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Abstract
With the increasing size and complexity of modern datasets and deep neural networks,
the computation costs of training deep learning models have grown substantially. This
is especially true for video datasets, which tend to be larger in size and more compu-
tationally expensive to learn than other types of data. In order to reduce the training
computations for the video dataset, we propose a novel video-wise training set conden-
sation method, which synthesizes the original training dataset into a smaller synthetic
set by matching the feature distribution between the original training samples and syn-
thetic samples. We evaluate the proposed method by comparing the performance of the
synthetic sets with that of single-frame baseline models and models trained on the entire
dataset. Our experiments show that firstly, our method outperforms the baseline model
under all settings with a maximum normalized accuracy gain of 30.8%. Secondly, our
approach significantly reduces training costs in terms of both training time and storage
requirement to 2%-5% of the original training set, while maintaining a comparable
performance as mentioned above. Furthermore, we also conduct a comprehensive
analysis of the impact of different synthetic set generation settings on the synthetic
image quality and its performance, which could provide valuable insights for future
work on video synthesis.
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Chapter 1

Introduction

With the rapid growth of surveillance coverage, the development of filming technologies,
and the popularity of social media, there has been a vast increase in the available video
resources online [1, 47]. The massive and exponentially growing resources allow
for the development of large-scale datasets like ImageNet [11] and Kinetics [25],
as well as the large-scale deep models trained on these datasets [40, 24]. However,
training such models can be very computationally expensive and time-consuming due
to the huge amount of computations involved [50, 20]. Additionally, techniques like
hyper-parameter optimization [17, 2, 16] and neural architecture search [43, 68] are
often applied during the training process to improve the model performance, and such
techniques would require repetitive training on the same dataset multiple times and
therefore further increase the training cost [63]. Moreover, storing and transmitting
such large-scale datasets is very challenging and costly as well [34].

Various methods have been proposed to reduce the training computations for large
datasets by shrinking the training set while maintaining comparable performance. While
most of these methods have been primarily focused on image and text datasets, limited
research has been conducted on video datasets. However, given the complexity of
videos, applying the same method to video datasets may not yield promising results.
There are two commonly used methods for training set reduction, namely coreset
selection [46] and data distillation [58], which differ in their approach to generating the
smaller training set. Coreset selection [27, 26] selects the most representative samples
from the original training set to form the output training set. The samples are selected
based on certain heuristics such as decision boundary [12, 31], sample diversity [4]
and centre distance [46, 26]. Although the selection process can be computationally
efficient depending on the selection heuristics, it has two main limitations. Firstly,
because the selection heuristics is chosen to target a specific task, its performance would
vary a lot across different datasets and tasks, limiting its generalizability. Secondly, the
performance of the output training set will be limited to the selected samples since it is
only a subset of the original training set. On the other hand, data distillation methods
[66, 63] aim to produce a set of newly computed synthetic samples from the original
dataset that would achieve comparable performance for a given task. Unlike coreset
selection, the performance of the synthetic set is not bounded by a subset of the original
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Chapter 1. Introduction 2

training samples since the features from multiple original samples can be synthesised
into a single synthetic sample. However, due to the computational complexity of the
synthetic set generation process, data distillation methods often suffer from a lack of
computational efficiency [63].

Compared to image and text data, reducing the dataset size for video data is more urgent,
as videos are typically much larger in size and require more storage space [47]. While
existing video data size reduction methods focus on maintaining the visual quality or
interpretability of compressed videos, their performance on machine learning tasks such
as classification [29] and recognition [44] is not always considered. Increasing the stor-
age and transmission efficiency is one of the main focuses for video compression, and
numerous compression methods have been proposed including standard compression
methods like MPEG [30, 48, 56], and relatively new methods like neural compression
[65, 53]. They both aim to compress multimedia data including images, videos, and
audio, in a reconstructable way while maintaining high visual quality, but with different
approaches. Standard compression methods compress data by removing redundant
information, while neural compression uses neural networks to learn a representation
of the original data, which gives it the potential to achieve a higher compression ratio.
Another research focus for video size reduction is to find the highlight for a given video,
which is particularly useful in the fields of video browsing and monitoring. A range
of video summarization methods [6, 15, 32, 62] addresses this problem by selecting
a set of keyframes [19, 51] or key-clips [21, 37] that conclude the main content for a
given video. However, these methods are typically evaluated based on the similarity be-
tween algorithm-selected and human-selected keyframes, and video data size reduction
methods specifically tailored for learning tasks remain highly unexplored.

In this project, we aim to find a way to effectively reduce the training data size for video
datasets, with a particular focus on the training performance for learning tasks. The main
challenge for video data condensation tasks is that videos are usually high-dimensional,
which makes them much harder to learn than other data formats. For the same reason,
the training process and condensing process would be usually very computationally
expensive and rarely efficient [36, 23].

To address this issue, we propose a novel video data condensation algorithm which
uses a distribution matching approach to achieve efficient synthetic set generation. As
shown in Figure 1.1, our overall system mainly consists of two stages, synthetic set
generation and training/evaluation. The synthetic set is generated by matching the
maximum mean discrepancy [18] between the synthetic set and the original set, inspired
by Zhao & Bilen (2022) [66]. Compared to other methods, their method has been
shown to be efficient in the synthetic set generation process while achieving comparable
performance to more computationally expensive approaches. This makes it well-suited
for video synthesis tasks that normally require more computations. Unlike Zhao & Bilen
(2022), we designed and implemented a video-wise synthetic set generation framework,
which has not been used in any other distribution-matching synthesis works. This
approach synthesizes images for each video instead of each class, which allows it to (1)
maintain the diversity and sample distribution of the original dataset, and (2) have more
control and flexibility during the synthesis process. Other than that, space embedding
techniques are also used to convert the high-dimensional video data into a family of
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Figure 1.1: Our system workflow mainly consists of two stages: synthetic set generation
(right) and training and evaluation (left). Our method aims to synthesise the original
dataset at Stage 1 in a way that (1) speedup the training process at Stage 2, and (2)
produce comparable performance when testing at Stage 2.

lower-dimensional spaces, which efficiently reduces the training computations without
losing key features of a given input. Furthermore, we also include batch division and
multiprocessing techniques to address the inefficiency caused by a large number of
video samples and therefore further improve the overall system efficiency.

At Stage 2 in Figure 1.1, the generated synthetic set is used to train models, and their
performance is evaluated on an unseen test set. We compare the models trained on the
synthetic set with the models trained on the single-frame dataset and the original dataset
with the same setup. Our method consistently outperforms the baseline model across
all synthetic set generation settings, while significantly reducing the training costs in
terms of training time and storage required during the training process in Stage 2.

1.1 Research Goal and Objectives

As discussed above, the goal of this project is to develop a video data condensation
framework which could efficiently synthesize training data with comparable perfor-
mance on classification tasks.

Alongside achieving this goal, we also aim to answer the following research questions
during the implementation and evaluation process:

• Can the distribution matching data condensation method be effectively applied to
video datasets?

• How do the experimental settings, such as different ways of initializing synthetic
images and the number of frames extracted from each video, affect the perfor-
mance of the proposed framework? What specific characteristics have the most
significant impact?

• What is the generalizability of the proposed framework across different dataset



Chapter 1. Introduction 4

sizes and experimental setups?

• What insights can be gained from the experimental results in terms of the chal-
lenges that need to be overcome when performing video data condensation?

Given the research questions above, we could further break the overall goal into the
following objectives:

• Analysing different video datasets to identify one or more suitable datasets for
performance evaluation.

• Preprocessing the selected dataset and building a suitable baseline model that
could accurately evaluate the performance of our proposed method.

• Developing and implementing a video-wise synthetic set computation pipeline
that utilizes a distribution matching approach to efficiently generate synthetic sets
while maintaining diversity and distribution of the original dataset.

• Building an overall train-evaluation system that integrates the synthetic set gen-
eration pipeline with model training and performance evaluation to measure the
performance gain of our proposed method.

• Evaluating the performance of our method against the baseline model on the
selected dataset under different experiment settings and analyzing how different
parameters and settings impact the effectiveness of our proposed method.

• Concluding its strengths and limitations, and discussing the potential future
directions based on this work.

1.2 Contribution

The project has made several key contributions, including:

• Conducted a comprehensive analysis of TinyVIRAT and UCF101 datasets with
basic performance testing and cross-comparison, identifying the primary dataset
for experiments.

• Proposed and implemented a novel approach for synthesizing video data by
matching data distributions, which can be used to efficiently generate synthetic
sets for training models.

• Developed an overall train-evaluation system which includes the synthetic set
generation pipeline, model training, and evaluation on both synthetic and real test
sets.

• Developed and implemented a synthetic training set generation pipeline with
batch division and multiprocessing, achieving efficient per-video synthetic image
generation.

• Evaluated the performance of synthetic sets computed under different experimen-
tal settings including the dataset sizes and synthetic set generation settings, and
investigated their impact on the testing results.
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• Examined the limitations of the proposed approach and presented the potential
future direction for improvement.

1.3 Outline

The report is structured as below:

• Chapter 1: Introduction provides an overview of the project by discussing the
motivation and objectives, as well as our main contributions.

• Chapter 2: Background discusses the previous work in the fields of training
data selection, condensation and video understanding in details by comparing
their techniques and limitations.

• Chapter 3: Methodology introduces the main train-evaluation framework and
especially the synthetic set generation process in details. The overall system
workflow, training model used and evaluation metrics are also included.

• Chapter 4: Dataset compares and analyses the two potential datasets, TinyVI-
RAT and UCF101 for the experiment. Based on the results of basic performance
testing of each dataset, the primary dataset is selected and then preprocessed.

• Chapter 5: Experiments presents the visualisation of synthetic images and the
experimental results under various settings. The results are carefully analysed by
conducting cross comparisons with each other and with the baseline models.

• Chapter 6: Conclusions summarizes the main contributions of this project,
discusses the limitations as well as the potential directions of future work.



Chapter 2

Background

In this chapter, we will provide a brief introduction of the basic concept we will use
in the following chapters, as well as some related works in the fields of training set
compression and video data compression. As this project focuses on the training set
compression for video dataset, these related works could provide more insights for the
motivation, contribution and the reason for using the specific methodology of our work.

2.1 Maximum Mean Discrepancy (MMD)

Our method aims to achieve video compression by matching the data distribution
between the original real dataset and the newly generated small synthetic set. The
metric we used to measure the distance of data distributions of two given datasets is
Maximum Mean Discrepancy (MMD) [18]. MMD measures the distance between the
means of the feature representations of two given datasets in the feature space and has
been widely applied to the fields of machine learning [14, 54].

Equation 2.1 shows the general definition of MMD, where H is reproducing kernel
Hilbert space (RKHS) [5], P and Q are two data distributions, X and Y are features
from the distributions, and ϕ(X) and ϕ(Y ) map the features into RKHS.

MMD(P,Q) =∥ EX∼P[ϕ(X)]−EY∼Q[ϕ(Y )] ∥H (2.1)

In our methods, we use the empirical estimate of the data distribution by sampling a
number of training samples in both real dataset and synthetic dataset, and compute the
estimated MMD based on it. The specific assumptions used in our distribution method,
as well as the ways in which we interpret video data, will be further discussed in detail
in Section 3.

6
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2.2 Related Works

2.2.1 Training Set Compression

Machine learning models are widely used in numerous fields, to perform tasks including
but not limited to object detection [69], face recognition [28], action recognition [59], etc.
With the increasing size of datasets [41, 20] and the development of more sophisticated
neural network architectures [40, 24], training these models has become increasingly
computationally expensive. An effective way of reducing training computations is to
compress the training set while maintaining comparable performance. There are two
common approaches to reducing the training set size, one is by selecting a subset of the
original training samples, and the other is by synthesizing the original training samples
into a smaller synthetic set, namely core-set selection [46] and data condensation
(distillation) [58, 66], respectively. Our method is inspired by the data condensation
approach. In this subsection, we will discuss the two approaches in detail.

2.2.1.1 Core-set Selection

Core-set selection [46] aims to reduce the training dataset size by selecting the most
representative samples from the original training set based on some heuristics. The small
training set formed by the selected samples should achieve comparable performance
to the original training set. The sample selection criteria, i.e. heuristics, differs as the
dataset and the targeting task changes. Some commonly used heuristics are sample
diversity [27, 46, 60], distance to dataset center[8, 7], forgetfulness [55], uncertainty
[22], etc. Depending on the specific task the selected training set is evaluated on, these
features would have different levels of repressiveness and importance to the original
training set, and therefore different performance.

Toneva et al. [55] focuses on the ”forgetfulness” of the data points. It shows that some
data can be forgotten easily during the training process while some others will not
be forgotten at all, and therefore some of the unforgettable examples can be dropped
without influencing the model generalization. Some other works like Kim & Shin [27]
take a diversity-based approach. They focus on selecting diverse examples using local
density, and aims to produce a core-set with low similarity.

Depending on the selection heuristics used, the core-set construction process could
be computationally efficient. Additionally, methods such as Coleman et al. [9] have
been developed to specifically focus on speeding up the selection process. However,
this data selection approach have several limitations. Firstly, the performance of the
method heavily replies on the chosen selection heuristics for a specific task, and it is
not guaranteed to be effective on other tasks. Secondly, since the resulting training set
is just a subset of the original set, its performance is limited by the selected samples.
In the following section we will discuss the data synthesis methods which do not have
such an upper bound.
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2.2.1.2 Dataset Condensation

Similar to core-set selection, dataset condensation [58, 66, 67] aims to generate a small
training set from a given training set that is much larger in size. However, instead
of directly selecting the ”most important” ones from the original set, it chooses to
synthesizes new samples which could represent multiple real samples or even the entire
dataset. This gives the method potential to exceed the upper limit of the information
contained in a given size of dataset.

The problem of data distillation was first introduced by Wang et al. [58]. Their iterative
approach aims to minimize the training loss by computing synthetic samples using
the network parameter function. Zhao et al. [67] proposes a more efficient approach
using gradient matching to match neural network weights trained on the original and
synthetic data. More recently, Zhao & Bilen [66] further improves the efficiency of this
approach by using Maximum Mean Discrepancy (MMD) [18] to measure and match the
distribution difference between the real dataset and synthetic set. This method is more
efficient than the previous gradient matching approach. In our project, we choose to use
a similar distribution matching method for video dataset synthesis for its efficiency and
good performance on very small synthetic sets. The detailed methodology can be found
in Section 3.

2.2.2 Video Compression and Summerization

To reduce the storage cost of video datasets, a range of different video data compression
techniques have been proposed, such as video summarization[6, 19, 15, 32, 51], and
video compression[30, 48, 53, 65]. Most of these methods are evaluated based on the
human visual system with different specific focuses, and the performance of compressed
video datasets on learning tasks is not taken into consideration. Our method contributes
to this highly unexplored domain by focusing on the compression of video datasets for
efficient training of machine learning models.

2.2.2.1 Video Summarization

The general concept of video summerization is to detect and present the ”highlight”
part of a given video that matches human’s understanding. Depending on different
approaches of extract and present the highlight part, these methods can be mainly
divided into three categories: video summerization [6, 19, 15, 32, 51], video skimming
[64, 13, 21, 37] and video synopsis [61, 39, 35].

Video summarization is a frame-based video condensation technique. It generates a
”summary” of a video by selecting a set of keyframes which could represent the whole
video the most. The frames are selected based different heuristics like colour feature
[6, 32], motion activity [62, 19, 15] and distance to the cluster center [6, 51]. Unlike
video summarization which selects the key-frames, video skimming aims to selects a set
of key-clips and form them into a shorter version of video. The key-clips are selected
by criteria similar to video summarization methods, like colour feature [21, 57], motion
activity [37, 3, 64]. Besides, the audio feature is also considered in some methods
[13]. Video synopsis uses an activity as a processing unit instead of frames or clips,
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and aims to present actions that originally happened at different times simultaneously
[45, 33, 35, 39, 38].

While video summerization methods are widely used in the domain of video monitoring
and browsing, it has some limitations. Firstly, similar to core-set selection methods,
video summerization relies heavily on the specific heuristics, which highly limits its
generalization. Secondly, the videos summary only targets on the human understanding
of a video, so its performance on machine learning tasks is unpredictable.

2.2.2.2 Video Compression

Instead of selecting certain parts of videos, video compression methods aim to compress
the entire video in a reconstructable way, and maintain a high visual quality of the
reconstructed videos at the same time. Standard compression like MPEG [30, 56, 48]
achieves this in a traditional way, which removes the redundant information between
frames and within each frame based on the computed similarity. A relatively new
approach is neural compression [65, 53, 36], which includes neural networks in the
compression process, giving them the potential to achieve a higher compression ratio
while maintaining the video quality. However, these methods often suffer from com-
putational inefficiency, and similar to video summarization, they focus solely on the
human visual system. In contrast, our method also involves neural networks in the
compression process but focuses on sample distribution matching rather than simply
removing redundancies. This gives it the ability to achieve comparable performance as
the original dataset on learning tasks.



Chapter 3

Methodology

In this chapter, we will present the methodology and the system design for the video
data condensation method we proposed. We start by introducing the definition of the
dataset condensation problem and the existing work on the image datasets that this
project is inspired by. We will then discuss how this method will be modified to fit
the scenario of video data condensation by presenting our synthetic set generation and
evaluation pipeline. Finally, we will introduce the training model and evaluation metrics
we used for performance evaluation.

3.1 Dataset Condensation

3.1.1 Problem Definition

Image and Video The data condensation problem for image datasets as defined in
Wang et al. [58] is to condense a large scale training set T (See Equation 3.1) into
a smaller synthetic set S (See Equation 3.2) while T and S should have comparable
performance on unseen testing data.

T = {(x1,y1),(x2,y2), ...,(xn,yn)} (3.1)

S = {(s1,y1),(s2,y2), ...,(sm,sm)} (3.2)

where (xi,yi) is the ith sample in the training set and its label, (s j,y j) is the jth sample
and its label, n and m are the size of the original training set and the synthetic set
respectively with m << n.

Similarly, for video dataset condensation problem, our goal is to condense a training
set with video frames V (See Equation 3.3) into a smaller synthetic set with synthetic
images S (See Equation 3.4) while V and S should have comparable performance on
unseen testing data when performing video classification tasks.

Note that in this specific approach of interpreting video condensation problem we
proposed in 3.3 and 3.4, video-wise condensation boundary is used instead of class-wise

10
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boundary like in 3.1 and 3.2. As a result, the number of videos p is the same in V and S,
but the number of samples from each video reduces from n to m.

V = {(x11,y11),(x12,y12), ...,(x21,y21),(x22,y22), ...,(xpn,ypn)} (3.3)

S = {(s11,y11),(s12,y12), ...,(s21,y21),(s22,y22), ...,(spm,spm)} (3.4)

where (xi j,yi j) is the jth frame from the ith video in the training set and the label of the
ith video, (skl,ykl) is the lth synthetic image from the kth video and the label of the ith
video, p is the number of videos in both the original training set and the synthetic set,
and n and m is the number of samples from each video in the original training set and
the synthetic set respectively with m << n.

Image Condensation v.s. Video Condensation The goal of data condensation for
images and videos are similar, as in both problems we want a small synthetic set that
is computed from the original training set and is representative of significant features
of the training samples in terms of classification performance. While the approach
for images could also be applied to the video dataset directly, which is keeping the
number of classes fixed and condensing the samples within each class, we took a slightly
different approach in this project. Instead of classes, we use videos as our condensation
boundary, which means that each synthetic image is generated only from the frames
extracted from one single video. (This process is also described with implementation
details in Section 3.2 about the system pipeline.)

This approach could ensure that the synthetic set includes the features extracted from
each video and therefore no training samples are wasted. This could also help to
preserve the diversity of the original set and avoid computing synthetic images with
very high similarity, which would affect the system performance. Additionally, it gives
us more control of the synthetic sample generation process, and more flexibility in
modifying the number of synthetic images generating from each video and also the
overall size of the synthetic set.

3.1.2 Condensation and Distribution Matching

To generate synthetic images that are representative of the original training set, we
need a method to extract features from the original video frames and compute a set of
synthetic images that contain as much useful information as possible. As we aim for
the performance of learning tasks like classification, the ”useful information” here can
be represented by the key features of a given sample. Therefore, our goal is to match
the sample feature distribution between the real and synthetic data, i.e. to minimize the
difference or the distance between the data distributions between them.

As the dimension of video and image data is typically very high, computing the real
data distribution directly can be computationally expensive. To address this issue, we
transform each real image, which has a dimension of d, into a training sample with
a lower dimension of d′. This lower-dimension embedding is achieved using a set
of parametric functions ϕυ with different parameters υ [66]. Each of these functions
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provides a partial interpretation of the input feature, and their combination forms a
comprehensive one.

This process is illustrated by Equation 3.5, where S and T are the synthetic set and
original set respectively, Loss(S,T ) is the training loss that we want to minimize during
the distribution matching process, Pυ is the distribution of network parameters with υ

being the parameter, and Distance is a distance measurement metric.

Loss(S,T ) = Eυ∼Pυ
[Distance(S,T,υ)] (3.5)

We adopt the Maximum Mean Discrepancy (MMD) [18] as our distance measurement
metric due to its effectiveness in computing the distance between means of the feature
representations of given data sets (more details can be found in Section 2.1). As we use
the lower-dimensional partial interpretation of an input feature for distribution matching,
MMD will be computed using this partial interpretation as well, where the distribution
distance between two sample sets is defined as:

Distance(S,T,υ) =∥ 1
|T |

|T |

∑
i=1

ϕυ(xi)−
1
|S|

|S|

∑
j=1

ϕυ(s j) ∥2 (3.6)

where Pυ is the distribution of parameters with υ being the parameter, |T | and |S| are the
sizes of the real and synthetic datasets respectively, ϕυ(xi) is the lower-dimensional ith
sample in the real dataset and ϕυ(s j) the lower-dimensional jth sample in the synthetic
dataset.

By reducing the MMD loss, the synthetic dataset keeps being updated gradually through-
out the training process until the MMD difference between real and synthetic data
reaches a minimum.

3.2 System Workflow

3.2.1 Overall Train-Evaluation Workflow

Figure 3.1 shows the train-evaluation pipeline of our system, which consists of three
main stages. The first stage is optional and aims at improving the efficiency of synthetic
data generation by dividing the original dataset into several batches. This allows for the
parallel generation of synthetic images from each video within each batch, as detailed
in Section 5.3.1.

The second and third stages, which are the core of our method, are responsible for
generating a synthetic dataset and evaluating its performance, respectively. In the
synthetic data generation stage, we uniformly extract a fixed number of k frames from
each video in the original dataset, and apply pre-processing techniques such as resizing
before saving them locally. We also separately save the middle frame of each video to
form the baseline dataset for testing the synthetic set performance in the evaluation stage.
Further details on the frame extraction criteria, the choice of k, and other implementation
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aspects are discussed in Section 4.2.1. The k real frames will then be synthesized into
one synthetic image by matching the lower-dimensional features with the original
dataset, such that the resulting synthetic images will have a similar data distribution. To
achieve an efficient video-wise synthetic image generation process, we designed and
implemented a general synthetic image computation pipeline, which will be described
in detail in the next section.

At the evaluation stage, the generated synthetic sets, as well as the baseline datasets
and the entire original datasets will be used to train randomly initialised models. The
models trained from these different datasets will then be evaluated on the same unseen
test set. The test accuracy, training time and storage requirement are used as three key
metrics to determine the effectiveness of our method.

Figure 3.1: The overall train-evaluation system workflow with three main stages: batch
division (see blue section), frame extraction and synthetic set generation (see green
section), and evaluation (see yellow section).

3.2.2 Synthetic Set Generation Workflow

As the synthetic set generation is the core procedure of our system, we will describe it
in detail in this section.

The entire workflow can be divided into four main steps, as shown in Figure 3.2:

1. Synthetic set initialisation: There are two available approaches for synthetic set
initialisation: Initialise with real images and initialise with random noise. Since
the synthetic images will be updated towards the same original dataset, the syn-
thetic images trained with different initialisation settings and their performance is
not expected to have much difference. This has also been proved when analysing
generated synthetic set in Section 5.3.3.

2. Lower dimension embedding: Both the training set and synthetic set are em-
bedded to lower dimension in this step, allowing for a more efficient distribution
matching and synthetic set updating in the following steps. The low-dimensional
embedding spaces can be sampled from the original dataset using two types of
parametric functions: randomly initialised models and pre-trained models. The
detailed description of these models and the difference in their performance will
be discussed in Section 5.3.2 and 5.4 respectively.
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3. Distribution matching: The MMD distance in data distribution between the low
dimensional training set and synthetic set features is computed in this step. By
minimizing the distance loss, the synthetic data distribution will move towards
the estimated real data distribution gradually in each iteration.

4. Synthetic set updating: Synthetic samples will be updated towards to sample
distribution of the real dataset with stochastic gradient descent in this step. This
is achieved by minimizing the MMD loss computed from the previous step. After
each update, the feature distribution of the synthetic set should be closer to the
feature distribution of the real dataset.

Note that steps 2-4 are performed recursively until the MMD loss between the training
set and the synthetic set converges to a minimum. The output synthetic images would
then be added into the synthetic set and wait to be evaluated once the whole generation
process is completed.

Figure 3.2: The synthetic set generation pipeline, consists of four main procedures: syn-
thetic set initialisation, lower dimension embedding, distribution matching and synthetic
set updating.

3.3 Training Model and Evaluation Metrics

Training Model Convolutional Neural Network (ConvNet) is used as both the training
model for loss matching and the pre-trained models. Each ConvNet consists of convolu-
tional layers, pooling layers, and fully connected layers, which are applied to extract
features, reduce feature size and perform classification respectively. In this project, we
use ConvNets that are initialised with random weights and fixed width 128 and depth 3,
and activation function ReLU.

Evaluation Metrics In order to evaluate the performance of the synthetic set and the
baseline model, a range of evaluation metrics are used for results analysis. Especially,
three key metrics are most commonly used throughout the experiments:

• Class-wise accuracy The percentage of testing samples that are correctly classi-
fied out of all testing samples for each class. This provides us insights on how the
model performs for each class, which would be particularly useful when working
with an imbalanced dataset.
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• Overall accuracy The percentage of testing samples that are correctly classified
out of all testing samples in the testing set. This provides a general idea of the
overall performance of the model.

• Confusion matrix It gives us a detailed description of the model performance by
providing the number (percentage) of true positive, false positive, true negative,
and false negative predicted samples for each class. This information could be par-
ticularly helpful when identifying classes that are more likely to be misclassified
and the confused classes.

• Normalized gain/accuracy improvement Other than the more commonly used
standard evaluation metrics as mentioned above, we used an extra parameter,
normalized gain, in Section 5 to evaluate the performance of our method more
clearly. It is calculated by dividing the accuracy improvement by the difference
of the baseline accuracy and accuracy upper bound as in 3.7, where Accuracysyn,
Accuracybaseline and Accuracymax refer to the test accuracy of our synthetic set,
the baseline model and the whole dataset respectively in this project.

Gain =
Accuracysyn −Accuracybaseline

Accuracymax −Accuracybaseline
(3.7)



Chapter 4

Dataset

In this chapter, we will discuss our dataset selection criteria and the two datasets we
selected and explored as candidates, TinyVIRAT and UCF101. We talk about the data
pre-processing techniques used and the design choice we made during the procedure.
Finally, a basic performance comparison is presented with a discussion about the dataset
selection decision based on this performance.

4.1 Dataset statistics

4.1.1 TinyVIRAT

In this project, we want to focus on action classification datasets with relatively low
resolution for computational efficiency and better generalisation. Therefore, we firstly
considered TinyVIRAT dataset (Demir et al. (2020) [10]) which is a surveillance video
dataset containing 7,663 training and 5,166 testing videos with 26 action labels. This
dataset particularly focuses on low-resolution video collected from real-world natural
human activities like walking, standing, talking, carrying, etc. The resolution of the
videos lies within [10x10 - 128x128], and the average number of frames is around 94.
(More details can be found in Table 4.1.)

After carefully analysing the TinyVIRAT dataset, we surprisingly found that it has a
very imbalanced sample distribution. Although a class-wise sample distribution plot
is provided in their paper (Demir et al. (2020) [10]), this feature is not emphasized.
Because in their plot, the y-axis which represents the number of samples for each class,
is displayed in a logarithmic scale, just like in Figure 4.1a. As a consequence, even a
small visual difference in their plot may indicate a significant difference in the sizes
of the two classes. After plotting the class size on a linear scale (see Figure 4.1), it
becomes more noticeable that the TinyVIRAT dataset is highly imbalanced. As shown
in Figure 4.1, some of the common activities, such as ”walking” and ”carrying”, have
more than 4000 and 2500 samples respectively, whereas several less frequent activities,
including ”loading”, ”closing”, and ”opening”, have less than 100 samples each. This
nature of the dataset would cause several problems as we will further discuss in Section
4.3.2 and 4.4.

16
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(b) Sample distribution in linear scale.

Figure 4.1: The sample distribution of TinyVIRAT dataset in log and linear scales.

Furthermore, the imbalance problem still exists in TinyVIRAT v-2 dataset [52], which
is an extended version of the original TinyVIRAT dataset with more indoor activities
included. As a result, we turned our attention to the UCF101 dataset [49], a dataset
with much more balanced classes, which we will discuss in the following section.

Dataset # classes # samples Resolution Avg # frames
TinyVIRAT 26 12829 10x10 - 128x128 93.93

UCF101 101 13320 320×240 180.25

Table 4.1: Statistics comparison between TinyVIRAT and UCF101 dataset.
(#: Number of, Avg: Average.)

4.1.2 UCF101

UCF101 [49] is a large-scale human action dataset with 101 action classes and 13320
video clips. This dataset contains a wide range of videos in terms of action types and
filming environments, which provides us with a diverse training set. Figure 4.2 provides
a visualisation of some of the action classes in UCF101.

Compared to TinyVIRAT, UCF101 has a much more balanced sample distribution
across all classes, as shown in Figure 4.2. Each action class comprises between 100
to 170 video clips, with clip lengths ranging from 1 second to 71 seconds and a fixed
frame rate of 25 fps. This provides a larger training dataset, as the average number of
frames in each video in UCF101 (180.25) is nearly twice that of TinyVIRAT (93.93).
The detailed statistics comparison can be found in Table 4.1.

Resizing needs to be performed during the pre-processing stage as the video clips in the
UCF101 dataset have a relatively high resolution of 320×240 compared to TinyVIRAT.
Since we will focus on low-resolution samples in the project, we have to resize the
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Figure 4.2: UCF101 sample distribution across 101 classes

extracted video frames to lower the frame resolution manually. The details about the
data preprocessing procedure can be found in the following section (Section 4.2).

4.2 Preprocessing

A series of data pre-processing steps are performed on the original video dataset. We
will discuss them in detail in terms of the design choices we made and the reasons in
this section.

4.2.1 Frame Extraction

In our training process and experiments, frames are used as the basic sample unit. As
our original training data are videos, we need to extract frames from them in order to
get a frame-wise dataset. Since different videos vary in length, the number of frames
extracted will also differ. To maintain the original dataset distribution and improve
system efficiency, a fixed number of frames N f , will be extracted from each video.

The value of n f is chosen from the range [1,(Nmin +θ)], where Nmin is the minimum
number of frames in a video sample in the dataset and θ is the window size. The
window size θ allows us to extract more frames than Nmin from the dataset, providing
a more flexible frame set size. The reason for adding a window θ is that we do not
want to restrict the frame number to Nmin since the minimum number of frames in some
video samples can be very small, whereas the average number of frames is much larger.
Therefore, we use a window size θ to control the number of frames to be extracted from
each video sample. This approach allows us to maintain the sample diversity in the
original dataset without being bounded by the minimum frame number in the dataset
or exceeding it without any upper bound. When a video consists of fewer frames than
the N f we choose, we will randomly extract n f ′ frames from the existing video frames,
where n f ′ is N f −n f and n f is the number of frames in the given video.

Figure 4.3 provides a detailed illustration of the frame extraction process. For instance,
suppose we want to extract a fixed number of 3 frames from each video as shown in
this figure. For longer video clips containing 100 and 20 frames, we will extract the 1st,
50th, 100th and the 1st, 10th, 20th frames, respectively. However, for shorter clips with
fewer than 3 frames, additional frames will be randomly extracted from the existing
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Figure 4.3: The data pre-process workflow mainly consists of three stages: frame
extraction, frame resizing and saving frames locally.

frames to form a set of 3 frames. For example, for a clip with 2 frames, we will extract
the 1st and 2nd frames and then repeat the 1st frame to form a set of 3 frames.

Additionally, for the baseline model, we extract exactly one frame from the middle of
each video to form the training set. The middle frame is chosen as it is the most likely to
be the most representative frame and capture the main scene where the action is being
performed.

4.2.2 Resizing

As discussed in section 4.1.2, resizing is necessary to have a standardized training
set while maintaining a manageable dataset size. There are two options available for
resizing images:

• Perform the resizing on-the-fly, i.e. resize each training sample as it is loaded by
the dataloader during the training process.

• Resizing images as a preprocessing step and saving the output data to disk.

After trying both approaches, we determined that the second method is better suited for
our specific context and is more efficient with the following reasons:

• Performing the resizing on-the-fly significantly slows down the training process,
as it reduced the efficiency of GPU parallel processing.

• Since a fixed resolution is used for all training samples, saving resized data locally
allowed us to avoid repeatedly performing the resizing operation during training
and save more training time.

4.2.3 Train-Test Split

TinyVIRAT The TinyVIRAT dataset comes with a pre-defined split of training and
testing sets, consisting of 7,663 and 5,166 video samples, respectively. This split
provides a roughly balanced ratio of Train/Test ≈ 60%/40%. In addition, to evaluate
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and fine-tune our models, we further split the testing set into two subsets, allocating 50%
of it to a validation set. This results in a final split ratio of Train/Validation/Test ≈
60%/20%/20%. Notably, the class distribution of samples in the testing set matches
that of the training set, ensuring a fair and representative evaluation of our models’
performance.

UCF101 The UCF101 dataset consists of 13320 video samples, which we split manu-
ally into three exclusive subsets: the training set, the validation set, and the testing set.
The split ratio is 75%/10%/15%, with 9990 samples, 1332 samples and 1998 samples
in the training set, validation set, and testing set respectively. The split ratio is chosen to
ensure that the model is trained on the majority of the available data while still having
enough data reserved for model validation and testing.

Dataset # classes # all # train # val # test Train:Val:Test
TinyVIRAT 26 12829 7663 2583 2583 60:20:20

UCF101 101 13320 9990 1332 1998 75:10:15

Table 4.2: Train/Validation/Test split for TinyVIRAT and UCF101 dataset.
(#: Number of, all: whole dataset, train: training set, val: validation set, test: testing set.)

4.2.4 Dataloader

Pytorch dataloader provides parallelism for data loading, which allows multiple worker
threads to load and preprocess data in parallel to speed up the process. Because
TinyVIRAT is a relatively new dataset that is not included in the predefined dataset in
Pytorch Dataset and we need to load the preprocessed images that are stored locally,
we need to customize the PyTorch dataloader to suit our settings. The newly created
objects included four main categories:

• Dataset and Dataloader for TinyVIRAT original frames.

• Dataset and Dataloader for UCF101 original frames.

• Dataset and Dataloader for TinyVIRAT synthetic images.

• Dataset and Dataloader for UCF101 synthetic images.

For each of the categories, we can decide to load the corresponding dataset with different
settings by passing a parameter indicating the number of frames per video we want.
We will discuss the specific settings used for baseline testing and experiments in the
following section and Chapter 5.

4.3 Dataset Performance Evaluation

In order to further explore and analyse these two datasets, we performed a few experi-
ments with the basic settings we would use for the algorithm evaluation stage in Chapter
5. We will discuss them in detail in this section.
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4.3.1 Evaluation Setting

The dataset performance testing includes two components for each of the datasets:

• Lower bound (the baseline model): Train on a single frame per video (middle
frame) for all videos in the training set.

• Upper bound: Train on 20 frames per video for all videos in the training set.

The lower and upper bounds for the number of frames used in training, namely 1 and
20, were chosen based on the experimental design. Our initial experiment plan was to
extract 20 frames from each video and use them to create a synthetic image, which was
then used to train models for further performance evaluation. Since the synthetic training
set was created using the 20 frames from each video, we expected its performance to
be bounded between that of the 1-frame-per-video and 20-frames-per-video training
sets. Therefore, we want the range between the lower and upper bound to be as wide as
possible, which would give us a more clear performance difference for determining any
accuracy improvement in the synthetic set, and therefore a more accurate evaluation of
the effectiveness of our method.

To ensure a fair comparison between the two datasets, we used a fixed resolution of 64
× 64 for both of them. The models were trained using a randomly initialised ConvNet
with a learning rate of 0.01, a weight decay coefficient of 1e-05, and a batch size of 64
for 8 epochs.
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Figure 4.4: The upper and lower accuracy bound for UCF101 and TinyVIRAT datasets.
It can be seen that UCF101 has a wider range with more stable upper and lower

boundaries.

4.3.2 Performance Comparison: TinyVIRAT and UCF101

Figure 4.4 shows the model performance for the TinyVIRAT and UCF101 datasets. The
y-axis shows the average accuracy among all classes on unseen testing sets for the two
datasets, and the x-axis indicates different experiments. The coloured areas between
two pairs of lines with colours light blue and light green indicate the expected accuracy
range for the synthetic sets for UCF101 and TinyVIRAT datasets respectively.
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There are several points that we can learn from Figure 4.4:

• UCF101 has a better overall performance than the TinyVIRAT dataset, although
the number of classes of UCF101 is almost more times that of TinyVIRAT.

• The difference in accuracy between the 1-frame and 20-frame training sets of
UCF101 is much larger than that of TinyVIRAT.

• The UCF101 performance is more robust than TinyVIRAT.

The imbalanced nature of the TinyVIRAT dataset can be the cause of these issues.
Figure 4.5 shows the class-wise accuracy and confusion matrix for the TinyVIRAT
testing results. We can see from the figure that larger classes have much higher accuracy
than smaller classes with many rarer labels misclassified as the most common labels.
As a result, the overall average accuracy is dragged down by the poorer performance
of smaller classes. Additionally, the lack of training samples in smaller classes (less
than 100 samples per class) leads to the lack of robustness and performance differences
between different frame settings.

Furthermore, we also tried different class balancing techniques on the TinyVIRAT
dataset including duplicating smaller classes and dropping some of the smallest classes.
However, duplication only increases the overall accuracy by around 1% with similar
performance for the lower bound baseline model, which gives us a similar narrow
accuracy range. On the other hand, dropping classes for TinyVIRAT would lead to
insufficient classes to use and test, since there are only 26 classes in TinyVIRAT and
only 4 of those have more than 500 samples.
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Figure 4.5: Detailed testing performance for TinyVIRAT dataset.

4.4 Dataset selection

After a thorough exploration and analysis of both datasets, we have decided to use
UCF101 as our primary dataset for the following experiments. This decision was based
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on several factors:

• UCF101 provides a wider range of expected performance between the lower and
upper bounds, which is beneficial for assessing the performance of synthetic sets
during experiments.

• UCF101 has a balanced class distribution, which makes the model more robust
and representative of overall performance improvement. This is in contrast to
the imbalanced nature of the TinyVIRAT dataset, which can negatively affect
performance.

• UCF101 has a larger average number of frames per video, providing more material
for frame condensation during experiments.

• UCF101 has more classes compared to TinyVIRAT, which makes the experiment
results more generalized and reflective of real-world scenarios.



Chapter 5

Experiments

In this chapter, we provide a comprehensive analysis of the synthetic image generation
process and the performance of the generated synthetic set. We start with introducing
the experimental settings and baseline model, and then move on to the visualisation of
synthetic images generated from different settings. The experimental results obtained
under various settings with the performance evaluation metrics will also be presented in
terms of test accuracy, training time and storage requirement, along with the discussion
of how different experiment settings influence the synthetic image generation and
synthetic set performance.

5.1 Experiment settings

Here is the list of experiment settings used in the following experiments:

• Dataset: UCF101

• Frame resolution: 64×64

• Number of frames per video: 20, 50

• Training set size: 20% of the whole dataset (2697 videos), 75% of the whole
dataset (9990 videos)

• Testing set size: 15% of the whole dataset (1998 videos)

• Training model: ConvNet with width 128, depth 3, activation function ReLU

• Experiment environment: NVIDIA GTX 1060 GPU with 6GB RAM and 16GB
CPU RAM

We used two frame number settings, 20 and 50 frames per video synthesized into a
single image in our experiments, for the following reasons. Firstly, while our initial
experiment plan using 20 frames showed some improvement over the baseline model,
we wanted to investigate whether using 50 frames could extract more information and
produce even better results. Secondly, using two different frame settings allowed us to
evaluate the effectiveness of the feature extraction and compression process. This helped

24
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us understand how the number of frames affected the quality of synthetic images and
whether the computational cost of using more frames was justified by the performance
improvement. Additionally, we chose specifically 20 and 50 frames to generate the
synthetic images because we wanted to strike a balance between extracting enough
information for each video (thus avoiding a frame number that is too small) and ensuring
that smaller videos have enough frames to extract (thus avoiding a frame number that is
too large). More experiment details can be found in Section 5.4.

Two different training set sizes, 20% and 75% of the entire UCF101 dataset are used
in the experiments as well. These two settings were chosen to simulate the model
performance on both smaller and larger datasets, providing more information on the
generalizability of our method. Furthermore, due to computational limitations and the
complexity of the overall synthetic set generation and evaluation system, generating
an entire synthetic set and testing its performance is very time-consuming. Using a
smaller dataset allows for faster setting testing and identification of the correct direction,
providing more insights into the next step of the experiments. More experiment details
can be found in Section 5.4.

For all the experiment settings mentioned above, we used a fixed testing set setting,
which is 15% of the entire dataset with 50 frames per video. This could make sure
that the testing results are consistent and allow us to make direct comparisons between
the model performance under different settings, and further analyse how different
parameters impact the experimental results. Moreover, the variety of experiments we
conducted allowed us to evaluate the generalizability of the proposed method on datasets
with different characteristics. This could also deepen our understanding of the method’s
strengths and weaknesses, and provide us insights into any potential future research.

5.2 Baseline Model

Given the diversity of our experiment settings, we used different baseline models to
evaluate the model performance. In this section, we focus on the overall accuracy and
expected accuracy range of the baseline model, as it will be used as one of the key
metrics when evaluating the performance of the synthetic sets in the latter sections.

Overall Accuracy (%)
FPV Small Dataset Large Dataset

1 43.5 (±0.2) 68.6 (±0.3)
20 55.0 (±0.6) 84.2 (±0.3)
50 56.1 (±0.7) 85.3 (±0.4)

Table 5.1: Baseline model accuracy for small (20% entire dataset) and large (75% entire
dataset) training set with 1, 20 and 50 frames extracted from each video.

FPV: frames per video.

Table 5.1 shows the overall accuracy across all classes under different settings. These
accuracy values allow us to make quick comparisons between different models, which
can be useful in identifying the experiment direction. Specifically, we use the overall
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accuracy of fpv (frames per video) = 1 for small and large training sets, which are
approximately 44% and 72% respectively, as an essential benchmark to evaluate the
synthetic set performance later in Section 5.

Figure 5.1 shows the expected accuracy (performance) range for synthetic sets generated
from different sizes of datasets, namely 20% and 75% of the entire UCF101 dataset.
For both dataset sizes, there is a significant accuracy difference of approximately 10%
in between 1 fpv and 50 fpv settings, while the difference between 20 fpv and 50 fpv is
only 1%. This result raises questions about whether the extra 30 frames between the
two settings provide much extra information for action recognition, and whether the
performance between synthetic sets generated from 20 fpv and 50 fpv settings would
have a noticeable difference. In Section 5, we will further investigate this by evaluating
the performance of synthetic sets generated from different frame rates and comparing
their accuracy to the baseline model. This comparison would provide us insights about
the impact of frame number on the performance of the model, and therefore gives us
the intuition of the optimization direction.
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Figure 5.1: The baseline accuracy for different experiment settings.
fpv: number of frames per video. small: training set with 20% entire dataset. large:

training set with 75% entire dataset.
The blue and green shadow indicates the expected accuracy range for synthetic sets
computed from the small training set (20% of the whole dataset) and the large training
set (75% of the whole dataset) respectively. Both of the expected performance ranges
are bounded by the performance of the models with 1 frame and 50 frames per video.

In addition to analyzing the overall accuracy, class-wise accuracy is also worth men-
tioning. As shown in Figure 5.2, for each dataset, we computed the accuracy difference
between the 50-fpv and 1-fpv models for each class and plotted their sample distribution
for both the small and large datasets. The accuracy difference for most of the classes
is larger than 0, indicating that synthetic images have the potential to improve the
performance of those classes. We also observed that the accuracy difference between
the small and large datasets is quite similar, which is consistent with the previous
observation on overall accuracy. The distribution of class-wise accuracy difference is
also similar, and this is expected as both datasets are extracted from the same source
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and have balanced classes, resulting in comparable sample distributions.
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Figure 5.2: The class-wise accuracy difference between 1 frame and 50 frames model
for the small and large training set, with 20% and 75% of the entire UCF101 dataset

respectively.

5.3 Synthetic Set Generation and Visualisation

5.3.1 Challenges in Video-wise Synthetic Set Generation

In the image data condensation framework, synthetic sets are generated using a class-
wise computation approach. This involves updating a set number of synthetic images for
each class during each iteration. However, when using video as our condensation bound-
ary instead of class, the simultaneous generation approach can result in computational
and memory constraints. For instance, even updating the synthetic images for 20% of
the UCF101 dataset would involve generating more than 2600 images at the same time,
making the process extremely computationally expensive and time-consuming.

To overcome this challenge, we proposed a batch division and multiprocessing-based
sequential generation approach that introduced parallelism into the framework. Specifi-
cally, we divided the video dataset into smaller batches and used Python multiprocessing
and CPU parallelism to process each batch. This approach reduced the memory require-
ments for synthetic set generation and accelerated the overall generation process while
providing better control of the overall generation flow and data quality.

However, even with the newly proposed synthetic set generation pipeline, the generation
process is still very time-consuming due to the computational limitations and the
complexity of the overall system. Moreover, due to our experimental design, any
changes to the experiment parameters require fully computing a new synthetic set,
which involves generating tens of thousands of images from thousands of videos,
and training and evaluating models on them. This limitation restricts the number of
experiments that can be conducted within a given time, and thus the different settings
we could test and analyse. Nonetheless, we managed to compare and analyze the
model performance under different settings by performing various experiments, which
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gives us valuable insights into the relationship between certain settings and the final
performance.

5.3.2 Pre-trained Models for Synthetic Set Generation

As mentioned in Section 3.2 about system workflow, there are two options for the
distribution matching procedure when computing synthetic images: using randomly
initialized models or using pre-trained models. The pre-trained models are expected to
better reflect and extract the feature distribution of the training samples than randomly
initialised models, with greater emphasis on active parts of the video such as human
motion. Therefore, synthetic sets generated using pre-trained models are expected to
outperform those generated using randomly initialized models.

Figure 5.3 shows the differences between synthetic images generated using randomly
initialized models and those generated using pre-trained models. As shown in the
figure, the images generated using randomly initialized models tend to compress motion
paths into a single image with clear object boundaries On the other hand, the images
generated using pre-trained models exhibit less predictable changes, such as added blurs
and increased contrast.

n Section 5.4, we will compare the performance of synthetic sets computed using
randomly initialised models, 50 pre-trained models, and 200 pre-trained models, respec-
tively. This analysis will provide a more quantifiable reflection on how these different
network distributions influence the synthetic set’s performance. When analysing those
results, we will also refer to this section, especially Figure 5.3, to further discuss the
potential causes of certain performances.

Figure 5.3: Comparison between original frames and synthetic images computed with
different settings.

RI: distribution matching using randomly initialised models. PT: distribution matching
using pre-trained models. Noise: synthetic images initialised with random noise. Real:

synthetic images initialised with the real frames.
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5.3.3 Synthetic Image Initialisation

The initialisation of synthetic images is the initial step in the generation process, and
there are two options available: initialise with random real frames or initialise with
random noise.

Figure 5.3 shows that the synthetic images created using these two options are quite
similar in terms of visual appearance, as illustrated in the ”RI-Real” and ”RI-Noise”
columns. Further experiments have shown that their performance is also quite compa-
rable with a difference in overall accuracy within ± 0.2%. Hence, for simplicity and
clarity, we will use real images for initialisation in the subsequent experiments.

5.3.4 Difference within Synthetic Set

The synthesized images generated from real images with a randomly initialized model
are shown in Figure 5.4. Based on their visual characteristics, the output images can be
roughly categorized into three groups:

• Coherent images: These synthetic images are human understandable. The main
movement and scene changes are effectively compressed into a single synthetic
image.

• Chaotic images: These synthetic images have a bumpy grid pattern and are
difficult to recognize due to their chaotic appearance.

• Real-like images: These synthetic images are visually similar to real frames but
do not capture the movement very well.

Figure 5.4: Examples of three types of synthetic images: Coherent images, chaotic
images and real-like images. The images in red boxes are synthetic images generated

and others are real frames that the synthetic images are generated from.

It is also worth mentioning that although we only presented the visualization results for
a specific experiment setup, very similar patterns can also be found in the results with
other different setups including random noise initialised images and pre-trained model
trained images. Therefore when analysing the patterns in the following paragraphs, we
refer to the results computed from all the experimental settings generally.

One possible reason for the observed division of output images and the unpredictability
of results could be the inherent randomness in the feature embedding process. Both the
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use of randomly initialized models and pre-trained models for distribution matching
involves a degree of randomness in capturing partial features from the original images
using parametric functions. Coherent images are samples in which the key features
are successfully captured, while chaotic and real-like images are not. Additionally,
since the project deals with low-resolution images and some actions may have limited
movement range, the actual pixel-wise changes might be trivial even for the original
training images. Therefore, the synthetic images might also be very similar to the real
images.

Based on the visualizations in Figure 5.4, it can be inferred that coherent and real-like
images are the expected output of the synthetic image generation process, while the
chaotic images introduce unexpected behaviour and may cause potential problems
during the experiment process. Without the chaotic images, the synthetic images are
expected to perform at least as well as, if not better than, the baseline model (i.e.,
one-real-frame-per-video model). However, with the addition of chaotic images, there
is no guarantee that the synthetic images will consistently perform at this level, as
they may negatively impact the overall accuracy. This hypothesis is validated by the
experimental results presented in the next section.

5.4 Test performance

In this section we present a cross-comparison of the performance of synthetic sets
generated under various settings in terms of both test accuracy improvement, and
training cost reduction.

5.4.1 Performance Improvement

To evaluate the performance of our proposed method, we conducted experiments by
testing the synthetic sets on an unseen test set and comparing their overall accuracy with
baseline models under the same testing setting. Both the synthetic sets and the baseline
training set consist of one image for each video for all the videos in the training dataset,
with the one frame being the middle real frame for the baseline set and being a synthetic
image generated from the whole video for the baseline set. To examine the impact of
different experimental settings in the synthetic set generation process, we synthesized
sets using 20 and 50 frames per video (FPV) and matched the data distribution using
different numbers of pre-trained models or no pre-trained models. Specifically, we
computed synthetic sets using randomly initialized models, 50 pre-trained models, and
200 pre-trained models.

We present the experimental results in Table 5.2, including the baseline models and syn-
thetic sets’ accuracies, the improvement ratio of using our method, and the normalized
accuracy gain, which measures the performance improvement of our method (definition
see Section 3.3).

Hyper-parameters During the synthetic generation process, we need to tune only one
hyper-parameter, which is the learning rate used for optimizing the synthetic images.
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Dataset Size
FPV

(Ratio) PM Accuracy Baseline
Whole
Dataset

Normalized
Gain

Small
(2697 samples)

20
(0.05)

0
50
200

47.2
45.6
45.2

43.5 55.0
30.8
17.5
14.2

Small
(2697 samples)

50
(0.02)

0
50
200

46.8
46.3
46.9

43.5 56.2
26.0
22.0
26.8

Large
(9990 samples)

50
(0.02)

0
50
200

68.9
70.0
70.1

68.6 85.3
1.8
8.4
9.0

Table 5.2: The average overall accuracy of synthetic sets, and the normalized gain
compared to the baseline model.

(FPV(Ratio): number of frames per video that are used to compute one synthetic image
with synthesizing ratio, PM: Number of pre-trained models used to compute the synthetic

set, PM=0: Randomly initialised models are used instead of pre-trained models.)

In our experiments, we use a fixed learning rate of 1 for all the experiment settings.
Additionally, we use a fixed number of 400 iterations to update the synthetic images
for all the settings. This is because, with a compression ratio of 0.02 and 0.05 and
low-resolution frames, 400 iterations are sufficient to minimize the MMD loss with no
significant loss drop after 200 iterations.

All the synthetic images are initialized with a randomly selected real frame. For training
on the synthetic images and baseline models, we use a fixed learning rate of 1, batch
size of 16, and train for 20 epochs. These hyperparameters were chosen through
experimentation based on the validation set performance and were found to provide
satisfactory results across all experimental settings.

Overall accuracy and dataset size Table 5.2 shows that our method outperforms
the baseline model under all synthesizing settings, with different levels of performance
improvement. The largest gain is achieved on the smaller dataset with 20 and 50
frames per video, where our method achieves approximately 30% improvement over the
maximum possible accuracy gain on both fpv settings. However, when it comes to large
datasets, the performance improvement is not as substantial as that on smaller ones, with
around 10% accuracy gain on the best-performing settings. One possible reason could
be that only one synthetic image per video may be insufficient to represent the diversity
and complexity of larger datasets, and therefore limits their model performance.

Pre-trained models v.s. randomly initialised models To further analyse and com-
pare the influence of different network parameter distributions on the performance of
synthetic images, we conducted experiments using both randomly initialized models and
different numbers of pre-trained models for synthetic set generation. The pre-trained
models were trained on the entire original training set, and they were expected to better
extract frame features and improve the distribution matching efficiency. However, to
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our surprise, different trends were observed in the testing performance in Table 5.2.
Specifically, for the smaller dataset, the model performs the best when the randomly
initialised models instead of the pre-trained models are used. By contrast, when it comes
to the larger dataset, the situation is quite the opposite where the using of pre-trained
models leads to an increase in the performance.

The inconsistent performance of per-trained models under different settings could be
caused by several potential factors. One potential reason could be that the quality of the
pre-trained networks could influence the data distribution sampled from the original
data, and result in feature leakage. While Zhao & Bilen (2022) [66] mentions that
the different network distributions with different levels of validation accuracy produce
similar synthetic set performance with small variance under their experiment setting,
their synthetic sets are generated from the CIFAR10 dataset with class-wise synthesis
boundary. In our project, we use the UCF101 video dataset with low-resolution frames,
where the difference in data distribution across frames within a video is small and harder
to capture. Any missed features could significantly reduce overall performance. For
instance, the pre-trained models may fail to capture certain movements that could be
easily captured by randomly initialised models, as shown in the first row of Figure
5.3 where the ”push-up” movement is not captured by the pre-trained models (PT-real
column) but is captured with clear movement boundaries by the randomly initialised
models (RI-Noise and RI-Real columns).

Another possible reason could be the randomness of the feature sampling process. As
shown in Figure 5.4 the generated synthetic images can be classified into three types,
with a certain level of unpredictability. While increasing the proportion of coherent
images is expected to improve the overall model performance, such an increase is hard
to be guaranteed.
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Figure 5.5: Comparison between the performance of synthetic images generated from
20 and 50 original frames under different settings (number of pre-trained models used)

on the small UCF101 dataset.

Number of frames per video In Figure 5.5, we compare the performance of synthetic
sets computed from different numbers of frames under the same setting on the small
dataset, which corresponds to the first two rows in Table 5.2. Intuitively, using more
frames to generate synthetic images is expected to be better performance since more
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information is synthesised into one image, but we can see that it is not always true under
all experiment settings in Figure 5.5.

We can see from this figure that, more frames improve the performance of pre-trained
models, while contributing little when randomly initialised models are used. The reason
could be that since our frames are uniformly extracted from the original video, the data
distribution of the whole video is preserved and can be well extracted from 20 frames
when the randomly initialised models are used. However, when pre-trained models
are used and the data distribution is not fully extracted with only 20 frames, as in (b)
and (c) in Figure 5.5, the extra 30 frames could be a supplement and provide more
training resources during the data synthesizing process, and therefore improve the final
performance. This can also be seen from the similar performance of 50 FPV models
across different pre-trained model settings, which indicates that more frames can help
the model extract key information from a given video to the greatest extent. Thus, the
optimal number of frames used to synthesize one image should be chosen based on the
highest level of performance while still maintaining an efficient synthesizing process,
as a larger number of frames does not necessarily lead to better performance.

5.4.2 Training Cost

As described in Section 3.2, our overall train-evaluation system mainly consists of two
stages: synthetic set generation, and training and testing on the generated synthetic set.
By synthesizing the original training data, we can reduce the size of the training set,
and therefore significantly reduce the storage requirement and training time during the
second training stage.

Table 5.3 compares the performance and training costs of the synthetic set, the baseline
training set (which consists of the middle frame of each video), and the entire dataset
with different numbers of frames extracted from each video. We compare them based
on three parameters: test performance, training time, and storage requirement.

Here’s a detailed description of each parameter:

1. Performance: We measure the average test accuracy of the synthetic set generated
under the best-performing experimental setting and compare it to the baseline
performance and the performance of the whole dataset with the same testing
setting and the same unseen testing set.

2. Training time: We measure the time required to train the model and achieve the
above performance on NVIDIA GTX 1060 GPU.

3. Storage requirement: We measure the storage requirement for each training set in
terms of the number of images that need to be stored.

It can be seen from the table that while achieving an obvious performance improvement
with all the synthetic set settings, the training cost in terms of training time and storage
required is significantly compared to the whole dataset. For instance, the synthetic
set generated with 20 frames achieves a test accuracy of 47.3%, which is an 86%
relative performance compared to the whole dataset, while only requiring 5% of the
original training time and storage requirement. Similarly, the synthetic set generated
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Training Set Performance (%) Time cost (min) Storage (imgs)

Small dataset
(with 20 fpv)

Synthetic Set
Baseline

Whole dataset

47.3
43.4
55.0

2.1
2.3

41.9

2397
2397
47940

Small dataset
(with 50 fpv)

Synthetic Set
Baseline

Whole dataset

47.0
43.4
56.9

2.2
2.1

96.6

2397
2397

119850

Large dataset
(with 50 fpv)

Synthetic Set
Baseline

Whole dataset

70.1
68.4
85.6

7.8
8.1

337.1

9990
9990

499500

Table 5.3: Test performance with action classification task. The synthetic set
performance is compared with baseline dataset and the whole dataset in terms of

performance, time cost and storage required.

with 50 frames achieves a test accuracy of 70.1%, which is an 82% relative performance
compared to the whole dataset, while only requiring 2% of the original training time
and storage requirement. This shows the effectiveness of our synthetic set generation
method in reducing the computational and storage costs in the training process while
still achieving comparable performance on the testing set.
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Conclusion

6.1 Summary

In this project, we propose a novel video data synthesizing method particularly targeting
classification tasks. The training data are synthesized using a distribution matching
approach which aims to minimize the maximum mean discrepancy (MMD) between the
original training set and the synthetic set. The framework proposed and implemented in
this project creatively uses a video-wise synthetic image generation instead of class-
wise generation, which could better preserve the original sample distribution and data
diversity.

After carefully analysing and performing basic tests on different datasets, UCF101
is chosen as the primary test dataset, and a series of pre-processing techniques are
performed. We computed synthetic sets under a range of different experimental settings
including different training set sizes, different numbers of frames extracted per video,
different numbers of pre-trained models used for distribution matching and different
synthetic image initialisation options, and analysed the generated synthetic images in
detail. The synthetic sets are then evaluated on the same unseen test set, and their
performance is evaluated in terms of the test accuracy and training cost. We showed
that our method outperforms the baseline model under all experiment settings and has
a maximum of 30.8% normalized accuracy gain than the baseline model, with only
2% training time and storage requirement of the original training set. Although the
accuracy gain on larger datasets is not as significant as the smaller ones, our method is
still proven to be effective given the performance improvement and significant training
cost reduction.

6.2 Limitation and future work

Synthetic set size While our method shows promising results with one synthetic
image per video, we recognize that the informative value of the synthesized images
can vary due to reasons like the randomness in the feature embedding and distribution
sampling process. Therefore, in the future, we would like to include synthesizing

35



Chapter 6. Conclusion 36

multiple images per video and compare their performance against the baseline models
with multiple real frames. This could provide more insights into the optimal synthetic
set size for different datasets and further improve the efficiency of our method especially
on large datasets.

Dataset UCF101 is used as the primary testing dataset due to its balanced sample
distribution and a large number of classes in this project, as discussed in Section 4.4. In
the future, additional datasets with diverse characteristics, such as surveillance datasets
like [42] or datasets with less balanced sample distribution, could be used to further
evaluate the effectiveness and generalizability of our method.

Synthetic set generation setting We observed that the synthetic set generation
setting has varying impacts on synthetic set performance, which are dependent on dataset
settings such as dataset size. In the future, it would be valuable to further investigate
how the pre-trained models and their quality influence synthetic set performance and
explore how the optimal synthetic set generation setting varies with changes in dataset
size and video quality.

Video resolution In this project, we primarily focus on low-resolution videos for
better computational efficiency and generalizability. However, since higher-resolution
data is expected to have better performance, it would be informative to evaluate the
potential of our method on higher-resolution videos as well. Additionally, higher-
resolution data requires more computational resources for training, which makes our
methods particularly useful for reducing training costs.

Efficiency comparison In the future, we plan to conduct experiments to compare the
efficiency of our synthetic set generation process with other video compression methods
or core-set selection-based video set size reduction methods. This would help further
demonstrate the efficiency of our method and its potential benefits in reducing training
costs.
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