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Abstract
This project implements PCS, a privacy-preserved crowdsourcing system implemented
on a notary-based permissioned DLT platform known as ”Corda”. The paper discusses
the limitations of traditional crowdsourcing systems, such as the single point of failure
problem, privacy breaches, and non-transparent assessment, and how PCS addresses
these issues using a decentralised blockchain platform and smart contract-based ap-
proach to service delivery. Moreover, the paper discusses the limitations of previous
approaches aimed at enhancing traditional crowdsourcing systems and outlines how
this project differs from them.

PCS provides robust protection for participants’ privacy by using the private blockchain
Corda for service processing and Paillier homomorphic encryption for task results. The
PCS system was designed with a hierarchical structure, and developers can customise it
according to their requirements with minimal code modifications. The paper includes a
detailed description of the PCS implementation code and comprehensive experiments
that evaluate its operational performance.

In conclusion, the paper demonstrates that PCS provides a more secure and transpar-
ent approach to crowdsourcing, successfully addressing the limitations of traditional
systems. The paper highlights the advantages of PCS, including its decentralised
blockchain platform, smart contract-based approach, and privacy-preserving mecha-
nisms, and suggests potential future work to further improve its stability and usability.
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Chapter 1

Introduction

1.1 Crowdsourcing System Scenarios

The term ”crowdsourcing” was initially introduced by Jeff Howe in his 2006 paper [24].
In the same year, Howe provided a formal definition of the concept in his blog post [4],
in which he described it as the act of outsourcing the work that traditionally done by
designated agents to uncertain groups in the form of an open call. Since its inception,
the field of crowdsourcing has made significant strides over nearly two decades of
research on crowdsourcing systems. Crowdsourcing technology has proven successful
in various sectors, including medicine [40], education [28], and commerce [39].

There are many successful applications of crowdsourcing. One prominent example is
Wikipedia [41], which has achieved the world’s largest encyclopedia site with a small
team size by using crowdsourcing. Its 15 million articles are mainly crowdsourced from
volunteers around the world, and almost all of which can be edited by anyone with
access to the site. Another notable example is Airbnb [33], which provides short-term
accommodation services to tourists. Its properties are primarily provided by individual
contributors who are willing to rent out their properties. Airbnb’s use of crowdsourcing
to source properties has allowed it to expand its services to most countries around the
world.

A traditional crowdsourcing system, commonly known as a centralized crowdsourcing
system, typically involves three distinct groups of actors: requesters, workers and a
centralized crowdsourcing platform [27]. In this system, the central platform typically
manages the majority of data storage and transmission. As illustrated in Fig.1.1, the
users send their requests to the platform, and workers receive tasks from the platform
and submit their completed work back to it. The platform evaluates the final reward
given to the worker based on the results submitted by the worker and feedback from
the user. Furthermore, in the event of a dispute between the requestor and the worker
regarding the results, the central platform is responsible for making the final decision.

1
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Figure 1.1: System model for traditional crowdsourcing system

1.2 Issues and Challenges

However, the operation of traditional crowdsourcing systems relies heavily on the
involvement of a trusted third party (central platform), which presents the following
inevitable challenges.

• Single point of failure problem [21]. Since traditional crowdsourcing systems
relies on a single, centralized platform or server to coordinate and manage tasks,
a failure in this platform could disrupt the entire system. This could be due
to technical issues, cyberattacks, employee’s work failures, force majeure (e.g.
earthquake, fire) or other factors that affect the platform’s availability or function-
ality. For example, in 2015, service on the uber system was disrupted due to a
hardware failure in Uber China, resulting in passengers in some area unable use
Uber services at that time [11].

• DDos attack. Just like many systems with a central server, traditional crowd-
sourcing systems are vulnerable to DDoS attacks, which can cause significant
damage. Such attacks are not uncommon. For instance, in March 2014, Elance
and oDesk were hit by a DDoS attack that caused service disruptions for numerous
freelancers [5].

• Privacy breach issues. The central platform of traditional crowdsourcing systems
typically stores a significant amount of sensitive information about its participants.
They may collect personal information from users, such as their name, delivery
address, email address, phone number, and other sensitive data. Furthermore,
a user’s record of using the platform may reveal additional information about
them, such as browsing and purchase history that could reveal their current needs
[35], or rental history that could indicate their occupation (for instance, if a user
frequently rents Airbnb listings during winter and summer breaks, they are likely
a student or teacher). In the event of a security breach on the central platform,
data relating to all participants would be available to the attacker, resulting in
severe consequences [36][9]. Moreover, in addition to data breaches occurring
on the primary platform, crowdsourcing systems require the participation of a



Chapter 1. Introduction 3

large number of contributors to operate, thereby rendering them susceptible to
attacks. Attackers can leverage this vulnerability to carry out malicious activities.
For instance, contributors with authorised access to sensitive information may
intentionally divulge confidential data or exploit it for their personal gain.

• Non-transparent assessment. In traditional crowdsourcing systems, When work-
ers or requesters dispute the outcome, it is usually up to the crowdsourcing
platform to make a judgement. Although these platforms have their own set of
rules for it, but as this is usually a judgement call by platform staff with invisible
decision-making process, the assessment is still subjective and non-transparent.
Which makes ”false-reporting”[45] possible.

Previous studies have proposed several solutions to the aforementioned problems, which
address them partially. However, none of these solutions are comprehensive enough to
resolve all the issues. The related work chapter thoroughly analyzes these solutions and
highlights their differences from the proposed solution.

1.3 PCS Solution and Contribution Highlight

To address the aforementioned issues, this project developed a privacy-preserved crowd-
sourcing service called ”PCS”, which is implemented on a notary-based permissioned
Distributed Ledger Technology (DLT) platform known as ”Corda” [16]. In this section,
I will describe how this solution solves each of the aforementioned problems.

By utilizing a decentralised blockchain platform, we can distribute the processing and
storage of data across a network of nodes, rather than relying on a trusted third party to
coordinate and manage tasks [15]. This approach ensures that data is stored in multiple
copies across the network of nodes and the failure of a single node does not result in
data loss or impact the operation of other nodes. Thus, the network can continue to
function and maintain a complete copy of the ledger, which greatly reduces the impact
of a single point of failure.

Since a decentralised network does not have a central server, attackers cannot directly
target a central server to launch a cyber attack as there is no centralised system to
disrupt. Furthermore, this system requires the requester to pay for the request in
advance, preventing DDoS attacks by attackers who send a large number of requests but
do not pay for them, taking up a large amount of request processing resources. And only
registered workers can receive requests, which prevents external nodes from attacking
by accepting every task but not executing them. More details about DDoS prevention
will be provided later in the security analysis section.

Besides that, as Corda is a permissioned blockchain, we can specify that a particular
transaction will only be visible to a selected group of people, in this way, we can let
each participant see only the data necessary for them to carry out their own tasks. And
for stored data, Corda has its own set of data protection methods, the details of which
are mentioned later in the description section of Corda. In addition, I have used Paillier
homomorphic encryption[34] in my implementation to calculate contribution rewards.
This homomorphic encryption method ensures that some private data can not even be
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seen by selected people except the sender themselves while the calculation of the reward
can proceed as usual.

The entire crowdsourcing process in this system is implemented through Corda’s smart
contracts and workflows. Since the content of the smart contract and workflow is public,
each step of the process in this solution is open and transparent. Additionally, the
process is fully automated, and the determination of the results is not influenced by any
personal subjective factors.

In conclusion, my contribution has the following highlight:

• PCS implements crowdsourcing services on a novel permissioned blockchain:
Corda.

• PCS’s development is based on a hierarchical crowdsourcing model that enables
tasks to be effectively divided and delegated among different levels of participants.

• PCS has privacy preserving mechanism to protect participants’ sensitive data.

• The current implementation of PCS follows a simulated real-world working
scenario, and can be easily modified to suit the requirements of other actual
scenario.

The roadmap of this paper is outlined as follows: Chapter 2 reviews the relevant
literature in the field of crowdsourcing, analyzing the distinctions between this work
and prior studies. In Chapter 3, the fundamental technical background knowledge that is
pertinent to this project is presented. Chapter 4 offers a comprehensive description of the
system design, outlining the entire system’s workflows, the interactions between various
participants, and an assessment of the system’s privacy and security measures. Chapters
5 and 6 provide details on the system’s code implementation and performance evaluation
experiments and results analysis, respectively. The final two chapters address the
system’s achievements and limitations, followed by concluding remarks and potential
future research.



Chapter 2

Related Work

This chapter is focused on related works in the field of crowdsourcing, with description
of essential background knowledge, and how they differ from the current project. Here,
the relevant works in three primary areas that are most relevant to this study will be
presented.

2.1 Centralized crowdsourcing system with Anonymity

Privacy issues in crowdsourcing have become a growing concern and have attracted
more attention and research in recent years. However, despite this increased attention,
these issues are still not extensively studied [43]. Some research suggests that rendering
users anonymous might eliminate privacy issues [26]. However, real-world events have
shown that even when anonymity is used, there are still possible issues. For instance,
in a competition for recommendations system held by Netflix, they provided entrants
with datasets of their 480,000 customers. Using this information, the participants
successfully determined some users’ information are in these datasets [43] [7]. Which
means, if a data breach happens, even if the participants in the process are anonymous,
an attacker may still use these data to infer private information about the participants.

2.2 Distributed Crowdsourcing System

Distributed crowdsourcing systems are also a popular research topic. In this type
of system, they still have a centralised system to handle data and process requests.
However, unlike traditional centralised systems, they provide a way to complete task
through distributed processing, allowing for better efficiency. For instance, the research
[44] proposed an efficient task offloading algorithm based on social relations to improve
the task allocation scheme in traditional crowdsourcing systems. Another research [18]
designed a Bayesian asynchronous task selection algorithm which is an asynchronous
and distributed approach that allows users to use incomplete information about task
popularity to make task selections in mobile crowdsourcing.

These research works do increase the crowdsourcing system’s efficiency, but using a

5
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distributed approach for task processing does not change the fact that the whole system
is still centralised, they still rely on a central platform to make the system work. So the
above issues about centralized systems are still not solved.

2.3 Blockchain-based Crowdsourcing System

Improving traditional crowdsourcing systems through blockchain technology is cur-
rently the most popular research topic about crowdsourcing. PCS is also a blockchain-
based crowdsourcing system. But before I go into specifics of related works, let me give
a simple description of what blockchain is and how it is being used in crowdsourcing so
that readers can better understand what follows. Blockchain is a decentralised ledger
technology that was first used in Bitcoin [32]. In blockchain, records of time-ordered
transactions are recorded in a sequence of ”blocks”. Each block contains a hash value
of the previous block that allows them to eventually form a public and immutable hash
chain of blocks. A typical blockchain-based crowdsourcing system consists of three
participants: Requesters, Workers and blockchain. In this system, all the task processing
is handled by the blockchain, in specific, they are driven by smart contracts deployed
in the blockchain. The idea of smart contract is proposed by Nick Szabo in 1994
[38], they are event-driven programs that have features of self-verifying, self-executing
and tamper resistant, and then can use the blockchain’s consensus protocol to run a
sequence of events [30]. Figure 2.1 is a smart contract basic executing structure diagram
from [30]. Because of these properties, a blockchain-based crowdsourcing system can

Figure 2.1: A basic structure of smart contract [30]

execute crowdsourcing services without a centralized platform, which effectively solves
many of the problems previously mentioned. The decentralized processing approach
eliminates the single point of failure problem, and by using smart contract for task
handling, since smart contract’s content is public and unmodifiable, everyone knows
how the assessment will be processed, the issue of non-transparent assessment also does
not exist anymore. By adopting this approach, the main issues left to address are data
privacy concerns and the risk of denial-of-service attacks.

Then let us discuss some specific works related to blockchain-based solutions in crowd-
sourcing. The research [27] proposed a crowdsourcing system based on Ethereum
[42](a public blockchain platform). Their implementations mainly make use of the
features of the public blockchain and apply user anonymity to ensure data privacy. But
this method has some potential issues, the attackers can take advantage of the feature of
public blockchain to apply attacks. Since all the transactions in public blockchain are
shown to the public, although the users involved in the transaction logs are anonymous,
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an attacker would still be able to deduce the private information of the participants
from the information contained in the bulk of the transaction logs [7]. Another research
[14] proposed a blockchain-based crowdsourcing system for court judgement, however,
they do not provide a specific code implementation about this system. [25] proposed a
Ethereum based crowdsourcing system with incentives built in, but just like [27], it also
has similar privacy concerns.

Overall, most of the current work on blockchain-based crowdsourcing systems revolves
around famous public blockchains like Ethereum, and not much work has been done
around permissioned blockchains, which gives us a motivation to build a crowdsourcing
system based on a private(or permissioned) blockchain.



Chapter 3

Technological Background

The goal of this project is to implement a hierarchical crowdsourcing system based on
Corda blockchain with privacy protection. In order to allow readers to better understand
the work of this project, this chapter introduces some essential background concepts
relevant to this project. Section 3.1 introduces the concept of paillier homomorphic
encryption, which is an important encryption method used in this project for privacy
protection. Section 3.2 describes the platform for realising this project, including its
features and the reasons for choosing to use it for this project.

3.1 Paillier Homomorphic Encryption

In this project, I use Paillier cryptosystem’s homomorphic property for the assessment
of task completion to provide extra privacy protection. The details of the use of this
encryption will be described later, this section will focus on the description of Paillier
cryptosystem.

The Paillier key system is an additive homomorphic cryptosystem invented by Pascal
Paillier in 1999 [34]. This scheme consists of three main algorithms: key generation,
encryption and decryption.

In key generation, we have these steps:

1. Generate 2 different random large prime number p and q that have the same
length to make sure gcd(pq,(p−1)(q−1)) = 1.

2. Compute value n = pq and λ = lcm(p−1,q−1).

3. Select a random integer g where g ∈ Z∗n2 .

4. By checking µ = (L(gλ mod n2))−1 mod n, we can ensure n divides the order of
g. And the L here is defined as L(u) = u−1

n .

5. Now, we can generate the key pairs by using above numbers, where public key is:
(n,q), private key is (λ,µ).

Encryption algorithm contains these steps:

8
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1. Let m as the message that we want to encrypt, and 0 < m < n.

2. Select a random r that r ∈ Z∗n and have the property that gcd(r,n) = 1.

3. Then we can generate the ciphertext by calculating c = gmrn mod n2.

In the decryption algorithm, we need to:

1. Using the generated ciphertext c where c ∈ Z∗n and compute the original message
by calculating m = L(cλ mod n2) ·µ mod n.

And according to the explanation from [34], if we have 2 ciphertext c1 and c2, the prod-
uct of them will be c1 ∗ c2 = E(m1)∗E(m2) = gm1rn

1.g
m2rn

2 mod n2, by transformation
of equation, we can get c1 ∗ c2 = gm1+m2.rn

1rn
2mod n2. Which means the product of

ciphertext generated by our encryption algorithm is equal to the encryption of the sum
of the two original data. Hence shows the Additive Homomorphic Property of Paillier
cryptosystem.

This cryptosystem has already been used in many works, for instance, this research
[13] implemented a voting system that guarantees data confidentiality using Paillier
homomorphic encryption. Another research by Mahdi Ghadamyari and Saeed Samet
[22] designed a privacy-preserved health data analysis system using the Paillier cryp-
tosystem.

3.2 Corda Blockchain

Figure 3.1: Highlevel architecture of Corda [1]

Corda is an open source permissioned distributed ledger technology (DLT) platform
developed by R3 in 2016[17] [23]. Corda was originally designed to meet the needs
of regulated financial institutions, but it has proved to be more widely applicable. It
is heavily inspired by traditional blockchain systems, but Corda changed some design
choices to make it more appropriate for real-world business transactions [16].
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The main difference between Corda and a traditional blockchain is that in a traditional
public blockchain network, anyone can join the blockchain network and can only be
identified by a pseudonymous public address. But in Corda, each node represents a
verified IP address that has passed through a stringent KYC process, and these nodes
will be added to the network map. All nodes in this network map can transact with other
nodes in a peer-to-peer manner through this map, and this communication is based on
Transport Layer Security (TLS)-encrypted messages sent over AMQP/1.0 [31]. Fig. 3.1
from [1] shows a highlevel architecture of Corda. Next, I’ll explain in detail how Corda
works.

3.2.1 Corda Ledger

Unlike traditional blockchain systems, in Corda, transactions and ledger entries are
not globally visible. Instead, each node maintains their individual database or ledger,
Fig. 3.2 is a diagram of a node’s internal structure from [12]. Transactions between
different parties are only visible to them and only they will store the updated data in
their databases. Because of this, if a user wants to do broadcast in Corda, he needs to
send transactions to every node in the network. In addition, data updates are subject
to contractual confirmation and validation by the Corda notary to confirm that it is a
valid update. And we don’t need to worry about a single point of failure of the notary
because there are many notary nodes in the Corda network.

Figure 3.2: Node’s internal structure [12]

3.2.2 State

”State object” is the fundamental building block in Corda which maintains the data
storage. This is a digital document that records the existence, content and current status
of an agreement between parties. The participant of the transaction will have access
to the transaction information via the status and can update his database by update the
corresponding state object stored.
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3.2.3 Contract

The contract in Corda is similar to constraints on the update of the states, each state has
its corresponding contract. Note that, despite their similar names, the contract in Corda
differs from a smart contract. If your transaction contains a certain state, the transaction
must comply with the contract corresponding to this state. A contract can specify many
requirements of a transaction, such as whether this transaction requires or cannot have
an input state, whether it should have an output state and whether it requires signatures
from both parties. Figure 3.3 is an example of a state with corresponding contract from
[16]. This state represents a deposit with an amount of 100 GBP, with its issuer and
owner. And have references to its corresponding contract and legal prose.

Figure 3.3: A state example [16]

3.2.4 Transaction

In Corda, transaction is the way to update ledgers. It will consume input states and
produce output states. And the structure of the transaction is based on the UTXO model
which can have a customised number of inputs and outputs. Figure 3.4 is an example of
a transaction from [16]. This is a cash issuance transaction, which contains no input
state and one output state. And contains the signature of the originator of the transaction
which is the issuer bank.

3.2.5 Flow

Flow is a place to put specific steps used to implement a function. Flow, contract and
state together composed Corda’s smart contracts. And the flow is the most important
part of it. It defines what operations need to be performed on a transaction, who the
participants are, what state needs to be selected to store the data, and what input data
it needs, in short, it is the driver of the functionality of the smart contract. Similar to
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Figure 3.4: A transaction example [16]

calling a public function in Ethereum, users can initiate a flow to perform a specific
function for them.

3.2.6 Consensus

Since Corda is a permissioned blockchain, only related parties and notaries will be
involved in a transaction. It does not need to build a consensus from other nodes. But it
does have 2 consensus for related participants.

• Transaction validity: All the participants can check associated contracts in a
proposed transaction to ensure the output state of the transaction is valid, required
signatures are included in this transaction, and other transactions involved in this
transaction are also valid.

• Transaction uniqueness: In Corda, every input state in a transaction will be
consumed after a transaction is done. So by checking whether the input state exists
in the ledger, participants can be sure that all input states in this transaction exist
only for this transaction and have not been consumed by previous transactions.

In addition to this, Corda has unique services that are ”pluggable” to increase scalability.
Its individual services can also be coordinated by multiple untrusted nodes perform-
ing Byzantine fault-tolerance algorithms similar to those used in public blockchains.
However, as this feature is not used in this project, it will not be described in detail here.

3.2.7 Notary

While both parties to a transaction can determine whether a transaction is valid by
the two consensus points above, this does not protect against the double spending
problem[19]. An attacker can attack by initiating two valid transactions at the same
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time. So Corda introduces a notary mechanism to deal with this problem. Each
transaction must involve a predetermined notary as an observer to determine which
transaction comes first when several identical transactions happen in a short time. There
are many notary nodes in the Corda network which can provide load balancing for
higher transaction throughput. And each transaction can choose the nearest physically
located notary node to reduce transaction latency.



Chapter 4

PCS Design

In this chapter, I first present an overview of my system design, including an analysis
of the privacy leakage threat model, the security goals of the system, and a description
of important implementation selections. Then, I provide a detailed design of how the
system works through textual descriptions for the entire workflow and pseudo-code for
several important actions. Finally, I describe potential attacks on the system and the
corresponding defences.

4.1 Overall Design

4.1.1 System Framework

As shown in Figure 4.1, my system mainly involves four types of participants: Re-
questers, the Primary Crowdsourcing platform, the Secondary crowdsourcing-organisation
(or sub-platform), and workers/contributors. In this section, I will describe who they
represent and what they will do in the system.

• Requesters, identified by R = {R1,R2, ...,Rn}, is an individual or organization
with task requirements (e.g., a passenger in ride hailing services).

• Primary Crowdsourcing platform, identified by P, refers to a third-party crowd-
sourcing service provider that offers a platform for requesters to post requests
and workers or secondary organizations to accept tasks. The platform is re-
sponsible for managing the workflow of the crowdsourcing services, including
task allocation, scheduling, data aggregation and analysis, quality evaluation of
task execution, and reward allocation. It serves as the primary crowdsourcing
organization.

• Secondary crowdsourcing-organization, identified by P′ = {P′1,P′2, ...,P′n}, is a
secondary platform that can accept a task assigned by the primary organisation,
and split this task again to sub-tasks and then assign the task to a set of selected
workers managed by this organisation. Aggregate results from workers, return
the final result to the primary platform and allocate rewards to contributors.

14
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• Workers, identified by W = {W1,W2, ...,Wn}, is an individual participant in the
system. Each worker may join one or multiple organisations, they act as contribu-
tors in this crowdsourcing system who accept and execute tasks, and gain reward
from that.

Requesters

Send request task Send token for task

subplatform2subplatform1 Split request and
broadcast subtasks

Workers

broadcast tasks
to its workers

re
tu

rn
 re

su
lt

return final result return final result
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Figure 4.1: The system model of my crowdsourcing service system

4.1.2 Privacy Preserving Threat Model

This section talks about the threat model of my system that illustrates potential threats
and malicious behaviour from each participants one by one. And indicates the security
objective of this system. The project’s goal is to achieve a crowdsourcing system
with privacy protection, and here the main focus of our threat model is about privacy
protection. More analysis of common attack methods will be covered in the Security
Analysis section.

• Requesters: For requesters, here we assume they are all honest. The only thing
requesters do in the entire crowdsourcing process, are to send the request and pay
the tokens, they are not involved in the processing of the data, so we assume that
requesters are honest.

• Primary Crowdsourcing platform: The primary platform is a potential attacker.
Throughout the entire crowdsourcing process, the main platform is responsible for
processing the most data. As it receives requests from requesters and distributes
tasks to sub-platforms, it is inevitable that the platform will be aware of the
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requesters’ task requirements in order to enable the service to be performed.
Additionally, since the main platform is responsible for calculating the rewards,
it obtains the necessary data from the results of the sub-platforms. However,
this process may leak unnecessary private data. For example, the sub-platforms’
results may include details such as the task execution method, results of each
task segment, degree of completion for each segment, and completion time. By
analyzing large amounts of such data, the main platform could potentially obtain
paticipants’ other private information.

• Secondary platform: The secondary platform is another potential attacker. They
are responsible for accepting tasks from the main platform and assigning them to
workers. It is therefore possible for them to know the nature of the requester’s
request. Additionally, since they are responsible for aggregating and evaluating
the results of the workers’ work, as with the primary platform, they may be able
to infer other private information from the workers’ work results.

• Workers: Workers are also potential attackers. They are the performers of the
tasks assigned by the sub-platform, so they have the potential to infer what
the initial request is based on the task requirements and to analyse the demand
preferences of the platform users through a large amount of data.

Let us then turn to our security objectives regarding this threat model. Our goal is
to minimise the amount of data needed throughout the crowdsourcing process, while
making it as impossible as possible to infer additional information from this data.
Specifically, our feasible goal is to make it difficult for the main platform, as well as
the subplatform, to know the specific details of task completion through the reward
calculation process. And make the subplatform and worker difficult to know the goal of
the main task that the sub-task they are doing serves.

4.1.3 Implementation Selection

Here is an overall description of the implementation choices of my schema, Workflow’s
details and more security analysis will be talked in the later part.

In order to mitigate potential privacy breaches during the crowdsourcing service, I
have opted to deploy this service on a permissioned blockchain, which is Corda to
minimise the number of observers per transaction. As outlined in the background
chapter, data transfer in Corda is facilitated through peer-to-peer transactions, ensuring
that only the transacting parties can view and store the data within the transaction. This
feature effectively prevents other nodes within the Corda network from inferring private
information via the intermediary data carried in the transaction.

Moreover, each transaction in Corda is required to adhere to the constraints specified
in the transaction contract. Consequently, every successful transaction is guaranteed
to be theoretically feasible. Simultaneously, I have employed Paillier homomorphic
encryption for the data in certain transactions, which serves to further diminish the risk
of privacy breaches.

Specifically, during the service process, both the main platform and the sub-platform
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must receive the execution results returned by the workers for the tasks they publish
and calculate the corresponding reward value. These execution results contain much
information, including execution time, the working method utilized to complete the
task, task type, and the completion ratio of the task content (since a task may encompass
multiple requirements, the completion ratio refers to the collection of each requirement’s
completion ratio).To address the privacy concerns associated with these data, I employed
Paillier homomorphic encryption to encrypt each individual data point, assigning a
corresponding weight for the final result calculation. When the receiver evaluates the
result, the result they get will be the product of this encrypted data. Because of Paillier’s
additive homomorphic property, after decrypting the product of all the ciphertexts, the
result obtained is the total score of the task with each part’s score distributed according
to their respective weights. Through this approach, even the receiver remains unaware
of the task’s specific completion details, thereby reducing the potential for privacy
leakage.

4.2 PCS Workflows

This section describes detailed workflows of my implementation in their execution
order.

Step1: System initialization

1. Participants register.

2. Generate public-private key pair(pki,ski) corresponding to the blockchain address
in accordance with the methods of the Paillier encryption mechanism(here I use
an open source Paillier encryption library [29] for this).

3. made the public key pki of each participant public.

Step2: Request send, segmentation, and broadcast

1. Requester Ri send its request r and token for this request to primary platform.

2. Primary platform splits this request r to several tasks r→{r1,r2, ...,rn}.

3. Broadcast {r1,r2, ...,rn} to secondary platforms {P′1,P′2, ...,P′n}.

Step3: Task accept, segmentation and broadcast

1. Secondary platform P′i accept a task ri from platform

2. Split the accepted task ri to several sub-tasks ri→{ti,1, ti,2, ..., ti,n}.

3. Broadcast sub-tasks {ti,1, ti,2, ..., ti,n} to its workers {W1,W2, ...,Wn}.

Step4: Task status update

1. After secondary platform P′i accepted a task ri, primary platform will change
this task’s status to ”processing” so other secondary platforms can not accept it
anymore.

Step5: Sub-task accept, status update
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1. Worker Wi accept a sub-task ti,1 from secondary platform P′i .

2. Secondary platform P′i update sub-task ti,1’s status to ”processing”.

Step6: Execute sub-task, encrypt sub-task result and return result

1. Worker Wi execute the accepted sub-task ti,1, get task completion result d =
{d1,d2, ...,dn}.

2. Before returning the result, for each component of the result of the sub-task, give
each of them a weight ai ∼ (0,1) and apply Paillier encryption on each of them
ci = Epaillier((di ∗ai),skWi).

3. Multiply the collection of sub-task result cipher text one by one to get the final
result cproduct = ∏

n
i=1 ci and return it to P′i .

Step7: Result evaluation

1. Secondary platform P′i receives the cipher text of final result cproduct .

2. Apply paillier decryption on the result to get plaintext of the sum of each
component of the result after multiplying weights dsum,i = Dpaillier(cproduct) =

∑
n
i=1 di ∗ai.

3. Secondary platform P′i then wait for other sub-tasks’ result.

Step8: Generate and return final task result

1. After receiving all sub-tasks’ results, give each sub-task’s result a weight ai ∼
(0,1) and apply Paillier encryption on each of them ctask,i = Epaillier((dsum,i ∗
asum,i),skP′i

).

2. Return the product of the collection of task result cipher text cproduct,task =

∏
n
i=1 ctask,i to primary platform P.

Step9: Primary platform’s reward evaluation and sending

1. Primary platform P receives the cipher text of final result cproduct,task.

2. Apply paillier decryption on the result to get plaintext of the sum of each re-
sult’s completion ratio after multiplying weights dtask,i = Dpaillier(cproduct,task) =

∑
n
i=1 dsum,i ∗asum,i.

3. Calculate reward to secondary platform P′i according to its task completion ratio
and its calculation algorithm A, reward = A(dtask,i).

4. Send the reward to secondary platform P′i .

Step10: Secondary platform’s reward evaluation and sending

1. After the secondary platform receives the reward from primary platform P, it
calculates each sub-task’s reward according to its sub-task completion ratio and
its calculation algorithm A′, rewardsub−task,i = A(dsum,i).

2. Send reward to each corresponding worker.
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4.3 PCS Model Definition

In this section, in order to help readers better understand the workflow of my design.
I describe in detail the operations performed by the 4 main actions in the workflows
through pesudocode. These actions are: Request sending, Receive request and broadcast
tasks, Execute and return result and Result evaluation.

Request sending. First, let’s talk about request sending. This process is only used by
requesters when they send their requests to the main platform. Algorithm 1 describes
what we do during the sending of a request. We first initialize a transaction builder
object and add the request to the builder as a transaction output state. Then, we use the
contract corresponding to the request state to validate the transaction. If the validation
passes, we send the request and pay the tokens.

Algorithm 1 Request sending
Input: Requester Ri, Task description T , Token id for paying token for this request
Tokenid, Platform P
Output: Boolean of request successfully sent or not.
Initialize Request←− newRequest(Ri,T,Tokenid,P)
Initialize Transaction←− newTransaction(Ri,P)
Initialize Token←− newToken(Tokenid,Ri)
AddOut putState(Transaction,Request,RequestContract)
if Veri f y(Transaction,RequestContract) pass then

if checkOwner(S,Token) pass And checkAmount(Token,A) pass then
Send(Token,P)
Send(Transaction)
Store(Transaction.Request)
return true

else
return false

end if
end if

Request reception and tasks broadcasting. Both primary platforms and sub-platforms
need to receive tasks and broadcast sub-tasks. Although the details of their implemen-
tations are different, their general ideas are the same. As shown in Algorithm 2, they
first receive the request from another party and verify it according to the corresponding
contract. If verification passes, they split the task into sub-tasks using their allocation
algorithm. Then, they create a transaction builder, put all sub-tasks as output state,
verify it, and broadcast the transaction to all sub-platforms or workers.

Task execution and result returning. Both sub-platforms and workers may use this
flow, but there is a difference in how they handle results. For workers, the results they
send are from their own execution, while sub-platforms collect sub-results returned
from workers. Algorithm 3 is applicable to the scenario faced by workers, workers first
receive a task content transaction. If the verification of the transaction passes, they store
the task requirements and begin execution. After the execution finishes, they create a
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Algorithm 2 Request reception and tasks broadcasting
Input: Requester Ri, transaction Transaction,Platform P,sub-platforms P′1, ...,P

′
n

Output: Boolean of successfully broadcasted or not.
Receive(Transaction)
if Veri f y(Transaction,RequestContract) pass then

Store(Transaction.Request)
Tasklist(T1, ...,Tn)←− Split(Request)
Initialize Transaction′←− newTransaction(P,(P′1, ...,P

′
n))

AddOut putState(Transaction′,Tasklist(T1, ...,Tn),TaskContract)
if Veri f y(Transaction′,TaskContract) pass then

Broadcast(Transaction′,P′1, ...,P
′
n)

return true
else

return false
end if

end if

list of result elements, apply Paillier encryption to each element, calculate the product
of the cipher texts as the final result, and then create a new transaction to return the final
cipher text of the result.

Algorithm 3 Task execution and result returning
Input: Worker W , transaction Transaction,secondary platform P′

Output: Boolean of result successfully returned or not.
Receive(Transaction)
if Veri f y(Transaction,sub− taskContract) pass then

Store(Transaction.subtask)
resultlist(R1, ...,Rn) = Execute(subtask)
Results′ciphertext(c1, ...,cn) = Encryptpaillierresultlist(R1, ...,Rn)
Initialize Transaction′←− newTransaction(W,P′)
product←− Product(Results′ciphertext(c1, ...,cn)
AddOut putState(Transaction′, product,subtaskContract)
if Veri f y(Transaction′,subtaskContract) pass then

Send(Transaction′)
return true

else
return false

end if
end if

Result evaluation. Both the primary platform and sub-platform need to perform result
evaluation, and the process they follow is similar. As shown in Algorithm 4, they receive
task result transactions from workers/sub-platforms, store the encrypted results, and use
Paillier decryption on the cipher text to obtain the final score. They then send tokens to
workers/sub-platforms based on the final score.
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Algorithm 4 Evaluate result
Input: sub-platform P′, transaction Transaction,Platform P,Token id Tokenid
Output: Boolean of successfully sent reward or not.
Receive(Transaction)
if Veri f y(Transaction,ResultContract) pass then

product←− Transaction.product
f inalResult←− Decryptpaillier(product)
reward←− Evaluate( f inalResult)
if checkOwner(P,Token) pass And checkAmount(Token,reward) pass then

Send(Token,P′)
return true

else
return false

end if
end if

4.4 Security analysis

In this section, I will talk about various potential hazards and vulnerabilities that may
arise in this type of system, as well as the security measures implemented to mitigate
these risks.

4.4.1 DDoS attack

Distributed denial of services(DDoS) attack [37] is a type of cyberattack that uses
distributed multiple systems to flood a target system. Using overwhelming amounts
of traffic to disrupt the victim system’s normal functioning (either by overloading it or
by permanently hogging a resource), prevents legitimate users from using the system
properly.

In our system, there are two primary methods for implementing Denial of Service
attacks. The first is by sending a large number of task requests to the main platform,
occupying the majority of processing resources and preventing other users’ requests
from being executed promptly. The second method involves workers or sub-platforms
accepting tasks but not executing them, causing the tasks to be indefinitely stalled and
unable to progress normally.

Since our design lets users pay tokens for their requests in advance, if an attacker
chooses to carry out a Denial of Service attack in the first way, the cost incurred would
likely be prohibitively high, and maintaining the attack for an extended period would be
generally unfeasible. As a result, the likelihood of our system being targeted by such an
attack is extremely low.

Regarding the second method, in my design, all workers and sub-platforms are registered
individuals or organizations with a high level of trustworthiness. Moreover, even if
they do accept tasks but do not execute them, the main platform can resolve this issue
by reassigning the task and revoking the worker’s eligibility to work on tasks. This
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approach ensures that tasks continue to progress and that any uncooperative executors
are removed from the system.

4.4.2 Double spending attack

Double spending attack is a well-known problem for digital currencies [20]. In this
attack, the attacker creates two transactions within a short time using the same digital
tokens. The objective is to have the first transaction’s tokens used as payment for the
second transaction before they are deducted from the initial transaction. If successful,
this would result in both transactions being confirmed, effectively allowing the attacker
to spend the same tokens twice.

In my design, the service is developed based on the Corda platform, which employs
a consensus mechanism centred around notary nodes [8]. Notary nodes are multiple
clusters consisting of one or multiple notaries, and each transaction requires a signature
from a notary node. The notary nodes are responsible for checking the uniqueness
of each transaction. If a notary node discovers that an input state in a subsequent
transaction has been used in another transaction, it will reject the new transaction,
effectively preventing double-spending attacks from occurring.

4.4.3 False reporting and free riding attack

False reporting and free riding attack [45] in my system manifests as workers submitting
fake results, pretending they have completed the work, and receiving payment from the
requester without actually performing the task.

To address this issue, I have adopted a solution that involves carefully defining each
transaction contract within Corda to minimize the likelihood of such attacks succeeding.
By defining restrictive conditions and validation steps in the contract, we can ensure
that only legitimate work results are approved by the contract. Additionally, due to
the immutability of the blockchain, even if a misjudgment occurs, it is easy to trace
the specific worker node responsible for the deceptive behavior from the recorded
information and impose appropriate penalties on the offending party.

4.4.4 Data loss

In traditional crowdsourcing systems, data loss is a potential issue that could lead
to significant consequences. Since data is normally stored by a trusted third-party
(normally by the main platform), and any accidents (such as an employee’s mistake)
or force majeure events (like fires or earthquakes) that cause data loss can severely
impact the normal operation of the service. However, in my design, all data is stored
on a distributed ledger, which effectively prevents the aforementioned problems from
occurring in my system.
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Implementation and Testing

In this chapter, I will provide a detailed description of the code implementation of my
crowdsourcing system, which is also this project’s main contribution, including the
overall code architecture and the specific realisation of important flows.

Before delving into the specifics of my code, it is essential to understand how the
Corda application operates and how developers develop applications based on the Corda
framework. The Corda application’s functionality relies on four main components:
state, transaction, contract, and workflows [2]. Since their respective definitions and
functions have been outlined in the background section, here I just give an overview
of how they work together to make the application run and provide some code related
examples.

A Corda application can be developed by Java or Kotlin, and this project uses Java [3].
In Corda, state is the object that is used for data storing and data transfer. Specifically,
as shown in figure 5.1, state is a self-defined Java class that implements one state type
in the Corda library, and data is stored in its variables. Each state needs to be linked to
a contract it belongs to.

Figure 5.1: First 2 lines of a state object

A contract is a self-defined Java class that implements the Corda library’s abstract
Contract class. It is mainly used to verify whether a transaction satisfies the restrictions
defined in this contract, figure 5.2 are some example restrictions of a token issue
contract.

23
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Figure 5.2: Constraint examples
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Figure 5.3: Flow chart of a typical flow

A transaction is an object used to update the Corda ledger, with the input and output
states stored in the transaction object. It is typically initialized and called within a
workflow. The implementation of the Corda application’s functions is mainly developed
in workflows. A flow defines the actions that a node in the Corda network can call. A
flow class usually consists of two main parts: the initiating flow and the flow responder.
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As shown in Figure 5.3, the initiating flow begins by initiating the transaction builder and
incorporating relevant input/output states. It then verifies the transaction in accordance
with the contracts, signs it, and forwards it to the responder. The responder then proceeds
to verify, sign, and commit the transaction, sending the fully signed transaction back
to the initiator. Upon receiving the signed transaction, the notary will verify the fully
signed transaction. If the verification is successful, the initiator also commits the
transaction, and both parties update their ledger with the data changes resulting from
the transaction [6].
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Figure 5.4: UML class diagram for this system

5.1 Program Overview/framework Diagram

Fig. 5.4 is an UML class diagram for my system, in order to make it looks more clear,
the diagram has been simplified to a certain extent, but it still offers a general overview
of the system’s structure.
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5.2 Implementation Details

In this section I will provide a detailed overview of the state, contracts, and flows of my
code. By reading the responsibilities of all main components, the reader can understand
how the whole system works.

5.2.1 States and Their Contracts

In my system, I have 4 main token types: request, Task, subTask, token.

• Request state is used in the request sending stage. As shown in Figure 5.5, it
stores the essential information required for request processing. Every request
has a unique identifier, ”requestId”, which is used for state query in the Corda
ledger. By using a unique ID in the implementation of a flow, a node can query
its own database according to this ID and fetch the state object from the ledger
for further processing. Each request’s requirement content is stored in ”taskInfo”.
The platform can use this information to determine how to split the request into
tasks later. The list of parties, ”participants”, stores every party involved in this
transaction. This list is used in the signature collection part that is required in
a flow’s transaction verification. The unique ID, ”tokenId”, is used to identify
which token the requester sends to pay for the request.

The contract defined for this request state is called ”requestContract”. It contains
essential restrictions for the request transaction, for example, a request transaction
should contain 0 input state and 1 output state, which is the request state. All
required fields should not be empty, etc.

• Task state is used to represent a sub-task of a request. Each task has a taskHolder
party, which is the sub-platform that accepts this task. This field is initially null in
the task broadcast phase and changes to the information of a sub-platform after it
has accepted the task. The list ”subTaskList” records the unique ID of each work
task involved in this sub-task. It will be called in the result aggregation phase and
reward sending phase later. The BigInteger ”result” is where the ciphertext of the
final result is stored. The other variables are similar to those in the request state,
so they will not be further elaborated here. The contract defined for the Task state
is called ”taskContract”. Its purpose is also similar to the previous contract.

• SubTask state is a modified task state that changes the adaptation scenario from
the main platform and the subplatform to the subplatform and its workers, with
no major changes to its role or implementation.

• Token state is used to represent fees payment in our system. This state extends the
Corda library’s EvolvableTokenType state, and most of its functions are already
implemented by the library. Thus, my implementation only needs to set a few
essential variables and functions. As shown in Figure 5.6, it contains three private
variables: owner, fractionDigits, and tokenId. The owner and tokenId are used to
identify the owner of the token and the token itself, while fractionDigits refer to
the minimum number of digits into which the token can be divided. The toPointer
function, with the help of the library, returns the pointer of this token, which will
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be used in later token transfer and division. Details about Corda’s token SDK can
be found at [10].
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Figure 5.5: Request state and subTask state.

Token

- Party owner

- int fractionDigits

- UniqueIdentifier tokenId

+ getOwner(): Party

+ getTokenId(): UniqueIdentifier

+ toPointer(): TokenPointer

Figure 5.6: Token state

5.2.2 Workflows

The proper functioning of my system uses the following workflows: issueTokenFlow,
sendTokenFlow, requestFlow, splitTaskFlow, acceptTaskFlow, assignWorkFlow, accept-
WorkFlow, returnWorkResultFlow, returnResultFlow, evaluateFlow and sendWageFlow.
I will explain them one by one.
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Figure 5.7: Flowchart for issueTokenFlow.

IssueTokenFlow in my system can be initiated by any node that enters the desired number
of tokens to be generated for testing purposes. As shown in Figure 5.7, once initiated, the
generated token state is sent to all other nodes within the Corda network. This allows the
network to recognize the existence of the newly-created tokens, making them available
for trading. Additionally, each node stores the token data on their respective ledgers
for further processing and tracking. Each involved party in a transaction consumes the
input state and changes it to the output state to achieve the ledger update. The contracts
used for the transaction and the signatures of the participants are also stored in this
transaction object. In the Corda network, communication between various nodes is
achieved through the processing of transaction objects.

SendTokenFlow can be initiated by any node to transfer their token to another party.
The workflow process is similar to the issueTokenFlow, as it also needs to create a
transaction and broadcast it to the network to let other nodes acknowledge this token
transfer. However, the main difference is that we have an input state which is the
original token state used for token transfer. As shown in Figure 5.8, if Bob wants to
send 2 tokens to the platform, he first needs to push his token state used for the token
transfer to this transaction. He then needs to input 2 output states: the first is the original
token after subtracting the amount of 2, and the other is the token state owned by the
platform after the token transfer. So after this transaction, the original input state is
consumed and generates 2 new output states corresponding to this transaction result.
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Figure 5.9: Flowchart for request sending.

RequestFlow is initiated by a requester to send a request state to the platform, in this
flow, the requester creates a request state object with relevant information, but before
sending this request, he needs to do a token transfer to pay for the request before
activating requestFlow. The transaction structure for requests is similar to previous
transactions but the workflow’s algorithm has some changes. As shown in figure 5.9,
the initiator needs to provide a tokenID along with the request state, at the responder
side, besides using the contract to verify the transaction, he also needs to verify if the



Chapter 5. Implementation and Testing 30

requester has paid enough tokens for the request. What he does is query from his ledger,
fetch tokens that get transferred from the given tokenID, check the amount and sender
identity, if everything is valid, then verify the transaction and push to the next stage.

SplitTaskFlow is initiated by the platform to split the given request into multiple tasks
and broadcast these tasks to his sub-platforms, and these task states will be stored in
every participant’s ledgers for progress tracking and further processing. But here, the
platform does not use the request state as the input state, there are 2 reasons, the first
is he still needs to do subsequent processing of the request state, and if this state is
consumed at this step, the information about this state is invalidated. The other reason
is keeping the information available to each participant as small as possible for privacy
protection was a fundamental requirement of our development, sub-platform does not
need to know the request information for task processing, so they are not allowed to see
it.

AcceptTaskFlow is initiated by sub-platforms to accept the broadcasted tasks. In this
transaction, the input state is the task state initiator wants to accept, he uses the TaskId,
query his ledger to fetch the task object, and call its public function ”acceptTask()”
to try to change the taskHolder to himself. If the taskHolder is currently null, he can
successfully change it and use the changed task object as the output state, broadcast the
new state to other participants to let the network acknowledge he is the taskHolder for
task executing now.

AssignWorkFlow is similar to splitTaskFlow, when a sub-platform accepts a task, he
will call this flow to allocate multiple work tasks to his workers. And for each sub-work,
he will generate a workState for further processing and progress tracking.

AcceptWorkFlow is similar to acceptTaskFlow, this flow just allows a worker to accept
a sub-task to become the executor of it.

ReturnWorkResultFlow is initiated by the worker who is executing a work task. In
our framework, as shown in figure 5.10, after executing a work, the worker will have
multiple relevant data about the work result, for example work execution method, results
of each work segment, degree of completion for each segment ,etc. Before returning a
final result, workers will first recalculate the results by weighting each sub-data, then
apply Paillier encryption on each result segment, and calculate the product of these
cipher text. And the final product of cipher text is the data we will put in the result
field. At the responder side, since the initiating flow already applied weights for result
calculating, what they do is simple apply a Paillier decryption on it and get the final
result score, then both parties will update this change to the ledgers and the status of
this work will be marked as completed.

ReturnResultFlow is just another version of returnWorkResultFlow. At this flow, the
sub-platform encrypt each sub-work of a task, and calculate their product to get the
final result of this task.



Chapter 5. Implementation and Testing 31

send to sub-platform
Sign the transaction

Requester

sub-platform

Notary verification

Update ledger

End

input a list of result
segment data and the

workID

Apply Paillier
encryption on each

segment

Calculate the product
of encrypted

segments

get the transaction

Apply Paillier
decryption on the final

cipher text

record the result
score for futher task
result submitting and

token reward
calculation

send back to requester

Verify the transaction
and sign it.

update ledger

Build transaction and
input result state
using above data

Figure 5.10: Flowchart for result returning.

EvaluateFlow is initiated by main platform to evaluate a task and send reward according
to the completion result. He will query his ledger to fetch the task object that he
wants to evaluate according to taskID, and the result field of the task object will be the
cipher text of final result returned by sub-platform, if the result is null, it means the
task has not been done, then it will return false. Otherwise, platform will use paillier
decryption to get the final score of this task. Then the platform will send tokens to the
sub-platform according to his task’s completion score, and all participants will update
relevant information about this transaction.

SendWageFlow is initiated by sub-platform after main platform sent task reward to him.
This flow needs the input of Token used for wage sending and TaskId that represents
which task’s executors he is paying for. The initiating flow will query his ledger by
TaskId to fetch the task state object which contains a list of sub-tasks’s ID, then he will
query each sub-task one by one, get their completion score, and pay them proportionally
according to their score.

5.3 execution test

Fig. 5.11 shows this application running in the Corda test environment. As you can
see, each node will have its own shell command window, and most of my tests are
performed by having each node call flows through these windows.
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Figure 5.11: Execution test

Fig. 5.12 is an example of a transaction call to show how the flow is called and what
messages the user will see, more call scenarios for other flows will be shown in appendix
A, and more details about the flow performance will be shown in Chapter 6.

Figure 5.12: createTokenFlow



Chapter 6

Performance Evaluation

This section presents experimental data on the system’s performance and analyzes
the impact of modifications to variables such as participating nodes and transmission
message size on the system’s overall performance.

6.1 Design of experiments

In this section, the impact of various variables on the results of the system is examined
from three distinct perspectives by means of three sets of experiments.

The first set of experiments tested the effect of changing the number of sub-platforms
and working nodes on the system performance while holding all other variables constant.

The second set of experiments focuses on the size of messages transmitted by each
transaction. Specifically, for each test, a string of task/request descriptions with varying
lengths is selected and tested for its impact on system performance. In this experiment,
the number of sub-platforms and workers was held constant, with two sub-platforms,
each with one worker.

The last set of experiments focuses on the influence of Paillier encryption on the system.
I tested the system separately with and without encryption steps with Paillier encryption
to check the impact of this mechanism on execution time.

The present experiment considers the execution time as the duration required for
completing the entire crowdsourcing process. Specifically, this process comprises
several workflows, beginning with a user requesting a task on the platform. Following
this, the platform divides the task into two sub-tasks, which are then assigned to sub-
platforms. The sub-platforms, in turn, further divide the sub-tasks into two additional
sub-tasks each, and assign them to workers. Once the workers have completed the
sub-tasks, they send the results back to the sub-platforms, which then compile the
overall task result and return it to the platform. Finally, the platform evaluates the two
task results and disburses payment to the sub-platforms. The cumulative time required
to complete all of the above workflows is considered the final execution time in the
context of our experiments.
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6.2 Experiment Configuration and Performance Metric

All the following experiments were carried out in corda’s local test environment. Here
we use Corda with version 4.9, and other component’s version numbers are all shown
in Fig. 6.1. This test environment looks as shown in Fig. 5.11, as I mentioned before,
each node has a shell command window and I can call flows through these windows
to run workflows and implement experiments. Each node’s information can be edited
in the project’s build.gradle file. Fig. 6.2 is an example of the main platform node’s
setting. Each node’s name and port address can be edited in this way.

For the performance indicators of this experiment, there are 2 main parameters:

• T: the total time used to perform a complete crowdsourcing process(here, we
call it completing a crowdsourcing transaction). We get this value by calculating
the sum of time taken for all workflows that are involved in this crowdsourcing
process.

• TPS(1/T): the number of crowdsourcing transactions can be performed in 1
second. We get this value by dividing 1 by T.

For T, the lower it is, the better the performance is. For TPS, the higher it is, the better
the performance is.

Figure 6.1: Version information

Figure 6.2: Node setting example

6.3 Measurement and Analysis

The first set of experiments aimed to investigate the impact of the number of participants
on the system’s performance. Due to limitations of Corda’s local test environment, we
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were unable to test the system with a large number of nodes as the environment would
easily crash when the number of nodes is too large. Nonetheless, even with a limited
number of nodes, we were able to discern a general trend in the results. Table 6.1
shows the system performance test results for varying numbers of participants, where
P represents the number of sub-platforms, W represents the number of workers, and
there is always one main platform, the request’s description message always contains 5
characters. For example, 2P2W means there are two sub-platforms and two workers.

FLOW STEP 2P2W 3P2W 4P2W
REQUESTFLOW 0.309 0.315 0.265

SPLITTASKFLOW 0.109 0.110 0.093
ACCEPTTASKFLOW 0.701 1.024 1.273
ASSIGNWORKFLOW 0.107 0.134 0.146
ACCEPTWORKFLOW 0.122 0.123 0.124

RETURNWORKRESULTFLOW 0.387 0.365 0.387
RETURNRESULTFLOW 1.178 1.201 1.296

EVALUATEFLOW 0.891 1.136 1.116
SUM 7.316 8.118 8.944

FLOW STEP 2P3W 3P3W 4P3W
REQUESTFLOW 0.311 0.314 0.319

SPLITTASKFLOW 0.112 0.114 0.102
ACCEPTTASKFLOW 0.690 1.047 1.264
ASSIGNWORKFLOW 0.166 0.173 0.171
ACCEPTWORKFLOW 0.224 0.231 0.225

RETURNWORKRESULTFLOW 0.554 0.572 0.581
RETURNRESULTFLOW 1.221 1.324 1.511

EVALUATEFLOW 9.813 1.142 1.174
SUM 9.034 10.216 11.053

FLOW STEP 2P4W 3P4W 4P4W
REQUESTFLOW 0.296 0.304 0.309

SPLITTASKFLOW 0.117 0.104 0.108
ACCEPTTASKFLOW 0.780 1.088 1.288
ASSIGNWORKFLOW 0.186 0.185 0.186
ACCEPTWORKFLOW 0.271 0.254 0.257

RETURNWORKRESULTFLOW 0.650 0.708 0.675
RETURNRESULTFLOW 1.232 1.399 1.630

EVALUATEFLOW 1.192 1.185 1.186
SUM 9.744 10.784 11.537

Table 6.1: Execution time(s) for variable number of sub-platforms and workers.

From the table, we can see that the performance of requestFlow remains consistent.
This is because requestFlow only involves two nodes, the requester and main platform,
and the number of workers/sub-platforms should not affect its performance.

For the other flows, we can categorise them into two groups: those that can the-
oretically be impacted by the number of sub-platforms(splitTaskFlow, acceptTask-
Flow,returnResultFlow,evaluateFlow) and those that can theoretically be impacted by
the number of workers(assignWorkFlow,acceptWorkerFlow,returnWorkResultFlow).
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(a) Performance graph of T(s) (b) Performance graph of TPS

Figure 6.3: Performance graph of participants number experiment

(a) Performance graph of T(s) (b) Performance graph of TPS

Figure 6.4: Performance graph of message size experiment

In the second case, we observe a clear correlation between the number of workers and
the execution time of each flow: as the number of workers increases, the execution time
also increases. In the first case, however, one flow did not perform as expected, which is
splitTaskFlow. Other flows’ execution time all increase with the increase of the number
of sub-platforms, but this flow always stays at the same level. My guess for this result is
this, what makes the splitTaskFlow different from the others is that it has no input state,
what it does is broadcast the split task out and does not require any input state, so the
sub-platforms that are the receivers do not need to query their respective ledgers to get
the data of the input state, what they do is simply record the output state to their ledgers.
It makes sense that the amount of computation required to write data to the end of the
ledger is much less than traversing the ledger looking for state, so the total increase in
computation from increasing the number of sub-platforms by a small amount cannot
have a large enough impact on the total running time in this experiment.

But in general, we can see from Fig. 6.3 that increasing the number of workers or
subplatforms both lead to an increase in total running time and a decrease in TPS.

The second set of experiments aimed to investigate the impact of input message size on
the system’s performance. Table 6.2 presents the results of these experiments. Since
input messages are only used in request submission and task splitting, we recorded only
the total execution time and the execution time of the involved flows.

Overall, the results show that increasing the message size does lead to a slight increase
in the execution time of requestFlow and splitTaskFlow. However, the difference is not
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significant. For example, increasing the input message size by 2000% only increased
the runtime of requestFlow by about 85% and increased the runtime of splitTaskFlow
by about 220%. Moreover, since both processes take very little time to run, Fig. 6.4
indicates that changing the input message size does not have a big impact on the total
time.

2P2W 5C 25C 50C 75C 100C
SUM 7.316 8.190 7.92 8.235 8.103

REQUESTFLOW 0.309 0.397 0.425 0.512 0.570
SPLITTASKFLOW 0.109 0.143 0.173 0.211 0.242

2P4W 5C 25C 50C 75C 100C
SUM 9.744 10.105 10.233 10.201 10.236

REQUESTFLOW 0.296 0.335 0.325 0.415 0.548
SPLITTASKFLOW 0.117 0.241 0.201 0.176 0.247

Table 6.2: Execution time(s) for variable number of sub-platform and 2 workers.

The final set of experiments aimed to examine the impact of the encryption mechanism
on the system’s performance. We tested the runtime both with and without encryption,
and the results are presented in table 6.3 and Fig. 6.5. The results indicate that the
encryption mechanism does increase the execution time slightly, but the impact is very
small. Sometimes, the effect is even smaller than the data fluctuations. This outcome
is not surprising given that the amount of data requiring encryption in this system is
relatively small, so the additional computation required is not significant.

WITHENCRYPTION 2P2W0C 2P3W0C 2P4W0C
TIME TAKEN 7.316 9.034 9.744

NOENCRYPTION 2P2W0C 2P3W0C 2P4W0C
TIME TAKEN 7.191 9.142 9.477

Table 6.3: Execution time(s) for variable number of sub-platform and 2 workers.

Figure 6.5: Performance graph of experiment of encryption mechanism’s influence



Chapter 7

Discussion

This project implemented a hierarchical crowdsourcing system named ”PCS” based on
Corda blockchain with privacy protection. In this chapter, I will discuss the project’s
achievements and its limitations.

One significant achievement of this project is the successful integration of Corda
blockchain technology and a hierarchical crowdsourcing system to create a functional
Crowdsourcing CorDapp that utilises blockchain technology to ensure secure and
transparent data transmission with privacy protection. The use of Corda blockchain
technology ensures that data is tamper-proof and immutable, thereby improving the
system’s security. Furthermore, unlike other famous public blockchain (e.g. Ethereum),
Corda’s property of permissioned blockchain ensures that only a select group of people
can view a transaction, which enhances user privacy. The hierarchical structure of the
system also facilitated efficient task distribution, which led to high-quality performance.

Besides that, PCS uses Paillier homomorphic encryption in the stage of task result
evaluation and reward calculation, which ensures that some private data’s details cannot
be seen by data recipients who need to use this data for evaluation. This provides
enhanced privacy, adding an additional layer of protection to the system. In addition,
the current implementation of PCS follows a simulated real-world working scenario,
and can be easily modified to suit the requirements of other actual scenarios.

However, there are some limitations of this project. One limitation of the system is
that participants are required to possess knowledge of Corda blockchain technology
and proficiency in using a CorDapp to take part in the system. However, the majority
of ordinary users lack familiarity with blockchain technology, particularly on a notary
blockchain platform such as Corda. Therefore, it may be difficult to quickly onboard
users who are not familiar with the technology.

Another limitation is that PCS’s current workflow is relatively abstract since it is a
simulated realistic scenario, it may require further development to handle more complex
tasks. Besides that, the tests carried out on this system are not sufficient. Due to
limitations of the Corda local testing environment, the experiments on the operational
performance of the system were not conducted with a large number of nodes involved.
Therefore, future work could include conducting concurrency tests and large-scale stress
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tests to assess the system’s stability.

Overall, the project’s achievements are significant, with the successful implementation
of a hierarchical crowdsourcing system based on Corda blockchain with privacy pro-
tection. Nonetheless, the system still has some limitations that require addressing, and
future work is needed to enable PCS’s ongoing evolution and ensure its ability to meet
the evolving needs of its users.



Chapter 8

Conclusion and Future Work

The object of our project is to implement a crowdsourcing services that reduces the
traditional crowdsourcing system’s issues. Here, we analyse the problems of traditional
crowdsourcing systems and developed PCS based on these problems. PCS is a pri-
vacy preserved crowdsourcing service implemented on a notary-based permissioned
blockchain platform called ”Corda”.

By utilising a decentralised blockchain platform to implement its service, PCS effec-
tively mitigates the single point of failure problem inherent in traditional crowdsourcing
systems. Its smart contract-based approach to service delivery also enhances trans-
parency of evaluation and minimises reliance on subjective judgement from the main
platform, which is a common issue with traditional systems. Additionally, by choosing
the private blockchain Corda for development to minimise the number of observers
for each transaction, and by using Paillier homomorphic encryption for the details of
task results, the PCS system provides robust protection for the privacy of participants’
information.

The project provides a detailed description of the PCS implementation code, along with
comprehensive experiments that evaluate its actual operational performance specific to
each flow. The PCS system was designed with a hierarchical structure, and developers
can easily customise the system according to their specific requirements with minimal
code modifications.

For future work, as discussed in Chapter 7, the current development scenario of the
system is a simulated realistic scenario, and the service implementation is relatively
abstract. Moving forward, it would be advisable to identify a more concrete usage
scenario, pinpoint potential customers, make necessary system modifications, and
release a Cordapp that can be directly used in production activities. Additionally,
considering that regular users may lack knowledge of Corda blockchain, a user tutorial
on the use of the system could be developed to facilitate users’ quick understanding of
how to operate the system. Furthermore, due to limitations in the Corda local testing
environment, it was not possible to conduct testing with a large scale of participant
nodes. Thus, future work could involve carrying out extra concurrency tests and stress
tests to better assess PCS’s stability.
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Appendix A

Screenshots of Flow Executions

Figure A.1: SendTokenFlow

Figure A.2: SendRequestFlow

Figure A.3: SplitTaskFlow
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Figure A.4: AcceptTaskFlow

Figure A.5: AssignWorkFlow

Figure A.6: AcceptWorkFlow

Figure A.7: ReturnWorkResultFlow
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Figure A.8: ReturnResultFlow

Figure A.9: EvaluateFlow

Figure A.10: SendWageFlow
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