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Abstract
Membership inference attacks (MIA) enable attackers to determine the presence of spe-
cific data in a machine learning model’s training set, which exploits the confidentiality
and privacy of the data contributor. Our study examined factors contributing to data vul-
nerability in MIA for logistic regression models. The data vulnerability in our context
refers to the difficulty of MIA in violating data privacy. We emphasized the importance
of visualizing privacy violations to identify data vulnerability, which the outlying degree
can not always capture. Our study discovered that removing some vulnerable data
points from the training dataset may increase data vulnerability in MIA, while others
can decrease it. But, explaining this phenomenon proved challenging, highlighting the
complexity of explaining data vulnerability. We also examined the effectiveness of
differential privacy (DP) in protecting data privacy, revealing that different data points
possess varying levels of data vulnerability under different DP strengths. We explained
this variation through the influence of DP on the model’s decision boundary. Identifying
the hard-to-protect vulnerable data points is essential since we showed removing a
specific proportion of them can improve data privacy and protection efficiency if DP is
applied to protect the target model. These insights help understand data vulnerability
to MIA, providing valuable research for future machine learning privacy protection
measures.
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Chapter 1

Introduction

An increasing number of machine learning models have been created, deployed and
commercialised in various sectors that process sensitive personal information. Natural
language processing [39, 13, 65, 28], biomedics [55, 61, 40, 8] and image classifications
in disease diagnostics [53, 36, 18, 60] are common examples. The security of the models
and the privacy of the sensitive data learned by the models has gained immense attention
because of the potential of privacy violations on this sensitive information suggested in
[15].

Among the range of privacy attacks, membership inference attack (MIA) was the
focus of this study since it targets user-specific privacy [62]. In MIA, the adversary
aims to investigate whether a given data point is inside the training set for the target
machine learning model. Knowing whether training a model involves a specific instance
potentially introduces privacy risks to the data contributor. For example, suppose a
hospital trained and published a machine-learning model to diagnose patients based on
their medical records and symptoms. Suppose an adversary is interested in the sensitive
information this model has learned. This adversary could fake a patient data set to build
his attack model for MIA. If the attack model suggests a high probability on a given
data instance, then this instance is highly likely inside the confidential training set kept
by the hospital. As a result, MIA violates the privacy and confidentiality of the patients
whose sensitive information gets leaked to the attacker.

Recent studies on privacy issues in machine learning models realised that data points
in the training set are not equally hard to attack with MIA [9, 58]. This problem is
easier to see when outliers exist in the training set of a complex neural network. For
instance, Carlini et al.[9] found that MIA exposed the outlying training data points at a
low false-positive rate more frequently than non-outliers to the attacker when training a
deep neural network on an image dataset. Similar results are also found in the study of
Watson et al.[58] on a model of the same type, trained on the same dataset as Carlini et
al. These findings led to a phenomenon that different subsets of the training set bear
various difficulties to being attacked by MIA, a.k.a. they are unevenly vulnerable to
MIA.

Knowing which part of the training set is more vulnerable to MIA is extremely helpful in
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designing a protection mechanism to be applied to the model using protection techniques
like differential privacy (DP) [17]. When differential privacy is applied to protect a
machine learning model, it perturbs noises generated from a well-tuned distribution to
the target of protection. This way, the presence of an instance inside the training set
for this model will not significantly increase its risks of being exposed by MIA. But
when protecting the model from privacy violations, it trades the utility of the model
at the same time [23]. For instance, when the protection given to the model is set too
strong, the model is hardly likely to function as it was supposedly because the model
has become too noisy. On the other hand, if the noise is not big enough, the model
might fail to be privacy-preserving while still useful for its tasks.

Thus, as a new direction in protecting data points’ privacy in machine learning models,
if we can identify which subset of training points are more vulnerable to MIA, we can
know the proportion of training points that require more protection. This knowledge
will allow practitioners to better decide on the scale of privacy protection based on their
tolerance for the loss of privacy and the utility of their product.

1.1 Challenges and Related Work

Identifying the more vulnerable subset of training data to membership inference at-
tack (MIA) is challenging, especially in complex models trained on high-dimensional
datasets. Although the out-of-distribution data in the training set is often vulnerable,
this does not imply that the frequently-identifiable data are always an outlier. Moreover,
previous studies held opposite opinions regarding the correlation between data point
vulnerability and outlier status, adding to the complexity of the problem.

One approach to detecting data points’ vulnerability to MIA in recent scholars is to
check if they are outliers in the target model’s training set. Carlini et al.[9] found that
outliers in the training dataset significantly impact data point privacy. They removed the
easiest-to-attack outliers from the training dataset to train a convolutional neural network
(CNN) trained on CIFAR10. They then observed the resulting privacy implications on
the remaining training set. They found that removing these data points leads to a Privacy
Onion Effect where the new model trained on the remaining set exposed a previously
hidden layer of vulnerable data points. This finding suggested a close relationship
between a data point’s vulnerability to MIA and its outlying degree. On the other hand,
Watson et al. [58] showed that being an outlier is not crucial in identifying data points’
vulnerability to membership inference attacks. They examined the CIFAR10 dataset on
a CNN model and observed that the data points frequently exposed to MIA were not
necessarily extreme-outliers in the training set. Furthermore, they noted that a weak
differential privacy (DP) could adequately protect these data points, which contradicts
Carlini’s perspective on data point vulnerability to membership inference attacks.

Previous works have revealed the challenges in arriving at a concrete answer to the
problem of our interest. These challenges might attribute to the lack of explainability in
the complex model architecture for neural networks [52, 4] and the difficulty in defining
outliers in a high-dimensional training set [41, 2, 56, 59]. Since these research areas
still lack promising results, readers with relevant interests can refer to the citations for



Chapter 1. Introduction 3

more information. Furthermore, optimizing neural networks’ non-convex objective
functions poses additional technical challenges. These optimization techniques intro-
duce randomness into the training process, leading to different performance and attack
results from multiple models trained under the same initial settings [22, 63, 32]. This
uncertainty in inference outcomes and lack of explainability further complicates the
question of why some specific data points are more vulnerable to MIA than others.

Previous works have shown that using neural networks trained on high-dimensional
data is inadequate for our specific problem in this study. Because our research will need
to face additional challenges, including the non-deterministic optimization results of
the target models, the difficulty of explaining the behaviour of complex models, and the
challenge of defining outliers in high dimensions. However, despite these challenges, it
is still worthwhile to investigate the relationship between a data point’s vulnerability
to MIA and its degree of being an outlier. Since understanding the factors that might
contribute to data vulnerability, we can take steps to enhance privacy protection in
machine learning models.

Therefore, given the challenges identified, this project aims to tackle the problem in
a less complex setting than the previous works: logistic regression trained on low-
dimensional datasets that are small to medium size for binary classification tasks. In the
next section, we will provide a detailed description of the problem we will address.

1.2 Research Focus and Questions

Based on the motivation and the challenges identified, our focus of the project will be
centring around the following two questions:

• Can we explain a data point’s vulnerability more convincingly than how much
the point is out-of-distributed in the training sets?

• Which subsets of data points in a training set are more vulnerable to membership
inference attacks than others?

We have discussed that answering these two questions is difficult in a complicated
problem setting. Therefore, to answer them more comprehensively, we choose to lower
the difficulty of the context to a convex learning problem – logistic regression, for binary
classification tasks on small to middle-sized low-dimensional datasets. The challenges
to solve in this project are:

1. When the target model is logistic regression, is the data easier to attack still the
out-of-distribution ones in the training set of the target model?

2. Can we still observe the privacy onion effect due to outlying data removal in the
context of logistic regression?

3. Can we explain data points’ vulnerability to be attacked by membership inference
attack using its ease to be protected by differential privacy?

With the focus of the project stated, experiments are planned and conducted. Following
are the main contributions we made in attempting to answer them.
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1.3 Main Contribution

Figure 1.1 summarize the most important part of our contributions using a synthetic data
set generated from a Gaussian distribution. Detailed explanations of these contributions
can be found listed below these illustrations.

Figure 1.1: (A): MIA on the target model exposed the privacy of the denser-coloured data to the
attacker, while lighter-coloured data remained hidden. This pattern of privacy violation and the model’s
decision boundary in the background indicates that data vulnerability is related to the nature of the model
(Contribution 1); (D): Removing the yellow dots from the training set violated the privacy of the data
inside the purple frames. This illustrates a part of our second contribution regarding the privacy impact
of data removal; (B): By demonstrating how the exposed data points in (A) are obscured when one level
of DP is applied to the model at a time, we provide evidence for our fourth contribution that not all data
points in the training set are equally difficult to protect; (E): Our attempt to conceal the exposure in (D)
leads to our fifth contribution: removing the yellow dots in (D) protected the data in the red box with
weaker DP measures and the new exposure framed with purple boxes can be covered with a weak DP as
well; (C)&(F): We draw convex hulls on data covered at various DP levels in (B) and (E) respectively,
to demonstrate that the difficulty of protecting a training set is layered, with easier layers nested inside
harder ones.

1. Observing the pattern of the privacy violation in membership inference attacks
(MIA) on logistic regression training sets gave us insights that outliers are not
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always vulnerable (Plot (A)), and data vulnerability depends on the characteristics
of the model. Knowledge of these properties fosters our understanding of data
vulnerability in the current context. Thus, direct observation of the results of MIA
helps us understand data vulnerability.

2. We discovered two additional privacy effects on the training set resulting from
data removal in logistic regression, other than the Privacy Onion Effect shown in
Plot (D). Data removal may either expose previously safe data (Privacy Onion
Effect), hide previously unsafe data, or have no impact on the remaining training
data. However, we found no clear guidance on where to remove data for privacy
effects on the remaining data, but there is guidance on the number of vulnerable
data points to remove for privacy benefits. These findings emphasize the potential
risks and benefits associated with data removal from the training set.

3. We also identified a potential contributor to the privacy effects of data removal:
the scale of the shift in the decision boundary caused by the modified training
set. While our experiments only provided empirical evidence of a relationship be-
tween these two factors, we do not yet know in what way the shifts in the decision
boundary might lead to each kind of privacy effect. Our results suggest under-
standing this factor as a potential future direction for research in understanding
data vulnerability.

4. The difficulty of protecting data points in a training set can vary, as demonstrated
by their ability to be covered by different scales of differential privacy (DP),
as shown in Plots (C) and (F). This bubbling cover effect suggests that we can
use the difficulty of protecting data points in defining their vulnerability to MIA
if we consider the easier-to-protect data as the less vulnerable one to attack.
Additionally, we explained the variation in difficulty to protect with the scale of
the shift in the decision boundary brought by DP at various levels.

5. Further, when combining data point removal with DP, we found that DP can
effectively cover the results of the Privacy Onion Effect, as shown in the purple
boxes in plots (D) and (E). Additionally, we found that data removal helped lower
the level of DP needed for some instances to be protected from MIA, as shown
in the red boxes in plots (B) and (E). This finding emphasises the importance to
identify which subset of data points should be removed from the training set to
benefit the privacy of the remaining data, which may include the hard-to-protect
data points described earlier.

Our contributions answer the three research questions proposed earlier in a more focused
and deterministic problem setting than previous works, with logistic regression and
low-dimensional datasets. We learned from previous work to avoid overcomplicating
the problem for clear insights into the reasons behind data vulnerability. As a result, we
gained more comprehensive knowledge about data vulnerability and how it can lead
to a more efficient privacy protection mechanism. Our results are illustrative and are
rare in academia, providing clarity to the research community. We recommend that
future researchers explore the potential benefits of combining the removal of hard-to-
protect data points and a weak differential privacy perturbation to protect the remaining
easy-to-protect data points in the training set from MIA attacks.
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1.4 Report outline

• Chapter 2 provides the theoretical background necessary to understand the rest
of the project and defines the concepts and terminologies for the experiments.

• Chapter 3 outlines the hypotheses, experimental pipelines, and technical details,
followed by the performance of the crucial steps in our pipeline.

• Chapter 4 presents our findings from the experiments and provides explanations
for some of them.

• Chapter 5 concludes our findings with a critical review for potential improvement
on our work and ends with future directions for further explorations.



Chapter 2

Background and Definitions

In this chapter, we will provide an overview of the key preliminary concepts needed
to comprehend the challenges addressed in this project. We will also introduce the
terminologies defined for use in the experiments.

2.1 Machine Learning Preliminaries

This section will briefly explain the relevant machine learning concepts and the rationale
for choosing logistic regression as the focus of our study. For a more comprehensive
theoretical understanding of machine learning, readers may refer to [50].

2.1.1 Machine Learning in General

Machine learning can be conceptualized as a human learning system, consisting of two
crucial components: memorization, which involves the ability to recall information
learned, and generalization, which involves the ability to apply learned knowledge to
new situations.
Suppose we refer the model as a learner, the fundamental aspects to teach this learner
is to formulate the learning system mathematically, which can be defined with the
following elements:

• A domain set X includes the instances we want the learner to learn and predict.

• A label set Y to categorise the instances in the domain set.

• A training set S = (x1,y1), ...,(xm,ym) as a sequence of labelled instances that is
accessable to the learner.

• A hypothesis h : X → Y as a prediction rule to infer the label of an input domain,
and a correspondence hypothesis class H where h ∈ H.

• A learning algorithm A to select the hypothesis h from the hypothesis class H
based on the training set S s.t. h = A(S).

7
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• A probability distribution D over X where the domains in the training set is
generated from, and a perfectly correct labelling function f : X→Y , s.t. yi = f (xi)
for all i, both D and f are unknown to the learner.

• A loss function as a measure of the learner’s success in its classification LD, f (h) :=
P

x∼D
(h(x) ̸= f (x)).

With these terms, given the learner access to S with each instance inside has been
labelled correctly by f. The learning process for the learner is to use A to find a h that
minimise the loss L w.r.t. D and f.

Problem of overfitting: Overfitting occurs when a model fits the training set S too
well, resulting in an inability to react properly to instances outside the training set
s.t. hS(x) = yi iff x = xi for i ∈ |S|. This indicates that the model has memorised the
training set instead of generalising on it. [42] states that an increase in the gap between
a model’s empirical loss LS(h) and its true loss (generalisation error/prediction loss)
LD, f (h) after a continual decrement can indicate overfitting. This gap, referred to as the
model’s generalisation gap, is commonly used to measure the model’s performance in
generalising.

Generalization gap = |True loss−Empirical loss|= |LD, f (h)−LS(h)| (2.1)

How Overfit leaks Privacy: MIA is easier when the model is overfitting, as Yeom
et al.[62] found a strong correlation between the model’s ability to generalize and the
adversary’s advantage in MIA. Specifically, the loss on instances inside the training set
is lower than the ones outside when the model is overfitting. Yeom et al. formalized
this property as loss-based MIA and used it to distinguish members of the training set
which we will cover more in Sections 2.3.2.

2.1.2 Why Logistic Regression

A logistic regression model is a sigmoid function mapping real value instances to
a probability between 0 and 1. Given an input s = {x,y}, the model f output the
probability prob(x) = 1

1+e−x of the instance x belongs to class y.

The choice of the logistic regression model as the target of studying is based on its
desirable properties. First, logistic regression is a supervised learning problem, which
makes it a suitable choice for studying MIA on machine learning models that are
typically trained using supervised learning algorithms [14]. Second, logistic regression
is a convex learning problem, this means the lost function has a global minimum, making
it easier to train [7]. Finally, logistic regression can be trained using gradient-based
optimisers, which are computationally efficient and widely used in machine learning
[46].

2.1.2.1 Supervised Learning

Supervised learning involves a model learning to predict output labels based on input
data [14]. The model is trained on a labelled training set S, and a testing set is kept
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unknown to the model. There are two types of supervised learning problems: classifica-
tion and regression. Classification tasks have discrete and categorical output labels yi,
while regression tasks have continuous and numerical output labels. Although logistic
regression is named after ”regression”, it is often used for classification tasks as its
outputs represent the probabilities of an input being classified as each possible output
label.

2.1.2.2 Convexity

A learning problem is said to be convex when its hypothesis class is a convex set, and its
loss function is a convex function [7]. When the hypothesis class H is a convex set, for
any two functions h1,h2 in H, all other functions in H can be written as αh1+(1−α)h2
where α ∈ [0,1]. When the loss function L is convex it satisfy the following property
for any two data points u,v and α ∈ [0,1]:

L(αu+(1−α)u)≤ αL(u)+(1−α)L(v) (2.2)

A convex function has only one optimal value, Figure 2.1 illustrate this property.

Figure 2.1: 3D representations of the Loss landscape for LHS: convex function & RHS: non-convex
function; When the learning is convex, the loss would be gradually optimised to the bottom of the bowl
and that will be the global minimum. On the other hand, non-convex learning has the problem of being
stuck in the local minimum because of the jerky landscape.[25]

Combining the property of the hypothesis class being a convex class and the loss
function being a convex function allows a fast convergence for the loss to the global
minimum.

Logistic Regression is Convex: Logistic regression is proved by [45] to be a convex
model because of the logistic regression function, the sigmoid function, is convex.
Furthermore, if cross-entropy loss (see Definition 2.6) is chosen to be the loss function
for logistic regression. Then it guarantees the training process is convex because this
loss function is also convex.

2.1.2.3 Gradient Based Optimizer

Gradient-based optimizers gradually minimize the loss function by calculating and
updating the gradients of the loss function on the samples at each step of the optimization
process. There are three categories of gradient-based optimizers that differ in the method
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of sampling from the training set during the gradient update process, which can be seen
in Figure 2.2.
Among the three options, stochastic gradient descent (SGD) is popular for complex
models with large datasets [6], while batch-gradient descent is still able to efficiently
converge on small-to-medium scale problems. Thus, the decision of which kind to use
in the training process depends on problem scenario.

Figure 2.2: Traces of the process in minimising the loss function with batch gradient descent (BGD),
stochastic gradient descent(SGD) and Mini-batch; Mini-batch and SGD are faster than BGD but may
not guarantee convergence. BGD takes the entire training set in one step, ensuring convergence. SGD
samples randomly, resulting in a jerky path to the optimal.[49]

After explaining the basics of machine learning and the reasons for selecting logistic
regression as the target of study, the next section will delve into the details of the privacy
attacks employed in this study. This will begin with an overview of privacy attacks that
target a model’s training set.

2.2 Privacy Attacks on Training Set

Known privacy attacks on the training set of a model based on the setting of a black-
boxed target model and assuming the attacker knows the data distribution D of the
private training set S, includes: attribute inference attacks (a.k.a. model inversion
attacks) [19, 64, 19], property inference attack[20, 33], and membership inference
attack[62, 51].

In an attribute inference attack proposed by Fredrikson et al. [19] , the attacker uses
available information about users to infer their disclosed sensitive attributes. An example
of such an attack is when an attacker uses a person’s public social media activity to
dig the hidden information about their sexual orientation. Similarly, property inference
attacks infer hidden characteristics about targets. For instance, an attacker could get to
know targets’ financial status based on their browsing history in the web browser.

Although both attribute and property inference pose great threats on users’ privacy since
they are able to extract users’ information without consent. None of them infer directly



Chapter 2. Background and Definitions 11

the existence of an instance in the training set, which is achievable via the membership
inference attack explained in the following.

2.3 Membership Inference Attack

As briefly introduced in Chapter 1, Membership Inference Attack (MIA) reveals the
presence of a user in the model’s training set, which poses a significant threat to data
contributors’ privacy. It can lead to serious privacy breaches includes:

1. Knowledge of sensitive data existence, such as medical records, violates con-
fidentiality [54], which is often regulated by data protection laws like GDPR
[57].

2. The attacker can rebuild a training set for an easier attribute or property inference
attack using the results from MIA[62].

3. The attacker can establish correlations between known instances in the training
set and other public databases for more information.

Shokri et al. [51] proposed the first application of MIA on machine learning models
through shadow model training techniques. This method requires the attacker to train
and use multiple shadow models to mimic the behaviour of querying the target model
with instances carrying different labels. Then, the attacker use the output of these
shadow models and the attacker’s public dataset to train an attack model to infer
members of the target training set. However, Yeom et al. [62] showed that utilising the
overfitting property to attack the model can perform similarly to the shadow training
approach for the reason we explained at the end of Section 2.1.1. For efficiency and
explainability, this project will use the score-based MIA method.

Following is a general definition for membership inference attack by [62].

2.3.1 Definition

Given adversary the public API access (a.k.a. a black box) to the target model M; a
target data entry s=(x,y) where x is the input domains and y is the label. s would be
sampled from the target model’s training set based on a coin flip decision; the size of
the training set n = |S| and the distribution D where the target model’s training set is
drawn from. Let A denote the attack model in MIA, A can be defined as:

A(M,s,D,n) =

{
1, if s ∈ S.
0, otherwise.

(2.3)

This means the model’s output being 1 if the entry s is indeed inside the training set and
0 otherwise. The technical definition for each type of MIA differs by category, like the
shadow model training and the score-based MIA showing distinctive approaches. The
following section will cover more details about the score-based MIA due to its usage in
the experiments.



Chapter 2. Background and Definitions 12

2.3.2 Scored Based MIA

Because of target models’ overfitting property, score-based attacks react distinctively
on data points in the training set to the ones outside the training set (see Section 2.1.1).
Relying on this property means the score-based attack is more efficient than the Shadow-
training approach because no additional model is needed. Score-based MIA assigns a
membership score score(si,M)to each instance si in the dataset as to how likely each is
inside the training set. Based on a preset threshold value τ obtained from the process
of threshold selection. The attacker can classify data points as members by comparing
their membership scores to the threshold.

Threshold Selection is a crucial setup in loss-based MIA. Given the attacker the access
to the distribution D,M, and the size of the target’s training set n = |S|. The attacker
randomly sampled a public dataset Spub of size n from D. Then, the attacker obtains a
collection of threshold values using Spub and M, as a sequence of 1000 or more values
within the range of the membership scores for the Spub. Then, the attacker tries each
of the threshold values τ in this collection in the loss-based attack by applying the
following threshold function on each target data si:

score(si,M)> τ (2.4)

Data points having a membership score higher than this threshold would be classified
as members and vice versa. The loss based MIA Aloss can be formulated as:

Aloss(M,s,D,n,τ) =

{
1, if score(si,M)> τ

0, otherwise.
(2.5)

High Precision Score-based MIA [58] require a threshold value that would lead to
a high-performing inferencing result. Ideally, in a membership inference attack, an
attacker would aim to infer a significant number of members inside the training set,
achieving high precision and recall. However, this ideal scenario is rarely achievable,
and it is more common to accurately infer only a few members, resulting in high
precision and low recall. Privacy attack with high precision poses a significant threat
to users’ privacy since privacy attack also obey the rubrics in many areas of computer
security[26, 27, 34, 24]. Thus, this project focuses only on high-precision score-based
attacks.

Selection of Membership Score determines the category of a score-based attack.
Currently, the common uses of membership scores are: prediction loss [62], prediction
confidence [47], prediction entropy [47], and gradient norm [37]. Among them, we
chose loss-based MIA for this study because the logistic regression model’s output on
a given instance is its cross-entropy loss, which can be directly used as input for the
loss-based MIA. This allows us to leverage the strengths of both the logistic regression
model and the loss-based MIA approach for effective membership inference attacks.

The following sections outline our selection of membership scores used in the loss-based
attacks and provide theoretical frameworks for implementing high-precision loss-based
attacks.
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2.3.2.1 Prediction Loss as Membership Score

Yeom et al. [62] proved the correlation between an instance’s prediction loss (generali-
sation error) on a target model and its privacy risk in an MIA in Section 3.2 of his paper.
This correlation suggested that the higher the model’s generalisation gap, the higher its
privacy risk. One contributor to the large gap is having high prediction loss and low
empirical loss (Overfitting). Hence, an instance’s prediction loss from the target model
is used as part of its membership score in a loss-based attack. With the selection of
cross entropy loss LCE as the loss function for our target model, LCE can be defined as
follows:

Assume the model is classifying data into n classes. Let si = (xi,yi) denote a data entry;
M be the model s.t. given xi, it outputs the probabilities pi that xi been in each class i
∈ n; Let ti denote the one-hot encoded representation of s’s true label – ti is a vector
of length n with the yth entry been 1 and else been 0. Then the cross entropy loss
LCE(si,M) of si from the model M is defined as:

LCE(si,M) =−
n

∑
i

ti log pi (2.6)

And the membership score can be defined as:

score(si,M) =−LCE(si,M) =
n

∑
i

ti log pi (2.7)

Notice that the membership score holds the opposite sign to the cross-entropy loss, this
setting allows MIA to distinguish the members of the training set since they usually
have a low empirical loss.

However, loss-based attacks might be poor performing in the case of distinguishing
data of high dimensionality. This is because both easy-to-predict non-members and
hard-to-predict members can achieve high scores using plain loss as the membership
score[58]. Taking into consideration this potential drawback, we implement another
version of loss-based MIA as a resolution.

2.3.2.2 Calibrated Loss as Membership Score

Watson et al.[58] proposed calibrating each instance’s difficulty to attack to their
membership score to improve the drawback of loss-based MIA. As a result, the easy-to-
predict non-members became distinguished from the hard-to-predict members, which
led to better attack performance. The calibrated membership score can be defined based
on the empirical loss as follows:

Following the same assumptions and notations used to define the loss-based MIA.
Additionally, let Dshadow denote a shadow dataset drawn from the same distribution of
where S is drawn from, and let R denote a randomised algorithm that samples over a
collection of models trained on Dshadow, the calibrated membership score is defined as:

scorecal(si,M) = score(si,M)−EM′←R(Dshadow)[score(si,M′)] (2.8)
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The framework of score-based MIA and the two versions of membership scores to use
in our study have been introduced. We have covered all the relevant knowledge about
privacy attacks in this study. Thus, the following is going to explain the protection
mechanism used in the study.

2.4 Differential Privacy

What is Differential Privacy: Differential privacy (DP) was formally introduced by
Dwork et al. in The Algorithm Foundation of Differential Privacy [17]. DP is scalable
privacy protection by randomly introducing noises on the outputs from a machine
learning model, ensuring that the publication of those outputs will not suffer the privacy
of the original inputs. Since with DP, models trained on datasets differ in one instance
would behave similarly. This outcome implies that the presence of the instance which
distinguishes the two datasets becomes less obvious in the training set, and hence its
privacy is protected. In a word, DP allows models to learn an instance without its
presence in the training set.

What Differential Privacy Promises and Not: Differential privacy allows the learner
to learn about the target of privacy protection, which seems to be absent from the content
due to the protection mechanism. For example, suppose a company wishes to publish
the mean salary statistics each month while keeping individual salaries private. DP
allows the disclosure of statistics as if some employees are not inside the company, but
they are. Hence, their personal information is kept safe from potential privacy violation
in the publication of the statistics.

However, differential privacy does not promise the conclusion reached by the learner
would not disclose facts or related information about the individual irrelevant to their
presence. For instance, suppose the company has a history of giving bonuses to its
employees at the end of the year. Thus, the average monthly salary at the end of each
December would be higher than in other months. Then it’s enough for an outsider to
learn that this company might have such a bonus mechanism even if the average salary
was protected by DP.

Randomness in Differential Privacy: Being inspired by the requirement for random-
ness in semantic secure cryptosystem [38, 35] and encryption scheme [5, 29, 3] in
computer security. Dwork et al. also redeemed that randomness is essential to define
differential privacy as ’privacy preserving’. Consider the following randomised algo-
rithm M : X → ∆(Y ) which outputs the probability space ∆(B) = {x ∈ R|Y ||xi ≥ 0 for ∀
i and ∑

|Y |
i=1 xi = 1} on the input domain xi ∈ X . Then, differential privacy can be defined

as stated below.

Differential Privacy Definition: Using L1 norm of a dataset as a measure of its size
||s||1 = ∑

|S|
i=1 |si|, the difference in the number of instances between two datasets (S,S′)

can be noted as ||S−S′||1.

Suppose there’s a set of neighbouring datasets that differs in only one entry being
denoted as (S,S′), such that the L1 distance ||S− S′||1 ≤ 1 . A randomised learning
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model M is said to be (ε,δ)-differential private if for ∀Y ⊆ Range(M):

Pr(M(S) ∈ Y )≤ exp(ε)∗Pr(M(S′) ∈ Y )+δ (2.9)

Similarly, M is ε-differential private, if ∀Y ⊆ Range(M):

Pr(M(S) ∈ Y )≤ exp(ε)∗Pr(M(S′) ∈ Y ) (2.10)

While this defines differential privacy in general, it may be too abstract to think of
its applications in machine learning tasks. Thus, we will explain how DP is made
applicable to machine learning models in the coming section.

2.4.1 Application of DP on Machine Learning Models

Dwork et al. also proved that noises randomly drawn from certain probability distribu-
tions also apply the definition of differential privacy. Perturbing such noises to the target
function would also make the function privacy-preserving. These certain distributions
could be: Laplace, Exponential or Gaussian depending on the actual use-case. This
process of perturbing noises to the target model is called Noise Perturbation.
For instance, a ε-DP Laplace mechanism can be defined with a laplace distribution
Lap(∗) as follows:
Given a hypothesis h : X → Y with the sensitivity of h being ∆(h) and the privacy
parameter ε, the Laplace mechanism MLap(x,h,ε):

MLap(x,h,ε) = h(x)+(R1, ...,R|Y |) (2.11)

where Ri are drawn i.i.d. from Lap(∆h
ε
).

Because the Noise Perturbation method described above matches the mathematical
formulation of a machine learning problem, differential privacy became applicable to
machine learning tasks. Common ways of realising such statistical mechanism include
noise perturbations on the model’s parameters during the training process [1]; noise per-
turbation on the model’s outputs [44], and on the model’s objective function [10]. It is
hard to be clear about which method is prior to the other since each of them has its own
pros and cons to consider under specific contexts. For this project, object perturbation
is considered since it can be efficiently applied to logistic regression models.
DP through Objective Perturbation [11] is an efficient algorithm to introduce differ-
ential privacy on logistic regression models. This method perturbs well-tuned noises on
the model’s objective function before the start of the optimisation process. It was also
proved to satisfy ε-differential privacy (Definition 2.10). Readers with interest in this
algorithm can refer to Section 3.2 and Section 3.3.2 in [11].

2.5 Resolution to the Randomness

Randomness in DP set a stone on our way to draw concrete conclusions in our experi-
ment since it leads to uncertainty in the observations. As a resolution, we proposed the
following terminologies.
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2.5.1 Average Protection Success Rate

Randomness in DP means there’s the likelihood that two models trained with the same
privacy settings on the same training set would perform differently in their protection.
Thus, we should observe DP’s average performance to determine its efficiency. We
defined the term Average Protection Success Rate to measure the average performance
of DP in protecting the points exposed in the non-private model as follows:

APSR: Given an original non-private target model as M trained on the set S which
consists of n elements sampled randomly from the entire distribution D. Formally,

S⊆ D, where |S|= n.

Let A denote the adversary as defined in Section 2.3.1, and let Svul denote the set of
points exposed in the non-private model M such that:

A(M,si,D,n) = 1 for all si ∈ Svul and Svul ⊆ S (2.12)

let Mε denote the model trained with ε-DP on the set S. Suppose we train N number of
Mε to see ε-DP’s average performance in protecting the points in S from been discovered
by A. Let Mi

ε with i ∈ {0,1, ...,N} denote the ith one of the N models. Then, we can
define the Average Protection Success Rate of ε-DP on each data instance s in the Set
Svul as following:

APSR(s,Mε,A) = Prob[A(Mε,s,D,n) = 0] = 1− 1
N

N

∑
i=1

A(Mi
ε,s,D,n) (2.13)

for ∀s ∈ Svul .

With each instance in the Svul has been assigned an APSR score through a series of
attacks on the ε-DP models. We measure the performance of ε-DP by how many data
points can be protected more than half the time. Thus, if a data point’s APSR score
exceeds 0.5, it is protected by DP at ε level. We chose this thresholding value because
of APSR’s similarity to the definition of an average attack success rate in [9].

2.6 Degree of Outlying for Data Points

Because outlier is a central part of our study, we should define them according to our
context. We use the term ’degree of outlying’ to describe how distant a data point is,
relevant to most of its class. We use two distance metrics to define the data point’s
degree of outlying in this study for the purposes stated in the following sections.

Distance to Cluster’s Centroid is applicable when the data is two-dimensional, which
allows the use of the centroid of these points as a target to compare with other data
points in the training set for measuring their degree of outlying in the set. The following
is how to calculate the centre of each cluster of data points.

Given a collection of training points of classa: Sa = {(x1,y1),(x2,y2), ...,(xn,yn)} of
length n. The centriod of these points: (x̃a, ỹa) is calculated as:

(x̃a, ỹa) = (
1
n

n

∑
1

x,
1
n

n

∑
1

y) (2.14)



Chapter 2. Background and Definitions 17

Then, for each point si = (xi,yi) in classa, the distance di for ∀i ∈ [1,n] to their centroid,
(x̃a, ỹa) can be defined as the following:

di =
√
(xi− x̃a)2 +(yi− ỹa)2 (2.15)

Distance to the Decision Boundary of the Logistic Regression Model is another
metric to measure data points’ degree-of-outlying because data vulnerability might be
relevant to the nature of the model. This distance can be defined using the model’s
hyper-plane. For instance, given a 2d data point s = (x,y), with a logistic regression
model defined as:

f (x) =
1

1+ e−(β0+β1x+β2y)
(2.16)

The point’s distance d to the decision boundary can be defined as:

d =
β1x+β2y+β0√

β2
1 +β2

2

(2.17)

Since the denominator is a constant for each model, we use only the numerator as an
estimate of the points’ distance to the decision boundary in the actual experiments for
efficiency. Thus:

d ≈ β1x+β2y+β0 (2.18)



Chapter 3

Experiments

Experiments are needed to answer the questions stated in Chapter 1. In this chapter, we
first formalise these questions into hypotheses, then plan the experiments accordingly
into pipelines. We also explain the technical details for implementing the crucial steps
in our pipeline and their performance.

3.1 Hypothesis and Pipelines

Hypothesis 1 (H1): Data Points’ Exposure to MIA is Relevant to their Distribution:
On the logistic regression model, the set of points exposed by loss-based MIA tends to
be out of distribution in the training set.
Hypothesis 2 (H2): Removing Sensitive Points trigger Privacy Onion Effect in logis-
tic regression: Suppose the sensitive points in S of the model M are the points exposed
by MIA that are more out-of-distributed than others. Removing a fraction of these
sensitive points from S will expose another set of more inlining points to the attacker in
logistic regression models.
Hypothesis 3 (H3): Data Points’ Protection Difficulty is Distance-Related: On the
logistic regression model, the more outlying the points exposed by loss-based MIA are.
The larger the noises needed from DP to protect its privacy and vice versa.

With the hypotheses stated, a set of experiments are designed to test each of the
hypothesis in the following section.

3.2 Pipelines

We use the following set of flowcharts to illustrate each step in the experiment planned
for testing each of the hypotheses. The resulting output at the end of each pipeline will
be used to examine and analyse the three hypotheses respectively.

We are then going to cover the general set-up that is common for these experiments in
Section 3.3.

18
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Figure 3.1: Flow charts of the steps for experimenting on the three hypotheses respectively; Each flow
from the start to the end marks one run of the experiment. For instance, to do one experiment on testing
H3 on one ε value, all the steps in the H3’s flow need to be followed from the start to the end.
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3.3 Experiment Setup

Following are the common setups in the target model architecture and the datasets for
all three kinds of experiments.

3.3.1 Target Model Architecture

We mainly experiment with our hypotheses on a logistic regression model, with the
reasons stated in Section 2.1.2. The learning algorithm used in the experiments is a
batch-based gradient descent algorithm: Limited-memory Broyden-Fletcher-Goldfarb-
Shanno (LBFGS) algorithm [48], due to its efficiency in decreasing the cross-entropy
losses to the optimal with time complexity of O(n2) where n is the size of the training
set.

3.3.2 Datasets

Following are the datasets used in the experiments: Two synthetic datasets generated
from different Gaussian distributions: SynLR1 and SynLR2, each containing 400 entries
of 2-dimensional data; Some benchmark datasets obtained from the UCI machine
learning repository [16]: Haberman’s Survival contains 306 entries of 4-dimensional
data; Cleveland Heart Disease contains 303 entries of 13-dimensional instances, and
Adult contains 48842 entries of 14-dimensional data. The small to middle sizes datasets
allowed fast convergences of LBFGS optimiser on the objective function. The di-
mensionality of the data with more than 2 dimensions was reduced to 2 by principal
component analysis (PCA) [31] to satisfy our problem setting on low dimensional data.

3.4 Target Model Training

Before the model is trained with the optimiser, the dataset is split equally into a public
and private set based on the assumptions of the attack (in Section 3.5.1). Then, with the
LBFGS optimiser, the model is trained to its convergence on the given private training
set and tested with the private testing set.
At the start of experiments, we fix a public-private split for each distribution and train
an original model. The following table records the corresponding statistics for these
models respectively.

Original Target Models
Model DataSet TrainAcc(%) TestAcc(%)

LR

SynLR1 83.428 77.333
SynLR2 66.857 61.333

Adult 80.142 79.815
Haberman 76.636 76.086

Heart Disease 84.761 69.565

Table 3.1: The optimal performance of memorisation (Train Acc) and generalisation (Test Acc) of the
target models trained on the default training set for each data distribution used in this study.
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Then in the later experiments, we would randomly switch the public datasets accessible
to the attacker and the private datasets accessible to the target model for a thorough
inspection.

3.4.1 Modified Target Model Training

We need to modify the private training set for experiments on H2. This action can
impact the model’s empirical performance on the training set and overall performance
on the testing set. Following the default settings of public-private data splits for each
distribution, we progressively removed a bigger number of the most out-of-distribution
points from each private training set, using both the definitions of data points’ degree of
outlying outlined in Section 2.6.
We trained new target models on the modified private training set and test them on
the original private testing set, removing data points based on their distance from the
decision boundary. Accuracy trends are depicted in Fig 3.2, with a similar trend for the
other case of removing data points based on their distance from the clusters’ centroids
found in Appendix A, Fig A.1.

Figure 3.2: LHS: drop in training accuracy when an increasingly big proportion of data was removed;
RHS: the drop in the testing accuracy according to the drops in training accuracy; Remove data points
by their degree of outlying from the private training sets doesn’t influence a lot on the model’s training
accuracy and testing accuracy on most of the data distribution, except the SynLR2 until removed by 80%.

It’s interesting to see a turning point at 0.8 in the continuous decrease of training accu-
racy on the model trained on the private training set sampled from SynLR2 distribution.
The most likely cause of the remaining training data points forms a new pattern that is
linearly separable. Hence we scatter the modified training set and the corresponding
classifier’s decision boundary for inspection in Fig 3.3.

Thus, as the proportion of removal increases, the model might find new patterns in
the training set and result in higher empirical accuracy, but this can’t prevent the drop
in testing accuracy. This drop in accuracy might give us unexpected results when we
attack the privacy of the model training set with the methods described in the following
sections.
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Figure 3.3: The data being removed (yellow dots) were scattered with the remaining training set (in
red and blue) with the model’s decision boundary in the background; Comparing the distribution of the
modified training data by more than 80% to the decision boundaries indicate that the modified training
sets are linearly separable.

3.5 Attack and Protect

This section detailed the procedures for implementing loss-based MIA and differential
privacy protection on the target models trained. Starting with the attack, we will
compare the performance of a loss-based attack to a calibrated loss-based attack to see
which is more suited to our hypotheses in the sense of having a more balanced tradeoff
between attack performance and efficiency. Efficiency is essential for getting our results
due to the need for multiple attacks in some experiments.

3.5.1 General Assumptions on the Attack

We made the following assumptions about the attacker in the membership inference
attacks:

• The attacker can only access the model as a black box.

• The attacker knows the data distribution of where the training set is drawn from.

• The attacker knows the type of the model.

• The size of the private training set.

• The attack will randomly sample a public training set of the same size as the
private one for threshold selection.

3.5.2 Attack Performance

Loss-based attacks and calibrated-loss attacks are performed on the target model trained
in Section 3.4.1. The following metrics are used to see if the attacks have the potential
for high-precision attacks.

• Highest Precision with its Recall: High precision tells us the existence of
threshold values for a high-precision attack, and recall value tells us the proportion
of such high-precision thresholds among all the threshold values. Precision =
T P/(T P+FP) tells how much among all the ‘true’ responses from the attack
are correct; Recall = T P/(T P+FN) tells us how good the attack is in making
correct inferences among all the ‘true’ instances.
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• Mean Accuracy: The mean attack accuracy = (T P+T N)/(T +N) averaging
across all the thresholds, gives us a general performance of the attack.

• Min Accuracy: The poorest possible attack accuracy as a bottom line on the
attack’s performance.

• AUC (Area Under the ROC Curve): the area under the Receiver Operating
Characteristics curve tells us the overall performance of the attack in distinguish-
ing the members of the training set from non-members; Unlike the measure of
highest precision with recall, AUC tells the attack’s performance across all the
threshold values.

Following records the performance of each kind of attack using these metrics.

3.5.2.1 Uncalibrated Loss Attacks

The table below records the attack performance of the loss-based MIAs on the target
models.

Loss Based Attack on Logistic Regression Models
DataSet Highest Precision w Recall Mean Acc Min Acc AUC
SynLR1 0.735, 0.711 0.677 0.300 0.537
SynLR2 0.875, 0.02 0.611 0.302 0.533

Adult 0.710, 0.120 0.671 0.300 0.502
Haberman 1.0, 0.018 0.639 0.308 0.463

Heart Disease 0.746, 0.448 0.630 0.305 0.482

Table 3.2: Loss-based MIA attacks’ performance on original target models specified in Section 3.4; We
can see the potential of performing high-precision attacks on all of these models. Because the highest
precision for all of these models are over 70%. As well as a good general performance from the mean
accuracy values and the AUC.

Figure 3.4: Distribution of the membership scores of attacking the training set (blue bars) and the testing
set (orange bars) of the loss-based attacks on LR trained on the four kinds of data; All of these attacks
have the thresholds for high precision, because of the existence of regions on the right-hand side of each
graph where a moderate proportion of blue bars not being overlapped by the orange bars.

From the table, we can see that although loss-based attacks have a bad worse accuracy,
it doesn’t eliminate the chance for a high-precision attack at a tolerable accuracy.
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Further, we can explain the reason for high precision attacks on the models by illustrating
the distribution of the attack’s score on the training set and the testing set as being
inspired by Watson et al.[58].

From the loss distributions for attacks on each of the original models, we can see each of
them has a section where only blue bars exist. Meaning most of the attack results going
to be correct if the attacker could set a threshold there and classify all the data above
this threshold as inside the training set. On the other hand, if the threshold selected
has strong overlapping of the blue and the orange above that point, then it’s hard to
distinguish and hence results in a low precision attack.

3.5.2.2 Calibrated Loss Attacks

The table below records the performance of calibrated loss attacks on the target models
using the same metrics as previous.
Similarly, the loss distribution of the calibrated attacks is plotted to explain the potential
improvements brought by calibration.

Calibrated Loss Based Attack on Logistic Regression Models
DataSet Highest Precision w Recall Mean Acc Min Acc AUC
SynLR1 0.722,0.837 0.699 0.656 0.225
SynLR2 0.759,0.686 0.696 0.628 0.423

Adult 0.707,0.386 0.699 0.458 0.435
Haberman 0.729,0.981 0.702 0.699 0.151

Heart Disease 0.706,0.953 0.690 0.514 0.361

Table 3.3: Calibrated Loss Attacks on the target models; After calibration, we can see a clear improvement
in the attack’s recall with the highest precision unaffected much. As well as a lift in the minimum attack
accuracy. But a limit in improvement on the attack’s AUC.

However, the calibration’s capability differs in logistic regression from neural networks.
To see the difference in the effectiveness of calibration on these two kinds of models.
We trained a convolutional neural network with the same architecture as the CNN used
in the study of Watson et al.[58] on CIFAR10 for comparison.

Figure 3.5: LHS: Uncalibrated loss attack and RHS: Calibrated loss attack on the CNN trained on
the CIFAR10 dataset; Calibrate attack difficulty to the membership score improve the attack precision
significantly on neural network.
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Figure 3.6: LHS: Uncalibrated loss attack and RHS: Calibrated loss attack on the LR model trained on
the Adult dataset; Compare to the significant improvement on CNN, the effect of difficulty calibration is
less obvious on logistic regression.

While on logistic regression, it’s still able to observe an overlap in the loss distribution
after difficulty calibration. Unlike the clear separation in the case of CNN. Thus,
empirically demonstrate the drop in calibration’s effectiveness on logistic regression
models.

Comparing the performance on both uncalibrated and calibrated loss attacks. We
decided to use the uncalibrated loss-based attacks in the experiments for the reason: 1.
Avoid potential drawbacks in difficulty calibration; 2. Computational efficiency without
calibration; 3. Uncalibrated loss attacks can also yield high-precision attacks.

3.5.3 DP’s Protection Performance

Since experiments on testing H3 require privacy protection on the target model from
differential privacy. Diffprivlib library [21] was used to efficiently introduce noises on
the logistic regression model through objective perturbation. We had two metrics to
examine the effectiveness of this DP mechanism. The first is to compare the model’s
average training accuracy before and after the privacy protection due to the privacy
utility trade-off[23]. Averaging is vital due to randomness in DP. And it is achieved by
training and averaging the result over 1000 models at the same privacy level quantified
by ε.

Privacy Preserved Target Models’ Average Training Accuracy (%)
Dataset Epsilon

0.1 5 10 25 100 1000 None
SynLR1 50.825 50.645 82.708 82.930 83.415 83.434 83.428
SynLR2 50.513 50.662 65.945 66.787 66.653 66.781 66.857

Adult 58.662 80.029 79.741 80.095 80.135 80.142 80.142
Haberman 49.628 62.069 73.895 75.317 75.727 75.700 76.636

HeartDisease 50.952 51.146 80.593 85.096 85.273 84.910 84.761

Table 3.4: Objective Perturbation on logistic regression models’ average training accuracy; We can see
that with the increase in epsilon’s value from 0.1 to 1000, the training accuracy will tend to be closer to
the model without differential privacy.

Another popular way to measure the effectiveness of DP is through membership in-
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ference attacks [12, 43, 23]. Thus, the following distribute the number of training
data points exposed in the privacy-preserving models trained at each level of ε for a
collection of epsilon values. Comparing the distribution for each level of ε, we see

Figure 3.7: Distribution of the frequency (y-axis) of the attacks exposing each number of points (x-axis)
on models with each ε-DP; The dotted red line indicate the number of points found in the non-private
model; The bigger the ε, the closer the distribution gets to the non-private model. Whereas the smaller
the ε, the more frequent it is to have a model with less number of data points exposed.

that the method we used to add differential privacy protection on the target models
is effective since the trend at each level of ε follows the property of DP – the higher
the epsilon, the weaker the protection. Thus, the objective perturbation is feasible to
examine our hypotheses.

Figure A.8 and Figure A.9 in Appendix A.4 illustrate point-wise privacy protection
from DP to MIA to demonstrate the randomness in such protection method for further
interests.

Use of APSR in DP: From the unstable distribution of DP’s covering effect as illustrated
above, we can also see the randomness in this privacy protection. Thus, when examin-
ing any ε-DP’s point-wise privacy protection, it’s unavoidable to calculate the APSR
(Average Protection Success Rate) for these points to determine whether they were
covered successfully. The default setting of the number of repeats N in this calculation
is 1000 for the logistic regression model. Since the model itself is deterministic, which
makes DP is the only source of randomness in the experiments. In other words, we
count training data in the target model as being covered successfully by an ε-DP. If and
only if the data point can not be inferred by loss-based MIA on this model with more
than 500 times.
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Results and Analysis

This chapter visualizes and analyses the experimental results from the previous chapter
to provide answers to our three research questions. We also include additional experi-
ments and results to thoroughly investigate some of our main contributions, followed
by miscellaneous results discovered during our exploration.

4.1 Pattern of Privacy Violation and Data Vulnerability

We can see the pattern of privacy violation on the training set for logistic regression
models on the illustrations of the results from experiments on H1 (Fig4.1). The pattern
suggests that vulnerable data is not always the out-of-distribution ones, and they spread
along the decision boundary.

Figure 4.1: Top Row: The training set input to the logistic regression models: SynLR1, SynLR2,
Haberman; Bottom Row: As a result of loss-based MIA on the training sets, the data being exposed are
scattered with a denser colour than the data that is safe from the attack. The decision boundaries of the
models are plotted at the back for observation.

27
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Observing the pattern of privacy violation gives us insights into which part of the
training set might be more vulnerable to membership inference attacks (MIA) than
others. In the case of logistic regression models, the ones that are easy to separate with
a line are more vulnerable since the loss-based attack marks the easy-to-separate data
using higher membership scores. The violation spreads along the decision boundary
because data along would bear similar prediction loss, making the loss-based attack
identify these points altogether. Thus, the pattern of exposure in MIA gives us some
insights into the reasons for these exposures and helps us interpret data vulnerability
within the context of the problem.

We also observe from the pattern that MIA does not violate the privacy of some specific
outliers in the training set of logistic regression, which are the ones in the cluster of
data of the other label. This behaviour is explainable by the outliers on the side of their
classes will bear a lower prediction loss (higher membership score) than the outliers on
the other side. Hence, the pattern of privacy violation lets us know that the data’s degree
of outlying can not solely explain data vulnerability in logistic regression models.

In summary, the pattern of privacy violation in MIA on logistic regression models
is relevant to understanding data vulnerability. From this pattern, we can identify
vulnerable parts of the training set and gain insights into how MIA exploits privacy in
the specific context of the data and model. This knowledge can inform measures to
protect against MIA, making the pattern of privacy violation a crucial factor to consider
in assessing data vulnerability.

4.2 Privacy Effects of Data Removal

Illustrations on the results from experiments on H2 suggested that removing data points
from the training set of logistic regression models would result in more complex privacy
effects than the Privacy Onion Effect. The privacy effect has three cases: 1) when data
removal helps cover the previously-exposed data points, 2) when the removal has no
effect on the data points remaining, and 3) when the removal leads to new exposure
(Privacy Onion Effect). This observation empirically suggests the potential that data
removal might still be helpful to the remaining training set privacy.

Additionally, we found that we can not use the location of the data removed from
the training set to explain the cause of the privacy effects since each effect happened
regardless of where we take out the data from the training set. Evidence using training
sets sampled from SynLR2 distribution is in Fig 4.2. This finding emphasises that data
removal from the training set of a model is risky to the privacy of the remaining data
because the removal of even random data points can cause these privacy effects on the
rest of the training set.

However, we might be able to explain the privacy effects in more detail if we consider
the shifts in the decision boundary caused by data removal from the training set since we
previously suggested a relationship between data vulnerability and decision boundary
in the context of logistic regression. Besides, shifts in the decision boundary might also
be one of the reasons why the location of the removed data can not be a cause of the
privacy effects: Is it perhaps a specific kind of shift in the decision boundary leads to
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Figure 4.2: Each plot demonstrates the result of MIA and privacy effects as a result of 10% of the
previously exposed data points being removed from the training set of data SynLR2. Each column
indicate one location to remove data from the training set and it shows that the three privacy effects
occurs regardless of the location of the points removed used-to-be.
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each type of privacy effect? This hypothesis leads us to consider whether the decision
boundary contributes to the privacy effects, which motivates further investigation. We
conduct extended experiments, with the results stated in the coming section.

4.2.1 The Boundary was Shifted Closer to Most of the Privacy-
Affected Data Points

We focused our analysis on the shifts in the decision boundary that affect the privacy of
newly-exposed and newly-covered data points because these effects have an impact than
having no effect. Let’s denote the data points affected by the two targeted privacy effects
as ”privacy-affected data points.” We can measure the shift in the decision boundary
resulting from these privacy effects by using the distances of the privacy-affected data
points to the decision boundary.

Figure 4.3: Top Row: As a result of removing 10% of the most-outlying or less-outlying sensitive
data points from the training sets of SynLR1, both the cases would cause newly exposed (light pink and
light blue) and newly covered (grey); Bottom Row: The bars in the plots represent the change in the
distances of the data points that have their privacy being affected to the decision boundary. Where each
bar represent one single data point. The change can be seen as the difference between the blue bars
(before removal) and the orange bars (after removal). Blue bars are over the orange bars most of the time,
meaning the boundary was often shifted closer to the remaining data after the training set is modified.

As a result, we found that most of the privacy-affected data became closer to the
boundary than before (Fig 4.3). Exceptions also exist, like in one case when both
privacy effects occurred (Fig 4.4), and the decision boundary shifts in a way that makes
it moves closer to the new covered and away from the new exposed. Hence, based
on our current observation, it is hard to draw detailed conclusions on the movement
that lead to each kind of privacy effect. But we can conclude that data removal from
the training set leads to a shift in the decision boundary, which might lead to the three
privacy effects. Considering the proportion of data removed (10%) is not big enough
to see concrete results in our experiments. We planned the following experiments for
thorough inspections.
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Figure 4.4: A rare case was observed on a training set of Haberman data: when two privacy effects
happen on the same training set, the decision boundary is shifted in a way that it’s closer to the points
covered and away from the point exposed.

4.2.2 Data Removal within a Range Might Improve Privacy

We continue the experiments on data removal’s impact on privacy with an increasing
proportion from 20% to 100% because of our previous limitation in the results due to
the removal of only 10% of the sensitive data points.

As a result of removal with increased proportion, we see big-scaled shifts in the decision
boundary most of the time shown in Fig 4.6 and Fig 4.7. Exceptions exist like (Fig 4.5)
when removing the entire set of previous-exposed data impacts little on the boundary.
Thus, it is hard to guarantee a positive correlation between the removed data size and
the scale of the shift in decision boundary. But we confirmed that the bigger the set
gets removed from the training set, the more likely it is to have a big-scaled shift in the
decision boundary.

Figure 4.5: LHS: The data points in denser colours are exposed as a result of MIA on the original
training set sampled from Heart data; Middle: Removing all the data exposed in the original training
set creates new exposure in the remaining training set; RHS: Privacy effect in this context still cause a
small change in distances of the newly exposed data points to the decision boundary before and after the
removal action.

We also found that when removing data according to a proportion within a range for
the context of each training set, the removal would only cover previously exposed data
points with no new exposure. Evidence is in Fig 4.6 and Fig 4.7 where in each case the
range is from 40%-90% in Fig 4.6 and 30%-80% in Fig 4.7 respectively. This finding
suggests that data removal might be helpful to the privacy of the remaining training set
if such a range can be observed and utilised in practice.

However, it’s worth noticing the decrease in model performance might be tremendous
when large numbers of data get removed. Like in the case of Fig 4.6, the drop in training
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Figure 4.6: As the proportion of sensitive data points gets removed from a training set of SynLR1
increased. We see that the privacy effect on the remaining training set gets stabilised to ’covering old
exposure’ when the proportion is within 40% to 90%. The gap in the distances of the affected data points
to the boundary caused by training set modification gets bigger shown as a growing purple line.
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Figure 4.7: Same experiments as above on dataset SynLR2 convey the same conclusion that when the
proportion of sensitive data is kept within a range, this case:30%-80%, the privacy effect would be
stabilised to ’covering old exposure’.
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accuracy could be as most as roughly 17% when we remove the entire set of sensitive
data. Thus, practitioners should notice the trade-off in utility when withdrawing data
from the training set for the potential improvement in the training set privacy.

Concluding our exploration of the privacy effects caused by data removal in the training
set, we confirmed the shift in the decision boundary leads to the privacy effects. The
number, but not the location, of removed data points, may be related to privacy effects,
and in certain scenarios, removing data within a specific range can enhance privacy
protection. Identifying this range and the corresponding impact on model performance
can be valuable in practice.

4.3 Data Vulnerability and Difficulty to be Protected by
Differential Privacy

The vulnerability of data points to MIA attacks is not uniform when differential privacy
is applied as a protection, as evidenced by our experiments on H3 (Fig 4.8) shows a
bubbling effect in the protection strength, which is a difference in the level of privacy
protection needed by individual data in a training set – easy-to-protect data points
centralize around the decision boundary, the hard-to-protect data points locate more
outlying. This finding demonstrates the susceptibility of data points to differential
privacy protection differs in the training set, underscoring the uneven risks MIA poses
on these data points.

Figure 4.8: LHS: the result of MIA attack on logistic regression trained on a training set of SynLR1 data;
Middle: convex hulls on the data exposed that is coverable at each level of DP; RHS: the data points
covered at each level of DP for more detailed inspections on covering effect; These plots shows that the
protection of DP comes in layers: the bigger the privacy parameter ε, the weaker the protection and it’s
only capable of covering a smaller range of points concentrated around the decision boundary.

We might be able to explain the bubbling cover effect in protecting the training set by
relating this effect to the resultant shifts in the model’s decision boundary based on the
conclusions we had so far on the relationship between data vulnerability and decision
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boundary. Therefore, we conducted experiments to investigate this relationship further,
and the results of these experiments are presented in the section below.

4.3.1 Protection Explained with Boundary Shifts

We can use the shift in decision boundary at each level of differential privacy to help
understand the bubbling cover effect since the shifting scale for the decision boundary
of the DP-private model at each level distinguishes, shown in Fig 4.9. This difference
in shifting scales might be a reason for each layer of protection consisting of different
data points in the training set. Additionally, the stronger the DP, the bigger the shifting
scale in decision boundary and contra versa. Thus, we conclude that when DP cause a
big-scaled shift in the decision boundary of the target model, it is more likely that this
level of DP can cover more hard-to-protect data points in the training set.

Figure 4.9: The scatter plots illustrate the point-wise result of MIA on the original and the DP-protected
logistic regression models trained on Haberman data; The histograms illustrate the distance of the data
points that were protected by a level of DP (or the data not being protected, if DP at that level failed to
protect any) to the decision boundary of each model. We can see that the stronger the DP (smaller ε), the
bigger the influence it brought to the decision boundary (shown as the big fluctuation in the purple line)
while it protects more data from exposure and contra versa.

While we have observed shifts in the decision boundary caused by differential privacy,
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we cannot determine a shifting direction for a successful DP protection in covering
privacy violations in the training set, as both cases of moving closer or further away
from covered points exist. Nevertheless, our understanding of the impact of differential
privacy on the model’s decision boundary at different scales allows for a new evaluation
of its effectiveness in logistic regression. By observing the magnitude of the shift, we
can estimate the protection’s efficiency, which could be valuable for future research.

4.4 Data removal with Differential Privacy

Our previous experiments revealed that removing data points is not always sufficient
to address privacy leakage in the training set. To resolve this, we suggest applying
differential privacy (DP) on the model trained on the modified training set. As a result,
we found that data removal aids DP’s protection on the remaining training set in the
following ways.

4.4.1 Weak Differential Privacy Suffices to Protect Newly Exposed
Data Points

We observed that the scale of DP required to cover newly exposed data points is typically
small, as shown in Fig 4.10 where we didn’t use epsilon values no smaller than 25 to
cover all the privacy violations. This finding is consistent with our previous conclusion
that inner data points are easier to cover with DP, confirming that protection difficulty
differs in layers within a training set. These findings further support the idea that data
points closer to the decision boundary are easier to protect with DP, making them less
vulnerable to MIA.

Figure 4.10: Top Row: When removing all of the data points exposed in the original target from the
training set can still expose a new set of data points; Bottom Row: These newly exposed data points
could be covered with a relevantly small scale of differential privacy with ε : 25&100.
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4.4.2 Points Removal Supports Differential Privacy

Removing some of the previously unsafe data points from the training set can help DP
cover the remaining training set more effectively. Our observation indicates that some
other previously-unsafe data points can now be covered with weaker DP than before
the removal, as demonstrated in Fig 4.11. This finding suggests that data removal is
beneficial to privacy protection with DP.

Figure 4.11: (A): As a result of MIA attack on Adult dataset, the privacy of the points in denser colours
are violated. (B): As a result of the yellow data points being removed which consists on 5% of the data
exposed shown in (A), it covers some of the previously unsafe data points (the grey points). (C): The
bubbling cover effect of DP on the exposure in (A). (D): The bubbling cover effect of DP on the exposure
in (B). Comparing (C) and (D), we can see that a lot of the data points that used to be protected with DP
at ε = 0.1 can now be covered with ε = 10.

Furthermore, both experiments in Section 4.4.1 and Section 4.4.2 removed the hard-
to-protect (the outermost lying) vulnerable data points from the training set, and they
both proved to be beneficial to the privacy of the data remaining or to the protection
efficiency of DP. This emphasised the importance to identify and remove the hard-to-
protect instances that are vulnerable to MIA for wider privacy benefits for the remaining
majority.
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4.5 Miscellaneous Results

This section went through the findings we got during the experiments that are not very
related to our main focus but are worth to be discussed in the main report. Figures
mentioned in this section can be found in Appendix A.

4.5.1 The Public-Private Splits Influence the Privacy Effects of Data
Removal

We found that for each set of public and private training sets generated from the same
distribution, we can get distinctive results in the privacy effects as a result of removing
data points based on the same criteria. Evidence can be found in Fig A.1 in Section A.1.

4.5.2 Outlier Definitions Based on Cluster Centroids and Decision
Boundaries Yields Similar Conclusion

Because of the discovery that data vulnerability is more relevant to the decision boundary
of the model. Our main results from the experiments involving data removal use data
points’ distances to the decision boundary to quantify their degree of outlying in the
training set. While the same experiments were conducted on the other definition, we
found that the results are similar. Evidence can be found in Section A.2.

4.5.3 Calibrated Loss May Not Enhance Attacks on Logistic Regres-
sion

We empirically found that calibrating each data point’s difficulty to be attacked to their
membership scores in loss-based MIA does not improve the attack performance a lot.
Evidence can be found in Section 3.5.2.2. But our observation is empirical, further
inspections are needed to draw concrete conclusions on the efficiency of calibrated
attacks on logistic regression.

4.5.4 Challenges in Neural Networks and some Preliminaries

We also empirically examine the challenges in examining the problem of data vulnera-
bility in the context of a neural network with a simple Multi-layered-perception model
(MLP). As we mentioned in Chapter 1, the challenges came from the uncertainty in the
attack results on the original target models. Evidence can be found in Figure A.6 in
Section A.3.

We preliminarily identify that data points in the training set for the MLP model bear
different difficulties to be protected by DP, shown in Fig A.7. These observations also
suggest that it is easier to protect the more inner-lying data points than the outliers.
But it is computationally costly to arrive at a more concrete conclusion because of the
uncertainty in the attack results combined with randomness in DP.
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Conclusion

This chapter summarizes our conducted experiments and evaluated results. We also
discuss the limitations of our work and suggest directions for further research.

5.1 Summary

In this report, we present our research on understanding data vulnerability to member-
ship inference attacks (MIA) on logistic regression models trained on low-dimensional
datasets. We focused on three main research questions: 1) Are outliers more vulnerable
than others in logistic regression? 2) Will removing certain data in the training set reveal
a new set of data points to the attacker in logistic regression? 3) Can we use differential
privacy (DP) to explain data vulnerability?

Firstly, we discovered that certain outliers in the training set are as vulnerable to MIA
as inliers from the pattern of privacy violation of MIA on the target models’ training
set. Secondly, we observed that removing these outliers could lead to the three privacy
effects:expose previously safe data, hide previously unsafe data, or have no impact
on the remaining training set, unlike the previous study which suggests data removal
only leads to new exposure. What’s more, we found that the consequence of random
data removal is the same as removing these outliers, which we found currently hard
to explain. Thirdly, we found that data vulnerability is explainable with the scale of
DP individual data possessed in the training set. The required scale of DP varies by
instance, indicating varying levels of difficulty to protect and vulnerability to MIA. We
also found this variation is relevant to a shift in the model’s decision boundary. Last
but not least, we found the removal of a proportion of hard-to-protect vulnerable data
points from the training set supports DP’s privacy protection in the remaining training
set, and this proportion is specific to the model and the training set. In conclusion, our
results from the thorough investigation foster our understanding of data vulnerability to
MIA in the context of logistic regression models trained on low-dimensional datasets.

39
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5.2 Limitation and Future Works

Our findings are limited by assuming a balance between the number of accessible data
to the attacker in MIA and the number of private data used to train the model. This
assumption failed to consider a more real-world scenario where the attacker might be
able to access significantly more data than the size of the training set. Thus, future
researchers can gradually increase the size of the public dataset accessible to the attacker
and evaluate its impact on data vulnerability.

Another limitation is that we only evaluate data vulnerability by using prediction loss
as the membership score for the loss-based attacks, which may not fully capture all
aspects of data vulnerability to MIA. For a thorough inspection, we should consider
other metrics to define membership score, such as the prediction confidence [47] and
gradient norm [37] should be considered as future work.

In addition to addressing these limitations, our contributions can guide future research in
data vulnerability to membership inference attacks. Firstly, we present the findings in a
setting of logistic regression models trained on low-dimensional datasets to highlight the
importance of studying data vulnerability within the context of each model and dataset.
To gain a more comprehensive understanding of data vulnerability, we encourage future
researchers to use our findings as a bottom line to explore data vulnerability with a
gradual increase in the complexity of the problem settings. Secondly, we suggest future
researchers continue on our empirical findings on the relationship between the privacy
effects of data removal and the influence on the decision boundary of the target model,
to develop a detailed insight into what kind of shift contributes to each privacy effect.
For a better understanding of the reasons behind the removal of random data points
from the training set resulting the same as removing outliers. Thirdly, we suggest
the development of a more efficient privacy protection mechanism that removes the
hard-to-protect (more outlying) vulnerable points and then protects the remaining data
points with a weak level of differential privacy. Last but not least, we discovered that
the privacy effects as a result of data removal on the remaining data points are more
complex than the previous Privacy Onion Effect, suggesting that researchers should
examine data vulnerability more comprehensively in their specific contexts.
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Appendix A

First appendix

A.1 Miscellaneous Result 4.5.1

Figure A.1 illustrate the finding stated in Section 4.5.1.

A.2 Miscellaneous Result 4.5.2

Figures: A.2, A.3, A.4 and A.5, illustrate the findings stated in Section 4.5.2.

A.3 Miscellaneous Result 4.5.4

Figures: A.6 and A.7, illustrate the findings stated in Section 4.5.4.

A.4 Outlier Privacy

It’s worth mentioning that Lui et al. [30] proposed a tailored-differential privacy
mechanism that might be easily confused with our contribution. Their work introduced
a novel privacy definition, called ”Outlier privacy,” which aims to address the privacy
implications caused by outliers in the output of a calculation or learning model using
their self-defined outlier definition. However, our contribution is on the broader topic of
the vulnerability of data points in a training set for a machine learning model in general.

A.5 Differential Privacy’s Randomness

Figure A.8 and A.9 demonstrated the randomness in DP’s protection from the point-
wise.
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Figure A.1: Experiments of data removal on the different public-private split on SynLR2 distribution;
Each split results in a distinctive privacy effect from the privacy attack on the model trained on the
modified training set.
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Figure A.2: LHS: drop in training accuracy at each proportion of data being removed; RHS: drop in the
testing accuracy at each proportion of data being removed by their distance to the centre of each class;
The effects of a training set modification on the utility of the model is similar to Fig 3.2.

Figure A.3: Each plot represent a distinct training set sampled from SynLR2 distribution with 10% of the
previously-exposed training points being removed from LHS: the innermost; Middle: the middle; RHS:
the outermost. With the degree of outlying measured by distances to the centre of each class. We can see
that the same conclusion as Section 4.2 holds on this definition of degree of outlying as well.
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Figure A.4: Each scatter plot is a privacy effect resulting from removing 10% of data points at different
degrees of outlying defined with the distances to the centre of each class, from the training sets selected
from SynLR1. We can see that results from Section 4.2.1 also hold for this definition of the degree of
outlying when data points’ privacy is affected due to the training set being reduced. Those affected data
were usually brought closer to the decision boundary.

Figure A.5: LHS column: The privacy effect brought by removing 5% of the most outlying data points
by their distance to the centres of their classes; RHS column: DP’s bubbling covering effect on the
corresponding exposure before and after the modification on the training set. Same conclusion as Section
?? can be drawn on removal by this definition of degree of outlying, that removing some of the most
outlying data points helps the privacy of the remaining data points to be protected.
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Figure A.6: Results of loss-based attack on MLP trained with SGD is non-deterministic; As we can see
from the histogram of a number of data points being exposed (y-axis) vs the number of attacks having
each number of exposure (x-axis), that each attack on a distinct model trained with the same setting
differs.

Figure A.7: LHS: The privacy of the data points with a denser colour was violated by loss-based MIA on
Multi-Layer-Perception (MLP) models trained on a synthetic data set of Gaussian distribution. While the
data safe from the attack were at the back; LHS: Use DP at different levels to cover the privacy violation
shown in the RHS plot, showing us that data points in the training set for an MLP model are also not
equally hard to be protected.



Appendix A. First appendix 52

Figure A.8: Randomness in DP protection at epsilon 10 on the MIA on a model trained on the synthetic
dataset: the first column plots the original datasets with colours used to distinguish the classes and each
row is one dataset. Then each column afterwards is the attack result on one DP-private model. As a result
of the attack, the data points with their privacy being exposed were scattered with a denser colour at the
front with the total number noted at the bottom right corner. The decision boundary of each DP LR is
also plotted in the background.

Figure A.9: Randomness in DP protection at epsilon 100 on the MIA on a model trained on the synthetic
dataset: this plot is used for the same purpose as Figure A.8 but with protection at a weaker level.
Compare to Figure A.8, we can see that DP at epsilon 100 protect points is less effective in terms of the
number of points covered and the frequency of successful protection.


