
Using GUI position to improve scheduling
decisions in a desktop environment

Vladimir Hanin
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Computer Science

School of Informatics
University of Edinburgh

2023

Abstract
The process scheduler is an essential part of operating systems. A lot of research has
been done to find the best scheduling decisions and how to take those as fast as possible.
The result is versatile and robust schedulers like the one found in the Linux kernel.
One of the goals of schedulers is to improve the CPU utilisation, by avoiding running
processes that don’t need to run, for instance because those processes are waiting for
an IO request to complete. In this report, a new scenario will be investigated where
the scheduler is currently unaware of running processes that don’t need to run. The
scenario is the one of schedulers running processes that are in a desktop environment,
and hence where GUIs are present. Two ideas will be brought forward, namely that
certain GUIs don’t need to run when they are not in the user focus, and others don’t
need to run when not visible to the user. The results of a simulated model showed that
schedulers currently spend a lot of time on processes that don’t need to run based on
those two ideas. Three different implementations for a solution were then compared,
and the best one was determined to be editing the display server, which is the piece of
software found in all operating systems with a desktop environment as it is responsible
for managing the windows on the screen. Using that solution, a battery test was made
which managed to double the battery life thanks to the CPU not doing wasted work
anymore. This report shows that taking the position of GUIs into account to help the
process scheduler is an issue worth solving, and that there exists solutions that can
efficiently solve those scheduling mistakes.

i

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Vladimir Hanin)

ii

Table of Contents

1 Introduction: scheduling and GUIs 1
1.1 Setting the scene . 1

1.1.1 Wasted work given to CPU 1
1.1.2 Types of processes . 2
1.1.3 GUI position brings value for scheduling 3

1.2 Problem description . 6
1.2.1 Problem definition . 6
1.2.2 Advantages of solving the problem 7

2 Current work and delta 8
2.1 UWP . 8
2.2 Android . 9
2.3 Delta of this report . 10

2.3.1 Goals of the implementations 11

3 Problem analysis 12
3.1 Challenges . 12
3.2 Empirical data . 13
3.3 Model . 13

3.3.1 General idea behind model 13
3.3.2 Equations . 14

3.4 Results . 17
3.5 Refactoring . 18
3.6 Discussion . 19

4 Implementation 1: user space individualism 20
4.1 Design . 21

4.1.1 Input-driven processes . 21
4.1.2 RTD processes . 21

4.2 Overhead . 22
4.2.1 input-driven processes . 22
4.2.2 RTD processes . 23
4.2.3 Overhead in model . 23

4.3 Responsiveness . 24
4.4 Discussion of this implementation 26

iii

5 Implementation 2: user space centralised 28
5.1 Design . 29
5.2 Overhead . 29
5.3 Responsiveness . 30
5.4 Discussion of implementation . 31

6 Implementation 3: display server 33
6.1 Design . 34

6.1.1 Input-driven processes . 34
6.1.2 RTD processes . 34

6.2 overhead . 35
6.2.1 Input-driven processes . 35
6.2.2 RTD processes . 35

6.3 Responsiveness . 36
6.4 Discussion of implementation . 36

7 Conclusions 38
7.1 Magnitude of problem . 38
7.2 Implementations . 38
7.3 Verification . 39
7.4 Future work . 40
7.5 Summary . 40

Bibliography 41

A Programs used for the model 42

B Method of measurement of CPU utilisation 45

C Estimation of visual component for CW 48

D Script for input-driven processes of implementation 1 49

E Script for RTD processes of implementation 1 51

F Script for agent of implementation 2 57

G Changes for input-driven processes of implementation 3 65

H Changes for RTD processes of implementation 3 66

I Battery consumption results 71

iv

Chapter 1

Introduction: scheduling and GUIs

1.1 Setting the scene

1.1.1 Wasted work given to CPU

The task of a process scheduler in a general purpose OS is to decide when processes
get to run on the CPU and for how long. It tries to maximise the utilisation of the
CPU, minimise turnaround time, minimise response time, be fair to all the processes to
prevent starvation, and to allow for as much progress as possible by decreasing kernel
interrupts and their processing times as much as possible.

The processes that the scheduler manages must sometimes get access to external
resources in order to make progress. For instance, a process might need to retrieve
data from a file on disk in order to know what to do next. In those cases, one way
to implement this would be to have the process request the resource to the OS, and
then busy wait until the resource becomes available. During that time, if the scheduler
decides to execute this process, it would lead to wasted CPU work since the process
can’t make any progress. This is why blocking waits were introduced, where processes
send the IO request to the OS and then they are given the state of “sleeping” so that
the scheduler knows not to schedule that process until the resource becomes available.
In the example given above, this would mean that the process that sent the request
to get the page from disk will not be scheduled until the page is found in memory.
In general, whenever a process is waiting for an IO request to complete, and hence
whenever it doesn’t have to run, the scheduler will not execute that process thanks to
the implementation of these blocking reads.

In this report, a new scenario will be brought forward where currently the scheduler
erroneously decides to execute processes that don’t have to run, which leads to wasted
CPU time. The reason why those processes don’t have to run isn’t related to them
busy waiting for a resource, but rather because of a higher level requirement based on
the nature of the work done by the process and the environment it is running in. The
analysis of this report pertains to general purpose OS’s with a desktop environment,
where processes can create graphical user interfaces (GUIs) that are visible on a screen
for a user.

1

Chapter 1. Introduction: scheduling and GUIs 2

1.1.2 Types of processes

Processes running in an OS with a desktop environment can be categorised in different
ways. The first distinction that can be made is to differentiate between the ones that
have a GUI and the ones that do not. An example of a process of the latter type is the
file compressor “tar”, which is accessed through the command line. Those processes
will be henceforth called “no-GUI”.

Of the processes that do have a GUI, they can be further categorised into two groups.
The distinction between the two groups relies on the nature of the work done by the
processes themselves. The first group of processes called “input-driven”, are processes
that only need to run when the user triggers an interaction with its GUI(s). For instance,
a Minesweeper game only needs to execute some code when the user decides to place
a flag or expose a tile. When the user isn’t interacting with the GUI of the game, the
process has nothing to execute since the only work that has to be done is when the user
changes the state of a tile on the board.

The second group of processes with a GUI do not only rely on the interaction of the
user with their GUI(s) in order to execute some task. They must also for instance wait
for an external packet to arrive, or they must continuously update their GUI(s) in a loop.
Those will be called “input-output”.

This second group can be further split into two subgroups. The first subgroup are
processes that only display real time data in a loop. For instance, a camera application
that displays a preview of the webcam is displaying real time data. What is important to
note is that it doesn’t accumulate information over time, it simply fetches information
somewhere, maybe transforms it, then displays it, and starts again in a loop. If this
process were to be stalled and then resumed some time later, no artefacts will be visible
since it can simply continue fetching the real time data in a loop. Processes in this
subgroup will be referred to as “RTD” (for real time data).

The second subgroup within “input-output” are application that do not only display
real time data. The data they display is something that they compute over time, or
they must wait for a certain condition such as a network packet to execute a task and
display the result on the GUI. These processes have a visual component, but they also
have a continuous piece of work that must be executed continuously. For instance, the
“gnome-system-monitor” app for GNOME desktop environments, continuously displays
the resource consumption over time. This process cannot be stalled and resumed, since
the stall will introduce missing data in the graph during the stall. Processes within this
subgroup will experience artefacts if they are interrupted, whether it is because during
their pause they won’t be able to detect an external event, or because the pause will
mean that they couldn’t continue executing some piece of work. Those processes will
be called “CW” (for continuous work).

It is worth noting that every process corresponds to exactly one category above, though
it isn’t static. For instance, a process can first be of type no-GUI and then become of
process with a GUI. The point of those categories is to see what kind of optimisation can
be applied to processes that are currently of that type. All the categories are visualised
in figure 1.1.

Chapter 1. Introduction: scheduling and GUIs 3

Figure 1.1: The categories that all processes in a desktop environment belong to.

1.1.3 GUI position brings value for scheduling

Based on the categories introduced above, their relationship with process scheduling
will be explained below.

1.1.3.1 input-driven processes

As explained above, processes that are of type input-driven only need to execute pieces
of work when the user interacts with their GUI(s). This can be either because of a
mouse click or a keyboard press.

In the context of a desktop environment, there is this concept of a single GUI being
“under focus”. In general purpose OS’s like Windows, macOS or Ubuntu, the focus is
indicated with a visual aid, usually with a slightly different colour for the banner at
the top of the GUI under focus. This focus was created to help the user to for instance
only write in the text document that they are looking at, and not also in the browser
search bar that happens to also be open. This focus means that the main mouse clicks
and keyboard presses will be sent to the window under focus, and not the others.

Using the two pieces of information above, we can conclude that when an input-driven
process isn’t under focus, then it doesn’t have to run, since the mouse or keyboard events
won’t be sent to that GUI. If the scheduler decides to execute that process, it would lead
to wasted CPU time. This means that processes of that type could be manually paused
when they are not in focus, and resumed when they are.

Though, care must be taken when deciding when to pause those processes. For instance,
if a user is playing Minesweeper, clicks a tile to reveal what is underneath, and then
changes the focus to another GUI before Minesweeper had the time to determine
whether the tile had a mine beneath, then the game would not be able to display the
result of the click of the user. Processes of this type can be described as always waiting
for a mouse or keyboard event, execute some work based on the event, and then wait
again for the next event. But if the work that has to be done for an event is very long, it
must still be able to finish that task before it is killed by the fact that it isn’t under the

Chapter 1. Introduction: scheduling and GUIs 4

focus anymore. The bottom line of this optimisation is that since input-driven processes
need a mouse or keyboard event to continue executing, then without the focus that
requirement can’t be met, and hence those processes don’t need to run anymore until
that requirement is able to be satisfied again.

1.1.3.2 RTD processes

A new concept will be introduced here, namely that the value of real time information
is related to whether it is viewed by an observer. If we consider the situation where
the camera app is displaying a preview of the webcam, but the user isn’t looking at the
preview, then the information that the preview is displaying is lost. It is lost because
as soon as the user looks back at the preview of the webcam, they will see the current
correct preview, and hence calculating and displaying the previous previews when the
user wasn’t looking was wasted. Real time data implies that it is only valid in the
present, and hence without an observer to act on this data or store it, then the real time
data has no purpose of being displayed.

In the context of a desktop environment, the visibility can be determined in three ways.
Firstly, the GUI can be minimised, in which case it isn’t visible anymore. This is found
in most general purpose OS’s, where the window can be folded away in a taskbar for
instance. Secondly, the GUI can be in another virtual desktop or workspace, in which
case it isn’t visible. Lastly, the GUI can be hidden because it is obstructed, meaning
that there are other GUIs that completely cover it.

Using the information above, this means that processes of type RTD only need to run
when their GUI is visible to the user. If not visible, those processes can be paused
until they become visible again. One subtlety is that the user isn’t the only potential
observer. For instance, a screen recorder could be recording the GUI of the preview of
the webcam, in which case the GUI can’t be paused if minimised for instance, since the
screen recorded would not get the data it needs. This means that the default visibility
checking must sometimes be able to be overridden by another application, which will
be taken into account.

1.1.3.3 CW processes

As explained above, CW processes must always run, regardless of the interaction
with the user, or the visibility of their GUI. An example of a CW process is a visual
simulation of planets in our solar system. The process has some visual component to
display the position of every planet, but must also compute the new position of planets
based on their current position using complicated equations. It must continuously work
regardless of the interaction of the user, or of the visibility of its GUI.

What is interesting is that the type of work the process is doing can be separated into
two purposes. The first purpose is to continuously calculate the new position of the
planets based on the current ones, and the second is to create the visualisation of the
planets moving around. What can be done here is to refactor the code so that instead of
having one process, there are two processes, where the first continuously calculates the
new planet’s positions, and the second will continuously visualise the planet’s positions

Chapter 1. Introduction: scheduling and GUIs 5

Figure 1.2: Example of a CW process which does calculation (C) and the visualisation
(V) in a single process in a loop, that can be refactored into two processes which do a
single purpose each. The new process only doing the visualisation can now be pause
when the GUI isn’t visible.

that the first process created, as shown in figure 1.2.

What is interesting is that now the second process that does the visualisation has become
a RTD process, since it is continuously displaying this “real time data” that the first
process provides it with. If the user isn’t looking at the simulation of the planets, then
the second process has no value in displaying that data, and the first process can simply
continue calculating the new position of planets. Also, the first process has become a
no-GUI process.

This method of refactoring CW processes into a no-GUI and RTD process can always
be applied, since those processes always have a component that does some kind of
continuous work, and a visualisation part. Some might have a very small visualisation
part compared to the continuous work or the opposite, it depends on the process itself.
The visualisation part is displaying the real time data that the continuous work is
exposing, just like an model-view pattern in software development. Hence, also for
CW processes the position of their GUIs can be taken into account to improve the
CPU utilisation, though it does require the process to be refactored first to extract the
visualisation work from the continuous one.

1.1.3.4 Bigger picture

What this analysis shows is that all categories of processes mentioned above can be
optimised using the the position of their GUI. Since all processes that exist with a GUI
fit into the three categories discussed above, they all have the potential to be optimised.
This makes the overall idea of using GUI position for scheduling quite appealing.

The higher level idea that is being conveyed here is that all the tasks executed by a

Chapter 1. Introduction: scheduling and GUIs 6

computer with a desktop environment belong to one of the three following types: either
visualising real time data in a GUI (such as a RTD process like a camera app, or within
a CW process like visualising the position of the planets), input-driven with a GUI (for
instance Minesweeper), or continuous work with no GUI (such as the tar file compressor,
or within a CW process like calculating the position of the planets). The first type of
task can be paused when its work can’t be visualised by the user, the second type can
be paused when the user can’t interact with it, and the last type must always run.

1.1.3.5 Distinguishing between the categories

One important thing to determine is how to categorise a new unknown process. This is
important since the category it belongs to will determine what optimisation could be
applied to it. The best option would be that the OS can determine automatically what
type the process is, based on the assembly code or the behaviour of the process while it
runs.

A distinction that must be made is for instance between RTD and CW processes. It is
worth noting that real time data doesn’t really exist as computers take some time to first
retrieve the data, perhaps transform it, and then display it. For instance, the preview of
the webcam isn’t perfect real time information, though for us humans it is unnoticeable.
What is interesting is that increasing the delay between each update of the preview
makes it become less and less real time data. In the extreme case where the preview
is only updated every 10 seconds, then most users would agree that it isn’t real time
data anymore. Hence, the process can’t be paused if not visible, since some users will
want to see what was happening 10 seconds before the GUI was visible again (and not
10 seconds because the GUI was paused as it wasn’t visible anymore). The issue is
deciding how long a delay can be to still be considered real time data. This is purely
subjective, as each user might have a different threshold. This implies that there can’t
be a general rule to determine whether a process is RTD or CW. A similar argument
can be made about the distinction between input-driven and input-output processes.

The subjectivity in the distinction between the processes implies that the OS can’t
always make a correct decision. It could be told to take a conservative choice, though
there might always be users that won’t agree with it. Hence, the distinction between the
categories must be made by the developers themselves to decide for their app, or the
user to override that choice if necessary. The first option will mean that each process
should be able to dynamically report what category it belongs to during its life time.
This is the approach that will be taken in the implementations discussed below.

1.2 Problem description

1.2.1 Problem definition

As explained above, processes of type input-driven don’t need to run if they are not
in focus. What should be noted is that those processes should already exhibit this
behaviour due to the way they ask for mouse or keyboard events. They can use blocking
reads when waiting for the mouse or keyboard presses, which will not make them run

Chapter 1. Introduction: scheduling and GUIs 7

when they are not in the user focus. For instance, gnome-mines (Minesweeper for
GNOME) manages not to run whenever not in the user focus. The issue is that there are
a lot of other commonly found apps that are of type input-driven that still run when they
are not in focus, such as GIMP for instance. The reason why those processes could be
due to multiple reasons. The most obvious is that those processes don’t use a blocking
read on the mouse and keyboard events, but rather busy wait for them. Another reason
could be because of the development stack that is too big. When creating big programs
like GIMP or Blender, developers usually use high level libraries to draw on the screen.
Those libraries do not always expose these blocking reads for the next keyboard or
mouse events. The fact that the processes of type input-driven are still running when
not in focus is more a bad coding practice since as shown by gnome-mines it is possible
to get that optimal behaviour.

The second issue is related to the RTD processes. As explained above, those processes
don’t need to run when they are not visible. However, processes like Cheese (camera
app) keep running even when minimised for instance. In this case it isn’t bad coding
practice, rather the fact that this higher level requirement of the visibility of real time
data isn’t taken into account by the scheduler, and hence those processes keep running
even though the nature of their work and the environment they are in implies that their
work is wasted.

The last issue is the fact that processes of type CW keep doing visual work when their
GUI is not visible. For instance, a visual simulation of the solar system will do work
related to updating the GUI even though it isn’t visible. Once again, this isn’t bad
coding practice, rather the fact that those applications are not refactored properly and
that they don’t take their position into account to determine whether their work is useful.

1.2.2 Advantages of solving the problem

There are multiple advantages in solving the issue. The first major one is that the CPU
can remain idle instead of doing useless work. As a direct consequence of this the
battery life should improve. This advantage would be very valuable for portable devices
like phones and laptops. Also, this should reduce the power generated by the CPU,
which might help with certain demanding workflows where high temperatures were
reached and the CPU had to throttle.

An indirect advantage is that as the CPU is doing less work, that new idle time could
be given to the other processes that do useful work. This means that for instance their
responsiveness can be improved. Also, if the OS has too many processes to handle
that are asking for too much memory, it could easily push those paused processes to
disk. Then, as soon as those become visible again, the OS can bring the process back to
memory and resume it. Thanks to those optimisations the OS can now better manage
its resources, which means that for instance it can run more processes concurrently.

Chapter 2

Current work and delta

The current academic work done in this area is very limited. Regarding scientific
papers, none could be found that introduced this issue of processes running when they
don’t need to due to the position of their GUI. This paper will be the first one. As a
consequence, there is also no scientific reports that tried to measure how big this issue
was, or how it could be efficiently solved. However, there are some concrete solutions
found in current systems that try to directly or indirectly mitigate this issue, as discussed
below.

2.1 UWP

UWP is one of many ways possible to create an application with a GUI for the Windows
operating systems, which is developped and maintained by Microsoft. It provides a
unified way to create GUI applications for all of the versions of Windows but also the
XBox and other environments, without having to create a specialised version for each.

In the earlier versions of UWP, applications were either running or not running. Due to
the increasing presence of portable devices and hence of power management, Microsoft
updated UWP to include two more states: “running in background” and “suspended”,
where an application transitions through them as shown in figure 2.1. These new states
were added to reflect the position of the window. By default, if the window is not visible,
then it will transition to “running in background” and finally to “suspended”, in which
case it will be paused until it is visible again to the user. The precise data that they
gathered about the need for better power management which motivated their decision to
add those states could not be found.

The approach taken by Microsoft to solve the issue was to create this heavy development
environment. To create a GUI using UWP, programmers have to strictly abide to creating
specific methods which become callbacks that will be called when certain events occur,
for instance when the window isn’t visible anymore. If they want to keep their app
running while in the background they have to use a specific class and implement it using
specific guidelines.

An advantage of this approach is that by default apps will be suspended when not

8

Chapter 2. Current work and delta 9

Figure 2.1: Different application states that a UWP app transitions through based on its
position. The position of the GUI influences the state, and the state determines whether
the process is running.[3]

visible. When a programmer wants to create an app, their application will be killed in
the background by default. This means that even if a developer doesn’t know about
this feature of UWP, the advantages of their app not running in the background will be
noticed regardless.

One thing to note is that UWP doesn’t take the focus of the window into account. It
doesn’t differentiate when the window is running in the foreground because the user
has given it the focus, or because it is simply visible on the screen but the user is busy
doing something else. Hence, windows like GIMP won’t be suspended if they are still
visible to the user but not in focus.

Another downside with this approach is that the task of the developers is a bit more
complex, as it isn’t as easy as switching a variable and then the app is allowed to run
in the background. The developers have to actively think about each of the jobs their
application has to complete in advance and know whether it must run while the GUI not
being visible. This makes developing applications in such an environment a bit more
convoluted.

It is worth noting that UWP isn’t the only way to create applications for Windows.
There is also Windows Forms for instance. UWP was the only one found that had
this feature of not running when not visible. Apps that aren’t developed under UWP
can’t easily be optimised in terms of their visibility or focus. Also, the user can’t easily
override the decision made by the developers. For instance, it isn’t easy for a user to
override the decision of the developers to pause the app when it isn’t visible.

2.2 Android

App development in android is another area where the issue was attempted to be
solved. In that development environment, developers have to abide to strict rules such
as implementing callbacks for certain events that their apps might be subjected to, as
shown in figure 2.2.

Chapter 2. Current work and delta 10

Figure 2.2: Android activity life cycle, which includes callbacks related to the position of
the GUI on the screen.[1]

As we can see, developers can easily know when their application is in the foreground,
or hidden. They can also know when their application is in focus. This means that
developers can already adapt the work that their application is doing corresponding to
the position of their GUI. For instance, a camera app can release its connection to the
webcam and hence stop displaying its preview as soon as it isn’t visible by editing the
“onStop()” callback.

Though, this isn’t enforced by anything. Applications are still allowed to run in the
background by ignoring the calls to the respective callbacks. Though, this issue is
mitigated by certain android versions that let the owner of the phone to decide when to
restrict background usage to certain apps.

Overall, this shows that in the Android phone environment, due to the heavy model in
which the developers work in, it is easy for them to create an app that behaves differently
based on the visibility that the app has, and it is easy for users to correct apps that don’t
behave properly in the background.

2.3 Delta of this report

These results show that Android has a full solution implemented already. Windows
does have UWP, but it doesn’t have the detection for focus, and no solution on macOS
or Linux was found. Based on this analysis, the first goal of this report will be to
implement solutions in the Linux environment, since no solution was found for it and
because of its open source nature. The scripts discussed in this report for the different

Chapter 2. Current work and delta 11

implementations are made available. Regarding the last implementation, the changes
proposed to the display server were submitted as a pull request to the X11 display server
to contribute to the open source community.

Another goal of this report is to find the best solution to solve the problem, by comparing
different implementations. The first one is a naive implementation where each process
that knows it can be paused will run a script to pause itself when they don’t have the
focus or they are not visible. The second implementation is to group all those individual
scripts into one centralised one. The last implementation is to change the display server
so that it can itself pause or resume windows based on their properties.

The last goal of this report is to analyse and measure how big the problem is, since no
academic work was found about this topic. It will be attempted to measure as accurately
as possible how much time the CPU spends on windows that shouldn’t run when not in
focus, or shouldn’t run when not visible. This will indicate whether the issue is worth
analysing further and whether the solutions proposed are worth spending more time
optimising.

2.3.1 Goals of the implementations

The goals of the three implementations to solve the issue will be three fold:

1. First, the smallest overhead is sought. The amount of time the CPU that is spared
thanks to the implementation should be the smallest compared to the extra work
done by the CPU due to the implementation itself.

2. Second, the implementations should be as unnoticeable as possible to the user.
The user shouldn’t notice that this optimisation is being implemented. One thing
in particular that might be introduced is that for RTD processes (not for input-
driven) when it is not visible and hence paused, and when the GUI suddenly
becomes visible again, the process should be revived as soon as possible. The
problem that could occur here is that if the process is not revived fast enough, the
user will see the GUI in the state that it was before it was paused, and hence this
would introduce an error for the user since they could interpret that information
to be valid. For instance gnome-system-monitor is frozen when minimised, and it
reports that a certain process q is running, then right after making gnome-system-
monitor visible again the process q might still appear on the GUI. In that case,
the user might not be sure whether the process q was running now or if it is an
artifact of when the GUI was paused. In the implementation discussed below,
those artifacts will be minimised as much as possible.

3. Lastly, developers should have the easiest app development possible. The imple-
mentations proposed shouldn’t make the life of developers much more compli-
cated, otherwise developers might not decide to take the route of optimising their
app.

The implementations proposed in this report will be compared based on those criteria.

Chapter 3

Problem analysis

In this chapter, the magnitude of the problem will be measured. This means measuring
how much the CPU is executing processes that don’t need to run, hence how much
wasted work it is doing. More precisely, how often and how long input-driven processes
are scheduled even though their GUI is not under focus, and RTD processes are sched-
uled even though their GUI isn’t visible to the user. Also, the amount of visualisation
done by CW processes will be estimated.

The goal will be to have the most precise and accurate value as possible. Though, it is
worth noting that this task is quite complex, as shown below. Averages will have to be
made in certain cases. Hence, the primary goal of this analysis is rather to determine
whether the problem is a significant one, by obtaining an order of magnitude, which
will indicate whether investigating it further is worthwhile.

3.1 Challenges

The final value sought is what percentage of the work that a CPU is doing is wasted.
The problem is that this value depends on the following factors :

1. The position of the GUIs. If for instance only the camera app is open and visible,
then nothing that the CPU is doing is wasted. However, if that GUI is minimised
then the CPU is doing wasted work.

2. The types of processes and the types of their GUI. If all the processes are no-GUI,
then all the work the CPU does is useful, and hence there is no waste. On the
contrary, if all processes are of type input-driven and none are in focus, then
there is wasted CPU time. Related to that is the process themselves. If we take
gnomes-system-monitor and compare it to Cheese, both show real time data,
though Cheese is taking more CPU time than gnome-system monitor. This is
related to the type of work that the process behind the GUI is doing.

3. The number of open GUIs. If there is no open GUIs, there is no wasted CPU
time, whereas in the situation where there are 15 GUIs open there can be wasted
time spent on the CPU.

12

Chapter 3. Problem analysis 13

These three factors mean that there exists cases when everything the CPU is doing is
wasted and everything it is doing is useful. There exists many different configurations of
processes and positions, where each has a different resulting wasted percentage. Hence,
there is no single correct final value that exists, since all scenarios have a different one.
This implies that the average amount of wasted work that the CPU does must be found
instead.

3.2 Empirical data

Perhaps the most straightforward way to measure how much time is wasted on average
is to simply monitor a computer used by an average user, by measuring the percentage
of wasted work done by the CPU while the user is busy working on it. The issue here is
to find an average user. Each person has a different way of using applications on their
computer. For instance, some keep lots of open browser tabs open, while others keep
very few. Hence, finding one average user is very hard. A way to combat that would be
to take lots of users, and then take the average of all of them. One way this could be
done is through a university, where the computers made available to students would be
monitored. The issue again is that the students might not be representative of every user.
Students might use some piece of software that most users don’t use, like a specialised
calendar apps for instance. Due to the complexity of finding a representative sample of
users in the population, this approach was set aside.

While the approach discussed here should be very accurate for those specific cases,
it would be hard to know whether the results can be generalised. This is due to the
different pieces of software that people use, or the different ways they interact with
applications and their GUIs. For this reason, another approach was sought.

3.3 Model

Instead of using empirical data, a simulated model will be used. Each simulation will
depict a specific scenario, where the percentage of wasted work done by the CPU can
be calculated. The advantage with this approach is that now lots of different scenarios
can be simulated, where the average can then be taken, but also specific interesting
scenarios can be analysed in isolation, and general trends across all scenarios can be
noticed.

3.3.1 General idea behind model

The model relies on the key observation that when there are a few processes running on
a system, for long enough time intervals, the CPU will be idle most of the time. This is
because the running processes are for instance executing long IO requests, or because
they are deliberately pausing themselves to wait for a certain event. For instance, we
can take the fake scenario where there are two processes running P1 and P2 which each
take about one sixth of the total time interval, and where the remaining time the CPU is
idle. This situation is depicted in figure 3.1, where the proportion of the time that the

Chapter 3. Problem analysis 14

Figure 3.1: Diagram showing the individual proportion of time taken by process P1 and
P2 to run on the CPU during a 10 second time interval. Right is when a third process P3
is added. In this case, the model would calculate that one third of the work is wasted.

CPU spent on each process or idle is shown within an arbitrary 10 second interval. The
interesting behaviour is that if a new process P3 is launched, it will simply replace a
proportion of the idle time of the CPU. The CPU utilisation of the individual processes
P1 and P2 will be almost identical to the original scenario, as shown on the figure.

The model then takes this approach to simulate different processes running on a system.
It will measure the proportion that each process takes individually on the CPU, and
then create scenarios with different combination of processes and different positions
of their GUIs, by summing their individual CPU consumption, and then calculate the
resulting ratio of wasted work done by the CPU. The only limitation that the model
must take into account is that there must always be some idle time left to be given to the
new process, otherwise the new process will steal some of the CPU time of the other
processes. In reality, the scheduler will have to make the decision also based on the
priority of each process. This will be taken care of in the analysis to make sure such
scenarios are detected.

In reality, the CPU consumption of a process running individually on the system will not
be exactly the same as its consumption when there are a few others running. Namely,
it will be slightly smaller. Though, this reduction was observed to be similar for all
processes. Hence, while their total consumption will be overestimated, taking their ratio
means that this decrease isn’t affecting the result.

3.3.2 Equations

The equation that the model uses to simulate each scenario as described above starts
from the following:

z =
T Tw
T T

=
T Tw

NG+(T Tw+T Tu)
(3.1)

where z stands for the final value the model tries to calculate, which is the proportion
of work that the CPU is doing that is wasted. T Tw stands for the total time spent on
processes with GUIs that is wasted due to their position, and T T stands for the total
time that the CPU worked for (hence ignoring idle time). Based on the categories of

Chapter 3. Problem analysis 15

processes introduced in this report, T T can be decomposed into the work done for
processes with a GUI and the ones without. The total time spent on processes of the
latter type, which also includes kernel threads, is denoted with NG. The processes with
a GUI can then be decomposed between the ones that were wasted work on the CPU
T Tw, and the work that was useful T Tu.

The total time the CPU spent that is wasted T Tw can be decomposed further based on
where the wasted work originates from:

T Tw = T Tw f ocus+T Tw f +T Twv = T Tw f +T Twv (3.2)

where T Tw f ocus is the total time wasted by the process under focus, T Tw f is the total
time wasted for processes that are visible but not in focus, and T Twv is the total time
wasted for processes that aren’t visible. This separation means that if the CPU does
wasted work, it will belong to exactly one of those values. In this case, there is no time
wasted when the process is under the user focus, hence T Tw f ocus is zero.

In order to construct different scenarios, the model will need two parameters. The first
one x will denote the number of open apps on the system. It will range between 0 and
20. The second parameter that the model uses is y, which represents the number of
GUIs that are visible to the user. This parameter will range between 0 and x. Based on
these parameters, the T Tw f and T Twv can be rewritten as follows:

T Tw = 0+T Tw f +T Twv = (y−1)T Tw f i+(x− y)T Twvi (3.3)

where T Tw f i and T Twvi represent the time one process wastes individually on average
while visible but not in focus and while not visible respectively. The same reasoning
can be done with T Tu, giving :

T Tu = T Tu f ocusi+(y−1)T Tu f i+(x− y)T Tuvi (3.4)

where T Tu f ocusi is the average amount of useful time given for one process running
individually while under the focus of the user, T Tu f i is the average amount of useful
time spent for one process that is visible but not in focus, and T Tuvi is the average
amount of useful time spent on a process that is not visible. The resulting full equation
of the model for a given x and y is then:

z=
(y−1)T Tw f i+(x− y)T Twvi

NG+((y−1)T Tw f i+(x− y)T Twvi)+(T Tu f ocusi+(y−1)T Tu f i+(x− y)T Tuvi)
(3.5)

The model will then range over different values of x and y, and then use the equation
above to calculate the percentage of wasted CPU time. The task is now to find the six
following unknowns: T Tw f i, T Twvi, T Tu f ocusi, T Tu f i, T Tuvi and NG.

Chapter 3. Problem analysis 16

3.3.2.1 What processes

In order to find the values of the first five unknowns above, an average will be taken
from a list of different processes. Since the goal is to represent the most common
scenarios, the programs that are the most often used in Linux distros will be used as
reference. This way, the results of the model will try to represent the most common
workflow that a user might have on their computer. The programs decided to be part of
the analysis were chosen because they were very common for their respective task. For
instance, the most common free 3D rendering software available on Linux is Blender.

The resulting list of programs used for the model is the following: Firefox, Chrome,
Thunderbird, LibreOffice Draw, LibreOffice Impress, LibreOffice Write, LibreOffice
Calc, VLC Media Player, Shotcut, GIMP, Visual Studio Code, Ardour, Discord, Intellij
IDEA, Pycharm, gnome-system-monitor, Cheese, Blender and Spotify. For more
information on each program such as their version, see appendix A.

3.3.2.2 Method to obtain first five unknown values

For calculating the first five unknown values above, every program was measured in
that scenario to see how much they contributed to that unknown, and then an average
was calculated from all of the programs. For instance, to measure the average amount
of CPU time that one process wastes when not visible T Twvi, the GUI of the program
was minimised so that it wasn’t visible anymore, and then the amount of CPU time
they wasted was recorded. Some programs didn’t waste time when not visible, like
Discord, so 0ms was recorded for those. The programs were recorded when running
individually on a Ubuntu 20.04.5 LTS. The average was then calculated for all of the
programs mentioned above.

In order to measure how much CPU time they received, it was decided to record during
a window of 10 seconds. During those 10 seconds, the number of milliseconds that
the program was running on the CPU was recorded. This was done by recording the
number of clock ticks the CPU spent on the process in user mode and kernel mode (by
accessing the /proc/<pid>/stat file). If a GUI had multiple processes behind it, all
of them were recorded at the same time.

Since programs can sometimes have quite erratic behaviours, 12 samples of 10 seconds
were recorded, which in total means 120 seconds of wall-clock time was recorded.
Then, those 12 samples could be visualised to see whether the program was indeed
using a constant amount of time on the CPU over time, and wasn’t behaving erratically.
Sometimes, it was found that a program would increase or decrease its CPU usage over
time, which meant that the average behaviour was hard to determine. In those cases, 12
new samples were measured and the analysis was restarted until a normal behaviour
was observed. If the program showed a relatively constant CPU time, the average of
those 12 samples was recorded as final value.

The script used to record the usage of a program can be found in appendix B, along
with an example of how Cheese was analysed.

Chapter 3. Problem analysis 17

3.3.2.3 How NG was measured

The amount of time spent by processes without a GUI NG also had to be measured.
The first thing to note is that the amount of work that those processes produce is heavily
influenced by the number of processes that are running on the system. A lot of those
processes are utilities that other processes can use, and hence the more processes are
running on the system, the more those utilities will be used. Hence, taking one single
value and applying it to all values of x isn’t accurate.

Instead, the value will be approximated for the different x. This was done using linear
interpolation between the value found for x = 0 and x = 20, which were 297.5ms and
1255.8ms respectively. Note that this method will slightly overestimate the work that
must necessarily be done. This work is considered to be “useful”, but since there are
applications that are running that don’t need to run, their access to those utilities isn’t
necessary and hence is wasted. This means that the final percentage of work wasted
will be slightly underestimated.

3.4 Results

The values found for the first five unknown values are: T Tw f i = 238.5ms, T Twvi =
341.1ms, T Tu f ocusi = 3199.8ms, T Tu f i = 361.2ms and T Tuvi = 282.4ms. Using
those values, for all x and y, the result of the model is shown in figure 3.2.

Figure 3.2: Proportion of time that the CPU spends on running input-driven processes
that are not in the user focus, or RTD processes that are not visible.

Overall, what can be noted is that for almost all combinations of x and y, the proportion

Chapter 3. Problem analysis 18

of work done that is wasted is very high. The only exception is when there is very vew
programs open, and the user can see most of them. In all other scenarios, the proportion
of wasted work is greater than about 20%, which is quite substantial. What should be
noted though is that on average, a user is only seeing a few GUIs at a time from all the
ones that are open, since on average users only have one screen and only work on a
couple of programs at a given point in time, and hence the last few bottom rows are the
most important ones.

The conclusion from this graph is that in general, the proportion of wasted work is quite
big. In the most extreme scenario (where 20 programs are open but none are visible),
about half of what the CPU is doing is wasted. This would imply that in that case, the
battery consumption could be improved by as much as 50%. A battery test will be done
later to verify this result.

3.5 Refactoring

Here, the model was modified so that it also took into account the wasted work done by
processes that have a GUI of type CW. For instance, when gnome-system-monitor is
displaying the resources over time, when it is not visible it does some useful work of
gathering the CPU consumption, but also the wasted work of visualising that result at
each iteration. The details of how this was estimated can be found in appendix C. The
model was modified accordingly and the results are shown in figure 3.3.

Figure 3.3: Proportion of time that the CPU spends on running input-driven processes
that are not in the user focus, or RTD processes that are not visible, or on the visual
component of CW processes when those are not visible.

Chapter 3. Problem analysis 19

As we can see, the proportion of wasted work is even more substantial for all x and
y. The only exception is when there is only a few programs open and all of them are
visible. The most extreme value is when there are 20 programs open and none are
visible, where the proportion of wasted work is as high as 90%. This graph shows that
the true amount of wasted work that is happening on average on our computers is very
significant. This implies that refactoring CW programs so that they are split between
visual work and continuous work would be very advantageous.

3.6 Discussion

Overall, throughout the creation of this model, a lot of assumptions and averages were
made due to missing data on certain aspects of the problem. Whenever such decisions
had to be made, they were always based on partial evidence or educated guess from
experience. The final decision was made to give more weight to the cases where
the problem would be slightly underestimated, compared to overestimated. As the
results of this analysis show that the problem is already quite significant while being
underestimated, then in practice it is expected that it should be even greater, confirming
the significance of the problem.

A first factor that could have influenced the validity of the model is the choice of
programs to find those first 5 unknown values. While the most common and famous
apps were chosen, they might not properly represent the true average scenario found
in practice. Also, their version might heavily influence their CPU consumption, if for
instance one has a bug where it was stuck in an infinite loop. The measurement of the
unknown NG is also very much influenced by the Linux distro, since each distro chooses
which utilities are used for their environment. Additionally, the values recorded for
each program could heavily depend on external factors. For instance, if the laptop the
programs were running on lost internet connection, then the behaviour of the programs
could have been influenced by that. Though, in order to reduce the change in external
factors between each recording session, all the values were recorded in one sitting. All
these factors mean that the results shown for this model should only be considered to be
valid for those versions of those programs and under that version of Ubuntu. Though,
since the scenario depicted by the model is quite common, a similar situation should be
found with other processes and other Linux distros. More testing must be done to verify
that.

It is also worth noting that the experiments were done on a 8 core computer. This
means that the measurements of each program were influenced by this. However, as
explained above, since the ratio of their CPU consumption is calculated, the final value
shouldn’t be influenced by the number of cores on the computer. However, doing the
same experiment on one CPU and adapting the model for it would be interesting to
verify the results found here.

Chapter 4

Implementation 1: user space
individualism

In this first implementation to solve the issue, each application that knows it can be
paused when not in focus or when not visible will each implement code to make
themselves sleep. Hence, the developers of each application will be responsible for
their own program. For instance, the developers of Cheese know that their program
doesn’t have to run when their GUI is not visible, hence they will program themselves
the code required for their processes to sleep when it is not visible on the screen. In
this implementation, a new process is created alongside the main ones which will be
called the “agent”, that will monitor the position of the GUI(s) and pause or resume the
processes of the program when necessary, as shown in figure 4.1.

Figure 4.1: Conceptual design of this implementation where each process receives its
own agent. The black arrows are processes reporting their category to the agent and
the agent asking for window positions for instance, and the red are the signals.

20

Chapter 4. Implementation 1: user space individualism 21

4.1 Design

4.1.1 Input-driven processes

The solution for input-driven processes is to take advantage of events that are sent
by the display server. One of those events is a FocusChange event, which tell the
window whether it has received or was taken out of focus. These events are in the
lowest level of the software stack, hence they are the most efficient way of getting that
piece of information. This event means that it is quite easy for a input-driven process
to know when it can be paused, since the only thing it has to do is to subscribe to the
FocusChange event when it creates its GUI at launch. When the agent receives the
event, it then simply has to send a SIGTSTP or SIGCONT signal to the main processes.
Note here that the reason why a SIGTSTP signal is sent and not a SIGSTOP is to
allow for the main threads to finish the work they were potentially finishing due to the
previous keyboard or mouse event (solving the issue raised in the introduction).

The script created to test this implementation can be found in appendix D. It was written
in C to have the highest speed, and to use Xlib, which is the most efficient way of
communicating with the display server X11 that is used in Ubuntu. The script also
currently creates a window and then waits for the events from the display server, though
in practice the creation of the window would be done in a separate process, so that the
agent is isolated in another process and hence can send signals to the main processes
without being paused itself. The only thing not implemented in the script yet is the
communication between the main processes and the agent, since the type of GUI can be
dynamic. Though, this can easily be implemented with a shared variable between the
processes, by having them share a page in memory. The overhead of this extra feature
should be minimal as it would only require to read or write a single byte from memory.

4.1.2 RTD processes

The solution for RTD processes is a bit more substantial, as the information they have
to find is more complex. Those processes need to determine whether they are visible
on the screen. The issue is that there is no display server event that can notify them
whether they are visible to the screen or not. They must verify every possible scenario
manually.

The first reason why the GUI isn’t visible could be because it is in another workspace.
The issue is that there is no display server event that can notify when the window is
in another workspace. In order to get that information, a constant polling mechanism
must be used to check the current active workspace. This will significantly increase the
overhead of this solution, since the agent must busy wait in the background.

The second scenario is when the GUI is minimised. This can easily be determined
thanks to a window property change event. Though, since a busy wait approach must
be used to get the current active workspace, the state of the window will be fetched
alongside the workspace at each iteration.

The last scenario is when the window is obstructed as it is hidden behind other GUIs.
Again, there is no display server event to know this piece of information directly. Instead,

Chapter 4. Implementation 1: user space individualism 22

the first step is to know what other GUIs are open on the system. Then, only the ones
that are on the current active workspace and that are not minimised should be kept.
Lastly, the position of each GUI should be checked to see whether they cover the initial
GUI of interest. It is only after doing this whole analysis that the agent knows whether
the GUI in question is visible to the user, and hence whether it can be paused or not.

The script created to test this implementation can be found in appendix E. Again, the
code was written in C in order to benefit from the highest speed, and for the use of
the Xlib library. Also, the communication wasn’t yet implemented between the main
process and the agent. For the same reasons as above, this shouldn’t influence the results
presented below.

A limitation of the current approach is that the calculations done to detect when the GUI
is obstructed by others is a bit simplified. The current approach is to check whether there
is one other GUI that completely covers the GUI the agent has to work on. However,
there are more complex scenarios where perhaps 2 GUIs together manage to completely
cover the GUI of interest, but that individually they only cover some part of it. In general,
the current approach means that in rare cases, the RTD processes will not be paused
event though they should. Another approach was implemented to take those partially
overlapping GUIs into account, though that analysis introduced a lot of edge cases
where the GUI of interest was paused even though it shouldn’t. This is not acceptable as
it contradicts one of the goals of the implementations mentioned in the second chapter,
which is that the user should not notice the optimisation that is implemented. Also, the
analysis became much more complex and hence took much more time to finish, which
heavily increased the overhead and worsened the responsiveness of the implementation.
This is why the simple solution of checking whether another GUI fully covers the GUI
in question was kept.

Another limitation of this approach is that determining whether a GUI is visible to the
user was slightly simplified. For instance, in Ubuntu, a window preview can be found
when clicking on the program that sits on the tray. This preview means that the GUI
is visible to the user, and hence a RTD process must be resumed when its preview is
visible. The approach taken in this script is quite generalised to any Linux distribution,
since they nearly all have this concept of workspaces and of minimising a window. The
script would have to be tailored to each Linux distro if deployed in a real program.

It is worth noting that the script is O(n) where n is the number of GUIs. This asymptotic
analysis gives an indication of how much time each iteration takes, which will be used
for the responsiveness analysis mentioned below.

4.2 Overhead

4.2.1 input-driven processes

The major advantage with this implementation is that the agent is not busy waiting for
the event of the display server. It has the ability to do a blocking read to wait for the next
event, and hence when the GUI is not changing focus this agent isn’t being executed at

Chapter 4. Implementation 1: user space individualism 23

all. In the model, the average CPU consumption of this script would be zero since the
model doesn’t take into account how often the user changes windows.

Though, the script does need to do a bit of work each time it receives a FocusChange
event. If those events where sent frequently enough, this could accumulate and make the
agent spend a considerable amount of time on the CPU. The time that the agent takes
might then become greater than what the agent manages to save for the input-driven
process when it is not in the user focus. From the model, it was found that on average
an input-driven process wastes 238.5ms on the CPU every 10 seconds. After analysing
the script, it was found that on average it took about 1.2µs to receive the event and send
the corresponding signal. This implies that for the agent to consume as much CPU as
an input-driven process, about 238500/1.2 = 198750 focus changes must be performed
on that GUI during a 10 second interval. Since that value can’t be obtained in practice,
this implies that on average the agent will always use considerably less CPU than the
input-driven process regardless of the behaviour of the user.

4.2.2 RTD processes

As explained above, the script for RTD processes must busy wait in the background to
constantly check whether the GUI in question is visible to the user. In order to measure
this overhead, the same technique was used as for recording the processes for the model,
namely the script was measured alone on the system for 10 seconds, where 12 samples
were measured, and then the average was taken. The result showed that on average,
the agent takes 5416.6ms of CPU time every 10 seconds. This is considerably more
than what a RTD process consumes on average, which is about 889.6ms. In this case,
this implementation of the agent would be disadvantageous since the gain in killing the
RTD processes is smaller than the overhead of the implementation.

4.2.3 Overhead in model

The model will now be used to see whether this implementation manages to reduce
the amount of work that the CPU is doing. In this scenario, all the processes of type
input-driven and RTD will have an accompanying agent that will pause them if they
are not in the focus or not visible. The final value that the model computes is the ratio
between overhead of the agents with the overhead of the original wasted work done
by the CPU. If the ratio is greater than one, it means that the overhead of the agents is
greater than the original amount of wasted work done by the CPU. The result is shown
in figure 4.2.

Chapter 4. Implementation 1: user space individualism 24

Figure 4.2: Ratio of overhead of all the agents compared to the original work done by
the CPU.

As we can see from the graph, the ratio is always bigger than 1, meaning that the work
done by the agents is always greater than the original wasted work done by the CPU.
Hence, it can be concluded that if all the programs were to implement this solution
where they individually run an agent in the background to check their visibility or focus,
the CPU would actually be doing more work than originally due to the overhead of the
agents being too high.

4.3 Responsiveness

In the implementation of the agent for RTD processes, it was decided to have the best
responsiveness. Responsiveness here means that the the agent would try to detect that
the process should be paused or resumed as quickly as possible. A bad responsiveness
means that the agent takes a lot of time to resume a process that should be revived, and
hence the user might notice an artefact of the previous time the GUI was paused.

One thing that could improve the overhead would be to have a dynamic time between
each iteration of the loop. When the GUI of interest is not visible a very short time
between iterations is used, and when the GUI is visible a much longer time between
each iteration is used. This means that when the process is paused and should be
resumed, the agent will detect this as fast as it can, though when the process is running
and it should be paused then the agent might take a bit more time to detect that. This
would simply mean that sometimes RTD processes won’t be killed when they could,
which is acceptable. This will improve the overhead, while keeping the same desired

Chapter 4. Implementation 1: user space individualism 25

responsiveness.

A new agent was made where the time between each iteration of the loop was 10
seconds when the GUI was visible, and 0 seconds when the GUI is not visible. Its
overhead was again measured using the technique mentioned above. The result of the
model with this new version is shown in figure 4.3

Figure 4.3: Ratio of overhead of all the the agents compared to the original work done
by the CPU. Here, the agents have a dynamic time between iterations.

As we can see, there are a lot of situations where the ratio is lower than 1, meaning that
the overhead is smaller than the original wasted work. Though, it is worth noting that
the more common cases is when y is small. When y is small, the ratio is almost always
more than one. The only small exception is when there are few programs open and
more than three GUIs are visible.

Another solution to decrease the overhead even further would be to increase the time be-
tween each iterations even if the GUI is hidden. While this will hurt the responsiveness,
it is worth noting that perhaps not all the apps need to have such a high responsiveness.
Some developers like the ones of Cheese, might decide that for their application the
fact that their GUI isn’t responsive for a few extra milliseconds is acceptable for their
product. This means that only their agent has to be modified so it doesn’t need to be so
active in the background. The exact time between each iteration can be decided by the
developers of each program, or perhaps also by the users.

A new version of the agent was made, and this time the time between each iteration was
0.1 seconds when the GUI wasn’t visible, and 10 seconds when the GUI was visible.
0.1 seconds should still be very close to the side of not being noticeable to the user,

Chapter 4. Implementation 1: user space individualism 26

which should show how much the overhead could already be reduced even for a very
small decrease in responsiveness. The result of the model with this new agent is shown
in figure 4.4.

Figure 4.4: Ratio of overhead of all the the agents compared to the original work
done by the CPU. Here, the agents have a dynamic time between iterations and the
responsiveness is slightly worse.

As we can see, most ratios are very close to zero, meaning that the overhead of the
agents is much smaller than the original wasted work. It is worth noting that perhaps
not all the apps can accept this worse responsiveness, and hence here these results might
overestimate the gains of this version of the implementation. Though, this graph in
general shows that this implementation is viable to tackle the problem.

4.4 Discussion of this implementation

As discussed above, it was shown that for agents of input-driven processes, their
overhead is insignificant and hence optimal, and for agents of RTD processes their
overhead for optimal responsiveness is too high. Though, it was shown that a slightly
worse responsiveness can quickly lead to a reduced overhead.

The conceptual disadvantage with this implementation is the fact that the calculation
of the visibility of the GUIs is done in multiple agents. If there are multiple agents for
RTD processes, they will compute almost the identical information, without sharing
any results. This will be addressed in the second implementation. The other side of
the coin is that each program can have its personalised agent. For instance, an app that

Chapter 4. Implementation 1: user space individualism 27

needs a very high responsiveness can have a small time between each iteration, while
an app that doesn’t need such a high responsiveness can have a very long time between
each iteration. This can lead to an overall personalised situation where each app gets
the behaviour that it requires. Though, it does come with a slight overhead for agents
that need a high responsiveness, which might reduce the potential gains of the solution.

While this implementation might seem like a big burden on the developers, it can heavily
be alleviated by turning those scripts into libraries, that they can simply call with one
method. They would only have to decide which method they want to call based on
the category of their process. However, this means that the developers of the libraries
now have to do all the difficult work of verifying that the visibility checking they do
is correct for each desktop environment that exists. For instance, Ubuntu provides the
preview of windows in the tray, which should be taken into account by the agent. This
visibility checking should really be done by the developers working on the desktop
environment, since they know best where a GUI is visible. This will be addressed in the
third implementation.

Lastly, this implementation has the advantage of being the fastest to deploy. If developers
of an app see that their app is taking too much CPU time when the user isn’t using it,
then they can easily fix that issue by adding an agent to their app. This implementation
would serve as a good short-term solution, especially for input-driven processes since
their solution has a very low overhead.

Chapter 5

Implementation 2: user space
centralised

The second implementation will try to address the conceptual drawback of the first
implementation, which was that the computation of the visibility for applications having
real time data was spread across different agents. In this implementation, the calculation
will be done in one single agent, which will do all the work for all the GUIs. Each
app will then have to individually tell the agent whether they should be paused when
not in focus or when not visible. Figure 5.1 below shows the overall structure of this
implementation.

Figure 5.1: Conceptual design of this implementation where there is one central agent.
The black arrows are processes reporting their category and the agent asking for window
positions for instance, and the red are the signals.

28

Chapter 5. Implementation 2: user space centralised 29

5.1 Design

In order to pause input-driven processes, the agent must know when those are in focus
or not. The issue is that the display server by default doesn’t allow to receive events for
a change in focus in other windows. Hence, the agent cannot get that information using
a blocking wait. The agent must keep polling the state of every GUI to verify which
one is in focus. A similar situation occurs for the visibility of a different window. The
agent must also keep polling the display server to get their position and then calculate
whether some are overlapping others. Hence, the agent will have a central loop were it
checks for both focus of input-driven processes and visibility of RTD processes.

Compared to the first implementation where the communication between the process
and its own agent was done internally through a shared memory page, here the commu-
nication is a bit more complex since all the processes must communicate individually
with this central agent, which are developed by different developers at different times.
The central agent must be able to know from each program whether it could be paused
and for what GUI position. The first naive way to solve that problem is to enable this
communication through files. The applications will write to a given file, and the agent
will read that file on each iteration. The issue here is that the developers of the apps
and of the agent must agree in advance what file that is, and where it is located. This
can’t change after the apps are built and deployed. Also, the user would be able to see
those files which isn’t a clean solution. Hence, it was decided to communicate via the
window properties that the display server stores. Three new properties were added, one
for whether the window can be paused if not in focus, one for whether it can be paused
if not visible, one for remembering whether the app was paused (to reduce the overhead
of sending too many signals), and finally the PIDs of all the processes that should be
paused or resumed. Then, each application sets its own properties via the display server,
and the agent simply has to read those properties. This is a much cleaner approach, not
only because the properties of a window can be added to any Linux distro (this means
the programmers don’t have to hard code a communication for each distro), but also
because that information is stored where it makes the most amount of sense, and also
the user can’t accidentally see them.

The script created to test this implementation can be found in appendix F. Again,
the code was written in C in order to benefit from the highest speed, and from the
Xlib library. The calculation for the visibility of the GUIs is the same as for the first
implementation.

In terms of the run time analysis, it is O(n2) where n is the number of open GUIs. This
indicates that as the number of open GUIs increases, the responsiveness of the windows
will be more significantly impacted compared to the first implementation.

5.2 Overhead

In order to analyse the overhead of this central agent, it was first recorded while running
individually for 10 seconds, using the same method as above. The result showed that on
average, the agent takes 5413.3ms of CPU time every 10 seconds. This is almost the

Chapter 5. Implementation 2: user space centralised 30

same as the agent for the visibility of the first implementation. While this is again quite
substantial, since there is only one of this central agent perhaps the overhead might be
smaller overall.

The model will be used again to compare the overhead of this central agent with the
original wasted work by the CPU, by looking at their ratio. The result is shown in figure
5.2.

Figure 5.2: Ratio of overhead of the central compared to the original work done by the
CPU.

As we can see, for most scenarios the ratio is greater than 1, hence the overhead of this
central agent is greater than the original wasted work done by the CPU. Though, when
the number of open apps is greater than about 17, the ratio starts to be lower than one,
meaning that this implementation becomes advantageous in those cases. Though the
ratio does remain quite close to one, so the agent isn’t helping that much.

5.3 Responsiveness

Once again, the version of the agent analysed above is with the best responsiveness
possible. The first thing to note is that a dynamic time between each iteration isn’t that
easy anymore. This is due to the presence of input-driven processes. There will always
be one that isn’t in focus (unless no programs are open) and hence the script must be
kept in high speed to make sure it can revive it as soon as possible. The time between
each iteration will have consequences on all the processes, which can’t be adapted for
each one of them.

Chapter 5. Implementation 2: user space centralised 31

Though, as noted above, perhaps the responsiveness can be very slightly worsened in
order to heavily improve the overhead. Again, a new version of the agent was made
with a time of 0.1 seconds between the iterations. The overhead of this new agent as
analysed using the same technique as above. The model with this new version is shown
in figure 5.3.

Figure 5.3: ratio of overhead to wasted time when the time between iterations is 0.1s

As we can see, the ratio for almost all the scenario is smaller than one. The only cases
where the ratio is greater than one is is when the number of open programs is very small
(less than 3). The ratio is also quite small on average, meaning that the agent manages
to be significantly better than the original wasted time.

5.4 Discussion of implementation

As discussed above, it was shown that the overhead of this implementation is quite
significant, and is only slightly advantageous when a lot of processes are running.
Though, it was shown that slightly worsening the responsiveness will decrease the
overhead which can make this implementation viable.

The key design decision of having only one agent brings the advantage that if there
are a lot of RTD processes, their visibility can be calculated in one place and hence
more efficiently. In such scenarios, then this implementation is more advantageous
compared to the first implementation. However, a drawback of this design is that the
responsiveness is uniform for all the processes. If there is one that needs a very good
responsiveness, then the central agent must increase its overhead, which was shown that

Chapter 5. Implementation 2: user space centralised 32

it will quickly counterbalance the wasted work that it manages to save. Also, this central
agent must keep busy waiting even if there is only input-driven processes that are open.
In such a scenario, it was shown that the most optimal solution was to have a dedicated
agent for each of those processes. In general, this shows that this implementation is
only more adequate than the first implementation in the cases where there are a lot of
RTD processes running on the system.

The conceptual advantage with this approach is that this agent can easily be deployed.
Linux distributions can create a custom agent for their desktop environment (making a
personalised calculation of the visibility of a GUI), and then make it be installed on their
distro by default and then run on startup. This means the developers of apps only need
to change the property of their windows by communicating with the display server, they
don’t need to do more. Developers of applications now don’t have to think about all
the different kinds of desktop environments their app could run in. Also, changing the
property of their process from input-driven to RTD is as easy as changing one variable.
Overall, the workflow of developers in this implementation is much easier compared to
UWP for instance, and compared to the first implementation where a different agent
must be used for the different types of process.

Another advantage over the first implementation is that the user can easily make an app
pause when not in focus or not visible, since the communication and decision making
is done via the display server properties. This means that even if the developers of an
app forgot to implement this optimisation, it is still possible to apply it after their app is
deployed.

Chapter 6

Implementation 3: display server

The third implementation will try to take advantage of the fact that the display server is
already doing work related to the management of windows. For instance, the display
server sends events to windows when certain properties or features change about them,
such as when the window receives focus for instance. In this implementation, the
display server X11 used in Ubuntu will be modified so that it does the job of the agent
to pause the input-driven processes that are not in focus, and the RTD processes that are
not visible. The version of X11 which was modified is 1.20.13, which was developed
in a virtual machine running Ubuntu 20.04.5 LTS. Figure 6.1 below shows the overall
structure of this implementation.

Figure 6.1: Conceptual design of this implementation where the display server becomes
the agent. The black arrows are processes reporting their category, and the red are the
signals.

33

Chapter 6. Implementation 3: display server 34

6.1 Design

6.1.1 Input-driven processes

For input-driven processes, the solution is similar to the first implementation. The
display server knows when a window receives or leaves focus, since it must send an
event to that window if it asked for it. Hence, the display server was modified so that
when it wants to send a FocusChange event (before it has checked whether the window
subscribed to that event) it will first check whether the process under the GUI is of type
input-driven, in which case it will pause or revive that process.

The modifications made to X11 can be found in appendix G. The code that must run
is quite simple, it only involves a few lines of code. Once again, the communication
between the display server and the processes is enabled using the windows properties
that the process can change at any time.

6.1.2 RTD processes

For RTD processes, the approach taken is similar to the one above. The display server
generates a Con f igureNoti f y event whenever a window changes state, such as size,
position, border, or stacking order. This means that whenever such an event is generated,
a GUI has moved on the screen. Hence, before those events are generated, the visibility
of the GUIs is calculated again, and the processes are paused or resumed as necessary.
The way it is done is the same as the previous two implementations.

There are two small subtleties though. Sometimes, GUIs don’t change position but still
have their visibility changed. That is the case for instance when the active workspace
changes. No Con f igureNoti f y event is generated in that situation. Though, it is easy
to check for that case. There is a PropertyNoti f y event that is generated whenever
a property of a window changes. The root window of the display server stores as a
property the active workspace. Hence, whenever a PropertyNoti f y event is generated
that relates to the property of the active workspace of the root window, the visibility
calculation is done again.

The second subtlety is when a GUI is minimised. In that case too, the Con f igureNoti f y
event isn’t sent. Hence, the same way as for the active workspace, when the PropertyNoti f y
event related to whether a window is minimised is changed, the visibility calculation is
done too.

The modifications made to X11 can be found in appendix H. The work that has to be
done is a bit more complex compared to the first two implementations, since now the
information must be first found and formatted before being used. For instance, finding
all the GUIs must be done manually by recursively visiting all the children of the root
window. Once again, the communication between the apps and the display server is
implemented using the properties of a window.

Chapter 6. Implementation 3: display server 35

6.2 overhead

6.2.1 Input-driven processes

The overhead of the code that checks whether the process should be paused based on
its focus is bound to the FocusChange events. Those events are only generated when
a window changes focus, hence the script isn’t busy waiting. It can be seen as doing
a blocking read on the focus of any window. Hence, the script will only be run when
it is necessary. This implementation would manage to completely remove the wasted
work done by the CPU for input-driven processes, while having no overhead in the
background. In the model, the average CPU consumption would then be zero since the
amount of time a window changes focus isn’t taken into account.

Though, there is still some extra work that has to be done when the FocusChange events
are generated. If those events are generated frequently enough, the overhead of this
extra code could be greater than the original wasted work done by the CPU. From the
model, it was found that on average one input-driven process wastes 238.5ms on the
CPU every 10 seconds. After analysing the extra work done for every FocusChange
event, it was found that it took on average 223.6s to do the extra work (which includes
sending the signal). Since such an event is generated for both the GUI that leaves
focus and the one that enters focus, in total the extra work done by the CPU takes
223.6s ∗ 2 = 447.2s. For the new version of X11 to consume as much CPU as what
on average consumes an input-driven process, about 238500/447.2 = 533 changes in
window focus must be made during a 10 second interval. As this value is not obtainable
in practice, and because this would only compensate for one input-driven process, this
shows that on average the new implementation of X11 is always manage to reduce the
work done by the CPU, regardless of the behaviour of the user.

What is interesting to note though here is that the extra work done is greater than the one
for the first implementation (223.6s compared to only 1.2s for the first implementation).
This is primarily due to the fact that in this implementation, the display server much
check whenever a FocusChange event is generated, what type of process is running
behind it by accessing the properties the reported. In the first implementation though,
that didn’t have to be done since the presence of the agent was what determined whether
the process would be paused or not. The agent in the first implementation didn’t have
to do any checks. This shows that the overhead of this implementation is greater than
the one for the first implementation.

6.2.2 RTD processes

The overhead of the code that checks whether a process should be paused because it isn’t
visible is bound to two types of events, Con f igureNoti f y and PropertyNoti f y. Those
events are also only generated when those properties or configuration settings change
value. Hence, the calculation for the visibility will not be run when it doesn’t need to.
Again, it could be seen as the script executing a blocking read until one of a necessary
change requires a visibility calculated to fire again. This implementation would manage
to completely remove the wasted work done by the CPU for RTD processes, while
having no overhead in the background. In the model, the movements of GUIs isn’t

Chapter 6. Implementation 3: display server 36

taken in to account, which means that on average this implementation has an overhead
of zero.

Though once again, we do have to do extra work when those events are generated. From
the model, it was found that a single RTD process on average wasted 890.8ms during a
10 second interval. The extra work done by the script took about 105.1s to calculate
the visibility of the windows each time the events were generated (when there were
20 programs launched, hence this is an overestimate of the average case). This means
that in order for the new version of X11 to take more extra CPU time compared to the
original wasted work, about 890800/105.1 = 9332 of those events must be generated
within 10 seconds. As this value is not obtainable in practice, and because more than
one RTD processes can be running, this shows that the overhead of this implementation
is much smaller than the original wasted work done by the CPU.

6.3 Responsiveness

The responsiveness of this implementation should be the best compared to the other two,
since the display server is the first to know when windows change position or focus. As
soon as the focus or visibility changes, an event is generated inside the display server,
and even before it is sent the process can be paused or resumed.

What is interesting is that the artefact for RTD processes was noticeable using this
implementation, though it was much smaller compared to the first two implementations.
One solution to reduce this delay even further would be to optimise the current changes
made to X11 so that the computation takes even less time. One way would be to store
the intermediate results of the visibility from the previous generated event, which could
dramatically reduce the overhead since the computation for the next event would be
very similar since only one window can change position between two events. Another
solution that can be looked into is to make the display server stop the rendering engine
from showing the new window for as long as the computation of the visibility hasn’t
finished. While this will make the window take a bit more time to become visible, it
will completely remove the artefact. The reason why this solution is possible is because
the display server is the one responsible for the rendering of the windows, and hence
implementing that change would be the easier for the display server to do. Though this
is outside the scope of this report.

6.4 Discussion of implementation

As discussed above, the biggest advantage with this implementation is that when the
windows are not moving around or not changing focus, the implementation will not
cause the CPU to do unnecessary work. In those cases, the CPU will be completely
spared of the original wasted work it had to do, while having very little extra work to
do only when a GUI changes focus or position. This shows that this implementation
has the lowest overhead compared to the first two. However, for input-driven processes,
it was observed that this implementation was giving slightly more CPU time compared
to the first implementation. The responsiveness was also shows to be the lowest for this

Chapter 6. Implementation 3: display server 37

implementation, and that it could potentially completely remove the artefact of RTD
processes.

A conceptual advantage with this implementation is that the visibility calculation is
done by the display server. This not only means that it is only computed once compared
to the first implementation, but also that module is the one that is the most apt to know
that information, since it is the one that manages all the windows. Hence, now the work
of the visibility is given to the developers that are the ones that know best when a certain
window is visible or not. Now, each display server can adapt to its desktop environment
and directly know whether a window is visible or not. The work necessary to solve the
problem is done by the developers that are the most related to the issue.

Just like the second implementation, the life of app developers is very easy. They
only need to change the property of their windows by communicating with the display
server, they don’t need to do more. Again, changing the property of their process from
input-driven to RTD is as easy as changing one variable. Also, in this implementation
the user can easily change the properties of certain processes to make them pause or
resume if the developers didn’t do their job properly.

Another advantage compared to the first two implementations is that no extra processes
must be created to solve the problem. If a lot of input-driven processes are running
using the first implementation, a lot of extra dummy processes must be made for each
one of them. This does lead to an inefficient use of the resources available, and also
gives more work to the scheduler. Hence, this implementation is the most efficient in
terms of the use of resources.

Chapter 7

Conclusions

7.1 Magnitude of problem

In the third chapter, the magnitude of the problem was measured. Using a model to
simulate different scenarios, it was shown that in most cases, the proportion of work
that the CPU is doing that is wasted is quite significant. It was then shown that if the
processes of type CW were refactored to extract their visual component, then the amount
of wasted work that can be optimised is even higher. The general conclusion from this
analysis is that first of all the problem of the position of the GUIs not being taken into
account is quite significant, and hence this issue is worth optimising and investigating.
Also, the results show that it is definitely worth refactoring all CW processes so that
their visual component can easily be paused when it is not viewed by the user.

7.2 Implementations

Based on the results shown above, the first implementation seems to have the lowest
overhead for the input-driven processes. For the RTD processes, it was shown that the
lowest overhead was achieved in the third implementation, since in that case the display
server manages only to compute the visibility when a window changes position, and
hence it doesn’t busy wait in the background. Regarding the responsiveness for RTD
processes, it was shown that the best implementation is the third one, since in that case
the artefact could also be completely removed.

This means that the optimal solution to solve the problem might be a mix of the first
and third implementation. The input-driven processes are paused by an individual agent
that executes busy reads to wait for the FocusChange events, while RTD processes are
paused by the display server. Though, the gain in overhead for input-driven processes
of the first implementation is quite small compared to the third implementation. Due to
the fact that chaining from input-driven to RTD isn’t easy in the first implementation, a
cleaner more centralised approach of giving all the responsibility to the display server
might be more judicious.

Though, the first and second implementations do have an advantage over the third one,

38

Chapter 7. Conclusions 39

which is that they are much easier and faster to deploy, and hence they might be very
advantageous in the short term for developers that want to improve the CPU utilisation
of their app, or users that have a workflow where their CPU is doing a lot of wasted
work because developers haven’t yet fix the issue on their end.

A major difference between the third implementation proposed here and the ones that
already exist like UWP or Android, is the work that the developers must do to enable
that optimisation. In UWP and Android, the developers have to by default abide to
implementing the callbacks, and find workarounds when their application must run
when not visible. However, in this implementation the developers only have to set a
certain property and that is all. It is much easier to change the status of a thread so it
can continue running in the background compared to doing it in UWP or Android. It is
also much easier for users to override the decision taken by the developers.

7.3 Verification

In order to verify that the solution works, and that the advantages predicted by the
model are correct, a real life test was made, where the battery usage was measured to
see whether and how much it was improved.

The battery consumption was measured when there is no optimisation in place, with
the battery consumption when the third implementation is used. To have a proper
accurate comparison where the only thing that changes between the two situations is
the optimisation introduced, it was decided to have as setup 20 applications running,
where none of them were visible (all in another workspace), and the computer was left
untouched. If a scenario where the user is busy using the application under focus is
used, it will be too hard to replicate that exact usage for both cases. Hence, leaving
the computer unused while all the applications are running in the background for both
scenarios should mean that the only difference is the introduction of the improved
version of the display server. 20 applications are launched to make sure that a difference
could be noticed between the normal and optimised scenario, which will enable the
verification of the bottom right value in the result of the model, as shown in green in
figure 3.2.

The modified display server was a running in a virtual machine, running on Ubuntu
(also 20.04.5 TLS). In order to reduce the overhead of the host machine, every non
essential processes were killed. This way, the actual work done by the CPU given to the
host machine would be much smaller compared to what was running inside the virtual
machine. Also, 7 virtual CPUs were given to the virtual machine out of the 8 for the
host machine.

The normal scenario without optimisation lost about 55% of battery charge in one hour.
The scenario with the optimised display server lost about 20% of battery charge during
one hour. The graphs of the battery consumption can be found in appendix I. These
results show that indeed the battery consumption does manage to be heavily improved
thanks to pausing processes that don’t need to run, and that the value reported by the
model is quite accurate since it predicted a two-fold improvement. This result might

Chapter 7. Conclusions 40

not generalise to all the cases covered by the model though, more experiments should
be done to verify that.

7.4 Future work

One point that should be emphasised in this report is that the results described here are
all based on a model. While it was tested thoroughly and verified with the battery test,
it still remains slightly uncertain how precisely accurate it is. The next step of research
in this area would be to gather empirical data, where the implementation proposed here
is deployed on computers and where the overhead compared to the actual wasted work
can be accurately compared. This would give interesting data where potentially some
workflows can be discovered to have much higher wasted CPU time than others.

Another potential direction is to try to adopt the same implementation as UWP or
Android. In the third implementation, the processes could easily report whether they
needed to be paused, but perhaps it might be interesting to also make a coding environ-
ment where developers implement callbacks and different types of threads where some
are sensible to them being visible and others not. This would make the development a bit
more complicated for expert developers working on complicated pieces of software, but
it might make the process for small apps and beginner developers easier to understand.

A last direction of research could be to create a new implementation that involves
editing the scheduler itself. Perhaps a specialised scheduler can be made where it knows
about GUIs and their position, which could lead to a more optimal decision making
process, and hence a lower overhead. One way could be to use an ePBF program to
extend the current scheduler. However, due to the infancy of this area, this report didn’t
explore that route yet.

7.5 Summary

In conclusion, this report first introduced the novel idea of using GUI position and the
nature of the processes to show that the CPU is doing a lot of wasted work. Then, a
model was created to measure the current amount of wasted work, which was determined
to be quite high. Three different implementations were then proposed and analysed to
measure their overhead, responsiveness and how easy the developer’s work is to use
it. Lastly, a battery test showed that the third implementation successfully managed to
reach the value predicted by the model, showing that the implementation worked and
that the model was accurate.

This report shows that while schedulers have heavily been optimised, they still remain
quite general. The same Linux kernel is used to manage no-GUI processes in servers,
and applications with real time data in Linux distros for personal computers. As
this report shows, analysing the whole context from kernel to desktop environment
introduces new requirements on the data, and hence new ways of optimising the
scheduling decisions. This process should be applied to other contexts which might real
other kinds of requirements and hence other optimisation opportunities.

Bibliography

[1] Android Studio by Google. The activity lifecycle.
https://developer.android.com/guide/components/activities/activity-lifecycle,
Accessed 2023-04-13.

[2] Investisdigital. The most visited sites of 2022.
https://www.investisdigital.com/blog/technology/most-visited-sites-2022, Accessed
2023-04-13.

[3] Microsoft. Windows 10 universal windows platform (uwp) app lifecycle.
https://learn.microsoft.com/en-us/windows/uwp/launch-resume/app-lifecycle, Ac-
cessed 2023-04-13.

41

Appendix A

Programs used for the model

The list below explains every program that was used for the model with a few details
about how it was measured.

A.0.0.1 Firefox

The version used was 111.0.1. Firefox was determined to be input-driven, since most
of the time the web pages that the user visits are simple static pages. From personal
experience of the author, Firefox can be used very differently by different users. Some
can have a few tabs open, while others will have a lot of them. Hence, it was decided to
analyse Firefox in three different scenarios: once with one tab open, once with 10 tabs,
and once with 50 tabs open. The final utilisation was then the average of those three
scenarios. Also, the tabs were set to websites that were the most common for the year
2002[2].

A.0.0.2 Chrome

The version used was 111.0.5563.64. Chrome was determined to be input-driven for
the same reason as Firefox. Chrome was analysed the same way as for Firefox.

A.0.0.3 Thunderbird

The version used was 102.9.0. Thunderbird was determined to be CW as it must run
even when not visible.

A.0.0.4 LibreOffice Draw

The version used was 6.4.7.2 40(Build:2). It is a input-driven process.

A.0.0.5 LibreOffice Impress

The version used was 6.4.7.2 40(Build:2). It is a input-driven process, assuming that
there are no animations one the slides for instance.

42

Appendix A. Programs used for the model 43

A.0.0.6 LibreOffice Write

The version used was 6.4.7.2 40(Build:2). It is a input-driven process, assuming that
there are no animations one the document for instance.

A.0.0.7 LibreOffice Calc

The version used was 6.4.7.2 40(Build:2). It is a input-driven process.

A.0.0.8 VLC

The version used was 3.0.9.2. It is a input-driven process, since it is assumed that its
main purpose is to watch movies. Hence, when it isn’t in the user focus, it is likely that
the user isn’t looking at the movie anymore, and hence that it is paused. This means
VLC is only waiting for input of the user to continue executing.

A.0.0.9 Shotcut

The version used was 20.02.21. It is a input-driven process, assuming that when it is in
the background, the preview of the currently edited video is not playing.

A.0.0.10 GIMP

The version used was 2.10.30. It is a input-driven process, assuming no animations are
playing on the image.

A.0.0.11 Visual Studio Code

The version used was 1.77.3. It is a input-driven process.

A.0.0.12 Ardour

The version used was 7.0.0. It is a input-driven process, assuming that when it is in the
background no music is playing.

A.0.0.13 Discord

The version used was 0.0.26. Discord was determined to be CW as it must run even
when not visible to detect when a new message arrives for instance.

A.0.0.14 Intellij IDEA

The version used was 222.4345.14. It is an input-driven process.

A.0.0.15 Pycharm

The version used was 2022.2.3. It is an input-driven process.

Appendix A. Programs used for the model 44

A.0.0.16 gnome-system-monitor

The version used was 42.0. This process has the property of having different tabs. The
most commonly used ones is the “processes” tab and the “resources” tab. The first is a
RTD process, while the second is a CW process. Both were analysed separately as if
they were two separate apps.

A.0.0.17 Cheese

The version used was 3.34.0. It is a RTD process.

A.0.0.18 Blender

The version used was 3.3.1. It is an input-driven process.

A.0.0.19 Spotify

The version used was 1.2.8.923.g4f94bf0d. Spotify can either be found while playing
music, or not. In the first case, it is a CW process. In the latter case, it is a input-driven
process. The two separate cases were analysed separately.

Appendix B

Method of measurement of CPU
utilisation

The following is the bash script that was used to measure the CPU utilisation of a
process:

function record() {

for i in {1..12}
do

get cuttent cpu time received up to now
local stats=$(cat ”/proc/$1/stat”)
local statsarr=($stats)
local utime old=${statsarr[13]}
local stime old=${statsarr[14]}

let program run for 10 seconds
sleep 10

if program doesn’t exist, then exit the script
if ! test −f ”/proc/$1/stat”; then

exit
fi

get new cpu time
local stats=$(cat ”/proc/$1/stat”)
local statsarr=($stats)
local utime new=${statsarr[13]}
local stime new=${statsarr[14]}

see how much utime and stime it received during 10 seconds
local utime total=$(echo $utime new − $utime old | bc −l)
local stime total=$(echo $stime new − $stime old | bc −l)

calculate the number of seconds the process received
local CLK TCK=$(getconf CLK TCK)
local utime sec=$(echo $utime total / $CLK TCK | bc −l)
local stime sec=$(echo $stime total / $CLK TCK | bc −l)

45

Appendix B. Method of measurement of CPU utilisation 46

local total sec=$(echo $utime sec + $stime sec | bc −l)

if (($(echo ”$total sec > 0” |bc −l))); then
echo $total sec
fi

done
}

if test −f ”/proc/$1/stat”; then
record $1

fi

B.0.0.1 Example: Cheese

As example, the results of the recording of the app Cheese are shown below.

Cheese was first recorded when minimised to see how much the CPU spent working
on it. Its 12 samples are shown in figure B.1. As we can see, its CPU usage is quite
consistent throughout the samples, and hence the average of those samples was taken to
represent the average amount of time that the CPU wastes on Cheese while it is hidden.
Also, it was recorded that this app does no useful work in the background.

Figure B.1: amount of ms given to cheese during 12 samples of 10 seconds, while
cheese is in the background

Cheese was then recorded when in the foreground. Its 12 samples are shown in figure
B.2. As we can see, its CPU usage is again quite consistent throughout the samples,
and also very similar to what it consumed when not visible (as expected since linux
doesn’t do anything special in terms of visiblity). The average of those samples was
taken to represent the average amount of ms that the CPU spends on useful work in the
foreground, and hence no wasted word was recorded in the foreground.

Appendix B. Method of measurement of CPU utilisation 47

Figure B.2: amount of ms given to cheese during 12 samples of 10 seconds, while
cheese is in the foreground

Cheese was then recorded when in the focus of the user, while the user is busy using
the app. Its 12 samples are shown in figure B.3. As we can see, the CPU usage isn’t
that constant. Though, it doesn’t decrease or increase over the 2 minute interval. Hence,
the average of those samples was used as the amount of time that was spent on Cheese.

Figure B.3: amount of ms given to cheese during 12 samples of 10 seconds, while
cheese is in the use focus while being used

Appendix C

Estimation of visual component for CW

The estimation of the visual component of processes of type CW was done based on the
four programs of that type, which where: Thunderbird, Spotify when music is playing,
gnome-system-monitor on the “resources” tab, and Discord.

The source code of gnome-system-monitor was used to measure how much time was
spent on the visualisation and on the gathering of the data. It was found that when it
had spent 1119.525ms on the CPU, only 32.194ms were spent on the gathering of the
data (useful work). Hence, that means about 97% of what the CPU did was spent on the
visualisation.

For Spotify, it was not possible to find the source code. Though when it was launched,
a lot of processes were running. It was found that the total work that those processes
did took about 1525.833ms during a 10 second interval. Though, by sending signals, it
was possible to reduce the number of running processes, while Spotify could still play
the music in the background. Hence, what was killed was only the work done related to
the GUI. The least amount of work that was still enabling to listen to music was about
0.566ms every 10 seconds. This implies that Spotifies spends on average 99% of the
time on visual computation.

For Discord, a similar approach as Spotify was used, and it was bout that about 94.5%
is spent on visual work.

No data was found about Thunderbird.

Using the information gathered above, it was decided to take the value that on average
95% of what the CW processes do on the CPU is work related to visualising of data.

48

Appendix D

Script for input-driven processes of
implementation 1

The following is the script for pausing input-driven processes discussed in implementa-
tion 1.

#include <X11/X.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/XKBlib.h>
#include <X11/Xatom.h>
#include <stdio.h>
#include <err.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdint.h>
#include <signal.h>
#include <sys/time.h>

#define POSX 500
#define POSY 500
#define WIDTH 500
#define HEIGHT 500
#define BORDER 15

static Display* dpy;
static int scr;
static Window root;

Window newWindow;
int pidToKill = 11231;

static Window createWindow(int x, int y, int w, int h, int b, Window parentWin) {
Window win;
XSetWindowAttributes xwa;

xwa.background pixel = BlackPixel(dpy, scr);
xwa.border pixel = BlackPixel(dpy, scr);
xwa.event mask = FocusChangeMask;

49

Appendix D. Script for input-driven processes of implementation 1 50

win = XCreateWindow(dpy, parentWin, x, y, w, h, b, DefaultDepth(dpy, scr), InputOutput,
↪→ DefaultVisual(dpy, scr),
CWBackPixel | CWBorderPixel | CWEventMask, &xwa);

return win;
}

static void run() {

XEvent ev;
while (XNextEvent(dpy, &ev) == 0) {

switch(ev.type)
{

case FocusIn:
kill(pidToKill, SIGCONT);
break;

case FocusOut:
kill(pidToKill, SIGSTOP);
break;

}
}

}

int main () {

dpy = XOpenDisplay(NULL);
if (dpy == NULL) {

errx(1, ”Can’t open dislay”);
}

scr = DefaultScreen(dpy);
root = RootWindow(dpy, scr);
newWindow = createWindow(POSX, POSY, WIDTH, HEIGHT, BORDER, root);
XMapWindow(dpy, newWindow);

run();

XUnmapWindow(dpy, newWindow);
XDestroyWindow(dpy, newWindow);
XCloseDisplay(dpy);
return 0;

}

Appendix E

Script for RTD processes of
implementation 1

The following is the script for pausing RTD processes discussed in implementation 1.

#include <X11/X.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/XKBlib.h>
#include <X11/Xatom.h>
#include <stdio.h>
#include <err.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdint.h>
#include <signal.h>
#include <time.h>

#define POSX 500
#define POSY 500
#define WIDTH 500
#define HEIGHT 500
#define BORDER 15

static Display* dpy;
static int scr;
static Window root;
Window newWindow;

int isRunning = 1;
int pidToKill = 4810;

typedef struct range {
int start;
int end;
int shouldBeRemoved;

} range t;

int catcher(Display *disp, XErrorEvent *xe)
{

51

Appendix E. Script for RTD processes of implementation 1 52

printf(”An error occured with error code: %d\n”, xe−>error code);
return 0;

}

static Window createWindow(int x, int y, int w, int h, int b, Window parentWin) {
Window win;
XSetWindowAttributes xwa;

xwa.background pixel = BlackPixel(dpy, scr);
xwa.border pixel = BlackPixel(dpy, scr);

win = XCreateWindow(dpy, parentWin, x, y, w, h, b, DefaultDepth(dpy, scr), InputOutput,
↪→ DefaultVisual(dpy, scr),
CWBackPixel | CWBorderPixel, &xwa);

return win;
}

static int getActiveWorkspace() {
Atom atom = XInternAtom(dpy, ” NET CURRENT DESKTOP”, False);
if (atom == None) {

fprintf(stderr, ”Failed to get atom\n”);
exit(1);

}

Atom actual type;
int actual format;
unsigned long nitems, bytes after;
unsigned char *prop;

if (XGetWindowProperty(dpy, root, atom, 0, 1, False, XA CARDINAL,
&actual type, &actual format, &nitems, &bytes after,
&prop) != Success) {

fprintf(stderr, ”Failed to get property\n”);
exit(1);

}

if (actual format != 32 || nitems != 1) {
fprintf(stderr, ”Invalid format or number of items\n”);
exit(1);

}

int workspace = *(int *)prop;

return workspace;
}

static int getWorkspace(Window window) {

Atom actual type;
int actual format;
unsigned long nitems, bytes after;
unsigned char *prop;
int workspace;
int status = XGetWindowProperty(dpy, window, XInternAtom(dpy, ” NET WM DESKTOP”,

↪→ True),

Appendix E. Script for RTD processes of implementation 1 53

0L, 1L, False, AnyPropertyType, &actual type, &
↪→ actual format, &nitems, &bytes after, &prop);

if (status == Success && nitems > 0) {
workspace = *(long*) prop;
XFree(prop);
return workspace;

}
else {

return −1;
}

}

static int isMinimisedNew(Window window) {
Atom wm state;
Atom minimized;
Atom type;
int format;
unsigned long nitems, bytes after;
unsigned char *prop;

wm state = XInternAtom(dpy, ” NET WM STATE”, True);
minimized = XInternAtom(dpy, ” NET WM STATE HIDDEN”, True);

if (wm state == None || minimized == None) {
return 0;

}

// Get the value of the window state property
if (XGetWindowProperty(dpy, window, wm state, 0, 1024, False,

XA ATOM, &type, &format, &nitems, &bytes after,
&prop) != Success) {

printf(”Error: Could not get window state property\n”);
exit(1);

}

// Check if the minimized property is present in the window state property
for (int i = 0; i < nitems; i++) {

if (((Atom *)prop)[i] == minimized) {
XFree(prop);
return 1;
}

}

XFree(prop);
return 0;

}

static void findAllWindowsStackOrder(Window window, Window** allWindows, int*
↪→ numAllWindows) {

Window rootWindow;
Window parent;
Window *children = NULL;
unsigned int num children;

if (!XQueryTree(dpy, window, &rootWindow, &parent, &children, &num children)) {

Appendix E. Script for RTD processes of implementation 1 54

printf(”can’t query tree \n”);
return;

}

// add youself to the list only if you are not the root
if (window != root) {

Window* newAllWindows = malloc(sizeof(Window) * (*numAllWindows + 1));
for (int i = 0; i < *numAllWindows; i++) {

newAllWindows[i] = (*allWindows)[i];
}
newAllWindows[*numAllWindows] = window;
(*numAllWindows)++;
free(*allWindows);
*allWindows = newAllWindows;

}

for (int i = num children − 1; i >= 0; i−−) {
findAllWindowsStackOrder(children[i], allWindows, numAllWindows);

}

if (children != NULL) {
XFree(children);

}
}

static void getMaxXandY(int* maxX, int* maxY) {
XWindowAttributes xwa;
XGetWindowAttributes(dpy, root, &xwa);
*maxX = xwa.width;
*maxY = xwa.height;

}

void stopProgram (char* message) {
if (isRunning == 1) {

if (pidToKill > 0) {
kill(pidToKill, SIGSTOP);

}
printf(”stopped : %s \n”, message);
isRunning = 0;

}
}

void resumeProgram (char* message) {
if (isRunning == 0) {

if (pidToKill > 0) {
kill(pidToKill, SIGCONT);

}
printf(”resumed : %s \n”, message);
isRunning = 1;

}
}

int main(int argc, char *argv[]) {
dpy = XOpenDisplay(NULL);
if (dpy == NULL) {

Appendix E. Script for RTD processes of implementation 1 55

errx(1, ”Can’t open dislay”);
}
scr = DefaultScreen(dpy);
root = DefaultRootWindow(dpy);
newWindow = createWindow(POSX, POSY, WIDTH, HEIGHT, BORDER, root);
XMapWindow(dpy, newWindow);
XSetErrorHandler(catcher);
while (1) {

usleep(0 * 1000 * 1000); // the first value in this multiplication is the number of seconds

// first check if this window is in the current active workspace
int activeWorkspace = getActiveWorkspace();
int ourWorkspace = getWorkspace(newWindow);
if (ourWorkspace == −1) {

printf(”couldn’t get the current workspace for some reason \n”);
continue;

}
if (activeWorkspace != ourWorkspace) {

stopProgram(”window in another workspace”);
continue;

}
// now check if the window is minmised
if (isMinimisedNew(newWindow) == 1) {

stopProgram(”window in current workspace but minimised”);
continue;

}
// now you know you are in the active workspace and visible, so check all other open windows

↪→ to see if you are covered

// get your current coordinates
int x i, y i, width i, height i;
Window child;
XTranslateCoordinates(dpy, newWindow, root, 0, 0, &x i, &y i, &child);
XWindowAttributes xwa;
XGetWindowAttributes(dpy, newWindow, &xwa);
width i = xwa.width;
height i = xwa.height;

int maxX, maxY;
getMaxXandY(&maxX, &maxY);

// check if the window is completely too far left or right, up or down
if (x i + width i <= 0 || x i >= maxX || y i + height i <= 0 || y i >= maxY) {

stopProgram(”window completely gone from screen”);
continue;

}

int haveFoundSomeoneOnTop = 0;

// check fror each window from the topmost to the lowest
Window* allWindows = NULL;
int numAllWindows = 0;
findAllWindowsStackOrder(root, &allWindows, &numAllWindows);

for (int i = 0; i < numAllWindows; i++) {

Appendix E. Script for RTD processes of implementation 1 56

if (allWindows[i] == newWindow) {
break; // we have to stop here, as the further windows are below ours

}

// check that this window is in the correct workspace
int otherWorkspace = getWorkspace(allWindows[i]);
if (otherWorkspace != ourWorkspace) {

continue;
}

// check that the window is not minimised
if (isMinimisedNew(allWindows[i]) == 1) {

continue;
}

// now check whether this window is covering
int x j, y j, width j, height j;
Window child;
XTranslateCoordinates(dpy, allWindows[i], root, 0, 0, &x j, &y j, &child);
XWindowAttributes xwa;
XGetWindowAttributes(dpy, allWindows[i], &xwa);
width j = xwa.width;
height j = xwa.height;

if (x j <= x i && x j + width j >= x i + width i &&
y j <= y i && y j + height j >= y i + height i) {

stopProgram(”covered by others”);
haveFoundSomeoneOnTop = 1;
break;

}
}

// if you haven’t been killed, meaning you are visible, you must be revived
if (haveFoundSomeoneOnTop == 0) {

resumeProgram(”visible”);
}

free(allWindows);
}

XUnmapWindow(dpy, newWindow);
XDestroyWindow(dpy, newWindow);
XCloseDisplay(dpy);

return 0;
}

Appendix F

Script for agent of implementation 2

The following is the script for the agent used in implementation 2.

#define GNU SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <X11/X.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/XKBlib.h>
#include <X11/Xatom.h>
#include <time.h>

typedef struct program t {
char* name;
int* pids;
int numPids;
int winId;
int isRunning;
int shouldKillIfNoFocus;

} program t;

typedef struct range {
int start;
int end;
int shouldBeRemoved;

} range t;

static Display* dpy;
static int scr;
static Window root;

typedef struct window coord {
int x;
int y;
int width;
int height;

57

Appendix F. Script for agent of implementation 2 58

} window coord t;

void getMaxXandY(int* maxX, int* maxY) {
XWindowAttributes xwa;
XGetWindowAttributes(dpy, root, &xwa);
*maxX = xwa.width;
*maxY = xwa.height;

}

int isMinimisedNew(Window window) {
Atom wm state;
Atom minimized;
Atom type;
int format;
unsigned long nitems, bytes after;
unsigned char *prop;
wm state = XInternAtom(dpy, ” NET WM STATE”, True);
minimized = XInternAtom(dpy, ” NET WM STATE HIDDEN”, True);

if (wm state == None || minimized == None) {
return 0;

}
// Get the value of the window state property
if (XGetWindowProperty(dpy, window, wm state, 0, 1024, False,

XA ATOM, &type, &format, &nitems, &bytes after,
&prop) != Success) {

printf(”Error: Could not get window state property\n”);
return 0;

}
// Check if the minimized property is present in the window state property
for (int i = 0; i < nitems; i++) {

if (((Atom *)prop)[i] == minimized) {
XFree(prop);
return 1;
}

}
XFree(prop);
return 0;

}

void getPids(Window window, unsigned char**propReturn, unsigned long* nitemsReturn) {
Atom type;
int format;
unsigned long nitems, bytes after;
unsigned char *prop;
Atom pids = XInternAtom(dpy, ”pids”, False);
if (pids == None) {

return;
}
// Get the value of the window state property
if (XGetWindowProperty(dpy, window, pids, 0, 1024, False,

AnyPropertyType, &type, &format, &nitems, &bytes after,
&prop) != Success) {

printf(”Error: Could not get pids property\n”);
return;

}

Appendix F. Script for agent of implementation 2 59

*nitemsReturn = nitems;
*propReturn = prop;

}

int getActiveWorkspace() {
Atom atom = XInternAtom(dpy, ” NET CURRENT DESKTOP”, False);
if (atom == None) {

fprintf(stderr, ”Failed to get atom\n”);
exit(1);

}
Atom actual type;
int actual format;
unsigned long nitems, bytes after;
unsigned char *prop;

if (XGetWindowProperty(dpy, root, atom, 0, 1, False, XA CARDINAL,
&actual type, &actual format, &nitems, &bytes after,
&prop) != Success) {

fprintf(stderr, ”Failed to get property\n”);
return −1;

}
if (actual format != 32 || nitems != 1) {

fprintf(stderr, ”Invalid format or number of items\n”);
return −1;

}
int workspace = *(int *)prop;
return workspace;

}

int getWorkspace(Window window) {
Atom actual type;
int actual format;
unsigned long nitems, bytes after;
unsigned char *prop;
int workspace;
int status = XGetWindowProperty(dpy, window, XInternAtom(dpy, ” NET WM DESKTOP”, True)

↪→ ,
0L, 1L, False, AnyPropertyType, &actual type, &

↪→ actual format, &nitems, &bytes after, &prop);
if (status == Success && nitems > 0) {

workspace = *(long*) prop;
XFree(prop);
return workspace;

}
else {

return −1;
}

}

int checkIfFocused (Window window) {
Atom actual type;
int actual format;
unsigned long nitems, bytes after;
Atom *atoms;
XGetWindowProperty(dpy, window,

XInternAtom(dpy, ” NET WM STATE”, True),

Appendix F. Script for agent of implementation 2 60

0, 1024, False, XA ATOM, &actual type,
&actual format, &nitems, &bytes after,
(unsigned char **)&atoms);

Atom focusedAtom = XInternAtom(dpy, ” NET WM STATE FOCUSED”, True);
int found = 0;
for (int i = 0; i < nitems; i++) {

if (atoms[i] == focusedAtom) {
found = 1;
break;

}
}
return found;

}

void setIsRunning(Window window, unsigned char value) {
Atom atomIsRunning = XInternAtom(dpy, ”isRunning”, False);
Atom atomINTEGER = XInternAtom(dpy, ”INTEGER”, True);
unsigned char* dataRunning = (unsigned char*) malloc(sizeof(unsigned char));
*dataRunning = value;
XChangeProperty(dpy, window, atomIsRunning, atomINTEGER, 8, PropModeReplace,

↪→ dataRunning, 1);
}

unsigned char getIsRunning(Window window) {
Atom actual type;
int actual format;
unsigned long nitems, bytes after;
unsigned char *prop;
int isRunning;
Atom atomIsRunning = XInternAtom(dpy, ”isRunning”, False);
if (atomIsRunning == None) {

printf(”couldn’t get isRunning atom\n”);
return −1;

}
int status = XGetWindowProperty(dpy, window, atomIsRunning,

0, 1, False, AnyPropertyType, &actual type, &actual format,
↪→ &nitems, &bytes after, &prop);

if (status == Success && nitems > 0) {
isRunning = *prop;
XFree(prop);
return isRunning;

}
else {

return −1;
}

}

void findAllWindowsStackOrder(Window window, Window** allWindows, int* numAllWindows) {
Window rootWindow;
Window parent;
Window *children = NULL;
unsigned int num children;
if (!XQueryTree(dpy, window, &rootWindow, &parent, &children, &num children)) {

printf(”can’t query tree \n”);
return;

}

Appendix F. Script for agent of implementation 2 61

// add youself to the list only if you are not the root
if (window != root) {

Window* newAllWindows = malloc(sizeof(Window) * (*numAllWindows + 1));
for (int i = 0; i < *numAllWindows; i++) {

newAllWindows[i] = (*allWindows)[i];
}
newAllWindows[*numAllWindows] = window;
(*numAllWindows)++;
free(*allWindows);
*allWindows = newAllWindows;

}
for (int i = num children − 1; i >= 0; i−−) {

findAllWindowsStackOrder(children[i], allWindows, numAllWindows);
}
if (children != NULL) {

XFree(children);
}

}

unsigned char getShouldKillIfNoFocus(Window window) {
Atom actual type;
int actual format;
unsigned long nitems, bytes after;
unsigned char *prop;
unsigned char shouldKill;
Atom atomKill = XInternAtom(dpy, ”shouldKillNoFocus”, False);
if (atomKill == None) {

printf(”couldn’t get shouldkillnofocus atom\n”);
return 0;

}
int status = XGetWindowProperty(dpy, window, atomKill,

0, 1, False, AnyPropertyType, &actual type, &actual format,
↪→ &nitems, &bytes after, &prop);

if (status == Success && nitems > 0) {
shouldKill = *prop;
XFree(prop);
return shouldKill;

}
else {

return 0;
}

}

unsigned char getShouldKillNotVisible(Window window) {
Atom actual type;
int actual format;
unsigned long nitems, bytes after;
unsigned char *prop;
unsigned char shouldKill;
Atom atomKill = XInternAtom(dpy, ”shouldKillNotVisible”, False);
if (atomKill == None) {

printf(”couldn’t get shouldkillnotVisible atom\n”);
return 0;

}
int status = XGetWindowProperty(dpy, window, atomKill,

0, 1, False, AnyPropertyType, &actual type, &actual format,

Appendix F. Script for agent of implementation 2 62

↪→ &nitems, &bytes after, &prop);
if (status == Success && nitems > 0) {

shouldKill = *prop;
XFree(prop);
return shouldKill;

}
else {

return 0;
}

}

void stopProgram (Window window, char* message) {
unsigned char isRunning = getIsRunning(window);
if (isRunning == 1) {

unsigned char* prop = NULL;
unsigned long nitems = 0;
getPids(window, &prop, &nitems);
for (int indexPid = 0; indexPid < nitems; indexPid++) {

kill(((u int32 t *) prop)[indexPid], SIGSTOP);
}
XFree(prop);
printf(”stopped window id %lx %s \n”, window, message);
// record that this program is not running
setIsRunning(window, 0);

}
}

void resumeProgram (Window window, char* message) {
unsigned char isRunning = getIsRunning(window);
if (isRunning == 0) {

unsigned char* prop = NULL;
unsigned long nitems = 0;
getPids(window, &prop, &nitems);
for (int indexPid = 0; indexPid < nitems; indexPid++) {

kill(((u int32 t *) prop)[indexPid], SIGCONT);
}
XFree(prop);
printf(”resumed window id %lx %s \n”, window, message);
// record that this program is running
setIsRunning(window, 1);

}
}

int catcher(Display *disp, XErrorEvent *xe)
{

printf(”An error occured with error code: %d\n”, xe−>error code);
return 0;

}

int main(int argc, char *argv[]) {

// open connection with xserver
dpy = XOpenDisplay(NULL);
if (dpy == NULL) {

printf(”Can’t open dislay \n”);

Appendix F. Script for agent of implementation 2 63

exit(1);
}
scr = DefaultScreen(dpy);
root = DefaultRootWindow(dpy);
// get dimension of the screen
int maxX, maxY;
getMaxXandY(&maxX, &maxY);
XSetErrorHandler(catcher);
while (1) {

//usleep(0.1 * 1000 * 1000); // the first value in this multiplication is the number of seconds

int activeWorkspace = getActiveWorkspace();
window coord t* allWindowsVisible = NULL;
int numWindowsVisible = 0;
// get all the open windows in stack order from top to bottom
Window* allWindows = NULL;
int numAllWindows = 0;
findAllWindowsStackOrder(root, &allWindows, &numAllWindows);
// * iterate through the open windows from top to bottom
for (int i = 0; i < numAllWindows; i++) {

// find its position
int workspaceProgram = getWorkspace(allWindows[i]);
int differentWorkspace = workspaceProgram != −1 && workspaceProgram != activeWorkspace

↪→ ;
int isMinimised = isMinimisedNew(allWindows[i]);

// get its coodinates on the screen
int x i, y i, width i, height i;
Window child;
XTranslateCoordinates(dpy, allWindows[i], root, 0, 0, &x i, &y i, &child);
XWindowAttributes xwa;
XGetWindowAttributes(dpy, allWindows[i], &xwa);
width i = xwa.width;
height i = xwa.height;
// clip them
x i = x i > 0 ? x i : 0;
width i = x i + width i > maxX ? maxX − x i : width i;
y i = y i > 0 ? y i : 0;
height i = y i + height i > maxY ? maxY − y i : height i;

if (getShouldKillIfNoFocus(allWindows[i]) == 1) {
if (checkIfFocused(allWindows[i])) {

resumeProgram(allWindows[i], ”focused”);
} else {

stopProgram(allWindows[i], ”not in focus”);
}

}
// you are a visibility window, check whether you are visible hidden
else if (getShouldKillNotVisible(allWindows[i]) == 1) {

if (differentWorkspace) {
stopProgram(allWindows[i], ”different workspace”);

}
else if (isMinimised) {

stopProgram(allWindows[i], ”minimised”);
}

Appendix F. Script for agent of implementation 2 64

// you are in the current workspace so you must check other windows
else {

// check if you are covered by a visible window
int foundSomeOneOnTop = 0;

for (int h = 0; h < numWindowsVisible; h++) {
if (allWindowsVisible[h].x <= x i && allWindowsVisible[h].x + allWindowsVisible[h].

↪→ width >= x i + width i &&
allWindowsVisible[h].y <= y i && allWindowsVisible[h].y + allWindowsVisible[h].

↪→ height >= y i + height i) {
stopProgram(allWindows[i], ”covered by others”);
foundSomeOneOnTop = 1;
break;

}
}
if (!foundSomeOneOnTop) {

resumeProgram(allWindows[i], ”visible”);
}

}
}
else {

// just make sure that when a property changes we can be revived
resumeProgram(allWindows[i], ”changed property so makeing sure you are revived”);

}
// * now check whether you add this window to the visible windows
if (!differentWorkspace && !isMinimised) {

window coord t* newAllWindowsVisible = malloc(sizeof(window coord t) * (
↪→ numWindowsVisible + 1));

// copy old ones
for (int h = 0; h < numWindowsVisible; h++) {

newAllWindowsVisible[h] = allWindowsVisible[h];
}
// copy new
window coord t newWindow;
newWindow.x = x i;
newWindow.y = y i;
newWindow.width = width i;
newWindow.height = height i;
newAllWindowsVisible[numWindowsVisible] = newWindow;
free(allWindowsVisible);
allWindowsVisible = newAllWindowsVisible;
numWindowsVisible++;

}
}
free(allWindows);
free(allWindowsVisible);

}
XCloseDisplay(dpy);
return 0;

}

Appendix G

Changes for input-driven processes of
implementation 3

Here are the changes made to X11 for the input-driven processes. Those lines were
added in the file “events.c”, starting on line 4706.

ClientPtr client = wClient(pWin);

if (client != NULL && detail != NotifyInferior && detail != NotifyAncestor) {
unsigned char shouldBeKilled = 0;
PropertyPtr pPropShouldBeKilled;
int rc = BadMatch;

// verify that you have all the parameters to execute request
rc = dixLookupProperty(&pPropShouldBeKilled, pWin, XA KILL NO FOCUS, client,

↪→ DixGetPropAccess);
if (rc == Success) {

shouldBeKilled = (*((unsigned char*) pPropShouldBeKilled−>data));
}

if (shouldBeKilled == 1) {

//system(”touch ˜/found a program that wants to be killed when focus.txt”);
if (type == FocusIn) {

reviveIfNotRunning(pWin, client);
} else if (type == FocusOut) {

killIfRunning(pWin, client);
}

}
}

65

Appendix H

Changes for RTD processes of
implementation 3

Here are the changes made to X11 for the RTD processes. Those lines were added in
the file “window.c”, starting on line 2197.

void reviveIfNotRunning(WindowPtr curr, ClientPtr client) {
unsigned char isRunning = −1;
PropertyPtr pPropIsRunning;
int rc1 = dixLookupProperty(&pPropIsRunning, curr, XA IS RUNNING, client,

↪→ DixGetPropAccess);
if (rc1 == Success) {

isRunning = (*((unsigned char*) pPropIsRunning−>data));
}
if (isRunning == 1 || isRunning == −1) {

return;
}
PropertyPtr pPropPids;
int rc2 = dixLookupProperty(&pPropPids, curr, XA PIDS, client, DixGetPropAccess);
if (rc2 == Success) {

// send a signal too all children
uint32 t* pids = ((uint32 t*) pPropPids−>data);
for (int i = 0; i < pPropPids−>size; i++) {

char* command;
asprintf(&command, ”touch ˜/sendingCONTtopid%d”, pids[i]);
system(command);
kill(pids[i], SIGCONT);

}
// record the fact that the process is now running
((unsigned char) pPropIsRunning−>data) = 1;

}
}

void killIfRunning(WindowPtr curr, ClientPtr client) {
unsigned char isRunning = −1;
PropertyPtr pPropIsRunning;
int rc1 = dixLookupProperty(&pPropIsRunning, curr, XA IS RUNNING, client,

↪→ DixGetPropAccess);
if (rc1 == Success) {

66

Appendix H. Changes for RTD processes of implementation 3 67

isRunning = (*((unsigned char*) pPropIsRunning−>data));
}
if (isRunning == 0 || isRunning == −1) {

return;
}
PropertyPtr pPropPids;
int rc2 = dixLookupProperty(&pPropPids, curr, XA PIDS, client, DixGetPropAccess);
if (rc2 == Success) {

// send a signal too all children
uint32 t* pids = ((uint32 t*) pPropPids−>data);
for (int i = 0; i < pPropPids−>size; i++) {

char* command;
asprintf(&command, ”touch ˜/sendingSTOPtopid%d”, pids[i]);
system(command);
kill(pids[i], SIGSTOP);

}
// record the fact that it isn’t running anymore
((unsigned char) pPropIsRunning−>data) = 0;

}
}

void killIfAskedVisibility(WindowPtr curr, ClientPtr client) {
// you only kill this window if it asks to be killed
unsigned char shouldBeKilled = 0;
PropertyPtr pPropShouldBeKilled;
int rc = dixLookupProperty(&pPropShouldBeKilled, curr, XA KILL NOT VISIBLE, client,

↪→ DixGetPropAccess);
if (rc == Success) {

shouldBeKilled = (*((unsigned char*) pPropShouldBeKilled−>data));
}
if (shouldBeKilled == 1) {

killIfRunning(curr, client);
}

}

void recurseSiblings(WindowPtr curr, WindowPtr last, WindowPtr** allVisibleWindowsFound, int*
↪→ numVisibleWindowsFound, int currDesktop, ClientPtr client) {
while (curr != last) {

if (curr−>lastChild != NULL) {
recurseSiblings(curr−>lastChild, RealChildHead(curr), allVisibleWindowsFound,

↪→ numVisibleWindowsFound, currDesktop, client);
}
// only include in the array windosws that are mapped, and not minimised, and in current

↪→ workspace
if (curr−>mapped == 1) {

// check if the window is in this workspace
int sameWorkSpace = −1;
Atom propertyDesktop = MakeAtom(” NET WM DESKTOP”, sizeof(”

↪→ NET WM DESKTOP”) − 1, 0);
PropertyPtr pPropDesktop;
int rc = dixLookupProperty(&pPropDesktop, curr, propertyDesktop, client,

↪→ DixGetPropAccess);
if (rc == Success) {

sameWorkSpace = *((uint8 t*) pPropDesktop−>data) == currDesktop;
}
if (sameWorkSpace == 0) {

Appendix H. Changes for RTD processes of implementation 3 68

killIfAskedVisibility(curr, client);
}
// the windows is in the current active desktop
else if (sameWorkSpace == 1) {

// check if it is minimised
int isMinimised = 0;
Atom propertyState = MakeAtom(” NET WM STATE”, sizeof(” NET WM STATE

↪→ ”) − 1, 0);
Atom propertyMinimised = MakeAtom(” NET WM STATE HIDDEN”, sizeof(”

↪→ NET WM STATE HIDDEN”) − 1, 0);
PropertyPtr pPropWinState;
int rc = dixLookupProperty(&pPropWinState, curr, propertyState, client,

↪→ DixGetPropAccess);
if (rc == Success) {

// here I hard coded the fact that the atoms in the list of atoms are all 16 bits
↪→ long

uint16 t* currAtom = (uint16 t*) pPropWinState−>data;
while (currAtom < ((uint16 t*) pPropWinState−>data) + pPropWinState−>

↪→ size) {
if (*currAtom == propertyMinimised) {

isMinimised = 1;
break;

}
currAtom++;

}
}
if (isMinimised == 1) {

killIfAskedVisibility(curr, client);
} else {

// you end up here if the window is mapped, in the current workspace, and not
↪→ minimised

WindowPtr* newallVisibleWindowsFound = malloc(sizeof(WindowPtr) * (*
↪→ numVisibleWindowsFound + 1));

for (int i = 0; i < *numVisibleWindowsFound; i++) {
newallVisibleWindowsFound[i] = (*allVisibleWindowsFound)[i];

}
free(*allVisibleWindowsFound);
*allVisibleWindowsFound = newallVisibleWindowsFound;
(*numVisibleWindowsFound)++;

}
}

}
curr = curr−>prevSib;

}
}

void killHiddenAndReviveVisible (WindowPtr* allVisibleWindowsFound, int
↪→ numVisibleWindowsFound, ClientPtr client, WindowPtr root) {
// find the coordinates of the root window (which is the reference frame for all further comparisons

↪→ so we gain time here)
int x root = root−>drawable.x;
int y root = root−>drawable.y;
int width root = root−>drawable.width;
int height root = root−>drawable.height;
// the first iterms in the list are the lowest windows, the last are the topmost ones
for (int i = 0; i < numVisibleWindowsFound; i++) {

Appendix H. Changes for RTD processes of implementation 3 69

WindowPtr curr = allVisibleWindowsFound[i];
// find whether the windows wants to be killed if not visible
unsigned char shouldBeKilled = 0;
PropertyPtr pPropShouldBeKilled;
int rc = dixLookupProperty(&pPropShouldBeKilled, curr, XA KILL NOT VISIBLE, client,

↪→ DixGetPropAccess);
if (rc == Success) {

shouldBeKilled = (*((unsigned char*) pPropShouldBeKilled−>data));
}
if (shouldBeKilled == 1) {

// get the coordinates that are visible to the user on the given screen
int x start i = curr−>drawable.x < x root ? x root : (curr−>drawable.x > x root +

↪→ width root ? x root + width root : curr−>drawable.x);
int x end i = curr−>drawable.x + curr−>drawable.width > x root + width root ? x root

↪→ + width root : (curr−>drawable.x + curr−>drawable.width < x root ? x root :
↪→ curr−>drawable.x + curr−>drawable.width);

int y start i = curr−>drawable.y < y root ? y root : (curr−>drawable.y > y root +
↪→ height root ? y root + height root : curr−>drawable.y);

int y end i = curr−>drawable.y + curr−>drawable.height > y root + height root ?
↪→ y root + height root : (curr−>drawable.y + curr−>drawable.height < y root ?
↪→ y root : curr−>drawable.y + curr−>drawable.height);

if (x start i == x end i || y start i == y end i) {
// this is the case if the window is too far up or down, hence not visible, or too thin
killIfRunning(curr, client);
continue;

}
int foundSomeOneOnTop = 0;
// now check for each window that are on top of you, whether they can decrease the

↪→ ranges you have
for (int j=i+1; j < numVisibleWindowsFound; j++) {

// there is a weird edge case where some window id must refer to a subwindow, and
↪→ its immediate parent is hence not to be taken into account

if (curr−>parent == allVisibleWindowsFound[j]) {
continue;

}
// no need to do the complex clipping here
int x start j = allVisibleWindowsFound[j]−>drawable.x;
int x end j = x start j + allVisibleWindowsFound[j]−>drawable.width;
int y start j = allVisibleWindowsFound[j]−>drawable.y;
int y end j = y start j + allVisibleWindowsFound[j]−>drawable.height;
if (x start i >= x start j && x end i <= x end j && y start i >= y start j &&

↪→ y end i <= y end j) {
foundSomeOneOnTop = 1;
killIfRunning(curr, client);
break;

}
}
// you didn’t find someone on top
if (foundSomeOneOnTop == 0) {

// char* command2;
// asprintf(&command2, ”touch ˜/revivingWindow%d”, numRangesY);
// system(command2);
reviveIfNotRunning(curr, client);

}
}

}

Appendix H. Changes for RTD processes of implementation 3 70

}

void getAllWindowsAndKillTheOnesNotVisible(ClientPtr client) {
WindowPtr* allVisibleWindowsFound = NULL;
int numVisibleWindowsFound = 0;
WindowPtr root = GetCurrentRootWindow(inputInfo.devices);
if (root == NULL) {

return;
}
// find the current active desktop
int currDesktop = −1;
Atom propertyDesktop = MakeAtom(” NET CURRENT DESKTOP”, sizeof(”

↪→ NET CURRENT DESKTOP”) − 1, 0);
PropertyPtr pPropCurrDesktop;
int rc = dixLookupProperty(&pPropCurrDesktop, root, propertyDesktop, client,

↪→ DixGetPropAccess);
if (rc == Success) {

currDesktop = *((uint8 t*) pPropCurrDesktop−>data);
}

recurseSiblings(root−>lastChild, RealChildHead(root), &allVisibleWindowsFound, &
↪→ numVisibleWindowsFound, currDesktop, client);

killHiddenAndReviveVisible(allVisibleWindowsFound, numVisibleWindowsFound, client, root);
free(allVisibleWindowsFound);

}

Appendix I

Battery consumption results

Here are the results of the battery consumption between the two scenarios. Figure I.1 is
when there is no optimisation in place, and figure I.2 is when the modified version of
the display server is used.

Figure I.1: Battery percentage over time in the normal situation when no optimisation of
the visibility is implemented.

71

Appendix I. Battery consumption results 72

Figure I.2: Battery percentage over time when the modified version of the display server
is used.

