene. If one wants to model a different yet related
scene, a new NeRF model must be trained from scratch. This is exacerbated by NeRFs’
large training cost.

Concurrent work on SRNs [41] achieves generalisation across scenes by equipping
each scene instance with a latent code. Follow-up work on CodeNeRF [16] similarly
uses per-instance latent codes. When combined with intermediate NeRF features, these
allow for cross-scene generalisation.

2.2.6.3 Camera pose supervision

NeRF requires camera poses for each input image. While synthetic datasets (e.g.
SRN [38]) provide this information, on real-life datasets, additional preprocessing
is required to extract camera poses (e.g. using the COLMAP structure-from-motion
package [35]). CodeNeRF is able to infer camera pose at inference time [16], while
ViewNeRF [21] is able to infer camera poses in a fully self-supervised manner.
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2.3 pixelNeRF

Figure 2.7: pixelNeRF augments NeRF with a CNN encoder-based prior. Given a
position x and viewing direction d, a feature is extracted from the feature volume W
corresponding to one or two training viewpoints, randomly selected from among 50, and
input into a modified NeRF model f . The output RGB and volume density σ then feed
into a volume-rendering pipeline. (Adapted from [60].)

pixelNeRF equips NeRF with a scene prior. This allows it to reuse weights across
scenes, eliminating NeRF’s restriction to a single scene [60]. NeRF applies to novel
view synthesis, where a view of a known scene is generated from a new viewpoint. By
contrast, pixelNeRF’s prior extends its applicability to few-shot estimation. In few-shot
estimation, views of an unknown scene are generated using few input images.

To extract scene specifics, pixelNeRF passes input images through a pre-trained
ResNet34 convolutional encoder, pre-trained on the ImageNet-1K dataset. Intermediate
features are extracted from the encoder, upsampled using bilinear extrapolation to match
the image size, and concatenated to obtain a pixel-aligned feature grid [59, 60]. The
feature grid is then combined with NeRF’s intermediate features (Figure 2.7). We refer
the reader to the original work [60] for further exposition of the combining procedure.

pixelNeRF outperformed related approaches (SRN [41], DVR [29]) by a significant
margin, so we do not discuss those here.

2.3.1 Limitations

pixelNeRF eliminates NeRF’s limiting applicability to single scenes. However, it
has limitations. Firstly, pixelNeRF still requires supervision in the form of camera
poses for every input view. Secondly, pixelNeRF does not offer a way to leverage
the decoupling of scene-specific and shared information. Movement within the scene-
specific space could be used to generate new scenes. Finally, we remark that the
pixelNeRF architecture as outlined in the paper can be impenetrable, though this can be
supplemented by the open-sourced implementation [59].
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2.4 CodeNeRF

Like pixelNeRF, CodeNeRF [16] addresses NeRF’s single-scene limitation. pixelNeRF
extracts scene specifics from the intermediate features obtained from a pre-trained
convolutional encoder [60]. By contrast, CodeNeRF optimises a pair of latent codes for
each scene. While CodeNeRF performs worse than pixelNeRF [16], it offers several
benefits:

• Generation of novel instances. Choosing new points within the respective
embedding spaces to which the shape and texture codes learnt by CodeNeRF
belong results in the generation of novel scenes (Figure 2.8).

• Inference-time camera pose estimation. CodeNeRF supports camera pose
optimisation at test-time. This relaxes the supervision requirements compared to
related work, such as pixelNeRF[60].

• Architectural simplicity. CodeNeRF’s architecture is a minimal extension of the
underlying NeRF architecture, making it accessible and readily extensible.

Figure 2.8: CodeNeRF captures scene specifics using a shape and texture latent code.
Movement within the shape or texture embedding space results in the generation of
novel shapes. The diagonal entries show observed scenes. Off-diagonal entries are
obtained by replacing the shape or texture code (e.g. last entry in row 1 uses the original
shape code z1

s but borrows its texture code z3
t from the third model). (Adapted from [16].)

2.4.1 Notation

Since CodeNeRF constitutes the backbone of our exploration, we now offer a more
formal treatment. CodeNeRF considers a dataset D of M models, where each model
consists of camera intrinsics K and V viewpoints containing the image I and camera
pose T :

D =
{
(I m,v, T m,v, Km)

∣∣ m ∈ 1, . . . ,M; v ∈ 1, . . . ,V
}

CodeNeRF optimises a shape and texture latent code for each model m, denoted zm
s and

zm
t , respectively. Each code is shared by all |V | viewpoints.
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Similar to NeRF, CodeNeRF is split into a shape and texture subnetwork, FS
Θs

and
FT

Θt
. The shape subnetwork takes as additional input the shape latent code; the texture

subnetwork works analogously:

FS
Θs

: (x; zm
s )→ (v, σ)

FT
Θt

: (v, d; zm
t )→ c

FΘ : (x, d; zm
s , zm

t )→ (c, σ)

2.4.2 Architecture

Figure 2.9: CodeNeRF builds on the NeRF (Figure 2.6) architecture. For each of the
M models, it keeps a shape and texture latent code (zm

s , zm
t ). The codes are randomly

initialised, combined with the intermediate features of the main NeRF network via linear
projection layers with ReLU nonlinearity, and optimised during backpropagation.

CodeNeRF views NeRF as a combination of two subnetworks: a shape subnetwork
that outputs volume density, and a texture subnetwork that outputs colour (Figure 2.6).
CodeNeRF augments either with a scene-specific latent code (Figure 2.9) [16].

2.4.3 Loss

While NeRF and pixelNeRF use L2 loss [23, 60], CodeNeRF uses the mean-squared
error (MSE) loss. For n-dimensional sequences Y, Ŷ , these are related via:

MSE(Y,Ŷ ) =
1
n

L2(Y,Ŷ ) =
1
n
(Y − Ŷ )⊤(Y − Ŷ )

We hypothesise that CodeNeRF uses MSE loss due to a cropping procedure, wherein
epochs 1, . . . ,250 use images cropped at the centre to 25% of their original size, and
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subsequent epochs use full images. This is equivalent to changing sequence length n
after epoch 250, which would result in a loss increase in the case of L2.

2.4.4 Limitations

2.4.4.1 Shape-texture entanglement

The authors claim that CodeNeRF decouples the shape and texture codes. While the two
codes may be separated by design, we show in Section B.3.2 that perfect decoupling is
theoretically impossible.

2.4.4.2 Unclear architecture diagram

The architecture diagram presented in the original CodeNeRF paper [16] is easy to
misinterpret due to a lack of notation and visual monotony. We provide an adapted
diagram in Figure 2.9.

2.4.4.3 Reproducibility

The official code release [15] does not include the implementation for one of its main
contributions, inference-time camera pose and latent code optimisation. This has
been a repeated discussion point [36, 62]. We contacted the authors and have been
informed that they are working on a code release. Furthermore, the publication does not
specify the training environment, including information such as the number of epochs
or hardware used. Similar to pixelNeRF, it claims to follow the SRN evaluation protocol
but does not state it. Finally, as discussed previously, CodeNeRF uses a cropping
procedure and MSE loss, though this is only mentioned in the implementation.

2.4.4.4 Omission of metrics

While CodeNeRF offers a quantitative comparison to related work, it focuses on few-
shot estimation without reporting performance on novel view synthesis. Furthermore,
it does not report the LPIPS metric common in NeRF-based literature, including
CodeNeRF’s main contender pixelNeRF [60]. Since pre-trained weights are not made
accessible [15], this reduces CodeNeRF’s comparability with related work.

2.4.4.5 Redundant regularisation

CodeNeRF’s optimisation problem in full is:

min
Θ, ((zm

s , zm
t ))

M
m=1

∑
r∈R

∥Ĉ(r)−C(r)∥2
2 + γ

(
∥zm

s ∥2
2 +∥zm

t ∥2
2
)︸ ︷︷ ︸

Regularisation

(2.6)

where the regularisation term encourages latent codes to have low norms (and hence
cluster around the origin). However, the AdamW optimiser [20] provides weight
regularisation that is 2 orders of magnitude higher than γ, making the regularisation
term redundant.
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2.5 Summary of neural rendering methods

Table 2.2 offers a summary of the neural scene representations discussed in Sec-
tions 2.2, 2.3, and 2.4.

NeRF [23] pixelNeRF [60] CodeNeRF [16]
Novel-view synthesis ✓ ✓ ✓
Few-shot estimation ✗ ✓ ✓
Multi-scene ✗ ✓ ✓
Multi-category ✗ ✓ ✗∗

Camera pose supervision ✗ ✗ ✓
Scene interpolation ✗ ✗∗ ✓

Table 2.2: NeRF [23] serves as a framework for a rich body of research. partCo-
deNeRF [60] and CodeNeRF [16] eliminate NeRF’s limitation to single-scene. While
partCodeNeRF is applicable to diverse scenes, CodeNeRF allows one to generate novel
scenes via scene interpolation. (∗ implies this facet of the model has not been explored.)

2.6 EfficientNet

EfficientNet is a novel family of convolutional encoders [44, 45]. It achieved state-of-
the-art results on the well-known ImageNet classification benchmark [34] using nearly
one order of magnitude fewer parameters and floating-point operations (FLOPs) [44, 45]
than the well-established ResNet [13] and the concurrent Vision Transformer [10]. In
the context of NeRF, ViewNeRF [21] has recently deployed EfficientNet on the task of
pose estimation.
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Datasets

We first introduce existing datasets relevant to our work and explain the relationships
between them. Then, we propose a new dataset, Part-SRN, which builds on these
datasets. This dataset drives our exploration in Section 6.

3.1 ShapeNet

The ShapeNet dataset consists of over 3,000,000 3D object models. 220,000 of these
models are organised into 3,135 categories (e.g. “chair”, “car”) called “synsets” [4].

In our experience, related works use ShapeNetCore. ShapeNetCore is a subset of
ShapeNet consisting of ∼ 51,000 3D models, covering 55 common synsets [37]. To
the best of our knowledge, ShapeNetCore is the largest publicly-available 3D model
dataset. Therefore, we select ShapeNetCore as the backbone of our dataset Part-SRN.

We now introduce SRN, a derivative of ShapeNetCore often used in recent literature on
implicit neural representations [16, 41, 60].

3.2 SRN

The SRN dataset consists of 2D renders of ShapeNetCore (version 2) 3D models. Each
render is augmented with a camera pose [41]. Thus, the SRN dataset lends itself to
inverse graphics tasks such as novel view synthesis and few-shot estimation. SRN is
used in recent literature focussed on inverse graphics tasks [16, 41, 60]. To remain
backwards-compatible, Part-SRN follows the structure of SRN.

3.2.1 SRN evaluation protocol

Several publications allude to the SRN evaluation protocol [16, 41, 60] without stating
it. We formalise the SRN evaluation protocol for the Chair synset (Table 3.1), with Car
in the Appendix (Section A.1.2). The values were determined by manual inspection
of the SRN dataset [40]. We believe this summary will increase the accessibility of

16
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the SRN dataset and facilitate the generation of derivatives using the open-sourced
generation code [39].

Subset name Parent Application # Renders Sampling method
train Dtrain Training 250 R
train val Dtrain Novel view synthesis 10 R
train test Dtrain Novel view synthesis 251 S
val Dval Few-shot reconstruction 251 S
test Dtest Few-shot reconstruction 251 S

Table 3.1: The SRN evaluation protocol for the Chair synset.

Informed by the requirements of the original publication [41], SRN is split into five
subsets [40]: one for training, two for novel view synthesis, and two for few-shot
estimation. Each subset sources its 3D models from one of three parent datasets
(Table 3.2) and uses one of two sampling methods (Figure 3.1).

Parent name Abbreviation % Models
Training Dtrain 70%
Validation Dval 10%
Test Dtest 20%

Table 3.2: The SRN evaluation protocol splits the ShapeNetCore dataset D into three
datasets of 3D models. These are the basis of the rendering process in Table 3.1.

(a) Random points on a sphere (R )

(b) Spherical spiral (S )

Figure 3.1: The SRN rendering pipeline uses one of two sampling methods, depending
on the dataset. In R , camera poses are sampled uniformly at random on the surface of
a sphere with a fixed radius and the model at the centre [39]. On the train subset, this
allows subsampling by taking the first x out of 250 renders without biasing the sample.
In S , camera poses are sampled along a spherical spiral centred at the object [39]. This
ensures thorough coverage of all possible viewpoints.
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3.3 PartNet

We have discussed ShapeNetCore (Section 3.1), a large-scale dataset that provides 3D
models across spanning 55 categories (“synsets”), and SRN (Section 3.2), a dataset of
2D renders based on ShapeNetCore. We now discuss an extension of ShapeNetCore
called PartNet.

PartNet provides part segmentations for over 26,000 3D models across 24 synsets.
PartNet augments a subset of ShapeNetCore with part segmentations. However, it does
not include ShapeNetCore’s texture information. Therefore, graphics tasks that require
object appearance must use both PartNet and ShapeNetCore.

3.3.1 Granularity and hierarchy

(a) Original model (b) Low granularity (c) Medium granularity (d) High granularity

Figure 3.2: PartNet augments 3D models from ShapeNetCore (3.2a) with part segmen-
tations. Segmentations support up to granularity levels: low, medium, and high. Each
offers increasingly more detail: Medium granularity splits the armrest and backrest, and
High separates wheels from the rest of the leg set.

In PartNet, a model’s constituent parts are organised into a hierarchy. The degree of
expansion of the hierarchy depends on the granularity level [27]. Each synset provides
up to three granularity levels (Figure 3.2).

3.3.2 Motivation

To the best of our knowledge, PartNet is the largest publicly-available dataset with
hierarchical, part-level annotations. Further, PartNet’s use of ShapeNetCore models
ensures compatibility with ShapeNetCore and, by extension, SRN. Therefore, we
choose PartNet to complement ShapeNetCore as the backbone of Part-SRN.

3.4 Part-SRN

To the best of our knowledge, no publicly-available dataset augments ShapeNetCore
renders with part-level information from PartNet. Yet, a large-scale dataset of 3D model
renders with part-level information could constitute additional supervision to inverse
graphics tasks, or serve as a segmentation benchmark. To this end, we propose a new
dataset called Part-SRN.
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(a) Original image (b) Low granularity (c) Medium granularity (d) High granularity

Figure 3.3: Part-SRN is a novel dataset that augments 2D renders from the popular
SRN dataset with part segmentations from PartNet. The segmentations span up to three
granularity levels.

3.4.1 Related work

Segmentations of 3D scenes are well-resourced, particularly in the field of autonomous
driving [2] and indoor scene reconstruction [3, 8, 43]. However, these datasets work
with outward-facing scenes, to which NeRF-based methods cannot be applied [23].
In addition, they segment at the object- rather than part-level. This lack of resources
sometimes motivates the generation of in-house datasets. For instance, [53] developed
three datasets for their study of NeRF-based object segmentation.

ShapeNetCore models have been segmented into constituent parts on multiple occa-
sions [27, 58]. Datasets such as the popular SRN [40] offer 2D renders of ShapeNetCore
models. The use of large-scale, standardised datasets promotes paper comparability
even if source code is not made publicly available [60]. Yet, no dataset offers 2D renders
of ShapeNetCore models with part-level segmentation. Admittedly, the advancements
in neural rendering, which relaxed the need for 3D supervision in inverse rendering, are
relatively recent; the NeRF paper [23] was published in 2020. To fill in the gap, we
propose Part-SRN.

Part-SRN augments the SRN dataset with part-level segmentations from PartNet, across
all available granularity levels. The pipeline used to generate Part-SRN readily applies
to any synset present in ShapeNetCore and PartNet.

Our efforts abstract away the complexity of drawing correspondences between PartNet
and ShapeNetCore both in terms of metadata and 3D structure and extracting semantic
masks from 3D parts using 3D engines. Thus, we believe Part-SRN will result in
significant time savings for those interested in combining ShapeNetCore and PartNet.
For the sake of transparency, we now discuss the steps taken to generate Part-SRN.

3.4.2 Part-SRN generation pipeline

Despite being related, PartNet and ShapeNetCore models bear several differences.
PartNet models are not aligned to ShapeNetCore, use different model identifiers,
and are not based on the latest version of ShapeNetCore. Discussion about PartNet-
ShapeNetCore deviations is dispersed throughout related code repositories [26, 39] or
conveyed implicitly by dataset structure. This presents an obstacle to usability.
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We first explain how the ShapeNetCore version used in Part-SRN was selected. Then,
we explain the steps taken to produce Part-SRN. The code and steps to recreate the
dataset will be made publicly available upon submission.

3.4.2.1 Choose ShapeNetCore version

There are two ShapeNetCore versions: v1 and v2. Each uses a different normalisation
method [37]. Thus, the same model will not be aligned across ShapeNetCore versions.

PartNet models are based on ShapeNetCore v1 [31]. PartNet models are transformed
with respect to their ShapeNetCore v1 counterparts. The authors provide transformation
matrices that align PartNet models to ShapeNetCore v1 [31]. However, ShapeNetCore
v1 models are themselves transformed with respect to ShapeNetCore v2. To the best of
our ability, we were unable to align PartNet models with ShapeNetCore v2. Therefore,
we decided to use ShapeNetCore v1 as the backbone of Part-SRN.

3.4.2.2 Remove invalid ShapeNetCore and PartNet models

PartNet is a subset of ShapeNetCore. We require that every 3D model from ShapeNet-
Core have corresponding part-level supervision. To this end, we discard certain models.
We explain the reasons below. Figure 3.4 summarises the impact of the filtering steps
on the number of models used in Part-SRN.

1. Missing PartNet model. PartNet consists of a subset of ShapeNetCore models.
We filter out ShapeNetCore models not in PartNet.

2. Missing transformation. For rendering purposes, each PartNet model must be
aligned to ShapeNetCore. We filter out ShapeNetCore models for which there
is no PartNet-ShapeNetCore transformation matrix. Missing alignments can be
generated using author-provided code [31]. This affects only 50 (< 1%) models,
so we do not implement this.

3. Invalid PartNet hierarchy. For each synset and granularity, the authors provide
a list of parts [25]. Each part may or may not be in a model’s hierarchy (e.g. a
chair may or may not have an armrest). We noticed that some models do not
support all granularities for a part they contain (Figure 3.5). We refer to these
models as having an invalid hierarchy, and we filter them out.

84%

6%

1%

9%
Used
Removed: Missing PartNet model
Removed: Missing transformation
Removed: Invalid PartNet hierarchy

Figure 3.4: 16% of ShapeNetCore v1 models could not be included in Part-SRN.
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(a) A, Low granularity (b) B, Low granularity (c) B, Medium and High granularity

Figure 3.5: Some PartNet models do not support all granularities for a part they contain.
The part chair base (highlighted red) is contained in Chair A and B alike. Chair B
includes the part for every granularity (Low, Medium, High). Chair A only includes the
part for Low granularity. Images retrieved from PartNet [27].

3.4.2.3 Render SRN

The SRN dataset is based on ShapeNetCore v2 [41]. We rerender SRN using models
from ShapeNetCore v1 to ensure alignability with PartNet (Section 3.4.2.1).

We implement code to split the ShapeNet dataset according to the SRN evaluation
protocol (Section A.1). This was not included in the SRN code repository [38, 39].

3.4.2.4 Render segmentation masks

We augment every SRN render with part segmentations across all three granularity
levels provided by PartNet. To this end, we developed mask generation code based on
the open-source library bpycv [57]. This part of the rendering pipeline abstracts away
several complexities.

1. Understanding PartNet. PartNet splits ShapeNetCore v1 objects into a hierarchy
with base parts at the leaves. Base parts are joined to form parts based on
granularity level. To understand the joining procedure, one must cross-reference
official PartNet part segmentations [25] with per-model hierarchies.

2. Understanding Blender API. PartNet base parts must be loaded into Blender
and transformed to ensure alignment with ShapeNetCore v1. The parts must then
be labelled according to the part hierarchy and granularity level.

3. Parallelisation. Given the scale of the SRN dataset, parallelising the rendering
pipeline becomes desirable. Since the Blender API is exposed via the command
line, built-in parallelisation features cannot be fully used. In our experience,
calling Blender binaries can result in pitfalls such as deadlocks caused by child
processes halting due to a lack of buffer flushing by the parent process.

3.4.3 Deviations from SRN

Part-SRN is ∼ 13% smaller than SRN (Table 3.3). The SRN dataset contains both Chair
and Car synset [41]. Part-SRN only contains the Chair synset, since PartNet does not
include part segmentations for cars [27].
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SRN Part-SRN
Train 4,612 4,033
Validation 662 576
Test 1,317 1,152
Total 6,591 5,761

Table 3.3: Number of instances in SRN and Part-SRN. Part-SRN contains ∼ 13% fewer
data points than SRN. The relative train/val/test sizes are the same.

3.4.4 Limitations

Part-SRN only contains models that exist in both ShapeNetCore and PartNet. Sec-
ondly, some models in SRN are improperly scaled [41]. Our pipeline çannot detect
improper scaling. Thirdly, Part-SRN uses ShapeNetCore v1 to ensure compatibility
with PartNet. However, some v1 models lack texture and have lower-quality geometry
than ShapeNetCore v2 [37].

3.4.5 Summary

The Part-SRN rendering pipeline abstracts away the intricacies of the ShapeNetCore
and PartNet datasets, including the Blender Python API. The pipeline can be applied to
any synset in PartNet. The pipeline readily extends to datasets beyond the ShapeNet
family. The pipeline development took over 400 developer hours, and we believe it will
present researchers with non-negligible time savings.

3.5 Dataset used for experiments

We use the Chair synset from Part-SRN for experiments (Section 3.4.4). CodeNeRF
performs worse on Chair than on the Car synset [16], so we expect this to pose a greater
challenge.

pixelNeRF [60] and CodeNeRF [16] were trained on the full SRN training set 3.3,
which comprises 4,612 models. We estimate that even in a multi-accelerator setting,
it would take 144 days to train CodeNeRF on this data (Section B.3.1). To reduce
the expected computational cost to ∼ 3 days, we curate a training set comprising 32
models (Section A.2). The validation and test sets are downsampled accordingly. This
corresponds to ∼ 0.7% of the original training set.



Chapter 4

Experimental setup

4.1 Metrics

We use the PSNR, SSIM and LPIPS metrics, common to NeRF-based literature [16, 23,
60] for evaluation. We use the TorchMetrics implementation [49, 50, 51].

4.1.1 PSNR

Adapting the notation to images, peak signal-to-noise-ratio (PSNR) is defined as:

PSNR(I, Î ) = 10 · log10

(
max(I)

MSE
(
I, Î

))

where MSE(I, Î ) = 1
mn ∑

m
i=1 ∑

n
j=1
(
Ii, j − Îi, j

)
[14]. Intuitively, PSNR is high if there is

little between the reference image I and predicted image Î, and vice versa. However,
PSNR does not match perceived visual quality well [55]. We include PSNR to remain
comparable but also report the more advanced SSIM and LPIPS.

4.1.2 SSIM

Structural similarity index (SSIM) postulates that the human visual system is adapted
to extracting structural information [55]. It obtains a similarity metric by comparing
luminance, contrast and structure between the reference and predicted image. For
conciseness, we do not state the formulae, which can be found in [55].

4.1.3 LPIPS

Despite their popularity, PSNR and SSIM fail to account for nuances of human per-
ception [61]. The Learned Perceptual Image Patch Similarity (LPIPS) metric ex-
ploits features of deep neural models and achieves state-of-the-art agreement with
human judgement. We use LPIPS with the VGG backbone to remain comparable with
pixelNeRF [59].

23
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4.2 Implementation

We identified several shortcomings in the official implementation of CodeNeRF [15],
open-sourced by the authors.

• Missing activation. The NeRF architecture produces RGB values between 0
and 1. This is achieved by applying the sigmoid activation function to the RGB
head [23]. The RGB head in the CodeNeRF architecture works identically [16].
However, the implementation does not include the nonlinearity, producing off-
range RGB values. We evaluate the impact empirically in Figure 4.1. The
predictions in the original publication resemble Figure 4.1c more closely than
Figure 4.1b [16], suggesting that the open-sourced implementation deviates from
the original code. This has already impacted follow-up work, e.g. [54].

• Code quality. The repository violates the KISS principle by re-implementing
framework-specific solutions (e.g. the repository uses the getattr, setattr API
to register variable numbers of modules instead of PyTorch’s ModuleList). In
addition, the repository does not follow best language-specific practices (e.g. due
to the use of index-based iteration and laconic variable names).

• Lack of maintenance. The authors participated in discussions as late as July
2022 [15]. However, several issues remain unresolved, including the following:

• Missing parts of inference pipeline. One of the main contributions of CodeNeRF,
test-time latent code and camera pose optimisation, is not implemented.

• Missing validation and test-set. The repository does not include code to obtain
validation- and test-set results.

• Code efficiency. The repository creates a duplicate data loader every epoch,
resulting in unnecessary overhead. Alarmingly, the implementation discards 98%
of gradients due to a misplaced call to the optimisation procedure. Effectively,
the source code only uses the last viewpoint for training.

(a) Reference (b) Prediction (no activation) (c) Prediction (activation)

Figure 4.1: The open-sourced CodeNeRF implementation [15] omits the sigmoid activa-
tion function at the RGB head, producing off-range RGB outputs. The logging facility
maps these to a valid range, skewing pixel colours towards grey (4.1b).

4.2.1 Overwrite

The CodeNeRF repository has shortcomings that make it an unreliable basis for further
research. To address these issues, we completely rewrote the official implementa-
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tion [15]. We approximate the CodeNeRF training procedure as closely as possible.
Relevant values are available in Section B.3.3. Our rewritten version improves upon the
original in several ways:

• Readability. We follow idiomatic principles, use high-level convenience func-
tions (e.g. torch.split instead of direct indexing) and appropriate data struc-
tures (e.g. ModuleList for variable numbers of modules, ParameterDict to
collect parameters registered at training time). Finally, we use explicit typing to
eliminate ambiguity.

• Extensiblility. We let the NeRF model depend on a LatentCodeProvider inter-
face. Thus, novel approaches to generating latent codes can be implemented in a
plug-and-play fashion. Secondly, we eliminate the original repository’s coupling
to the TensorBoard logger thanks to PyTorch Lightning’s logging interface.

• Scalability. We base our implementation on TorchMetrics and the PyTorch
Lightning machine learning framework. This makes the model device-agnostic
and ready to scale to multiple types of accelerators.

The implementation process took ∼ 500 junior developer hours. It will be open-sourced
in its entirety upon submission. For a fair comparison, we use our fixed implementation
of CodeNeRF throughout our experiments.
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Idea 1: Latent code augmentation

CodeNeRF can generalise across scenes thanks to its use of latent codes. The codes
are initialised using a normal distribution: zs, zt ∼ N (0,2/d Id), where d is the code
dimensionality, and optimised during backpropagation. Keeping a pair of latent codes
per instance allows for interpolations within the embedding space, yielding unseen
instances (Figure 2.8), while keeping the architecture simple (Figure 2.9).

While pixelNeRF outperforms CodeNeRF across all reported metrics (Table 5.1), its
architecture is more complex. It obtains scene-specific information from a pre-trained
encoder before combining them with NeRF [60]. Inspired by pixelNeRF’s performance,
we contemplate a CodeNeRF-based architecture wherein latent codes are conditioned
on a pre-trained encoder. We refer to this architecture as EnCodeNeRF.

5.1 Methodology

5.1.1 High-level considerations

Figure 5.1: We consider a procedure fz that combines the learnable parameter pm with
a feature f m,v to produce the latent code zm,v. The feature f m,v is obtained by applying
a transformation fe to the output of a pre-trained encoder E.

First, to keep CodeNeRF’s ability to interpolate in shape and texture space, we restrict
modifications to the latent-code part of the network, which outputs a single vector z

26
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(Figure 5.1). Second, to reduce search space, we consider the same modification for
the shape and texture latent-code subnetwork alike. Hence, we refer to either latent
code using z. Finally, to maintain CodeNeRF’s architectural simplicity, we minimise
modifications. We now outline the selection of E and the incremental design of fe and
fz, respectively.

5.1.2 Choosing E

We select EfficientNet B0 from the EfficentNet family (Section 2.6), as it is the most
compact, and it outperformed ResNet50 while using 4.9x fewer parameters and 11x
fewer FLOPs [44]. pixelNeRF uses the less-performant ResNet34 [60] to extract scene
specifics, which is 4x larger than EfficientNet B0 [7].

5.1.3 Designing fe

We now discuss the choices we made in designing fe, the part of the latent code
subnetwork that transforms EfficientNet outputs to a feature vector to be combined with
the learnable parameter using fz and input into NeRF (Figure 5.1).

Figure 5.2: fe bridges the EfficientNet-based encoder E and CodeNeRF. Given a
viewpoint Im,v, it extracts a feature em,v from E, and passes it through through #B
bottleneck layers of dimensionality dB. The output feature f m,v is then combined with
the parameter pm (Figure 5.1).

5.1.3.1 Encoder

EfficientNet B0 consists of a series of convolutional layers, yielding a 1280-dimensional
feature vector e. B0 projects e to ImageNet categories using a classification head con-
sisting of a fully-connected layer and a softmax [44]. We do not perform classification,
so we discard the classification head and operate on e.

We do not fine-tune E’s convolutional layers to save compute. However, we remark
that EfficientNet was trained on ImageNet classification, wherein our inputs would
correspond to a ∼4 categories (Section B.1.2). Therefore, we suspect that EfficientNet
might produce less-informative features. In the case of underperformance, we will
consider fine-tuning the final convolutional layer. We choose only the final convolutional
layer to minimise the increase in parameter count.

We remark that EfficientNet uses an initial learning rate that is two orders of magnitude
higher than that used for CodeNeRF parameters, with a more rapid learning rate decay.
Thus, the weight spaces of EfficientNet and CodeNeRF are conditioned differently
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(Section B.1.1). We will consider the learning procedure used by EfficientNet authors
for fine-tuning.

5.1.3.2 New components

We consider fully-connected projections, which are well-suited to transformations in
feature spaces. e is high-dimensional relative to the 256-dimensional features used in
NeRF. To avoid rapid parameter increase, we project e onto a bottleneck dimension db.
The recent success of neural methods is partially owed to network depth [48], so we
also vary the number of bottleneck layers #B. To learn nonlinear projections, we use
the popular ReLU non-linearity for #B > 1. Finally, similar to CodeNeRF, we consider
distinct learning rates for NeRF and latent codes [16].

5.1.3.3 Feature aggregation

In CodeNeRF, a model m has a single shape and texture latent code used for all
viewpoints. The output feature f m,v, depends on the current viewpoint v. We suspect
this might confuse the NeRF part of the network. To prevent variation in a model’s latent
codes, we consider an aggregation procedure wherein the outputs of fe are averaged:

f m,· =
1
V

V

∑
v=1

fe (Im,v)

pixelNeRF does not aggregate encoder features [60], so we also consider an aggregation-
free feature extraction procedure f m,v = fe (Im,v). We summarise the hyperparameters
considered in Table B.2.

5.1.4 Designing fz

fz is the part of the network that combines the transformed encoder output f m,v and the
learnable parameter pm (Figure 5.1). This is a generalisation of the CodeNeRF architec-
ture if we define zm,v = fz(·, pm) = pm. We now outline the candidate designs for fz.
To minimise architectural parameter increase, we start with the simplest modifications
and only gradually increase the complexity of interactions between f m,v and pm.

Figure 5.3: In keeping with pixelNeRF and CodeNeRF, we use an encoder-extracted
feature f m,v and a learnable parameter pm for a model m and viewpoint v. We combine
them to produce the latent code zm,v. We consider three combining methods of increasing
complexity.
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5.1.4.1 Encoder-only

Unlike CodeNeRF, pixelNeRF does not use model-specific learnable parameters [16,
60]. Thus, we disregard pm and consider the encoder output, i.e. zm,v = fz(f m,v, ·) =
f m,v (Figure 5.3 left).

5.1.4.2 Weighted sum

We suspect that the architectural differences between CodeNeRF (Figure 2.9) and
pixelNeRF (Section 2.3) might necessitate the incorporation of learnable parameters.
We consider two approaches to allow some interaction between f m,v and pm.

We first consider the weighted sum, wherein f m,v is multiplied by α and pm by 1−α

(Figure 5.3 centre). By the nature of E, we expect f m,v to encapsulate crude model
features. Since pm is initialised randomly, we expect it to learn any remaining detail.

5.1.4.3 Dense

We finally consider projecting the concatenation of f m,v and pm using a fully-connected
layer (Figure 5.3 right). This is a generalisation of the weighted sum. It makes the
weights learnable, and it allows any component in f m,v to interact with any component
in f m,v and pm, while allowing either vector to have different dimensionality. This
significantly relaxes the constraints enforced by weighted sum, albeit at the cost of more
parameters. We outline the considered hyperparameters in Section B.4.2.

5.2 Results

A single model takes ∼ 3 days to train. To reduce the computational cost, we run
configurations for ∼ 20% of the maximum 300 epochs and discard runs with poor
validation-set performance immediately afterwards. In total, we try over 100 config-
urations. Since our environment’s automated hyperparameter search does not work
on the University’s clusters (Section C.1), we evaluate hyperparameter configurations
manually. We now summarise our findings and present the best-performing model.

5.2.1 Observations and Best-performing model

Combiner fz. We find that Encoder only leads to poor generalisation, achieving no
convergence on the validation set. We suspect this is because the encoder output
fails to capture instance specifics. Weighted sum achieves performance on par with
CodeNeRF using α = 30%. We have found that reducing the dimensionality of the
learnable parameter on CodeNeRF inhibits performance. This implies that the model
must be using the full extent of zm, and the encoder-extracted feature f m,v provides
useful information. Finally, Dense outperforms CodeNeRF on validation-set loss, albeit
by a slim margin of 1%. We now outline the remaining details of the corresponding
model.

Encoder feature extractor fe. The best performance is offered by a single, 128-
dimensional bottleneck layer. Wider bottlenecks do not improve performance, whereas
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narrower reduce it. We find that using no viewpoint feature aggregation performs better
than averaging. Fine-tuning the final convolutional layer of the encoder E is the change
that eventually outperformed CodeNeRF on the validation set. We use the original
training procedure (Section B.1.1) for the final convolutional layer and a learning rate
of 10−4 for the rest of the network. As is common in fine-tuning, we tried reducing
the original learning rate. Specifically, we tried halving the learning rate for the final
convolutional layer, but this harmed performance.

5.2.2 Outputs

Table 5.1 captures automated metrics. We report the performance on four models
curated to capture the structural and textural diversity of ShapeNetCore in Figure 5.4.
We adjusted the training procedure of pixelNeRF to ensure convergence and reasonable
training time (Section B.2.1). Finally, we stress that the dataset under consideration
corresponds to ∼ 0.7% of the original dataset (Section 3.5) used in pixelneRF [60] and
CodeNeRF [16].

Method GPUs |V | PSNR↑ SSIM↑ LPIPS ↓
pixelNeRF [60] 1 1 20.753 0.815 0.271
pixelNeRF 1 2 21.702 0.847 0.202
CodeNeRF [16] 1 50 21.943 0.872 0.165
EnCodeNeRF 1 50 21.798 0.867 0.171
CodeNeRF 8 50 21.546 0.850 0.203
EnCodeNeRF 8 50 21.329 0.845 0.212

Table 5.1: (Bold implies best performance on a metric. |V | denotes the number of views
used to extract scene specifics.) Out of the tested models, CodeNeRF performs best
across all metrics in both single- and multi-GPU settings. EnCodeNeRF comes second,
outperforming pixelNeRF. Similar to CodeNeRF [16], we test pixelNeRF with |V | set to
1 and 2; this is significantly fewer than the 50 views (i.e. one for each input viewpoint)
used in CodeNeRF and EnCodeNeRF.

5.2.3 Discussion

The outputs of CodeNeRF shown in Figure 5.4 are on par with those reported in the
original work [16], indicating the success of our overwrite (Section 4.2.1). Our proposed
method achieves worse results than CodeNeRF. However, it still outperforms pixelNeRF
(Table 5.1).
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Ref PNR1-view PNR2-view CNR ENR CNR8GPU ENR8GPU

Figure 5.4: (“Ref”, “PNR”, “CNR”, “ENR” stand for Reference, pixelNeRF, CodeNeRF and
EnCodeNeRF (ours), respectively.) All methods perform well, with 8-GPU methods per-
forming considerably worse than 1-GPU. pixelNeRF outputs appear blurry in comparison
to CodeNeRF (e.g. Chair 2, 3), despite outperforming it on the full dataset [16]. On Chair
1, pixelNeRF captures the backrest in the most detail. CodeNeRF outputs preserve
more detail than EnCodeNeRF (see e.g. leg sets of Chair 3, 4), while EnCodeNeRF
sometimes better captures parts in the context of complex structure (e.g. front leg of
Chair 2). On 8 GPUs, CodeNeRF produces fewer background artefacts than CodeNeRF
and again shows more detail.

We stress that our architecture (Figure 5.2) and the accompanying implementation
(Section 4.2.1) allow new feature-providing modules to be incorporated into the network
in a plug-and-play fashion. Our implementation of the combiner fz accommodates a
dynamic number of latent code providers, allowing interactions beyond just a pair of
features (f m,v and pm).

We now discuss the reasons behind the underperformance of our model. The main
non-trivial modifications in our architecture over CodeNeRF are the incorporation of
the encoder E and the feature-generating module fe (Figure 5.1). We inspect each of
these in turn.

The chosen EfficientNet is trained on classification (Section 2.6), which may produce
less informative features (Section 5.1.3.1). However, pixelNeRF also uses an encoder
pre-trained on classification, achieving state-of-the-art results [13, 60]. Therefore, we
rule out encoder choice and instead inspect feature generation.
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(a) EnCodeNeRF. (ε encapsulates fe and fz.)

(b) pixelNeRF [60].

Figure 5.5: At a high level, our architecture and pixelNeRF are similar. Both use an
encoder to extract a feature zm,v that is combined with the NeRF part of the network.
pixelNeRF averages features across all viewpoints V , whereas EnCodeNeRF only
considers the current viewpoint v. EnCodeNeRF inputs viewing direction and position
in space (x,d) into NeRF, while pixelNeRF inputs them into the encoder. (Incidentally,
pixelNeRF’s coupling of positional variables to appearance features prevents it from
performing interpolations in feature space like CodeNeRF (Figure 2.8)). (5.5b adapted
from [60])

In Section 5.2.1, we ascertained that the encoder feature f m,v contains relevant infor-
mation. However, since EfficientNet was pre-trained on image classification, where
most instances would belong to the same category (Section 5.1.3.1), this information
may not be useful. To this end, we fine-tune the final convolutional block out of 9
blocks. preceding features may still correlate with the original classification domain.
Indeed, pixelNeRF uses only the first 4/5 encoder blocks, all of which are fine-tuned
[59, 60]. In a similar vein, pixelNeRF combines all intermediate features [60], whereas
EnCodeNeRF only considers the final output feature. At a high level, our proposed
architecture and pixelNeRF differ predominantly in the feature-generating procedure
(Figure 5.5). Therefore, we suspect inappropriate feature generation to be the cause of
our model’s underperformance.

In summary, our proposed method did not outperform CodeNeRF. Due to time con-
straints, we do not address the feature-extraction issues discussed earlier.
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Idea 2: Part-level latent code
augmentation

EnCodeNeRF and CodeNeRF perform similarly (Table 5.1). Upon closer inspection,
both architectures struggle to model rare parts (Figure 6.1). We contemplate a method to
improve the performance of CodeNeRF and EnCodeNeRF when modelling such parts
since better performance on constituent parts should improve prediction quality. Thanks
to Part-SRN (Section 3.4) and the extensibility of our CodeNeRF implementation
(Section 4.2.1), we can segment each viewpoint into constituent parts (Figure 6.2). We
now inspect how part-level segmentations could be used to improve predictions.

(a) Ref (b) CNR (c) ENR

(a) Common parts

(a) Ref (b) CNR (c) ENR

(b) Rare parts

Figure 6.1: (“Ref”, “CNR”, “ENR” stand for Reference, CodeNeRF and EnCodeNeRF, re-
spectively.) CodeNeRF and EnCodeNeRF achieve reasonable performance on common
instances (Figure 6.1a). However, both produce blurry outputs on rare parts, such as
sofa pillows (Figure 6.1b).

Characteristic Method PSNR↑ SSIM↑ LPIPS ↓

Common
CodeNeRF [16] 20.812 0.877 0.137
EnCodeNeRF 5 21.423 0.891 0.123

Rare
CodeNeRF 17.629 0.764 0.239
EnCodeNeRF 16.765 0.750 0.233

Table 6.1: The performance of CodeNeRF and EnCodeNeRF reduces significantly on
the chair instance that contains rare parts (Figure 6.1b). This motivates us to look for
ways to improve the models’ part-level predictions.

33
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Figure 6.2: Part-SRN segments each viewpoint into constituent parts. For the Chair
synset, segmentations come in three granularities: low, medium, and high. We will
exploit this part-level information to obtain better latent codes.

6.1 Methodology

Our goal is to improve part-level predictions for CodeNeRF or EnCodeNeRF. We first
consider incorporating part-level supervision at the loss level. This approach is the
least invasive, as it does not require modifying the underlying model. Specifically, we
consider masked MSE loss. We mask out all but one part and apply MSE loss to it; we
then average the per-part MSE losses. Initial experiments proved unfruitful, resulting
in poor convergence and significant artefacts (i.e. smudges on the white background).
Therefore, we consider incorporating part-level supervision into the model.

Our method proposed in Section 5 performs subjectively better than CodeNeRF on rare
parts (Figure 6.1). This is corroborated by the LPIPS metric (Table 6.1), which should
reflect human perception. We suspect that this is due to our use of an encoder. The
encoder is pre-trained on a significantly larger dataset of images, so it may be able to
extract useful features even for images not common to our dataset (e.g. the pillows in
Figure 6.1b). We thus look for a way to extend our method to part-level segmentations.
Due to time constraints, we use the best-performing model from (Chapter 5) without
further grid search over fe and fz. Figure 6.3 summarises the high-level idea. We
expand our notation and then consider two methods inspired by our previous work
(Figure 6.4).

6.1.1 Notation

We now leverage the part-level information in our dataset, Part-SRN. To this end, we
extend the notation introduced in Section 2.4.1. We consider a dataset DP of M models,
where each model consists of camera intrinsics K and V viewpoints containing image I
and camera pose T . Let us denote the set of parts for a given granularity level by PG.

DP =
{(

(I m,v,p)p∈P , T m,v, Km
) ∣∣ m ∈ 1, . . . ,M; v ∈ 1, . . . ,V

}
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Figure 6.3: We contemplate a procedure fP that combines per-part features f m,v,· into a
single feature vector f m,v. (ε encapsulates encoder E and fe discussed in Chapter 5.)

Figure 6.4: Inspired by our work on combining feature vectors (Section 5.1.4.2, 5.1.4.3),
we consider two implementations of fP : Learnable weighted sum (left), which increases
parameter count minimally but allows for simple interactions, and Concatenate and
project (right), which allows for more complex interactions.

6.1.2 Weighted sum

Since a feature fm,v,p must be extracted for each part, our feature-extraction method now
has O(|P |) time complexity. To minimise parameter increase, we first consider a simple
combination procedure fP that assigns to each part-level feature f m,v,p a learnable
weight αp. The prediction is then simply f m,v = ∑p∈P αp · f m,v,p.

6.1.3 Concatenate and project

EnCodeNeRF benefitted from allowing complex interactions between the encoder-
extracted feature f m,v and the learnable parameter pm (Section 5.1.4.3). We consider an
equivalent approach in the context of part-level features. For simplicity, we consider a
single layer and we do not experiment with nonlinearities.
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6.1.4 Hyperparameter search

Initial experiments on weighted sum showed poor generalisation. Therefore, we only
consider Concatenate and project. Owing to its use of part-level segmentations, we call
this new architecture SegCodeNeRF.

Due to time constraints, we do not test many hyperparameters. Since fe performed best
with the lower learning of 10−4 (Section 5.2.1), we apply the same to fP . For simplicity,
fP again uses the CodeNeRF learning rate scheduler. We only vary the dimensionality
of the part-level features fm,v,· and the aggregated feature fm,v, with an aim to mitigate
hyperparameter increase. We find that a 64-dimensional part-level feature vector fm,v,·

and a 128-dimensional fm,v instance-level feature vector perform best.

We remark that the relatively high feature dimensionality incurs a considerable compu-
tational cost at higher granularity levels. Therefore, we consider a shortened in addition
to the full training procedure. The shortened procedure trained SegCodeNeRFs for 100
epochs (equivalent to ∼80 hours for Granularity 2 and 3). We now list the results for
either, and then discuss them.

6.2 Results

Ref CNR ENR SNR1 SNR2 SNR3

Figure 6.5: “Ref”, “CNR”, “ENR”, and “SNR” stand for Reference, CodeNeRF,
EnCodeNeRF, and SegCodeNeRF, respectively. The subscript indicates the Granu-
larity level. The models were trained for 100 epochs to save compute. All methods
perform reasonably well on the chair model with common parts (first row). When faced
with rare parts, they produce blurry images. Our SegCodeNeRF1 captures the underlying
shape, producing the most realistic output. (The images are cropped due to CodeNeRF’s
cropping procedure).
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6.2.1 Shortened training

We summarise the results on automated metrics in Table 6.2. The corresponding
predictions are shown in Figure 6.5.

Model Granularity PSNR↑ SSIM↑ LPIPS ↓
CodeNeRF [16] Ø 15.974 0.537 0.397
EnCodeNeRF Ø 15.821 0.549 0.387

SegCodeNeRF (ours)
1 17.506 0.633 0.328
2 15.787 0.552 0.386
3 16.097 0.546 0.391

Table 6.2: Due to the high computational cost of Granularity 2 and 3, we run every
model for 100 epochs, i.e. 1/3 of the previously-used epoch count. The incorporation
of coarse part-level information (Granularity 1) improves performance with respect
to both CodeNeRF and EnCodeNeRF. Increasing Granularity results in performance
deterioration, likely because the segmented parts become too small to be correctly
identified by the encoder (Figure 6.2), resulting in uninformative or wrong part-level
features.

6.2.2 Full training

We ran the least-compute-intensive run, SegCodeNeRF1, for up to 300 epochs. Despite
limited model search, it achieved on-par performance with CodeNeRF (Table 6.3). The
corresponding outputs are discussed in Figure 6.6.

Ref CNR ENR SNR1

Figure 6.6: “CNR” (CodeNeRF), “ENR” (EnCodeNeRF), and SNR1 (SegCodeNeRF1),
trained for up to 300 epochs. While SegCodeNeRF1 significantly outperformed
CodeNeRF and EnCodeNeRF over the first 100 epochs, its performance gain shrunk
after 300 epochs, and it achieved results that are on par with CodeNeRF (Table 6.3).
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Model PSNR↑ SSIM↑ LPIPS ↓
CodeNeRF [16] 21.943 0.872 0.165
EnCodeNeRF 21.798 0.867 0.171
SegCodeNeRF1 (ours) 22.040 0.872 0.166

Table 6.3: We continued the least compute-intensive SegCodeNeRF model for up
to 300 epochs to remain comparable with Chapter 5. SegCodeNeRF1 outperforms
EnCodeNeRF, highlighting the potential of using part-level information. Yet, its perfor-
mance is only on par with CodeNeRF, as discussed in Section 6.2.3

6.2.3 Discussion

We now evaluate the results, starting with the shortened training procedure. The
performance gain of SegCodeNeRF when using coarse granularity (Table 6.2) shows
that part-level information is useful for model predictions. It also indicates that our
incorporation of an encoder is reasonable. We notice that higher granularities not only
result in slower training due to using more parameters but also reduce performance
across all metrics. We hypothesise that this is linked to the fact that part size diminishes
with granularity (Figure 6.2). Since the encoder was trained on full images, it struggles
to identify the objects and produces unreliable features. We pursue this in Table 6.4.

Granularity
Encoder confidence

Mean Median Min Max
1 0.199 0.191 0.089 0.411
2 0.160 0.149 0.064 0.369
3 0.157 0.144 0.072 0.369

Table 6.4: We view encoder prediction confidence as a proxy for feature quality: if the
encoder is confident about its prediction, the intermediate features must capture sufficient
information. We compute the mean confidence for all 32 models and compute aggregate
metrics at all granularity levels. The encoder is most confident on the coarsest granularity.
The confidence on Granularity 2 and 3 is similar, likely because these contain similar
part segmentations: for the Chair synset, we have |P1|= 5 < |P2|= 29, |P3|= 38 [25].

On the full training procedure, SegCodeNeRF loses its performance gain (Table 6.1).
First, this may be linked to a lack of hyperparameter search. When experimenting with
EnCodeNeRF, we noticed its sensitivity to hyperparameter values. Admittedly, we did
not search for hyperparameters, and we suspect a better configuration exists. Secondly,
since the encoder has not been modified following our discussion in Chapter 5, it still
applies that using earlier features, all of which would be fine-tuned, could improve the
features extracted from the encoder. Finally, the images in our dataset are 128×128,
while EfficientNet supports up to four times more pixels [6]1. Using higher-resolution
pictures could improve the quality of features, in particular on small parts.

1To maintain comparability to previous sections, we do not re-render the dataset in a higher resolution.
The process takes ∼4 days on all 4,000 models. Although we fixed the random seed, downsampling to
32 models would alter the order of renders, producing different viewpoints.



Chapter 7

Conclusions

In Chapter 3, we introduced Part-SRN, the first publicly-available dataset that combines
ShapeNetCore [4] and PartNet [27], to augment the popular SRN dataset [41]. We
reimplemented CodeNeRF in an extensible manner, addressing bugs in the unmaintained
open-sourced repository [15] (Section 4.2.1). In an attempt to improve CodeNeRF’s
performance, we leveraged our implementation’s extensibility to develop two new
architectural modifications, EnCodeNeRF and SegCodeNeRF, (Chapters 5, 6). While
EnCodeNeRF does not outperform CodeNeRF (Section 5.2.2), it serves as a springboard
for SegCodeNeRF. SegCodeNeRF outperformed CodeNeRF and pixelNeRF at early
training stages (Section 6.2.1).

7.1 Limitations

First, our dataset was restricted to ∼0.7% of the data used to train CodeNeRF and
pixelNeRF (Section 3.5). During initial experiments, we found that the models react
to dataset size: 10 models caused overfitting, and 100 improved performance on 8
GPUs. More modest hyperparameter sweeps over a larger dataset may have offered
better performance. Second, we consider complex modifications without allowing for
equivalent complexity in CodeNeRF by e.g. increasing the number of shape layers.

The time investment into Part-SRN and the CodeNeRF overwrite was significant1.
While each constitutes an open-source contribution, this left less time for iterating on
architecture designs. A more performant architecture may be a few modifications away.

7.2 Future work

To obtain more comparable results (and likely improve either model’s performance),
we first suggest using a larger dataset. Using 100 models could be a reasonable starting
point (Section 7.1).

1We summarise advice related to the development environment in Chapter C.
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7.2.1 EnCodeNeRF

To improve EnCodeNeRF, we suggest removing more of the final encoder blocks and
fine-tuning all remaining ones, similar to pixelNeRF [60] (Section 5.2.3). Inspired by
later discussion, we also suggest increasing input image resolution (Section 6.2.3).

7.2.2 SegCodeNeRF

To improve SegCodeNeRF, we first suggest filtering out parts that do not meet a size
threshold in a pre-processing step over the entire dataset, since small parts are incorrectly
classified by the encoder producing irrelevant features (Section 6.2.3).

Second, since SegCodeNeRF incurs a considerable computational cost, we suggest a
way to reduce the parameter count. A plausible modification is to replace the fully-
connected linear projection with a few convolutional layers. To avoid concatenating all
|PG| features, one could only concatenate the features in the input image and instead
convey part-feature correspondences using e.g. a positional encoding of the part number.
Indeed, [52] famously used positional encoding of positions within an input sequence
to convey ordering information.

Third, to relax supervision requirements, one could pre-train a model that performs
part segmentation, so that part segmentation inputs are not necessary at inference time.
Finally, we suggest hyperparameter search. In our experience, the models are sensitive
to changes in the learning rate and learning rate scheduler. As discussed earlier, the
need for hyperparameter tuning may be mitigated by working with a larger dataset.
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Appendix A

Datasets

A.1 Inferring the SRN evaluation protocol

We used the publicly-available SRN dataset [40] for inspection. We inspect both
available synsets, Car and Chair.

Application This was inferred from the README.txt file in the dataset repository [40].

Size For each synset, we counted the number of model IDs in the train, val and
test subset, respectively. Note that the model IDs across train, train val and
train test are identical, the difference being in the number of renders and sampling
method used.

# views For each synset, we hand-picked a model ID from the train, val and test
subset, respectively. We counted the number of renders in the /rgb subdirectory.

Sampling method For each synset, we hand-picked a model ID from the train, val
and test subset, respectively. We manually inspected a sequence of the first 5 renders
in the /rgb subdirectory. If camera poses changed slightly from instance to instance
and seemed to trace out a path on a sphere, we inferred the sampling method to be
“Spherical spiral” (Figure 3.1b) and Random points on a sphere otherwise 3.1a.

A.1.1 Chair synset

Subset Hand-picked model ID
train, train val, train test 7035d480f6bda22938b39a90ee80e328
val d28423569bfd84708336a02debb9923b
test 1f8e18d42ddded6a4b3c42e318f3affc

Table A.1: Hand-picked 3D model IDs for the Chair synset.
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Subset Absolute size Relative size
train, train val, train test 4612 4612

4612+662+1317 ≈ 70%
val 662 662

4612+662+1317 ≈ 10%
test 1317 1317

4612+662+1317 ≈ 20%

Table A.2: Absolute and relative subset sizes for the Chair synset.

A.1.2 Car synset

Subset Hand-picked model ID
train, train val, train test 952160c39258af7616abce8cb03e7794
val 49f3932e6fe0828951cc889a6330ab15
test 2c6b14bcd5a5546d6a2992e9465c023b

Table A.3: Hand-picked 3D model IDs for the Car synset.

Subset Absolute size Relative size
train, train val, train test 4612 2151

2151+352+704 ≈ 67%
val 352 352

2151+352+704 ≈ 11%
test 704 704

2151+352+704 ≈ 22%

Table A.4: Absolute and relative subset sizes for the Car synset.

A.2 Selected models

We select a subset of the training set to reduce computational cost. We manually curate
a training set of 32 images, wherein models are chosen to maximise the variation in
shape and texture. Figure A.1 shows the chosen models, Table A.5 the corresponding
ShapeNetCore IDs.
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(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

(q) (r) (s) (t) (u) (v) (w) (x)

(y) (z) (aa) (ab) (ac) (ad) (ae) (af)

Figure A.1: The 32 models selected for training, as seen from the same viewpoint.
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Model ShapeNetCore model ID
(a) ae02a5d77184ae2638449598167b268b
(b) 7a9969fac794484c327289c00b6dc9ca
(c) bbef67b2c3d3864e8adc2f75cf0a8389
(d) 95ac07c8c517929be06a9b687d35bd76
(e) 96b2bf512fcb51b2af7a8f97983e7906
(f) 997b0aaad2301a44b31fb46b2e6304f4
(g) f551bf7431e0fd7cf937a9747c26991f
(h) 197ae965385b8187ae663e348bd216d3
(i) 11f1511799d033ff7962150cab9888d6
(j) 7d3b7916dc5325a9c862eec8232fff1e
(k) 712415ce3f126dd921bdbc0445d9f748
(l) 28fad854838ac444e9920dbaf13176cb

(m) bff224175aed2816597976c675750537
(n) 76389d102e3fb729f51f77a6d7299806
(o) 1d7fdf837564523dc89a28b5e6678e0
(p) c8daa8e9496580667b9c6deef486a7d8
(q) d2af105ee87bc66dae981a300c94a911
(r) 63b84cdf260ab81b14b86d5282eb8301
(s) 8a232028c2b2cfad43649af30eba8304
(t) 4275718494dd309bc7d25fde6b97816
(u) 65e770a8307a9332e68b0e385524ba82
(v) 7eb842de7ad4cbad3e329950ec40f6dd
(w) d64a812bb87a822b8380de241b5e0725
(x) e5b8d52826245f3937b2bb75885cfc44
(y) cf88ae03d8cc2fabfcce6278f5ffb13a
(z) 35053caa62eea36c116cc4e115d5fd2
(aa) f6810de4042cc5ce57bd4bc6eae9b341
(ab) 2ab159f83754a93ea6c03a53cf0a14c9
(ac) 21f2927b04e2f22830ddb6ead95f49cc
(ad) cb5f7944ec02defcc6a2b7fc00a47507
(ae) 9d2cf09ddd9a05fa1f8b303c0da5108d
(af) c1a0882e6e8f8b082b722fc42ccb4c6a

Table A.5: The ShapeNetCore IDs corresponding to the chosen models displayed in
Figure A.1.
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Models

We outline model-specific details such as hyperparameter sweeps and commands to run
experiments, as appropriate. All single-GPU models were trained on a GeForce RTX
2080 Ti GPU. All multi-GPU models used a GTX 1060 GPU. The number of workers
matched the number of GPUs used.

B.1 EfficientNet

We use the EfficientNet implementation provided by torchvision with the default
IMAGENET1K V1 weights [6].

B.1.1 Training hyperparameters

Table B.1 summarises the main differences between the hyperparameters used by
CodeNeRF [16] and EfficientNet [44].

CodeNeRF [16] EfficientNet [44]
Initial lr 10−4 (NeRF), 10−3 (latent

codes)
2.56×10−1

Scheduler Step-wise, decay by 0.5
every 125 epochs

Step-wise, decay by 0.97
every 2.4 epochs

Optimiser AdamW RMSProp
Weight decay 10−2 10−5

Table B.1: CodeNeRF [16] and EfficientNet use considerably different hyperparameter
values. EfficientNet uses a more rapid learning rate scheduler, orders of magnitude
higher initial learning, and a more modest weight decay [44]. This indicates that Efficient-
Net’s weight space is conditioned differently than that of CodeNeRF.

B.1.2 Inspection of pre-trained weights

Before training, we inspect the pre-trained weights. We are interested in which cat-
egories could be loosely mapped onto the “Chair” synset. To this end, we run an
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interactive session in Python where we query the set of target categories in the classi-
fication task using various synonyms for the term “chair”. The chair-like categories
are “barber chair”, “folding chair”, “rocking chair”, and “park bench”. We outline the
session below:

>>> from torchvision.models import EfficientNet_B0_Weights
>>> categories = EfficientNet_B0_Weights.IMAGENET1K_V1\

.value.meta[’categories’]
>>> find = lambda query:\

[c for c in categories if query in c]
>>> find(’chair’)
[’barber chair’, ’folding chair’, ’rocking chair’]
>>> find(’seat’)
[’seat belt’, ’toilet seat’]
>>> find(’arm’)
[’ptarmigan’, ’marmot’, ’armadillo’, ’marmoset’, ’harmonica’]
>>> find(’rock’)
[’rock python’, ’rock crab’, ’rock beauty’, ’Crock Pot’,\

’rocking chair’]
>>> find(’bench’)
[’park bench’]
>>> find(’recline’)
[]
>>> find(’sofa’)
[]
>>> find(’sofa’)
[]
>>> find(’stool’)
[]
>>> find(’tabourette’)
[]

B.2 pixelNeRF

We use the pixelNeRF [60] code made available by the authors at [59]. We use default
parameters wherever possible. The learning rate and hyperparameters controlling
experiment duration had to be adjusted to ensure convergence on our dataset. We
explain this below:

B.2.1 Training

The original pixelNeRF is trained for 400,000 iterations when trained on individual SRN
categories. 400,000 over ∼ 4,500 models corresponds to ∼ 100 epochs. In addition,
for the first 75% iterations, the authors use a tight bounding box [60]. In our case, this
translates to 75%×32models/epoch×100epochs = 2,400 iterations.

We notice that pixelNeRF would produce black outputs. As per [9]’s advice, we reduce
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the learning rate. We find that reducing it to 5× 10−5, half the original 10−4 [60],
prevents this problem. Admittedly, we did not try other learning rates.

We notice that pixelNeRF’s performance is poor. We observe significant cross-epoch
improvement on the validation set. We suspect the underperfromance is due to training
for too few epochs. We increase the number of epochs 40-fold. This choice is arbitrary,
though it extends pixelNeRF experiment duration to ∼ 2 days, which matches the run
time of CodeNeRF experiments.

The command we used to train pixelNeRF on our dataset is:

conda run -n pixelnerf python train/train.py \
-n <experiment_name> \
-D <datset_directory>/chair \
-c conf/exp/srn.conf \
--epochs 4000 \
--no_bbox_step 96000 \
--lr 0.00005 \
--gpu_id 0

B.2.2 Testing

To obtain test-set metrics, we ran the following commands in sequence:

conda run -n pixelnerf python eval/eval.py \
-n <experiment_name> \
-D <datset_directory>/chair \
-O eval_out/srn_chair \
-F srn \
-c conf/exp/srn.conf \
--gpu_id=0

conda run -n pixelnerf python eval/calc_metrics.py \
-D <datset_directory>/chair_test \
-O eval_out/srn_chair \
-F srn \
--gpu_id=0 \
--overwrite

All commands were run using the pixelnerf environment provided in the official code
publication [59].

B.3 CodeNeRF

We use the CodeNeRF [16] code made available by the authors at [15] as the basis for
our implementation.
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B.3.1 Training time

B.3.1.1 Observation

Figure B.1: The fixed implementation of CodeNeRF executes 300 epochs in 12 hours
when trained on 14 models. The difference in gradient is due CodeNeRF’s cropping
routine. The first 250 epochs are trained on 64 × 64 centercrops, the rest on the full 128
× 128 images. For each model, 50 out of 250 viewpoints were used, in accordance with
CodeNeRF.

We run the fixed implementation of CodeNeRF in distributed data-parallel (DDP) mode
on a machine with 8 CPU cores and 8 NVIDIA GeForce GTX 1060 6GB GPUs. It
takes 12 hours to execute 300 epochs on 14 models (Figure B.1). The duration would
be the same for 16 models1.

B.3.1.2 Extrapolation

If it takes 12 hours to execute 300 epochs on 16 models, then by linear extrapolation, it
would take 4,612/16×12h = 3,459h ≈ 144 days to do the same on 4,612 models, and
∼ 1 day on 32 models.

B.3.2 Non-decouplability of shape and texture codes

Claim. In NeRF-based architectures, the gradient of the loss with respect to volume
density σi at sample i depends on the colour output c at samples i′ ≥ i. Formally,

δL
δσi

∝ ci, ci+1, · · · , cn

1In DDP, data is split along the batch dimension [5]. Here, a batch is a single model. Thus, two GPUs
will be assigned a single model, whereas the rest will be assigned two. In other words, the duration would
be the same using 16 models.
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Discussion. The intuition behind the proof is as follows. For a given sample i the
volume density σi and colour ci output from NeRF are independent. However, in
NeRF’s rendering procedure, multiple network outputs along a ray r are combined
and projected to produce the pixel colour Ĉ(r). During optimisation, there will be
interactions between the volume density σi and other colour outputs c j ( j ̸= i). We now
argue formally.

Proof. Direct proof. Recall Equations 2.1, 2.2, 2.3 from Section 2.2:

Ĉ(r; Θ) =
N

∑
i=1

Tiαici (B.1)

αi = (1− exp(−σiδi)) , where δi = ti+1 − ti (B.2)

Ti =
i−1

∏
j=1

(1−α j) (B.3)

Recall also that NeRF uses L2 loss (Equation 2.5), applied to a batch of rays R :

∑
r∈R

∥Ĉ(r)−C(r)∥2
2

where Ĉ(r) is the prediction and C(r) the ground truth. Let us denote the ray that
contains sample i using ri. We used the relaxed notation y = f (x) to indicate that y is
equal to some function f of x. Repeated use of f does not imply that the same function
is assumed. We have:

δL
δσi

=
δ

δσi
∑

r∈R
∥Ĉ(r)−C(r)∥2

2 // B.3.2

= ∑
r∈R

δ

δσi
∥Ĉ(r)−C(r)∥2

2︸ ︷︷ ︸
f(Ĉ(r))

// Sum rule

= ∑
r∈R

δ

δĈ(r)
f (Ĉ(r))

δ

δσi
Ĉ(r) // Chain rule

= ∑
r∈R

2
(

Ĉ(r)−C(r)
)

δ

δσi
C(r) // Power rule

= 2
(

Ĉ(ri)− Ĉ(ri)
)

δ

δσi
Ĉ(ri)︸ ︷︷ ︸
A

// R \{ri} constant w.r.t. σi (B.4)
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We simplify A accordingly:

A =
δ

δσi
Ĉ(ri)

=
δ

δσi

N

∑
k=1

Tkαkck // Eq. B.1

=
N

∑
k=1

δ

δσi
Tkαkck // Sum rule

=
N

∑
k=1

ck
δ

δσi
Tkαk // ck constant w.r.t σi

=
N

∑
k=i

ck
δ

δσi
Tkαk // Change sum bounds, see (∗)

= ci
δ

δσi
Tiαi︸ ︷︷ ︸

B

+
N

∑
k=i+1

ck
δ

δσi
Tkαk︸ ︷︷ ︸

C

// Split sum

where (∗) follows from the fact that Tk = f (σ1, · · · , σk−1) and αk = f (σk), so that
i < k =⇒ Tk and αk constant w.r.t. σi. We now treat B and C, respectively:

B =
δ

δσi
Tiαi

= Ti
δ

δσi
αi // Ti = f (σ1, · · · , σi−1) constant w.r.t σi

= Ti
δ

δσi
(1− exp(−σiδi)) // Eq. B.2

= Ti exp(−σiδi)δi // Sum and chain rule (B.5)
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C =
N

∑
k=i+1

ck
δ

δσi
Tkαk

=
N

∑
k=i+1

ckαk
δ

δσi
Tk // αk = f (σk) const. w.r.t. σi ∀k ̸= i

=
N

∑
k=i+1

ckαk
δ

δσi

k−1

∏
j=1

(1−α j) // Eq. B.3

=
N

∑
k=i+1

ckαk
δ

δσi
(1−αi)

k−1

∏
j=1,
j ̸=i

(1−α j) // Isolate αi

=
N

∑
k=i+1

ckαk

k−1

∏
j=1,
j ̸=i

(1−α j)
δ

δσi
(1−αi) // Proudct constant w.r.t. σi

=−
N

∑
k=i+1

ckαk

k−1

∏
j=1,
j ̸=i

(1−α j) exp(−σiδi)δi // Sum rule and Eq. B.5 σi (B.6)

(B.7)

Plugging B (Eq. B.5) and C (Eq. B.6) back into A, we obtain:

A = ciB+C

= ciTi exp(−σiδi)δi −
N

∑
k=i+1

ckαk

k−1

∏
j=1,
j ̸=i

(1−α j) exp(−σiδi)δi

=

ciTi −
N

∑
k=i+1

ckαk

k−1

∏
j=1,
j ̸=i

(1−α j)

exp(−σiδi)δi (B.8)

(B.9)

Finally, we plug A (Eq. B.8) into Equation B.4, obtaining:

δL
δσi

= 2
(

Ĉ(ri)− Ĉ(ri)
)

A

= 2
(

Ĉ(ri)− Ĉ(ri)
)ciTi −

N

∑
k=i+1

ckαk

k−1

∏
j=1,
j ̸=i

(1−α j)

exp(−σiδi)δi

∝ ci, ci+1, · · · , cn
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B.3.3 Training procedure

We train CodeNeRF for 300 epochs, as implied by (albeit not formally stated in) the
figures in the original work [16]. We use the epoch that achieved the lowest validation
loss to evaluate out-of-sample performance. To reduce the computational cost, we run
the validation step every ten epochs. We use a learning rate of 10−3 for latent codes,
and 10−4 for the rest of the model. For optimisation, we use AdamW [20] with a weight
decay of 0.01 and β1 = 0.9,β2 = 0.999.

As gleaned from the implementation, we follow a cropping procedure wherein the
middle 25% of an image is used for the first 250 epochs. We employ a step decay
learning rate schedule whereby the learning rate is halved every 125 epochs. This value
was expressed in terms of iterations in the original implementation. We converted it to
epochs since this is dataset size-agnostic.

B.4 EnCodeNeRF

B.4.1 Hyperparameter search for Encoder feature extractor

We summarise the hyperparameter values in consideration in Table B.2. The values
were obtained by systematically changing the original values used in CodeNeRF.

Scope Hyperparameter Values
fe Learning rate (η) 10−2,10−3,10−4

fe Number of bottleneck layers (#B) 0, 1, 2
fe Bottleneck layer dimensionality (dB) 16, 32, 64, 128, 256
fe Aggregation Mean, Ø
E Fine-tune final layer ⊥, ⊤
E Learning rate∗ Ours (η), Theirs (Section B.1.1)

Table B.2: fe bridges two models: an EfficientNet encoder E and CodeNeRF (Figure 5.2).
We make simplifying architectural assumptions to reduce search space, e.g. we consider
the same modification for the shape and texture latent code part of the network. However,
we carry out extensive hyperparameter search to identify the optimal configuration. (∗
applicable if fine-tuning the final encoder layer.).

B.4.2 Hyperparameter search for Encoder feature - Parameter com-
biner

We remark that hyperparameter values under consideration were extended or pruned
according to intermediate results. In Encoder-only, there are no hyperparameters. In
Weighted sum, we make the weight α a hyperparameter. We let α ∈ {10%,30%,50%}.
For Dense, we consider adding a ReLU nonlinearity after the projection. We use
a single layer for simplicity and parameter efficiency. Finally, note that this search
complements the one in Section B.4.1. All parameters use the CodeNeRF learning rate
decay procedure (Section B.1.1), except where noted otherwise.



Appendix C

Advice

C.1 Weights & Biases

We curate advice related to Weights & Biases (W&B). W&B is a logging framework
that interfaces with deep learning frameworks, such as PyTorch Lightning.

• The W&B API does not support IPv6 traffic. The machine must connect to the
W&B API to synchronise logs with the online logging dashboard. In cases where
the machine uses an IPv6 IP address, SSH tunnelling via an IPv4 proxy must be
set up to connect to the API. For instance, in the University’s SLURM cluster,
compute nodes and the head node use IPv6 and IPv4 addresses, respectively.
Thus, all traffic to the W&B API must be tunnelled through the head node.

• W&B can run a machine out of memory if media files are being logged. W&B
process logs media files in the /tmp directory [47]. If multiple experiments run on
the same node, the node may run out of memory. This will crash all experiments
on that node. To remedy this, a script such as

find /tmp -type d -name "*wandb*" -delete -mmin <threshold>

should be run periodically on the node.

• W&B sweeps cannot be run offline. W&B offers several automated methods
(called “sweeps”) for hyperparameter search. However, these methods require
connection to the W&B API [42]. As per previous points, this is impossible on
the University’s SLURM cluster.
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