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Abstract
We ask the question of whether the generalisation improvements that are made by regu-
larising the persistent homology dimension of network trajectories are a consequence of
better compressibility. It is in fact not the case but through answering this question, we
identify properties of these regularised models that contradict the current understanding
of the role of gradient noise in stochastic gradient descent.
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Chapter 1

Introduction

Deep neural networks (DNNs) have grown to be a staple in modern-day machine
learning, often containing millions or billions of parameters. Despite their wide-spread
usage, many questions regarding the generalisation ability of neural networks remain
unanswered. DNNs are often heavily overparameterised and so have the capability
to simply memorise the training data, yet it is often the case that they are still able to
generalise well to unseen data when trained with stochastic gradient descent (SGD).
It is a phenomenon that contradicts classic statistical learning theory where good
generalisation performance is achieved at a sweet spot between the simplicity and
the complexity of the model, hence the usage of regularisation in machine learning
methods.

A thorough, undisputed theory to explain the underlying mechanics of SGD remains
lacking in the field. It has been a topic of interest for many years and it is generally
believed that the stochasticity of SGD acts as a form of implicit regularisation [1, 2].
This property is thought to be the reason SGD is able to achieve such competitive
performance against more sophisticated variants, such as ADAM [3]. This implicit
regularisation has been observed in the form of a bias towards low norm solutions [4, 5]
or solutions that have low complexity [6, 7].

Knowledge of the underlying biases of SGD allows for the development of new op-
timisation algorithms with these biases in mind. As the behaviour of SGD becomes
more well-known, we can gain insight into how to directly influence the methods used
to train DNNs towards better generalising solutions. Such a method was developed
after recent observations determined that the gradient noise of SGD is better modelled
as being drawn from a heavy-tailed distribution rather than a Gaussian distribution
[8]. Persistent homology dimension regularisation (DimPH regularisation) [9] seeks to
increase the heavy-tailedness of the noise distribution as heavier tails have been shown
to be strongly correlated with the generalisation ability of the resulting model [10]. The
computation and differentiation of this regularisation term is achieved via methods in
topological data analysis - an emerging field in machine learning that applies concepts
from computational algebraic topology in a machine learning setting.

This dissertation aims to explore the behaviour of SGD when implemented with DimPH
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Chapter 1. Introduction 2

regularisation with a particular focus on the links between compression and general-
isation. Compressible models are considered to generalise better on unseen data as
they can be well-approximated by models with much fewer parameters, allowing for
bounds of the generalisation error of the compressed model to also be applied to the
uncompressed model [11, 12]. We want to answer the question of

Can the improvement in generalisation induced by minimising the persistent
homology dimension be attributed to the compressibility of the resultant
models?

The goal of asking such a question is to better understand the underlying mechanisms
of SGD by knowing why such solutions have good properties in generalisation.

1.1 Contributions

While the main objective of this dissertation is to the answer the question as presented
above, we also uncover a number of additional observations about current assumptions
of SGD generalisation. Our contributions may be summarised twofold.

• Our results demonstrate that, despite the sound motivation for considering such a
scenario, it is not the case the compressibility is an underlying factor to explain
the improvements in generalisation made by DimPH regularisation.

• We analyse other properties of models trained by DimPH regularisation and
identify differences between the heavy-tailed noise induced by the ratio of step
size to batch size and heavy-tailed noise induced by controlling the persistent
homology dimension.

1.2 Outline of Report

Chapter 2 describes the background material necessary to understand the computation
of the persistent homology dimension and the methods we use in our experiments.
Specifically, it provides details on stochastic gradient descent, network pruning, the
use of persistent homology in topological data analysis, and what is meant by a fractal
dimension alongside definitions of fractal dimensions either used or mentioned within
this dissertation.

Chapter 3 details the recent advancements in understanding the mechanics of SGD and
how that has lead to the development of DimPH regularisation. Chapter 4 explores the
existing literature surrounding the heavy-tailed noise assumption of SGD, compression,
and generalisation and ties the results to the question we intend to answer in this
dissertation. It also provides a breakdown of the question into subpoints. These
subpoints are addressed in the experiments we conduct in Chapter 5 which details
the experimental setup and results. Finally, Chapter 6 concludes the work in this
dissertation by summarising and evaluating the achievements and limitations of this
project.



Chapter 2

Preliminaries

This chapter will give an overview of the background material required to understand
the motivations and results of this dissertation. Section 2.1 will provide background on
stochastic gradient descent; a common algorithm used to train neural networks. Section
2.2 will give a high-level overview of network pruning, primarily the motivation for
such a process and the main ideas behind it. Section 2.3 covers the necessary content in
topological data analysis, namely persistent homology, to understand the computation of
the persistent homology dimension that is introduced in the following section. Section
2.4 explains what is meant by a fractal dimension and gives definitions of the Hausdorff,
box counting, and persistent homology dimension.

Readers who are familiar with the content should feel free to skip to Chapter 3 where a
more detailed description of the basis for DimPH regularisation is discussed. We do,
however, recommend reading about the persistent homology dimension is Section 2.4
to understand its computation given in Chapter 3.

2.1 Stochastic Gradient Descent

Stochastic gradient descent (SGD) is a popular algorithm for finding approximate solu-
tions for an optimisation problem. In the context of machine learning, the algorithm
aims to find a parameterisation, Σ, of a model, f , that minimises a continuously differ-
entiable loss function, L ( f (X ;θ) ,Y ), where X ,Y denote the set of observations and
labels, respectively.

SGD is a variant of full-batch gradient descent. The parameter update rule for full-batch
gradient descent is given by,

θt+1 = θt−η∇L ( f (X ;θt) ,Y ) ,

where η is the step size and θt are the model parameters found at iteration t.

The gradient vector of the loss function, ∇L ( f (X ;θt) ,Y ), gives the direction of
steepest descent. That is, the direction in which the parameters should be shifted
towards in order to maximally reduce the loss. It is computed over the whole training
set, meaning that the time to compute the gradient grows with the size of the training set.

3



Chapter 2. Preliminaries 4

Figure 2.1: Paths of full-batch gradient descent (blue) and stochastic
gradient descent (red) converging to a local minimum. Although the
path of SGD is much noisier, it does eventually converge near the
destination of the full-batch gradient descent path.

This is not a favourable property as the training of machine learning models typically
requires vast amounts of data. SGD circumvents such computational complexity by
computing the loss function gradient over a random sample of the training set. The
parameter update rule for SGD is therefore given by,

θt+1 = θt−η∇L
Ä
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, (2.1)
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j=1 are samples of size b that are randomly drawn from the training

set at each iteration. The stochastic gradient, ∇L̂ = ∇L
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, is

an unbiased estimate1 of the true gradient, ∇L =∇L ( f (X ;θt) ,Y ). While the trajectory
of SGD iterates will be stochastic, they will converge to the trajectory computed via
full-batch gradient descent as illustrated in Figure 2.1.

2.2 Network Pruning

For very large networks, training is often a long and expensive process due to the
required computational power, possibly requiring resources beyond what is available.
Network pruning aims to reduce the computational power required to run these networks
by compressing the network into a smaller one that achieves comparable performance.
It is a subset of of a more general class of compression techniques, containing methods
such as quantisation and knowledge distillation [13].

Approaches to pruning can vary in many ways. Some methods vary in how it determines
whether to remove a component or not. Some methods will prune a network once it
has been trained, others will prune a network before training has even begun. This
section will not provide a comprehensive overview of pruning methods but it will aim

1The expectation of the estimate is equal to the value it is estimating.
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Figure 2.2: Pruning a network (left) via local (middle) and global (right)
pruning. Global pruning will result in different amount sparsities in each
layer.

to describe what comprises a pruning approach, alongside common techniques in each
component. For the interested reader, a large amount of literature surrounds network
pruning as it is a technique that has been in use for decades and remains subject to new
developments [14, 15, 16].

2.2.1 Pruning Structure

A pruning method may be structured or unstructured. An unstructured approach will
remove the most basic building blocks of a network - the neurons themselves. This
approach is the most flexible as the rate of sparsity may be achieved via any combination
of neuron removal.

Structured pruning treats entire modules of a network as a unit, either keep or removing
whole structures at a time. It is easier to benefit from the improved computational effi-
ciency of unstructured pruning as the sparse matrices produced by unstructured pruning
require a specific implementation to streamline the computation [17]. This often leads to
the structured pruning method producing networks that are much more computationally
efficient and light on storage. However, the flexibility of the unstructured method is lost
in the process.

2.2.2 Pruning Criteria

The decision of whether to prune the unit in question is down to the chosen criteria.
Common examples of criteria involve scoring by the magnitude of the weight as small
magnitude weights are thought to contribute very little to the model computation. Other
criteria consider the combination of the magnitude of the weight and its sensitivity.
More sensitive weights will likely cause large changes in loss whereas the removal of
small, more stable weights should alter very little in the network’s performance.

The criteria may be considered on a local or global level. A global level will simply
score each unit, without comparison to its neighbours, and prune the network to the
given sparsity level. A local pruning method will prune certain sections to the given
sparsity level e.g. on a per layer basis. This will reduce the chances of layer collapse -
a result where whole layers are pruned away, causing incompatibilities of dimension
within the network and rendering it un-trainable.
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2.2.3 Pruning Algorithms

Most pruning algorithms can be decomposed into distinct stages: training, pruning,
and fine-tuning. Training is what the name suggests - the model is trained as normal
to achieve good performance. In the pruning stage, the components of the model are
assigned scores based on the criteria and the components with the lowest scores are
removed. The actual pruning itself can take place over a single or perhaps multiple
iterations, producing proportion of the desired sparsity at each loop. The final stage of
fine-tuning continues to train the model for a short period to allow it to regain some of
the performance lost from the removal of components.

This is not a rigid framework as many popular pruning methods will deviate from
this structure. For example, in their paper introducing the Lottery Ticket Hypothesis,
Frankle and Carbin ([18]) develop iterative magnitude pruning. In this method, the
pruning process consists of two stages: the training stage - where the model is trained
from a specified initialisation for a certain number of epochs - and the pruning phase -
where the lowest p

n % of weight magnitudes are removed from the network. Here, p is
the desired sparsity of the final network and n is the number of times the two stages will
be iterated for. When the training stage is reached again, the weights of the network are
wound back to the very initial parameters before the training restarts.

Algorithm 1 Iterative Magnitude Pruning
procedure ITERATIVE MAGNITUDE PRUNING(Model f , model parameters θ, prun-
ing rate p)

θ̂← θ ▷ Save the initial model parameters
m[i]← 1 ▷ Initialise mask to 1s.
for i in 1 · · · n do

m← PRUNE(θ,m, p
n ) ▷ Update the pruning mask.

θ← TRAIN( f , θ̂⊙m,X ,Y ) ▷ Apply mask to initial parameters and retrain.
end for

end procedure
procedure PRUNE(θ,m, p

n )
for i in 1 · · · |θ| do

if m[i] = 1 and |θ[i]| ∈ smallest p
n % of unpruned weight magnitudes then

m[i]← 0
end if

end for
return m

end procedure

2.3 Topological Data Analysis

Topology is the branch of mathematics that studies the properties of spaces that remain
invariant under continuous deformation. For example, if a space contains a ‘hole’, then
no amount of stretching or twisting the space will remove the existence of that hole. Al-
gebraic topology is the field that studies algebraic structures, such as groups or modules,



Chapter 2. Preliminaries 7

that represent the topological features of the spaces in question. We can compare spaces
by their topological properties either by maps between the spaces themselves or maps
between the algebraic structures, giving rise to notions of equivalence between spaces.
One such notion is homological equivalence, where spaces that have the same structure
of holes are considered to be the ‘same’. This leads to the quintessential example from
topology: the doughnut being equivalent to the coffee cup.

Figure 2.3: Morphing a cup into doughnut.

The application of these topological ideas to datasets is the field of topological data
analysis; a field that applies computational topology to problems in statistics and data
science. The inclusion of topological ideas to data analysis has proven beneficial in
a variety of fields; from shape analysis [19] to medical imaging [20], biology [21] to
sensor networks [22]. It has even been used to analyse the complexity of the structure
of a neural network itself [23].

One of the main methods used in Topological Data Analysis is that of persistent
homology. The general idea is that we construct a nested sequence of objects called
simplicial complexes on top of the point cloud of the data. We then compute the nth-
dimensional homology group of each simplicial complex at each step of the sequence.

All content from this section has been taken from sources [24] and [25]. Relevant
content is included here for completeness and the reader’s convenience but for a more
comprehensive overview, interested readers should refer to the original sources.

2.3.1 Simplicial Complexes

Simplicial complexes are a key component in simplicial homology - the computationally
tractable sibling of singular homology. Singular homology is difficult to compute as
the groups that represent the ‘holes’ of the space are often uncountable. Simplicial
homology is much easier to compute and is equivalent to singular homology when the
triangulation of a space is homeomorphic2 to a simplicial complex. Therefore, if the
homology of the simplicial complex can be computed, the homology of the original
space can also be computed. This is why topological data analysis (and many other
branches of computational topology) mainly concerns itself with simplicial complexes.

Definition 1 (k-simplex). For k ≥ 0, a k-simplex (σ) in a Euclidean space Rm is the
convex hull of a set P of k+1 affinely independent points in Rm. A face of a k-simplex
is the convex hull of any subset of points from P.

2Two topological spaces X ,Y are homeomorphic if there exists continuous invertible maps between
them.
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Figure 2.4: Triangulation of a dolphin.3

Remark 1. Affine independence of an affine space is the analogue to linear indepen-
dence of a vector space. Affinely independent points are linearly independent but in a
way that is agnostic to the origin. If we take a set of linearly independent points in a
vector space and perform an affine transformation on them (translation), the resulting
vectors would be affinely independent but possibly not linearly independent.

Definition 2 (Simplicial Complex). A simplicial complex, K, is a set containing finitely
many simplices that satisfy the following restrictions.

• K contains every face of each simplex in K.

• For any two simplices σ,τ ∈ K, their intersection is either empty or a face of both
σ and τ.

We may also define a simplicial complex independent of geometry. A collection, K, of
non-empty subsets of a given set V (K) is an abstract simplicial complex if every element
σ ∈ K has all of its non-empty subsets σ′ ⊆ σ also in K.

Figure 2.5: Example of a 1-
simplex (left) and a 2-simplex
(right). Both contain 0-simplices
(verticies).

Remark 2. The above definition contain the
definitions for both a geometric and an ab-
stract simplicial complex. The two notions are
equivalent as an example of one may rendered
as an example of the other. Therefore, the two
definitions have here been compressed into
one.

Example 1. Let V (K) = {1,2,3,4,5} and
let K = P ({1,2,3}) ∪ P ({3,4,5}) ∪ {2,4},
where P (X) denotes the power set of X. This
abstract simplicial complex may be realised
geometrically, as shown in Figure 2.6.

Example 2. Let V (K) = {1,2,3} and consider K = {{1},{2},{1,2},{2,3}}. σ =
{2,3} ∈ K but σ′ = {3} ⊂ σ is not in the set, therefore K is not a simplicial complex.
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2.3.2 Homology

Figure 2.6: Realisation of an
abstract simplicial complex.

Homology is a tool in topology that connects alge-
braic structures to features in a topological space
- these features being the pth-dimensional holes of
the space. Cycles and boundaries are important no-
tions to define what a hole is: a cycle that is not the
boundary of a lower dimensional simplex. These
notions can be extended into algebraic structures
to give us the p-dimensional homology groups.

Definition 3 (p-Chain). Let K be a simplicial com-
plex with mp p-simplices. And let R be a ring. A
p-chain is a linear combination of p-simplicies
with coefficients in R,

c =
mp

∑
i=1

αiσi for αi ∈ R and p-simplex σi.

Under addition, p-chains form an R-module. The addition operator is given by

c+ c′ =
mp

∑
i=1

(αi +α
′
i)σi.

Definition 4 (pth Chain Group). The set of p-chains form a group under the addition of
p-chains, Cp(K), called the pth chain group.

Remark 3. In particular, we will consider the case where R = Z2. The identity is the
zero chain, 0, and inverse element of a chain, c, is c itself.

Definition 5 (Boundary Operator). Let ∂p : Cp(K)→Cp−1(K) denote a homomorphism
between chain groups, defined by

∂pc = ∑
j=0

(−1) ja j(∂pσ j) for c = ∑
j=0

a jσ j ∈Cp(K),

where ∂pσ = ∑i σ\{vi} and ∂0σ =∅. ∂p is the boundary operator.

Example 3. Let K be the simplicial complex as given by Figure 2.7 and let c =
{{1,2,3}} be a 2-simplex. A As we are only considering the case where R = Z2,
application of the boundary operator on c gives,

∂2c =−{2,3}+{1,3}−{1,2}
= {2,3}+{1,3}+{1,2}

(2.2)

i.e. the collection of 1-simplices that form the boundary of c. Further application of ∂

gives,
∂1 ◦∂2 (c) = ∂1({2,3}+{1,3}+{1,2})

= ∂1{2,3}+∂1{1,3}+∂1{1,2}
=−{2}+{3}−{1}+{3}−{1}+{2}= 0

(2.3)



Chapter 2. Preliminaries 10

Definition 6 (Chain Complex). A chain complex, (C(K),∂), is a sequence formed by a
sequence of spaces, Cp, together with boundary maps, ∂p.

0 =Ck+1(K)
∂k+1−−→Ck(K)

∂k−→ ·· · ∂1−→C0(K)
∂0−→C−1(K) = 0.

Note the important property of the boundary operator that ∂p−1 ◦∂p(c) = 0.

Definition 7 (p-Cycle). A p-chain, c, is a p-cycle if ∂pc = 0.

Definition 8 (Cycle Group). The collection of all p-cycles forms a group under the
addition of p-chains called the pth cycle group, Zp. The pth cycle group is the subgroup
of Cp that forms the kernel of the boundary operator: ker ∂p = Zp.

Definition 9 (Boundary Group). The pth boundary group is the subgroup of Cp−1 that
is obtained from the image of the boundary operator on Cp: Bp−1 = im ∂p.

Definition 10 (Homology Group). For p≥ 0, the pth homology group is the quotient
group Hp = Zp/Bp. The dimension of Hp is called the pth Betti number,

βp = dim Hp.

The pth Betti number refers to the number of p-dimensional holes in the simplicial
complex. Note that we are able to take the quotient Zp/Bp as Bp is a normal subgroup
of Zp via the property of ∂p−1 ◦∂p(c) = 0.

Remark 4. The elements of the pth homology group are the p-cycles that do not form
the boundary of a p+1-simplex.

2.3.3 Persistent Homology

Figure 2.7: The boundary
of {1,2,3} gives the cycle
{1,2}+{2,3}+{1,3}.

It is not immediately obvious how notions of ho-
mology would be applicable in a data analysis
context. After all, it is incredibly unlikely that the
data will be given to us in the form of a simplicial
complex. Therefore, we need a way to interpret
our data as such. Here, we assume that our data is
a point cloud, and not an object such as a graph,
which is naturally a simplicial complex.

Definition 11 (Nerve). Given a finite collection
of sets U = {Uα}α∈A, we define the nerve of the
set U to be the simplicial complex N(U) whose
vertex set is the index set, A, and where a subset
{α0,α1, ...,αk} ⊆ A spans a k-simplex in N(U) if
and only if

k⋂
i=0

Uαi ̸=∅.
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Definition 12 (Čech Complex). Let (M,d) be a metric space and let P be a finite
subset of M. Given a real r ≥ 0, the Čech complex is defined to be the nerve of the set
{B(pi,r)}, where B(pi,r) is the geodesic closed ball of radius r, centered at pi.

Definition 13 (Vietoris-Rips Complex). Let (P,d) be a finite metric space. Given real
r ≥ 0, the Vietoris-Rips complex is the abstract simplicial complex VRr(P) where a
simplex σ ∈ VRr(P) if and only if d(p,q)≤ 2r for all vertex pairs p,q in σ.

Figure 2.8: A set, U , and its corre-
sponding nerve, N(U).

It should be noted that there are many
other ways to convert a point cloud (fi-
nite metric space) to a simplicial com-
plex. The Čech and Vietoris-Rips com-
plex are among those most commonly
used in topological data analysis but, de-
pending on the usage, other complexes
may be more suitable.

The conversion of data to a simplicial
complex will be dependent on some pa-
rameter. For the Čech and Vietoris-Rips
complexes, this parameter is r - the radius that determines whether vertices are con-
sidered to be apart of the same complex or not. It will likely be an impossible task to
know which r is the correct one. That is, which value of r gives the correct structure
of the underlying space from which the data has been sampled. The solution to this
predicament comes from the persistence portion of persistent homology. Instead of
concerning ourselves with which parameter is the correct one, we consider all of them
and consider the homological features that are prominent throughout all the choices of
parameter to be the ones inherited from the underlying space.

Figure 2.9: Čech Complex (left) and Vietoris-Rips Complex (right) of a
point set, P.

Definition 14 (Simplicial Filtration). A filtration, F , of a simplicial complex, K, is a
nested sequence of its subcomplexes,

F : ∅⊆ K0 ⊆ K1 ⊆ ...⊆ Kn = K.

Definition 15 (Filtration Function). If a simplicial filtration, F , is obtained from a
function, f : K→ R then F is induced by f . If the simplicial filtration is given without
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an explicit input function, then F is induced by the simplex-wise monotone function
f : K→ R, σ 7→ i for σ ∈ Ki \Ki−1 such that for every σ′ ⊆ σ, f (σ′)≤ f (σ).

Definition 16 (Persistence Module). A simplicial filtration, F , of a simplicial complex,
K, induces a homomorphism induced from the inclusion map between subcomplexes.

hi, j
p = ι∗ : Hp(Ki)→ Hp(K j),

for p ≥ 0 and 0 ≤ i < j ≤ n. The sequence of such induced homomorphisms form a
persistence module,

0 = Hp(K0)→ Hp(K1)→ ...→ Hp(Kn).

Definition 17 (Persistent Homology Groups). The pth persistent homology groups are
given by the images of the homomorphisms, H i, j

p = im hi, j
p .

Definition 18 (Persistent Betti Numbers). The pth persistent Betti numbers are the
dimensions of the corresponding persistent homology groups, β

i, j
p = dim H i, j

p .

Remark 5. The elements of the pth persistent homology groups consist consist of the
homology classes that persist from Ki to K j.

Definition 19 (Birth and Death). A pth homology class, ξ ∈ Hp(Ka), is born at Ki for
i≤ a if ξ ∈ H i,a

p but ξ /∈ H i−1,a
p . The class dies at K j for a < j if ha, j−1

p (ξ) is non-trivial
but ha, j

p = 0.

Definition 20 (Persistence Pairing Function). For 0 < i < j ≤ n+1, let

µi, j
p = (βi, j−1

p −β
i, j
p )− (βi−1, j−1

p −β
i−1, j
p ).

µi, j
p therefore counts the number of classes that are born at Ki and die at K j. Should

j = n+1, we take this to mean that the classes are alive until the end of the filtration
and so set n+1 to ∞.

Definition 21 (Class Persistence). For µi, j
p ̸= 0, the persistence Pers([c]) of a class [c]

that is born at Ki and dies at K j if given as Pers([c]) = a j−ai, where f (Ki) = ai.

Definition 22 (Persistence Diagram). A persistence diagram, Dgmp(F f ) of a filtration,
F , induced by f is given by the set of points on the extended plane,

Dgmp(F f ) = {(ai,a j)|µi, j
p ̸= 0 and i < j} ⊆ R̄2.

The points on the diagonal, ∆ = {(a,a)}, are added with infinite multiplicity, µi,i
p = ∞.
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Figure 2.10: Points sampled from an annulus and the corresponding
persistence diagram. The point cloud has a connected component that
lasts for the whole filtration and a hole that has a large persistence.

2.4 Fractal Dimension

Typical notions of dimension are usually insufficient to describe fractal structures in a
meaningful way. For example, a space-filling curve (such as a Hilbert Curve) would
be considered a one-dimensional object under the usual definition of dimensions - the
same dimension as that of a straight line or a sine wave. Using a fractal dimension,
such as the Hausdorff dimension, a Hilbert Curve would have a dimension of 3

2 and the
straight line a dimension of 1. This aligns more closely with the intuition that a Hilbert
Curve would take up more space and hence be a higher dimensional object than a line.

Figure 2.11: An example of a Hilbert Curve, given in Hilbert’s original
paper [26].

The following explanations of Hausdorff and Box-Counting dimensions are given from
[27].

2.4.1 Hausdorff Dimension

Definition 23 (δ-Cover). Let F be a subset of Rn, δ > 0, and {Ui} be a countable
collection of of subsets of Rn where the diameter of Ui is at most δ and F is covered by
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the collection - that is, F ⊂ ∪Ui. Then {Ui} is a δ-cover of F.

Definition 24 (s-dimensional Hausdorff Measure). Let F be a subset of Rn and s≥ 0.
We define the s-dimensional Hausdorff measure as

H s(F) = lim
δ→0

H s
δ
(F) = lim

δ→0

(
inf{∑ |Ui|s |{Ui}is a δ-cover of F}

)
.

Definition 25 (Hausdorff Dimension). Left F be a subset of Rn. The Hausdorff dimen-
sion of F is given by

dimHF = inf{s≥ 0|H s(F) = 0}= sup{s|H s(F) = ∞}.

Typically, H s(F) tends to be either 0 or ∞, therefore dimHF is the point at which H s(F)
drops from ∞ to 0.

2.4.2 Box-Counting Dimension

Definition 26 (Box-Counting Dimension). Assuming the following limit exists, the
box-counting dimension of F ⊂ Rn is given by

dimBF = lim
δ→0

logNδ(F)

− logδ
,

where Nδ is the smallest number of closed δ balls that cover F.

Where F is a bounded set of Rn, the Hausdorff and the Box-Counting dimension agree.
That is,

dimBF = dimHF.

2.4.3 Persistent Homology Dimension

Definition 27 (Persistence Lifetime). The lifetime of a pth homology class, ξ, is its class
persistence as given in Definition 21.

|I(ξ)|= a j−ai,

where ξ is born at Ki and dies at K j and the filtration, F is induced by the function, f .

Definition 28 (α-Weighted Lifetime Sum). For a finite set W ⊂W ⊂ Rd , the weighted
ith homology lifetime sum is defined as

E i
α(W ) = ∑

ξ∈PHi(VR(W ))

|I(ξ)|α ,

where PHi(VR(W )) is the ith dimensional persistent homology of the Vietoris Rips
complex on a finite point set, W .

Definition 29 (Persistent Homology Dimension). The PHi dimension of a bounded
metric space, W , is given as

dimi
PHW = inf{α|∃C > 0,∀ f inite W ⊂W s.t E i

α(W )<C}.
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If W is taken to be a bounded set of Rd , the persistent homology dimension coincides
with the box-counting dimension and therefore the Hausdorff dimension. That is,

dimi
PHW = dimBW = dimHW. (2.4)



Chapter 3

Persistent Homology Dimension
Regularisation

Persistent homology dimension regularisation (DimPH regularisation) is a method that
aims to reduce the intrinsic dimension of network trajectories during the training of a
model via gradient-descent methods. The motivation for such a method stems from
recent developments in understanding how the gradient noise of SGD can be linked to a
model’s generalisation properties. Before giving the definition of DimPH regularisation,
we will first introduce these developments.

3.1 Stochastic Differential Equation Approximation of
Stochastic Gradient Descent

Recall the update rule for SGD from Section 2.1.

θt+1 = θt−η∇L
Ä

f
Ä
{xi j}

j=b
j=1;θt

ä
,{yi j}

j=b
j=1

ä
, (3.1)

for continuously differentiable loss function L , randomly sampled batches, {xi j}
j=b
j=1,

{yi j}
j=b
j=1, of observation-label pairs and learning rate η. The gradient noise is defined to

be the difference ε = ∇(L− L̂) which is the difference between the stochastic gradient
and the true gradient of full-batch gradient descent.

To facilitate analysis of SGD, a common approach is to view it as the discretisation of
a stochastic differential equation [28, 29]. In much of the literature, the assumption
is made that the gradient noise has finite mean and variance and so allows for the
application of the central limit theorem.

Theorem 1 (Central Limit Theorem). Let X1,X2, · · · ,Xn be independent identically
distributed (i.i.d) random variables with finite mean, µ and variance, σ2. Then, as
n→ ∞,

(X1−µ)+(X2−µ)+ · · ·+(Xn−µ)
σ
√

n
,

converges in distribution to N (0,1).

16
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If the assumption of finite variance in the gradient noise is made, then the central limit
theorem can be applied to justify modelling the gradient noise as being drawn from a
Gaussian distribution. The mean is 0 and the covariance is σ2I, where σ2 denotes the
noise variance in each component of ∇(L− L̂). Equation 3.1 may then be written as

θt+1−θt =−η∇L ( f (X ;θ)Y )−η∇(L ( f (x;θ)y)−L ( f (X ;θ)Y ))

=−η∇L ( f (X ;θ)Y )−ησε, ε∼N (0,I).
(3.2)

The form of this equation takes that of the approximation found by the Euler-Maruyama
method 1 for the stochastic differential equation,

dθt =−∇L ( f (X ;θ)Y )dt +σ
√

ηdWt ,

where Wt denotes standard Brownian motion. Equation 3.2 is a solution to the stochastic
differential equation above, found by a particular numerical optimisation method.

Figure 3.1: A comparison of the densities of α-stable distributions.
As α decreases, the distribution is heavier tailed, where α = 2 is a
Gaussian distribution.

This approximation of SGD has seen much success in the literature [4, 28] however, it
does have its shortcomings. There are some behaviours of SGD that this representation
is not able to model, such as its tendency to converge within flat minima [29]. The
reason for this problem is due to the assumption that the gradient noise can be modelled
as being Gaussian distributed. Şimsekli et al ([8]) show that the gradient noise is more
accurately modelled as being drawn from a heavy-tailed distribution. They derive the
following SDE approximation of SGD that instead drives the process by an α-stable
Lévy process,

1This is the stochastic extension of the Euler method - a numerical method to find solutions of ordinary
differential equations. For more information, see [30].
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dθt =−∇Ldt +η
α−1

α σdLα
t , (3.3)

where Lα
t denotes the |θ|-dimensional α-stable Lévy process with independent compo-

nents, parameterised by the tail index, α.

For α = 2, the α-stable Lévy process corresponds to Brownian motion. That is, L2
t =Wt .

As α decreases, more of the probability mass is distributed to the tails and so the
variance becomes infinite. This shifting of the mass in an α-stable distribution as al pha
decreases can be seen in Figure 3.1. With this unbounded variance of the gradient noise,
the differences in subsequent parameters exhibit discontinuous ‘jumps’.

3.2 Persistent Homology Dimension Regularisation

By treating stochastic gradient descent as a continuous-time stochastic process, the re-
cursion of 3.3 produces a fractal-like structure in the network trajectories [31]. Şimsekli
et al [10] measure the complexity of this fractal structure via the Hausdorff dimension
and bound the generalisation error of the resultant model by a term dependent on this
measure. The reduction of the Hausdorff dimension coincides with the reduction of the
tail index underlying SGD as the Hausdorff dimension of network trajectories almost
surely is equal to the tail index [32].

Birdal et al [9] replace the Hausdorff dimension in the generalisation bound with the
persistent homology dimension by the equality as given in 2.4 - dimH = dimPH . The
computation of the persistent homology dimension is not done exactly; the estimation
of dimPH is computed based upon the following proposition.

Proposition 1. Let W ⊂ Rn be a bounded set and dimPHW = d∗. For all ε > 0 and
α ∈ (0,d∗+ ε) there exists Dα,ε such that

∀n ∈ N>0,Wn = {w1, · · · ,wn} ⊂W , E0
α(Wn)≤ Dα,ε ·n1− α

d∗+ε . (3.4)

The above inequality then leads to the approximation of the persistent homology
dimension as used in [9].

Corollary 1. Let W ⊂ Rn be a bounded set. Then,

dimPH + ε = d∗+ ε≤ α

1−m
,

for α,ε as defined in Proposition 1 and m such that m is the slope of the linear regression
line of logE0

α(Wn) on logn for samples of n and Wn.
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Figure 3.2: Sample paths for the α-stable process, Lα
t . As α decreases,

the path taken becomes smoother.Figure taken from [10]

Algorithm 2 Estimation of DimPH

procedure DIMPH ESTIMATION(W = {wi}K
i=1,nmin,∆,α)

n← nmin,E← [],X ← []
while n≤ K do

Wn ⊂W ▷ Randomly sample n points from W .
dgm(Wn)← VIETORISRIPS(Wn) ▷ Persistence diagram computation.
E[i]← ∑γ∈dgm(Wn) |I(γ)|

α ▷ α-weighted lifetime sums.
X [i]← n
n← n+∆

end while
m,b = LINEARREGRESSION(logX , logE) ▷ Get slope and bias of regression

line.
return α

1−m
end procedure

The actual estimation of DimPH as used in the paper is α

1−m as their empirical results
show a small margin of error between d∗ and α

1−m . The algorithm for their computation
is given in Algorithm 2. The computation of the estimate is composed of differentiable
functions and so is able to be inserted into the loss function for an optimisation problem
as a regularisation term. Experimental results from the paper confirm the success of
using the persistent homology dimension as a regularisation term.

Informally, the regularisation of DimPH can be thought of as smoothing out the paths
taken in SGD. As the persistent homology dimension is a fractal measure, it measures
the intrinsic dimension of objects. In the update rule for SGD with DimPH regularisation,
parameters would be updated so that they minimise the loss function with the step that
is taken. The loss function also prioritises updates that do not deviate significantly from
the current path of the process. This results in the smoothness of the path that is seen in
Figure 3.2.
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Problem Formulation

The aim of this chapter is to provide the reader with an overview of the current literature
that has influenced the formation of the question this dissertation intends to answer.
The connection of the persistent homology dimension to problems in machine learning
has so far only been considered by Birdal et al in their paper introducing DimPH
regularisation. Other instances of the persistent homology dimension in literature are
primarily focused on it mathematical properties [33, 34]. As the work surrounding
DimPH regularisation is rather limited, we will often discuss our motivations for the
topic of this dissertation in terms of the effect of heavy-tailed gradient noise in SGD.
Our justification for which relies on the fact that the Hausdorff dimension of network
trajectories almost surely equates to the tail index, α, of the process [32]. Recalling
that a smaller tail index results in a heavier-tailed process and the equivalence of the
Hausdorff and persistent homology dimension, theories that involve the reduction of α

should also be applicable to the reduction of the persistent homology dimension.

4.1 Generalisation and DimPH Regularisation

Here, we discuss what is currently known about the connection of the persistent homol-
ogy dimension to generalisation and where lies the gaps that we seek to address.

In their paper introducing the persistent homology dimension to problems in machine
learning, Birdal et al demonstrate the strong correlation of the dimension with generali-
sation. Subsequent experiments in the work regarding the implementation of DimPH
regularisation show that the inclusion of this term resulted in both increased test accu-
racy and lower persistent homology dimension. The results of Birdal are promising for
us with regards to our question surrounding the link of generalisation to commpression
however, contradictory results in other papers reduces the certainty of these correlations
being consistent.

On exploring the distribution properties of gradient noise in SGD, Simsekli et al [35]
note that the correlation between the tail index and generalisation differs depending
on the loss function. However, observations from other papers, some of which being
subsequent works of the same authors, consistently demonstrate a positive correlation

20



Chapter 4. Problem Formulation 21

between the tail index and generalisation. Although the experiment in question of
Simsekli et al is rather limited in contrast to the many other works in this topic, it raises
an interesting point that it may not always be the case that this correlation is observed.
Therefore, there may be instances were improved generalisation does not result in lower
persistent homology dimension, prompting us to investigate this relationship in our
experiments.

Figure 4.1: The plot of results from [35] that show the opposing corre-
lation of the tail index against both generalisation and increasing ratio
of step size to batch size.

Noisy SGD and Flat Minima: There are other ways to induce heavy tails in SGD
than controlling the DimPH of network trajectories. One such way is controlling the
ratio of the learning rate to the batch size, η

b . Similarly to the persistent homology
dimension, this ratio is strongly correlated with the generalisation error [36, 37]. Large
ratios correspond with better performing models - an intriguing discovery as it contrasts
with the notion that smaller step sizes and larger batches will cause the trajectory of
SGD to more closely follow that of full-batch gradient descent.

It is widely believed that the improvements in generalisation induced by large ratios are
due to the shape of minima that SGD converges to. Flatter, wider minima are known
to have better generalisation properties than sharp minima [6]. For a long time, it has
been known that SGD is biased towards such minima although the reasons for which
were unknown. It is this bias that Simsekli use as a part of their justification for the
heavy-tailed SDE approximation as described in Section 3.2. Heavy tails mean that the
ability to escape from minima is not dependent on height but on width, meaning SGD
is more likely to find itself trapped in a wider minimum[8].

As such benefits are able to be gained via one method of inducing heavy tails, it seems
reasonable to ask whether controlling the noise via the persistent homology dimension
will also see such benefits.

4.2 Compression and Generalisation

In this section we temporarily deviate from the discussion around the persistent homol-
ogy dimension to explore how compression can be related to generalisation, providing
context as to why compression forms a particular part of this dissertation.

Occam’s Razor is a commonly used idea in machine learning when describing the
generalisation performance of models. The idea is that simpler models are more likely
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to capture the true underlying relationships of the data. If a model is compressible, then
the model may be accurately described with a reduced amount of information therefore
it can be considered ‘simpler’. This then leads to the notion that the more compressible,
‘simpler’ models are likely to generalise better.

This idea of drawing a connection between the intrinsic dimension of model parameters
and Occam’s Razor is what motivates works that theoretically demonstrate a relationship
between compressibility and generalisation. Suzuki et al [11] derive a method that
allows for the compression-based bound of a compressed network to be applicable to
the uncompressed one. Hsu et al [12] produce generalisation bounds for a model based
on the bounds of a distilled network. These works both show that the generalisation
of a model is strongly connected to its compression properties as improvements in the
generalisation bounds of the compressed model may propagate to the bounds of the
original model. This prompts us to consider when the generalisation ability of a model
can be attributed to its compressibility.

4.3 Compression and DimPH Regularisation

From this point onwards, we specifically consider compression in terms of network
pruning as opposed to alternative compression methods like distillation. The potential
connection of low persistent homology dimension and susceptibility to pruning methods
occurs due to the induced statistical properties of heavy-tailed network trajectories.
Heavy-tailed gradient noise has been shown to lead the resulting model to posses a
number of properties commonly thought to be indicators of good compressibility.

Flat Minima: The pruning of network components will cause perturbations in the model
weights. The attempt is made to reduce the effect of these perturbations by carefully
considering which components to remove and by fine-tuning the model. However, if a
model is very sensitive to changes in the weights then there is very little the network
pruning method can do to recover the lost performance. Therefore, models that lie in
the basin of sharp minima are unlikely to be as compressible as the solutions lying
within flat minima of the loss surface.

We have mentioned how the ratio of step size to batch size is typically related to the
shape of the minima converged to during SGD. The connection between the size of
this ratio and the tail index of the gradient noise distribution suggests that it could be
the case that the heavy tails induced by minimising the persistent homology dimension
may also produce similar results in minima shape. However, as discussed in Section 4.1
it is possible that this correlation between the persistent homology dimension and the
ratio is not consistent and so casts doubt on the assumption that reducing the persistent
homology dimension inherits the same benefits as increasing the ratio of step size to
batch size.

Sparsity: Another factor that benefits compression - particularly magnitude-based
pruning - is the sparsity of the model parameters. Vectors are considered to be sparse
when a the largest contributions to the norm of the vector are made by very few of
the components. As described in Section 2.2, network pruning methods will remove
components with the lowest criteria score first. With magnitude-based pruning, many
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more weights can be pruned from the network without inducing too significant a
performance reduction as sparse vectors have many entries with almost-zero magnitude.

The sparsity of a vector with components drawn from a heavy tailed distribution is
dependent on the tail index. Recall from Section 3.2 that the tail index is the parameter
that determines the distribution of an α-stable distribution. Heavier tails will produce
sparser vectors as the peak around zero becomes sharper as the tail index decreases.
Although we are considering that the gradient noise of SGD to be modelled by a heavy
tailed distribution and not the weights themselves, the heavy tails of the gradient noise
will also be present in the distribution of the weights [38, 39].

Therefore, we expect that models trained with DimPH regularisation will have sparser
weights than those that were not.

Previous Work on Heavy Tailed SGD and Compression: A question similar to the
one we are proposing was asked by Barsbey et al [36]. Their paper discussed the
compressibility of overparameterised models with heavy-tailed noise that is induced by
varing the ratio of step size to batch size. Encouragingly, their results demonstrate that
it is the case that these models become more compressible as the ratio is increased. The
approach of Barsbey et al differes from ours in two key ways. Firstly, we alter the tail
index of the noise distribution via minimising the persistent homology dimension rather
than through increasing the ratio of step size to batch size. It is possible that controlling
the noise in these two ways both lead to similar results but it is not guaranteed. Secondly,
we do not consider heavily overparameterised models whereas this is an important focus
for their paper. The reason for which is based on the feasibility of training a large
number of large models with DimPH regularisation - the regularisation requires the
intensive computation of many Vietoris-Rips complexes.

4.4 Problem Statement Breakdown

Based upon our discussion of the potential relationship between reducing the persistent
homology dimension and compression, we propose the following decomposition of the
main question of this dissertation.

• How does the persistent homology dimension of network trajectories correlate
with generalisation?

• What effect does the minimisation of the persistent homology dimension have
on the distribution of model weights? Do they become more sparse? Are they
situated in flatter minima?

• How is the compressibility of models via pruning related to the persistent homol-
ogy dimension? Specifically, what type of correlation with compressibility do we
find and are there other correlations compression-favourable features?
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Experiments

This chapter will detail the experiments we conducted to answer the question of whether
the improvements in generalisation induced by regularising the persistent homology
dimension can be attributed to the compressibility of the resulting model. The structure
of these experiments are broken into sub-questions as described at the end of Chapter 4.
For each of these sub-questions, we describe the setup of each experiment and give an
evaluation of out results. The basic setup of the experiments is described as follows.

Datasets: All experiments are conducted on the MNIST [40] and CIFAR10 [41]
datasets. MNIST is a dataset consisting of 70,000 examples of 28x28 images of
grey-scale handwritten digits where each image is classified as a number 0 through
9. CIFAR10 is a dataset of 60,000 32x32 colour images, each one belonging to one
of 10 classes. Both MNIST and CIFAR10 are commonly used benchmark datasets in
machine learning research.

Architectures: All models trained are 5-layer (3 hidden layers) fully connected net-
works with 50 neurons in each hidden layer.

Training Algorithm: On MNIST, each model is trained for up to 100 epochs of
stochastic gradient descent on 48,000 training examples (80% of the training set). For
CIFAR10, we train for up to 200 epochs on 20,000 training examples. For both datasets,
the learning rate is set to η = 0.01 and the objective of the training algorithm is to
minimise the cross entropy loss plus any regularisation terms in use. We implement
early stopping once the models have reached at least 99% training accuracy on MNIST
and 70% accuracy on CIFAR10, evaluating the model on a hold-out validation set
(12,000 for MNIST and 5,000 for CIFAR10). We do not aim to train to convergence on
CIFAR10 as it would not be possible given our chosen architecture. The only other form
of regularisation used in our experiments is DimPH regularisation - the computation
of which is done via the code developed by Birdal et al in their paper introducing the
method1. The library torchph is used for the persistent homology computations2.

1https://github.com/tolgabirdal/PHDimGeneralization
2https://github.com/c-hofer/torchph

24
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5.1 How Does the Persistent Homology Dimension of
Network Trajectories Correlate With Generalisation?

To examine the relationship in question, we produce models that have varying persistent
homology dimensions of network trajectories and compare their performance against
their persistent homology dimension estimate. It is important to note that we do not
produce this varying dimension by altering the ratio of step size to batch size as it is
well-established that changing this value induces changes in the generalisation of the
model. As we aim to evaluate what contribution the persistent homology dimension
makes to generalisation, we enforce these changes in the dimension via the strength
of regularisation, keeping the learning rate and batch size fixed. We select values of
regularisation constant in the range {0.001,0.01,0.1,0.5,1,2,5} alongside training the
model without any regularisation. We repeat the training procedure across five random
seeds for consistency.

When training models, we estimate the value of the tail index, α̂, via the multivariate
estimator developed in [42]. This estimation has favourable convergence properties and
so has been used in a number of works [37, 8]. As the value of the tail index is equal
to that of the persistent homology dimension of network trajectories, discussions of
correlation with the persistent homology dimension will be made with regards to the
tail index estimate. The method of estimating the tail index requires the configuration
of a hyperparameter - the details of which we give in Appendix A.

We would expect to observe that the generalisation ability of the model would be
positively correlated with the persistent homology dimension as these were the findings
of [9]. We anticipate that the persistent homology dimension would decrease as the
regularisation strength increased as it is the regularising term.

Figure 5.1: Plots of the tail index estimate against the strength of
regularisation for both MNIST and CIFAR10. The shaded regions
represent the 95% confidence interval computed over 5 runs.

The results of our training runs can be seen plotted in Figure 5.1. The trend in the
tail index against the strength of DimPH regularisation is different to our hypothesis.
For both datasets, the initial application of DimPH regularisation (λ = 0.001) produces
downward spikes in the tail index estimate. As the strength continues to increase, both
datasets see a ‘hump’ in the estimate before gradually increasing. The general trend of
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the tail index seems to increase for regularisation strengths after λ = 0.001, although it
is the case that the application of DimPH regularisation reduced the tail index.

With regards to the generalisation error and the tail index, we do not fully observe the
correlation that was expected. The variables are positively correlated but the correlation
is weak with a Pearson correlation coefficient of 0.0571 for MNIST and 0.3815 for
CIFAR10. In the plots of Figure 5.2, the trend appears to be non-linear - particularly
with MNIST. We therefore decide to compute the distance correlation coefficient [43].
The distance correlation gave much larger values of correlation, indicating that there is
a relationship between these variables but it is non-linear.

Correlation Coefficient MNIST CIFAR10
Pearson 0.0571 0.3815
Distance 0.9429 0.6185

Figure 5.2: Trend of tail index estimates against regularisation constant
used to train model alongside correlation coefficients that indicate the
strength of relationship between these variables.

To answer the sub-question that this section focuses on, we observe a non-linear
relationship between the persistent homology dimension and generalisation. Our results
differ from those in the literature as we do not see a substantial improvement in
generalisation as the tail index decreases.

5.2 What Effect Does the Minimisation of the Persistent
Homology Dimension Have on the Distribution of
Model Weights?

There are two main properties of model parameters that this section intends to analyse:
the distribution of the weights and the flatness of the minima that SGD converges to.
As the persistent homology dimension increases, we expect that the distribution of
the weights becomes increasingly sparse and the shape of the minima in which SGD
converges to become flatter. Our hypothesis derives from the explanations as given in
Section 4.3.
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To determine these properties, we compute three things. First, we plot kernel density
estimates (KDE plots) of the model weights over each of the random seeds and regulari-
sation strengths to visualise an estimate of the underlying distribution of the weights.
Additionally, we measure the sparsity of each of the model weights by the use of the
gini coefficient. Finally, we consider how changes in the persistent homology dimension
affect the flatness of minima by using an approximation of the Hessian matrix.

The gini coefficient is, primarily, a measure of inequality that is often used in contexts
of economics to quantify disparities in wealth within communities [44]. It takes values
within the range of 0 and 1, where 0 denotes perfect equality in distribution and 1
denotes maximum inequality. Hurley and Rickard [45] conduct a review of different
sparsity measures in which the gini coefficient was deemed to most accurately compute
the sparsity. The calculation of this is detailed in Appendix [].

The results of the distribution of model parameters is interesting as we observe quite a
clear trend in terms of regularisation strength. Around the mean of MNIST models, the
weaker the regularisation strength, the more peaked around the mean the density plot
is. This means that weaker regularisation for MNIST results in more model weights
being grouped around zero and are therefore sparser. In the tails of the distribution, we
observe the opposite. The stronger regularised models have more weights that have
more extreme values. This behaviour is easily noted in Figure 5.3.

Figure 5.3: KDE plots of model weights for a training run on MNIST.
The order of which strength of regularisation dominates is flipped at
the mean and in the tails.

For CIFAR10, the weights of the regularised models behave in a similar way to what is
observed in MNIST. The difference comes in when consider the KDE of the unregu-
larised model - very low in comparison to the other models at the mean and completely
dominates the other models in the tails. The unregularised model is typically the least
sparse model but sparsity continues to deplete as the regularisation strength increases.

The plots of the gini coefficient against regularisation strength in Figure 5.5 resemble
closely the trends that appeared in the KDE plots of our model weights. For MNIST, as
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Figure 5.4: KDE plot of model weights for a training run on CIFAR10

the strength of regularisation increases, the gini coefficient reduces and so is becoming
less sparse. For CIFAR10, we observe the same pattern as MNIST after λ = 0.001 but
also see the sharp jump made at zero where the weight distribution suddenly increases
in sparsity.

Figure 5.5: Gini coefficient of model weights plotted against regularisation strength.

In order to evaluate the flatness of minima, we turn to the Hessian matrix, H.

H =



∂2L
∂θ2

1

∂2L
∂θ1θ2

· · · ∂2L
∂θ1θd

∂2L
∂θ2θ1

∂2L
∂θ2

2
· · · ...

...
... . . . ...

∂2L
∂θdθ1

· · · · · · ∂2L
∂θ2

d





Chapter 5. Experiments 29

The eigenvalues of the Hessian measure the curvature of the loss on which it’s defined,
L . A commonly used flatness measure considers the trace of the Hessian which is the
sum of its eigenvalues[46]. The size of the Hessian usually means that the eigenvalue
computation is untractable. As direct computation of the Hessian is not feasible, we
have to approximate it. There are multiple approaches to approximating the Hessian but
make use of one as described in [29]. When near an optimum, we can approximate the
Hessian of the loss as the covariance of the gradients which itself may be estimated by
the sample covariance. That is,

H ≈C ≈ 1
N

n

∑∇L( f (xi;θ),yi)∇L( f (xn;θ),yn)
T .

where H,C are the Hessian and covariance matrices, xi,yi are randomly sampled dat-
apoints and N denotes the number of samples made. To measure the flatness of the
minima around the optima of our models find, we compute the trace of this approxima-
tion of the Hessian.

Figure 5.6: Regularisation strength plotted against the log of the trace
of the Hessian. In both instances, increased λ leads to wider minima.

Plots of the Hessian estimate in Figure 5.6 demonstrate a fairly consistent decrease as
the regularisation strength increases for both MNIST and CIFAR10. It is surprising that
we have both that λ is correlated with minima width but not also a strong correlation
between λ and the generalisation of the resultant model. As has been discussed, the
flatness of minima has been quite well-established to correlate with improving the
generalisation of models.

Plots of both the gini coefficient and the Hessian trace against the tail index do not show
any kind of trend as distinct as those in the plots above. This is a surprising result as we
have established that continuing to increase the regularisation strength coincides with
the tail index increasing, making the SGD distribution less heavy tailed. This means
that flatter minima are able to be found despite the increase in the tail index. The plots
are given in Figure 5.7
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Figure 5.7: Both the gini coefficient and approximation of the Hessian
Trace against the tail index.

5.3 How is the Compressibility of Models via Pruning
Related to the Persistent Homology Dimension?

Finally, we explore the effect of the persistent homology dimension on the compress-
ibility of networks. In our approach, we apply neural network pruning to a collection of
models, each trained with varying strengths of DimPH regularisation. We prune to a
wide variety of weights and across multiple seeds to achieve consistency in results. We
prune across two types of pruning methods - iterative magnitude pruning and iterative
random pruning. Both of these methods will be implemented globally and unstructured
as global pruning tends to give better performing networks than local pruning and
unstructured pruning as we do not intend to take away whole layers. In particular, we
prune values in the range [0.1 - 0.995].

The algorithm of iterative magnitude pruning was introduced in Section 2.2. Iterative
random pruning follows a similiar structure, with the exception that it does not make
use of a criteria to prune weights but rather selects them at random. The algorithm for
this method is given in Algorithm 3.

Algorithm 3 Iterative Random Pruning
procedure ITERATIVE RANDOM PRUNING(Model f , model parameters θ, pruning
rate p)

θ̂← θ ▷ Save the initial model parameters
m[i]← 1 ▷ Initialise mask to 1s.
for i in 1 · · · n do

m← randomly set p
n % of entries to 0 ▷ Update the pruning mask.

θ← TRAIN( f , θ̂⊙m,X ,Y ) ▷ Apply mask to initial parameters and retrain.
end for

end procedure

To facilitate a direct comparison of the prunability of networks, we devise a simple
measure of compressibility.
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Definition 30 (k-Sparse Approximation). A vector, x, is a k-sparse approximation of y,
if x = argmin∥x̃∥0=k ∥y− x̃∥2.

Definition 31 ((k,ε)−Compressible). A model f parameterised by vector θ and a loss
function, L , is said to be (k,ε)− compressible with respect to L if φ is the k-sparse
approximation of θ, and L( f (X ;φ),Y )−L( f (X ;θ),Y )≥ ε, for ε ∈ R, observations
X and labels Y .

Definition 32 (Average Compressibility). Let f be a model parameterised by θ and
trained according to a loss function, L . Let {ki} ⊂ N be a set of size n and bounded by
|θ|. Then the average compressibility of f is defined as,

ξ f ,θ =
1
n

kn

∑
ki=k1

L( f (X ;θ),Y )−L( f (X ;θki),Y ),

where θki is the ki-sparse approximation of θ.

Effectively, this value is just the average difference between the un-pruned network
and the pruned networks over various levels of sparsity. The smaller the value of the
average compressibility, the more compressible the model is.

To focus on the question of this section, we analyse the correlation between the persistent
homology dimension and the compressibility of the network. Our results in Figure 5.8
give no clear indication of of a general relationship between these two variables. For
MNIST, we find that our results differ depending on the pruning method used. For
magnitude-based pruning, the increase of the persistent homology dimension benefits
the model’s compressibility. The opposite is said for random pruning where increasing
the tail index hurts compression. CIFAR10 is more consistent with its behaviour than
MNIST as its relation to the average compressibility remains unchanged at a correlation
very close to zero over both pruning techniques.

Very little may be said about the relationship between the persistent homology dimension
and the compressibility of models. It appears as if the presence of heavier-tailed noise
does not have a particular effect on the prunability of the model. This is a result that
sharply contrasts with the work of Barsbey et al where the heavy-tails were key in
achieving the compression benefits.

We now conclude our experiments by tackling the overall question this dissertation aims
to answer.

Can the improvement in generalisation induced by minimising the persistent
homology dimension be attributed to the compressibility of the resultant
model?

Our answer to this question is no - at least not in the context of network pruning.
Figure 5.9 plots the models that were trained in the previous section in accordance to
their generalisation error against the average compressibility. No relationship between
generalisation and compressibility may be inferred from the graph as, given the value
of one the variables, it is not reliably possible to infer the other. The p-values as given
in the table beneath the figure plots confirm this.
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Figure 5.8: Plots of the average compressibility against tail index
estimations for both iterative random and iterative magnitude pruning.

Given the results of the previous section, this is not a surprising result. The indicators
of compressibility that we explored (sparsity and minima flatness) also had that neither
the tail index nor compressibility were correlated.
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MNIST CIFAR10
IMP 0.1932,0.6467 0.2581, 0.5372
IRP -0.189, 0.654 0.2581, 0.5371

Figure 5.9: Plots of the average compressibility against generalisation
error for both iterative random and iterative magnitude pruning. The
table below gives the Pearson correlation coefficient on the left along-
side its p-value on the right.
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Conclusion

Persistent homology dimension regularisation is an approach to increasing the ‘heavy-
tailedness’ of stochastic gradient descent and improve upon generalisation performance.
This dissertation explored whether this generalisation improvement may be attributed to
compression, influenced by a number of works the link generalisation and compression
[9, 11, 12]. After careful analysis of a sequence of experiments aimed to analyse
indicators of compressibility, we conclude that it is not the case that the generalisation
caused by DimPH regularisation is owed to compressibility.

We have therefore answered the question that we detailed in the introduction and the
sub-questions that were formed as a part of the development of the problem statement.

6.1 Challenges

The main challenge experienced over the course of this dissertation is that its topic
extends into many varied fields. To be able to formulate the question this dissertation
asks incurs a high overhead cost of knowledge within these fields.

6.2 Limitations and Future Work

The limitations of our work surround the experimental setup itself that resulted in such
results. For example, we only consider one type of neural network architecture. It is dif-
ficult to generalise results from a single model structure to a much wider range therefore
the reliability of our experiments would have benefit from more diverse architectures
such as convolutional networks. The analysis of more complex models would also for
the easier learning of hard tasks, such as achieving reasonable performance on CIFAR10.
We are also rather limited in out exploration of compressibility. We implement only two
versions of network pruning - iterative random pruning and iterative magnitude pruning.
As mentioned in the preliminaries, there is a wealth of literature within network pruning
alongside other methods of compression, such as knowledge distillation, that could be
considered.

34
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Despite receiving negative results, we were able to uncover a number of unusual
properties surrounding the use of DimPH regularisation:

• Referring back to Section 4.1, we discussed the existence of conflicting results
regarding the correlation of the tail index with generalisation. In our experiments,
we did not observe the same trend of low tail indices correlating with low gen-
eralisation error. In Figure 5.2, models with a lower tail index will often have a
worse generalisation error.

• The experiments of Section 5.2 all produced results where a trend in the value
of the regularisation constant could be found. No such patterns were found with
the tail index. This raises the question of whether the it could be the case that the
effect of DimPH regularisation influences some other property of SGD, besides
the tail index of the process.

• The benefits that SGD usually receives from increasing the noise via the ratio
of the step size to the batch size (sparser weights, improved compressibility)
do not occur when the noise is induced by controlling the persistent homology
dimension.



Appendix A

Tail Index Estimation Hyperparameter
Tuning

Theorem 2. Let B1,B2, · · · ,BK for K = K1 ·K2 be an i.i.d sequence of strictly α−stable
random vectors. Let Yi = ∑

K1
j=1 B j+(i−1)K1 for i = 1, · · · ,K2 be a sequence constructed

of sums of batches of random vectors from B1,B2, · · · ,BK . Let“1
α
=

1
K1

Ç
1

K2

K2

∑
i=1

log∥Yi∥−
1
K

K

∑
i=1

log∥Bi∥
å
.

converges to 1
α

almost surely as K2→ ∞.

Figure A.1: Plots of the estimation of the tail index for a run of training
a model on MNIST (left) and CIFAR10 (right) against the choice of K1.

To implement the tail index estimation, a choice of K1 needs to be made. To facilitate
this choice, we calculate the estimate for multiple values of K1 on a run of unregularised
training. For MNIST, the choice of K1 causes little variance in the tail index estimate
but for CIFAR10 the variance is much more significant. Due to the low variance around
the point, we use a value of K1 = 150 for both datasets. Pseudocode for the algorithm
used to implement Theorem 2 is given in Algorithm 4, adapted from the algorithm used
in [8] to be more space efficient.
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Algorithm 4 Estimation of Tail Index α

procedure ALPHAESTIMATION(B = {Bi}K2
i=1,K,K1,K2)

X ← 0,Y ← []
for Batch Bi ∈ B do

X ← X +∑ j log
(
∥Bi, j∥

)
Y [i]←∥∑ j Bi, j∥

end for
β = 1

logK1

Ä
1

K2
∑i logY [i]− X

K

ä
return 1

β
▷ α̂ is the reciprocal of β

end procedure
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