
Streaming Pipeline Using Apache Kafka and
GraphQL for Dynamic Trade Surveillance

Natalia Robledo Dı́az
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Computer Science and Management Science

School of Informatics
University of Edinburgh

2023

Abstract
Continuous sequences of data are referred to as data streams. Computing running
aggregations on the inbound stream has shown to have multiple applications in the
industry, from real-time stock value fluctuations or even IoT data pipelines. Previous to
the adoption of (open-source) real-time event streaming platforms, data analytics could
often only be produced in long-running batch jobs. By combining Kafka and GraphQL,
this project leverages the strengths of both technologies and successfully attains the
main goal of efficiently addressing current industry issues.
With a context in trade surveillance, the project builds an end-to-end optimised new data
pipeline architecture that addresses two main legacy issues in the field: shifting from
static to dynamic thresholds and from batch processing to (near) real-time monitoring.
Given the scarce literature focusing on this topic, the completion of the project serves
to bridge the existing application gap between industry interest and academia research
in anomaly detection in finance, and proposes a combined architecture which has yet
remained unexplored in the literature. The project is developed following a two-staged
approach. The first stage builds a live data pipeline that would allow for dynamic
threshold settings and classify fraudulent activity by performing windowed continuous
aggregations using Apache Kafka, and the second stage develops a GraphQL interface
to recreate the compliance post-trade analytics.

i

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Natalia Robledo Dı́az)

ii

Acknowledgements
I would like to thank my project supervisor, Dr. Michael Glienecke, for consistently
providing time and weekly guidance throughout the development of this project.

I would also like to thank my family for all their encouragement and support given
throughout my degree.

Lastly, I want to thank my friends, a constant source of support, inspiration and joy.

iii

Table of Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Goals . 4
1.3 Project Contributions - Critical Evaluation of Previous Work 5
1.4 Structure of the Dissertation Report 6

2 Background 7
2.1 Event streams . 7
2.2 From Batch Workload to Stream Processing 7
2.3 Technology used for Streaming Live Data – Messaging Systems . . . 8
2.4 Distributed Messaging Systems - Why Are They Useful for the Project? 9
2.5 From REST API to GraphQL - Web API Query Standards 11
2.6 Modelling through Graphs in GraphQL 12
2.7 Research Landscape . 14

3 System Design and Architecture 15
3.1 System Specifications and Requirements 15
3.2 Streaming Data Processing Architecture 17

3.2.1 Challenges on Streaming Application 17
3.2.2 Possible Streaming Architectures 18

3.3 High Level Overview of the Prototype’s Architecture 18

4 Implementation 22
4.1 Getting Started - Setting up Docker 22
4.2 Data Collection . 23

4.2.1 Dataset . 23
4.3 Kafka Producer . 24

4.3.1 Data Manipulation: Generating Outliers and Price values . . . 24
4.3.2 Data Serialization . 24

4.4 Data Processing . 25
4.4.1 Spring Boot Server . 25
4.4.2 Consuming Records from Kafka Topic 25

4.5 Data Aggregation – Dynamic Thresholds 26
4.5.1 Why Dynamic Thresholds 26
4.5.2 Methodology to Implement Dynamic Threshold using Kafka

Streams . 28

iv

4.6 Query Language: GraphQL Interface 31
4.6.1 Queries . 32
4.6.2 Subscriptions . 33

5 Evaluation 35
5.0.1 Evaluating Kafka: Functionality Validation - Handling Errors 35
5.0.2 Evaluating GraphQL: Functionality Validation 35
5.0.3 Evaluating Overall System Performance 35

6 Conclusion 39
6.0.1 Reflection . 39
6.0.2 Future Work . 40

Bibliography 41

A Unit Tests 46

v

Chapter 1

Introduction

Data streams are a continuous sequence of data that are being generated over a period of
time. Fraud detection, real-time stock value fluctuations or even IoT data pipelines are
examples of industry applications, where the consumption and analysis of data streams
is altering industry dynamics [51]. Through the use of a data streaming platform, a
company can perform analysis of every incoming data record 1 applying techniques
such as sampling, filtering or aggregation, and gain new business insights to increase its
level of control over its data processes [2].

Previous to the adoption of (open-source) real-time event streaming platforms, data
analytics could often only be produced in long-running batch jobs. This is because the
most common previous architectures (which often employed an ETL2 batch workload
processing) were not designed to be event-driven [53]. These batches present major
problems, including that calculations (such as running analytics) could not be started
until the data extraction process was completed or batched [8], possibly affecting the
following day’s operations. Legacy application architectures often consist of many data
silos [7] and multiple data systems that require manual workarounds [53], preventing
companies from using the full potential of their data.

The second motivation for real-time event streaming platforms is that the data analytics
process is further fractured and delayed by the use of inflexible REST APIs3 to fetch
the data, resulting in multiple additional endpoint requests [55]. It is argued that having
multiple endpoints to fetch data in a pipeline introduces latency and further complexity
to event-driven architectures [2].

Rebuilding legacy systems into new state-of-the art technology has drawn significant
research interest, which greatly focuses on improving and optimizing the three stages
of a data pipeline architecture which are: data collection, data aggregation4 and data
analysis5 [2]. There is a widespread interest both in academia and industry for building
efficient streaming architectures; these views are often focused solely on parts of the

1Data unit that is processed and transmitted through the pipeline.
2known as Extract, Transform and Load, ETL architectures process data in large volumes at intervals.
3A naı̈ve, and traditional, approach default to using HTTP requests.
4Data Aggregation refers to processing data from different sources.
5Data Analysis refers to drawing insights from data in order to help make data-driven decisions.

1

Chapter 1. Introduction 2

data pipeline, like enhancing data collection and aggregations [20][32], or improving
data fetching for analytics [55][34].

Accessing data from different sources, and therefore integrating silos within an or-
ganization to link existing data, has incredible potential to yield insights. But many
organizations have struggled with creating the right structure for that synthesis to take
place [2].
Apache Kafka is a distributed event streaming platform for high performance data
pipelines that was firstly developed by LinkedIn as a way of tackling the issue of de-
veloping a scalable fully stream-based architecture [33]. Ever since LinkedIn released
the first open-source version of Apache Kafka, over 80% of the Fortune 500 nowadays
have adopted it to rebuild legacy systems into faster and reliable data pipelines [46].

Apache Kafka allows to receive and send high volume of data with low latency, and
the data is stored in-order. This technology has thus sparked great interest within the
academic and research area, many of which evaluate and compare Kafka applications
to current streaming solutions [35], or even how to best connect ML/AI frameworks
with streaming processes [38].

This has driven Kafka to become a very popular and available framework to work with,
allowing companies to develop the right structure for combining and integrating large
stores of data [51]. Using Kafka as a main messaging system for streaming data allows
tackling both data collection and aggregating information from different sources in the
data pipeline.

Having the right distributed system in place will allow for an efficient data streaming
pipeline, but using data for analysis and decision making is the following critical step to
ensure the third part of the streaming data pipeline process (data analysis) is optimized.
The most common software architectural style defaults to using HTTP requests6 , which
is often used as the protocol for implementing REST services, to render the data needed
[6]; using RESTful web services often leads to under-fetching7 or over-fetching8 ,
resulting in multiple additional endpoint requests [52].

GraphQL is a novel query language for implementing service-based software architec-
tures and is as an efficient alternative to REST-based applications, allowing clients to
define exactly the data they require from service providers [31]. Initially open-sourced
by Facebook, it is now supported by major Web APIs, including the ones provided by
GitHub, Airbnb, Netflix, and Twitter [31].

Combining both Apache Kafka’s and GraphQL’s synergies will allow to develop an end-
to-end dynamic data streaming architecture and exploit their main features to propose
solutions to current industry issues. There is little academia research as to how an
end-to-end data pipeline combining Apache Kafka and GraphQL would greatly benefit
the streaming data domain. There is considerable application gap between industry and

6HTTP requests are endpoints that provide a simple way to define the base URL.
7Underfetching takes place when an API call doesn’t have enough data sent to an endpoint, necessi-

tating another call.
8Overfetching takes place when when an API request returns too much data that you’re not going to

use.

Chapter 1. Introduction 3

academia research for anomaly detection streaming architectures in finance (referred to
as trade surveillance). The motivation for this proof-of-concept is supported by the fact
that existing state-of-the art streaming services in the trade surveillance domain still
rely on low-latency RESTful applications.

The process of monitoring financial transactions for potentially illegal or abusive trading
(known as trade surveillance) has drawn interest from industry leaders towards near
real-time monitoring [27] [19]. The industry is focusing on moving towards a flexible
and dynamic approach to detect anomalous activity (trading activity) [19]. Current
solutions rely on batch workload processing, meaning that suspicious activity cannot
be detected before data processing has finished [27]. Furthermore, there has been
a considerable interest in the industry towards dynamic threshold settings [21][37],
moving away from fixed and static values that heavily rely on historical activity, failing
to capture real-time patterns.

However, there is scarce literature focusing on this topic. Most trade surveillance
research literature focuses on ‘high-performance architectures’ [3], ‘low latency using
in-memory data grids’ [4], but there is no recent literature that provides an end-to-end
architecture for dynamically monitoring trading activity. Therefore, this project aims
at introducing a PoC (proof-of-concept) involving cross-sector applications of Apache
Kafka and GraphQL, and how their application in larger technical projects would
transfer to the trade surveillance domain.

1.1 Motivation

Current state-of-the-art trade surveillance monitoring systems operate following a
threshold-based approach to detect outliers in the stock market orderbook9 activity [42].
Threshold-based alerts have one or a combination of predefined limits (thresholds) and
will generate an alert when any incoming executed order 10 exceeds them as seen in
Figure 1.1.

This approach presents two major issues. On the one hand, current surveillance solutions
rely on a “too late infrastructure”, in which aggregations and on-demand analytics are
only available after illegal trading activity has finished. This approach, called batch
workload processing, implies that suspicious activity cannot be detected before data
processing has finished [27]. Secondly, monitoring for illegal activity operates on fixed
threshold values, heavily relying on historical activity, and therefore failing to capture
real-time patterns. Additionally, these threshold values are only updated after, and if,
threshold calibration is deemed appropriate after manual review [41].

Although there has been a huge emphasis on implementing machine learning for trade
surveillance monitoring [42], it rather shifts the focus to using predicted benchmark
values [21]. This would mean that detecting anomalies would still be based on historical
values, and threshold values would still remain fixed (current industry solutions operate
under fixed thresholds as explained in [1]). This poses a serious risk, as many suspicious

9Live record of all buy and sell orders for a given stock.
10This is an order to buy or sell a security at the prevailing market price.

Chapter 1. Introduction 4

Figure 1.1: Example of rule-based anomaly detection alert. This diagram was developed
by me, with inspiration from Nasdaq SMARTS surveillance system.

trading activities would be ‘flying under the radar’.

There is scarce literature that focuses on tackling the former issues. There is no recent
academic paper that presents a proof-of-concept for an end-to-end streaming data
pipeline addressing an dynamic aggregations and a dynamic interface to query data.

There is little academic research as to how an end-to-end data pipeline combining
Apache Kafka and GraphQL would greatly benefit the streaming data domain. There
is considerable application gap between industry and academia research for anomaly
detection streaming architectures in finance. The motivation for this proof-of-concept
is supported by the fact that existing state-of-the art streaming services in the trade
surveillance domain still often rely on RESTful applications.

1.2 Goals

The project description allowed for multiple possible approaches, but the main takeaway
was to take the opportunity to frame the proposal into a possible current industry
solution. The key goal of this project is to leverage the combination of both technologies
(Kafka and GraphQL), building upon the existing literature, and provide an end-to-
end streaming pipeline novel solution to address current industry limitations with a
context on trade surveillance. The project built upon the required completion criteria
while developing a two-staged approach. The first one consisted of building a live data
pipeline that would allow for dynamic threshold settings and classify fraudulent activity
by performing windowed continuous aggregations using Apache Kafka, and a second
stage in which a GraphQL interface is developed to recreate the compliance post-trade
analytics.

Chapter 1. Introduction 5

1.3 Project Contributions - Critical Evaluation of Previ-
ous Work

The main goal is to build a reliable, scalable and ultimately maintainable end-to-end
data pipeline from scratch, addressing dynamic aggregations and a dynamic GraphQL
interface to query and subscribe to data. By using modern technologies, mainly Kafka
and GraphQL, the project provides a real-time monitoring approach using dynamic
thresholds, a seamless integration of data sources, and a scalable GraphQL API for
handling large volumes of data. In this dissertation, with a context on trade surveillance,
a prototype of such system is proposed as a proof of concept. Later chapters will
evaluate how well the project requirements (detailed in Chapter 3) are met.

The proof-of-concept targets existing gaps between research papers and industry focus
and provide an end-to-end data pipeline solution by leveraging modern technologies.
These include, among others, Kafka and GraphQL, while also using supporting tech-
nologies throughout, including Docker, Springboot, Javascript, Python, Kafka Streams
and Apollo Server.

The proof-of-concept builds upon previous research in trade surveillance and contributes
to the literature (explained in-depth in Chapter 2) by demonstrating the use of state-
of-the-art technologies to address some of the limitations of traditional surveillance
systems.

Research papers such as [18] by M. Fevzi Esen et al., further investigate leveraging
streaming data to detect illegal trading activities using techniques such as data mining
or machine learning. However, their main focus is only enhancing the suspicious
detection algorithm component rather than building an end-to-end pipeline architecture
that uses modern technologies to address current issues. Using machine learning would
mean heavily relying on historical activity, which would hence fail to capture real-time
patterns.

On top of this, an important finding from the literature review (Chapter 2) is that most
academic/research papers, either on Kafka or GraphQL, mostly focus on improving one
part of the data pipeline: data collection, data aggregation or data analysis . For example,
[38] and [54] focus on how to best connect to ML/AI frameworks with Kafka, [47]
focuses on performance comparisons to improve data analysis or even papers such as
[9] to improve displaying analytics. As a result, the literature review remains fractured
as there is little emphasis made on overall streaming data pipeline solutions.

Currently, there is no proof-of-concept for an end-to-end streaming pipeline using Kafka
and GraphQL for trade surveillance. Hence, this work is able to provide new insights
contributing to:

• Dynamic Thresholds: The use of dynamic thresholds is a key feature of the proof-
of-concept using Kafka and GraphQL. This approach allows for more accurate
alerts and reduces false positives compared to traditional surveillance systems,
which often use static thresholds and rule-based systems.

Chapter 1. Introduction 6

• Dynamic query API11: The proof-of-concept using GraphQL demonstrates the
system can integrate data sources to provide flexible query APIs. It optimizes
the query response by allowing the server/client to specify the data needed and
dynamically generating a response that only includes the requested data.

• Scalability: The use of Kafka enables (near) real-time monitoring12 for today’s
high-speed trading systems (tested in Chapter 5).

• Real-time Monitoring: The approach of using Kafka and GraphQL enables real-
time monitoring of trading activities. This means that the system can detect and
respond to market events as they happen, rather than relying on delayed data.

1.4 Structure of the Dissertation Report

The structure of this dissertation is divided into 6 chapters.

Chapter 1 states the motivation behind the main idea, highlighting the project’s goals,
the main gap in the literature it aims to bridge, and highlights the project’s contributions.
This provides a comprehensive clear overview of the problem and how it aims to stand
out from previous work in the field.

Chapter 2 will give a background on the technologies used to deliver the project, as
well as a thorough literature review on both Kafka and GraphQL best practices which
can thereafter be applied on the system. This sets the foundation that allows to critically
address previous work, and support the design decisions made in the next chapter.

Chapter 3 will showcase and reason the design choices made throughout, as well as give
an overall overview of the system’s implementation. It thus provides both functional
and non-functional requirements the design needs to comply with, which will be tested
in Chapter 5.

Chapter 4 explains the technical process of developing the project from inception to
completion, highlighting challenges faced and their proposed solutions.

Chapter 5 Evaluates the system and the requirements exposed in Chapter 2 through unit
testing and use case testing through different scenarios.

Chapter 6 presents the final reflection, along with further work proposal.

11A dynamic API using GraphQL means it is flexible and adaptable to changes
12This project refers to real-time as the continuous monitoring of incoming data as soon as it is received

in the system (Kafka). The use of term near accounts for possible bottlenecks for higher loads as shown
in Chapter 5.

Chapter 2

Background

This chapter will outline preliminary concepts which form the starting point of the
project. It will provide a more in-depth perspective on Apache Kafka and GraphQL,
which are the main technologies developed throughout. Given the broad range of
open-source technologies available to develop and implement the project’s architecture,
understanding their key features and capabilities is key to partake a comparative analysis
of them. The project’s implementation is structured in two main components: a stream-
ing platform and an interface for querying and subscribing data (based on GraphQL).
As such, the background will first focus on streaming data, followed by further details
on web API query standards (mainly GraphQL).

2.1 Event streams

The data injected into a streaming pipeline comes in the form of records, which are
often referred to as events. They usually contain a timestamp, that allows to maintain
a chronological order by indicating the exact moment they were sent. The data that
sensors send regarding room temperature/humidity or, in the case of trading, each
trading order executed by the trading floor, are all possible examples of event streams.

These events are described as immutable objects which include information regarding a
specific event that happened at some point in time [30].

With batch processing, a file can be written only once and then queried or read multiple
times. On the contrary, stream processing allows to generate an event by a producer
(also known as publisher or sender), and then be potentially consumed (subscribed) by
multiple consumers. A collection of associated records is frequently referred to as a
topic.

2.2 From Batch Workload to Stream Processing

Data that is being continuously generated by different sources (like server log files
or trading floors) and is available to use without having to initially download it [12],

7

Chapter 2. Background 8

is often referred to as streaming data. The main challenge lies in processing data
sequentially (or sliding-window) to perform analytics on the stream [12].

Previous to the adoption of open-source real-time event streaming platforms, data
analytics often could only be produced in long-running batch jobs as common architec-
tures (which often employed an ETL batch workload processing) were not designed
to be event-driven [53]. Batch data processing is the traditional method consisting of
collecting, processing and analysing data in batches or scheduled jobs.

These batches presented major problems, including that calculations (such as running
analytics) could not be started until the data extraction process was completed [8],
possibly impacting the next day’s operations. Since batch data integration involved
storing all data in one batch, this approach was only beneficial to those who could wait
to receive all data and analyse it periodically (Table 2.1 shows the comparison table).
Hence, it has only proven to be successful for scenarios where time is not an issue.

However, a study carried out by IBM showed that more than 80% of participants [25]
claimed to have noticed a considerable increase in both the volume and the speed of
data handled. Digitalization has shifted the way companies receive and process data, as
data is rarely static, and there are now major disparities in performance between those
companies which harness streaming data and the those who still rely on legacy systems,
creating ”winner-take-most dynamics” [2].

Batch Processing Stream Processing
Data Scope Processing most of the data Rolling window
Data size Large batches of data Micro batches

Performance Latency in hours/minutes Seconds/milliseconds
Analysis Complex Simple aggregations

Table 2.1: Batch vs Stream Processing

2.3 Technology used for Streaming Live Data – Messag-
ing Systems

The different technologies used on a streaming pipeline need to be able to communicate
effectively between them. Although a database can act as the primary connection for
messages exchanged between producers1 and consumers, it does not allow for any
notification mechanism and polling for updates is often considered to be expensive and
inefficient.

A solution to address the latter polling inefficiency is using a messaging system. This
allows for a producer to send messages that contain events for a particular topic, which
is then published to consumers. It is an efficient way of transferring data between
applications in a reliable, fast and scalable way. Therefore, its main objective is to
safeguard the message between two parties.

1It is usually an application that generates and sends messages to a topic.

Chapter 2. Background 9

This is an important aspect for the proof-of-concept in this project, as there is a need for
transferring variable loads of data, expecting the consumer to receive such messages
in a reliable way. With a context in trade surveillance, a key consideration is that the
messaging system can indeed become a bottleneck itself as the system scales up and
increases its throughput or messages [56]. Since outlier detection is performed as soon
as messages are received, there is a risk that the message broker will queue up the
messages if the message rate increases. This will promote a high-latency data pipeline
which will lead to considerable delays in the consumption of messages

The project requires consumers, which in our case is the Java application, to receive data
through a message system, in order to process this incoming stream and detect outliers.
There are three different types of communication patterns that a message system can
use:

• Point-to-Point : Only one consumer can receive the message from a producer
[15].

• Publish/Subscribe: The producer sends messages to a general message channel
(or topic), from which various consumers can retrieve messages. It is important to
highlight that the producer sending the messages does not require any knowledge
on the number of receivers subscribed, as well as the receivers do not need to keep
track on how many senders there are (they can process the messages whenever
preferred).

• Request-response: In this communication pattern, the producer sends a request to
a consumer, and the latter one replies back with a response.

When developers of both applications have a common interface, this type of communi-
cations allow for a lower coupling between them. This is because they are independent
of each other. Even if programming languages or system requirements/details change
over time, as long as the shared interface is intact, the two systems will be able to com-
municate between them. Having publishers and consumers loosely coupled encourages
evolutionary systems (systems that can adapt and evolve over time).

2.4 Distributed Messaging Systems - Why Are They Use-
ful for the Project?

Distributed messaging systems usually implement a publish/subscribe pattern, which as
mentioned before, allow to decouple the communication of data from the processing of
data. A system has a data producer, a data consumer and a storage system.

Typically, a monitoring trade surveillance system would receive data from different
trading desks that are constantly executing orders at an institution (an investment
bank, for example). A distributed messaging system would allow to have independent
applications (for instance, trading desks) send their orders to a place-holder previously
referred to as a topic or message channel (and have multiple interested subscribers
consume such incoming data).

This decoupling becomes crucial for the project’s future scalability. In fact, research on

Chapter 2. Background 10

monitoring trade systems allows to get further insight into how this flexibility require-
ment is important, as a systems should enable the possibility of whether monitoring or
not (and therefore subscribe to such stream of data or not), allowing to accommodate
business decisions.

Kafka

Apache Kafka is a distributed event streaming platform and works as a messaging
system [33], as it is used for processing streamed data. Kafka allows to send and receive
high throughput of data with low latency, where data is stored sequentially and can be
used for long-term storage (records are stored as long as it is needed).

Kafka encompasses various concepts including topics, which are a stream of messages
of a particular type (Figure 2.1). Topics provide a way to store and persist data, since
producers2 send data which is then stored into a topic, from which consumers3 can then
read.

Messages are sent into Kafka topics, and act as place-holders (channels) by storing data
before being consumed by subscribers (also referred to as consumers). These topics
can themselves be further divided into what is known as partitions. All messages in a
particular partition contain a unique sequential id (which allows to read messages from
lowest index to highest).

The chronological ordering of a stream of messages is only kept within each partition in
a topic. Every partition can be allocated on different servers, which allows for horizontal
scalability 4.

These messages are consumed by subscribers (or consumers) which keep an offset
in their metadata should a consumer stop and wish to start reading later on (this is
implemented in Chapter 5 for testing purposes).

Figure 2.1: Apache Kafka Cluster. Sourced and adapted from [48].

A Kafka server, also referred to as a broker, ensures that consumer’s requests for
partition messages are addressed, saves messages and provides offset measurements

2client application that publishes or writes data to one or more topics in a Kafka cluster
3A consumer can be an application that subscribes to a topic(s) and consumes/reads data from them
4Allows the system to handle increased workload by adding more resources, and thus distribute it

Chapter 2. Background 11

for producers. When different brokers collaborate, they form a cluster (employs a
leadership architecture), in which each server manages its partition (assigned by a
controller). To enhance durability, several brokers can be designated for a partition.

Zookeeper

Apache Kafka employs Zookeeper which allows to manage a cluster of brokers. This
is done by tracking the cluster’s metadata and subscriber’s information. Zookeeper
helps with failure detection, crash detection, and assists with Kafka’s synchronization
(functions as a key-value manager).
Zookeeper and Kafka mutually benefit each other, since Zookeeper helps manage and
control possible issues in the system that might arise with multiple clusters.

2.5 From REST API to GraphQL - Web API Query Stan-
dards

The execution of a request for information, known as a query, provides a response
which meets the specified query criteria. To execute queries, there needs to be a set of
instructions to allow the queried system (can be a database) to understand them. Hence,
a query language is therefore a language which uses formal programming commands to
retrieve data.

As requirements grow more complex [2], having in place an optimal query language to
extract, and thereafter perform data analysis, has become critical to help make fetching
the results of data analyses digestible.

REST has long been the most common architecture for web-APIs and applications
since its introduction in Fieldings dissertation in 2000 [16]. The way a REST API
work is by communicating via HTTP requests which perform CRUD (Create, Read,
Update, Delete) operations on the queried system. As a result, using a REST API would
mean that gathering data to perform data analysis/aggregations would possibly entail
either making several different calls to multiple endpoints, or developing an additional
back-end server that makes these calls to provide a single endpoint to the user. This
often becomes too inflexible and expensive.

In the past years, a new architecture, GraphQL, has been introduced in the API query
system domain, offering a dynamic alternative to RESTful APIs. GraphQL is a dynamic
query language that offers flexibility in its queries, enhancing usability. This query
language allows clients to state exactly the information they require (the structure of the
data needed) in a single endpoint, and the response will only include exactly what the
client needs.

Performing data analytics on a data pipeline requires fetching information from multiple
sources to perform the required aggregations. Compared to a classic REST architecture,
which often either requires calling various endpoints to retrieve specific pieces of infor-
mation or an additional back-end server, a GraphQL architecture can fetch everything

Chapter 2. Background 12

in a single request as seen in Figure 2.2. This dynamic feature can improve application
performance by minimizing the time spent on back-end queries, and allows to reduce
the number of round trips required to fill a web page (Figure 2.2).

Figure 2.2: REST API vs GraphQL. Sourced from [34].

2.6 Modelling through Graphs in GraphQL

GraphQL is a query language for APIs, and a server-side runtime for executing flexible
queries release by Facebook in 2015 [23]. Contrary to REST calls, GraphQL only has a
single endpoint for each query (although can have multiple ports too) and allows the
client to define the structure of the data needed for such query. This, in turn, avoids
transferring unnecessary/unused data or relying on making multiple endpoint requests
to fetch all data.

GraphQL allows framing business logic as a graph, which closely resembles our mental
models. In graphs, relationships between represented entities are as relevant as the
entities themselves. A graph is built of abstract objects known as nodes, connected by
edges. Following these edges allows to recursively traverse the graph.

By defining a schema, GraphQL allows to establish the structure of the different nodes
and how one relate to each other (via the edges). The schema itself is a graph composed
of types representing different entities (Figure 2.3). Most importantly, since GraphQL
only defines the interface, there is a freedom to choose whichever backend is deemed
appropriate.

How GraphQL Works

Essentially, queries will be sent to the GraphQL server, which will then reply with a
JSON object containing the specified information. It is considered more efficient than
previous web query standards (such as REST) because the client sends customized
POST request to fetch only the needed data.

Chapter 2. Background 13

Figure 2.3: Example GraphQL Graph

The two fundamental aspects of GraphQL are :

• Schema: The schema functions as a translation of the app’s foundational data
model into GraphQL schema language.

• Resolver: Resolvers allow the system to retrieve the required data. These are
functions written in the service’s programming language that explain how to
populate the data returned by a particular query (defined using a schema). Without
resolvers, the system cannot execute GraphQL requests.

GraphQL allows for three main processes:

• Query: Queries allow clients to retrieve data from the server (usually reads from
database). Although, as seen in Figure 2.4, the Author class has ”email” and
”publications” as attributes too, the query described by GraphQL in Figure 2.4
will only return exactly what is requested.

Figure 2.4: GraphQL Example Query

• Mutation: In GraphQL, mutations are a type of operation that allows the client
to modify data on the server. Mutations are used when the client wants to create,
update, or delete data on the server.

• Subscription: Subscriptions allow to establish and maintain a real-time connec-
tion between the client and the server (most commonly via WebSocket). This
essentially allows the server to push updates to the subscription’s result. This
becomes useful to avoid repeatedly polling for large JSON objects or ensure
clients receive updates as soon as changes occur. Whenever a client executes
a subscription, unlike with queries, it establishes a connection with the server.

Chapter 2. Background 14

However, the server will only return a response when there is an update available
(receives information).

2.7 Research Landscape

Understanding the research landscape on how Apache Kafka and GraphQL are currently
being used in other domains was relevant to further exploring how to best develop
the end-to-end data pipeline for trade surveillance. Academic literature regarding
streaming data applications has drawn attention long before Apache Kafka open-sourced
in 2011 by academic in papers such as [36] [11]. However, since then, academic
interest has grown exponentially, shifting the focus from building efficient pipelines for
non-continuous data processing [26] [39] to researching how to best connect ML/AI
frameworks with streaming processes [38] to performance comparisons under tight
latency constraints for streaming data [9].

There is an influx of research into several industries, most of which benefit from
analysing real-time incoming data, racing to bring real-time synchronization of their
apps and operations [2]. With medical applications and sensor stream frameworks [13]
becoming more prominent in the streaming data pipeline research landscape, academic
focus has moved from building basic infrastructures to optimizing high-throughput low
latency systems.

Consequently, ever since Apache Kafka was released as an alternative for data streaming,
it has been prominently cited in recent research papers. Papers such as [44] highlight
Kafka’s suitability to deal with large volumes of data, and proposes a high level data
pipeline architecture to classify tweets in real time using machine learning frameworks
for applications such as sentiment analysis. Other research trends [50] propose using
Kafka to act as a distributed streaming platform, for instance used to monitor real-time
traffic light violations using machine learning models.

But Kafka also has interesting stream processing frameworks, such as Kafka Streams,
that allows to perform data aggregations to the inbound stream. To this end, the proposed
solution for trade surveillance shifts fixed threshold values to dynamic ones, using
Kafka Streams to perform windowed operations on the stream. Hence, understanding
how Kafka and its libraries were applicable to this pressing issue was key. Papers
such as [28], although applied to the cloud domain, use Kafka Streams to develop
benchmarking methods, allowing researchers and practitioners to conduct empirical
scalability evaluations of cloud-native applications.

On top of this, GraphQL has also sparked academic attention given its dynamic features.
A considerable number of highly cited papers for GraphQL focus on comparing it with
REST under controlled experiments [6] as well as practical guidance to best migrate
to GraphQL [5]. There is a considerable emphasis on the literature that GraphQL
outperforms RESTful web services and presents an efficient way of connecting to
different databases as this paper states [9]. Since the project aims at providing and
displaying analytics to the front-end, academic literature has thus emphasized how
GraphQL’s powerful frameworks is an efficient and suitable way of overcoming data
fetching issues.

Chapter 3

System Design and Architecture

This chapter focuses on showcasing and reasoning the design choices made throughout,
as well as gives an overall overview of the system’s implementation. It thus provides
both functional and non-functional requirements that the design needs to comply with,
which will be later on tested in Chapter 5.

3.1 System Specifications and Requirements

The main goal is to build a reliable, scalable and ultimately maintainable end-to-end
data pipeline from scratch, addressing dynamic aggregations1 and a dynamic interface
to query data. In this dissertation, with a context on trade surveillance, a prototype of
such a system is implemented which serves as a proof-of-concept. In Chapter 5, we
will evaluate how well the requirements, described in this chapter, are met.

The three stages that comprise an end-to-end data pipeline are data collection, data
aggregation and data analysis. As such, the system design should allow to collect
and receive trading data, process it and perform running calculations to unlock new
insights. These insights can thereafter be queried by users for query purposes and by
the server, which the project implements, to run subscriptions and display real-time
charts (GraphQL).

As mentioned in Chapter 1, trade surveillance relies heavily on triggering anomaly
detection alerts (suspicious activity) from trading activity. Hence, by shifting from
static to calculating dynamic thresholds, the pipeline aims to capture fluctuations in the
stream’s price values across short periods of time (from now on referred to as windows).
Fixed thresholds can quickly become outdated as market conditions evolve, as they fail
to capture real-time activity patterns. This makes the newest incoming data valuable
compared to historic data which were used to detect outliers.

1Dynamic aggregations will allow to calculate dynamic thresholds which will be updated every
timed-window using Kafka Streams (more on Implementation Chapter)

15

Chapter 3. System Design and Architecture 16

Functional Requirements

The system should therefore comply with the following functional requirements:

• FR1 - Query datasets at any point in their history

The client should be able to query data regardless of the time range, and retrieve
these back. Therefore, incoming data should be stored and remain available
while the system is running. In a trade surveillance system, when thresholds are
exceeded, an alert is generated which appropriate parties will query for further
investigation.

• FR2 - Message preservation

The system should be able to preserve messages even if the network connection
between the producer and consumer is lost temporarily. In the event of adding
new producers to the system (scaling up), they should be able to recover older
messages.

• FR3 - Process data in real-time

The system should consider possible bottlenecks when triggering suspicious
activity as these will be triggered on the fly. The system should efficiently trigger
and classify activity based on pre-defined logic. This means the system should be
able to have fast access to historic dynamic thresholds while receiving incoming
data and avoid possible bottlenecks [17].

• FR4 - User-initiated Queries support (Queries)

The system enables convenient retrieval of data. Queries are useful for investigat-
ing specific trading activity that is suspected of being fraudulent.

• FR5 - Server-initiated Queries support (Subscriptions)

The system enables to execute subscriptions to provide current real-time values
for visual monitoring (real-time charts).

• FR6 - Addable data sources and formats

The system should be able to allow data enrichment and flexibility to add ad-
ditional new business logic, for instance. The system should store data for the
server to query but should allow to incorporate additional sources of input data
without impacting existing data and processing pipelines.

Non-Functional Requirements

The system should then comply with the following non-functional requirements:

• NFR1- The system should be scalable

By adding system resources, the system can sustain its performance even under in-
creased load. Trade surveillance heavily relies on receiving trade information, and
as such, increased loads should be handled without compromising the system’s
performance. This is because overnight activity greatly differs from peak trading,

Chapter 3. System Design and Architecture 17

where current data patterns can experience sudden price changes in response to
market conditions, news events, or other factors (price swings that are difficult to
predict).

• NFR2 – The system should be fault tolerant

The system should be able to retrieve missed information should any subscriber
face temporary errors.

• NFR3 – Evolutionary abilities: Generalization and Extensibility

The system should remain efficient in case of changing requirements (for example
changing data sources or programming languages used). On top of that, the system
should be able to adjust to evolving requirements or unanticipated use cases.

• NFR5 – Low Latency

Should the system’s incoming orders per second increase (scaling up throughput),
it should address latency issues (keeping it relatively low) when classifying orders.

3.2 Streaming Data Processing Architecture

Since the proof-of-concept tackles the main stages in a data pipeline (data collection,
aggregation and analysis), the implementation is structured in two main components:
a streaming platform (which will use Apache Kafka) and an interface for querying,
subscribing and mutating data (which will use GraphQL).

After having laid out the main requirements, the project represents an end-to-end data
pipeline of stream processing on a real trading data to capture potential illegal activity
on the fly as a first step. Therefore, researching cross-domain systems which dealt with
large volumes of data and stream processing were investigated. Thinking about the
system’s architecture and how each of the components were arranged and communicated
with each other was essential to avoid unnecessarily complex layouts.

3.2.1 Challenges on Streaming Application

The main challenge faced on the initial stage concerned both the data collection and data
aggregation process. It involved understanding how to move away from current batch
processing to handle real-time and historical analytics. This would allow to compute
and classify incoming trading activity as genuine/suspicious in near real-time while
performing windowed-aggregations to dynamically shift the threshold value to detect
outliers on data that is subject to rapid and unpredictable changes.

These latter challenges have been addressed by different proposed streaming architec-
tures in the literature, namely the Lambda architecture discussed in papers [22][10] and
the Kappa Architecture discussed in papers such as [57]. These two architectures are
widely accepted when working with streaming data, which will be discussed below as
the two main possible choices for the project.

Chapter 3. System Design and Architecture 18

3.2.2 Possible Streaming Architectures

While both the Kappa and the Lambda architectures are possible approaches to scalable
and fault-tolerant data streaming systems, the main difference lies in the way they
handle data processing.

The Lambda architecture (Figure 3.1) allows to process real-time and batch data by
using both a batch processing layer and a speed processing layer. On the contrary,
Kappa architecture processes only real-time data, which allows to eliminate the batch
processing layer entirely.

The Lambda architecture uses two separate data stores for batch and real-time data
processing while the Kappa architecture uses a single immutable data store for both.
This essentially means that data is never deleted or updated once it is written.

Figure 3.1: Lambda vs Kappa Architecture. Sourced from [45].

Since the system has to compare the incoming order’s price with a threshold (which is
continuously being updated), the lambda architecture deemed a better approach than
a Kappa architecture. It was first thought that two main layers were needed; one to
compute and store windowed aggregations that would allow to dynamically update
thresholds, and another real-time layer that would allow to classify trading activity by
comparing it to the calculated windowed thresholds.

However, the need for the system to provide processed data with a low latency high-
lighted the need for a single stream processing pipeline (in depth discussion in Chapter
4), as constantly querying and fetching dynamic thresholds proved to encourage bottle-
necks.

3.3 High Level Overview of the Prototype’s Architecture

After reasoning the overall architecture chosen to build the data pipeline, this section is
dedicated to providing an overview of the technologies selected for the project and the
rationale behind their choice.

Main Technologies Used

The system uses several technologies as shown in Figure 3.2. These are the following:

Chapter 3. System Design and Architecture 19

Figure 3.2: Technologies used in the System

• Message System – Apache Kafka : Kafka is a distributed messaging system
able to handle large volumes of real-time data. It acts as a main distributed
messaging system, transporting messages between the python script that sends
orders and the server in Spring Boot that analyses them (Java). Kafka is not
the only open-source messaging system available to use, with RabbitMQ and
ActiveMQ providing similar functionalities. However, previous research papers
[14] highlight the suitability of Kafka for processing and analysing large amounts
of real-time data. RabbitMQ, on the other hand, may struggle to handle high
data volumes and may not ensure message persistence [49]. Kafka is designed
to provide high throughput and low latency, making it ideal for real-time data
streaming use cases. RabbitMQ, while still performant, may not provide the same
level of performance as Kafka.

• Query Language – GraphQL: GraphQL is used as the main query language
to provide a flexible and dynamic API to retrieve data. The second part of the
implementation involves developing an interface for querying and subscribing
data (which will use GraphQL). The main underlying reason for choosing a
dynamic GraphQL API over the traditional RESTful API is its flexibility; clients
can specify exactly what data they need and get only that data in response,
allowing for efficient data retrieval improving the overall investigation on each
suspicious order. This decision is supported by the literature papers showing how
GraphQL APIs outperform traditional RESTful APIs [6].

• Database – MongoDB: MongoDB is chosen as the main database, used to store
both genuine and suspicious orders after being classified. Data (orders) is stored
in the form of documents, which is a data structure that the Non-SQL DB uses
for each data unit; a collection of documents form a collection. The database is
queried through the Spring Boot Service API to resolve GraphQL requests. Since
FR6 (Addable data sources and formats) requires the system to accommodate for
future data enrichment, choosing a Non-SQL database would allow to add new
data without needing a pre-defined schema for it; this ensures future flexibility.

• Programming Languages- Java (SpringBoot), JavaScript and Python

Chapter 3. System Design and Architecture 20

Overall System Overview

Figure 3.3 showcases the overall system overview used to implement the above tech-
nologies, and develop the end-to-end data pipeline.

Figure 3.3: Overall System Overview

The proposed high level architecture thus follows the Kappa Architecture, which allows
to perform both real-time (order classification) and (near real-time) batch processing
(windowed-aggregations) with a single technology stack. It is based on a streaming
architecture in which an incoming series of data is first stored in the messaging system
Apache Kafka. Figure 3.4 shows the overall data workflow.

The system first has a producer (developed in python), which reads the csv file simulat-
ing incoming orders from a trading floor. This producer is connected to Apache Kafka,
which is running in docker. Running Kafka in docker allows to easily set up a Kafka
environment on a local machine without installing and configuring locally.

Kafka allows to store data locally in channels known as topics. The system makes use
of two different topics to store data; the first one is used to store the incoming stream
from the csv python producer and the second topic is used to store the latest updated
value for the dynamic threshold (updated every timed-window).

Data is ingested into the messaging system Apache Kafka (stored in topic 1), which acts
as the input stream for the pipeline. From there, a subscriber (which is developed in Java
in Spring Boot) will read the data by subscribing to this topic through a consumer, and
transform it into a readable format (serialized to JSON). As soon as data is received in
the implementing class with the running logic in SpringBoot, a series of computations
(described in Chapter 4) will be performed, used in order to classify the order as genuine
or trigger an alert and classify the order as suspicious.

In parallel, the system will continuously keep track of dynamic threshold values to
determine how to benchmark illegal/suspicious activity by keeping track of windowed
aggregations that will determine the threshold values. This is done in Spring Boot using
kafka Streams library, which are stored back into a kafka topic 2 for caching pursposes
(described in Chapter 4) and ensure threshold values are updated automatically.

Chapter 3. System Design and Architecture 21

Figure 3.4: UML Activity Diagram Showing Data Workflow

These dynamic threshold values are stored in Kafka while classified orders are then
stored into a non-SQL database. A query interface is then developed to connect
GraphQL with the database and perform queries. On top of this, the data pipeline also
allows to run a JavaScript server to showcase real-time charts (further explained in
Chapter 4).
Why do we not query Kafka directly (and query the database instead)? When
it comes to querying data using GraphQL, there were a few challenges to consider.
Initially, the system design handled queries from GraphQL by fetching data directly
from a Kafka topic. Thus, it was using the information that producers sent into a topic
as the main source for data fetching. But there are several issues, namely related to
query flexibility. Querying data stored in a Kafka topic meant that GraphQL query’s
flexibility would be greatly affected. Kafka topics do not provide native support for
performing aggregations on the data. This meant that only simple queries could be
carried out, mostly regarding retrieving the last logs for a given timestamp.

Chapter 4

Implementation

4.1 Getting Started - Setting up Docker

Docker allows to containerize apps. This essentially allows to package, deploy, and
run apps virtually instead of installing all dependencies locally. Using docker allows to
create docker images that contain the needed applications and all their dependencies,
and then use those images to create and run containers. These containers are known to
be lightweight, portable, and self-contained environments for running these applications,
allowing therefore to isolate environments.

The proof-of-concept needs to setup an isolated environment to run Apache Kafka, and
although both Linux VMs and Docker can be used, Docker provides a more lightweight
and efficient containerized environment. This approach offers a more efficient use of
resources, as containers are smaller and faster to start up than VMs.

With Docker, the most common way to run Kafka is by setting up a YAML file1 (as
seen in Figure 4.1.) that allows to define the components needed.

Docker Images: Components Needed

• Zookeeper: Zookeeper is used namely for cluster coordination. Zookeeper
handles kafka’s cluster synchronization and configuration, allowing developers
to focus on the core application logic. It does so by ensuring it manages broker
connections to particular clusters [108]. For the project’s yml file, we ensured
that zookeeper was kept alive in port 2181.

• Kafka: Apache Kafka was set up in the Kafka container. The default Broker ID
was set to “1”, and the external connection to Kafka topics (for subscribers and
producers) was set to be port 9092. The Broker ID is used as a single identifier
assigned to each broker in a cluster.

1Used to define and configure a container image and its associated properties.

22

Chapter 4. Implementation 23

Figure 4.1: Docker-Compose yml file

4.2 Data Collection

4.2.1 Dataset

The context used to develop this prototype is based on trading activities in financial
markets. As such, the system needs to ingest data related to trading activities, including
Trade Data and Market Data. For Trade Data, it refers specifically to information about
individual trades, such as volume, instrument, and timestamp. Market data includes
information about market conditions, specifically maximum and lowest price at trade
time.

Institutions which carry out trading activity usually consider their trading activity highly
confidential, and is not publicly available. This poses constraints, as the main goal
ingest data that simulates to real trading activity patterns, and inject outliers to showcase
the system’s capabilities (shown in Figure 4.2).

Figure 4.2: Dataset used

Chapter 4. Implementation 24

With this being said, there are some cases where banks or other financial institutions
may make their data available to researchers or third-party vendors. This is the case
with Kaggle, which hosts a large number of public datasets related to financial markets,
including historical market data.

Kaggle hosts “Huge Stock Market Dataset” (shown in Figure 4.2), which provides the
complete historical data of daily prices and trading volumes for every stock based in the
US. The projects ingests data from the amj.us , which visually inspecting it proved to
be highly tradable, and experience fluctuations in its price values across time.

4.3 Kafka Producer

In Kafka, a producer is responsible for sending the data records into a Kafka topic. In
the context of Trade Surveillance, our producer reads trades from the dataset mentioned
in 2.1, simulating a trading floor by generating and publishing trade data to a Kafka
topic.

To carry out this data ingestion, a data generator Python script was created. This python
script makes use of the built-in csv module to read the latter csv file, in which each row
represents a given trade (Figure 4.2). Besides reading the csv data, this python script
establishes a Kafka connection to send data into a topic. To interface with Kafka, the
’kafka-python’ library was utilized as a client.

4.3.1 Data Manipulation: Generating Outliers and Price values

The dataset mentioned did not pertain to a particular Institution, but rather represents
trading activity for each stock. As such, only highest and lowest prices are shown
(public market data) but not the actually price that traded for each row. As such, the
python script makes use of ‘random.uniform’, to generate a random floating-point
number that lies between the maximum price and lowest price in each row. This number
is set to be the price at which the trade was executed.

Since the first part of the project aims at also shifting from current static thresholds to
a dynamic approach to monitor activity, there should be several abnormally large or
frequent trades to test the approach.

Hence, the python script randomly generates abnormal trades that fall outside of the
expected range of trading activity. This simulates a given trading desk manipulating the
market.

The rows in the csv file are injected every second, simulating real-time activity.

4.3.2 Data Serialization

Sending data to a Kafka topic requires serialization. This process requires converting
the data structure from the csv file into a format that can be transferred over a network.
In Kafka, these messages need to be encoded into a byte array or binary format before
sending them to the Kafka cluster. Although Kafka supports different serialization

Chapter 4. Implementation 25

formats2, the project makes use of JSON format as it best suits our use case. Hence the
data will have the following format seen in Figure 4.3 :

Figure 4.3: Schema Definition of the Dataset Used.

4.4 Data Processing

4.4.1 Spring Boot Server

The system uses Spring Boot as the main layer for data processing and perform aggre-
gations on it before sending it to the database.

The role of the spring boot app is to serve as the main connection layer to consume
records from Kafka topics. On top of this, the project uses Spring Boot to perform
aggregations and compute dynamic thresholds using Kafka Streams in order to classify
incoming activity and inject it into MongoDB. Lasty, the Spring Boot server also
provides the necessary GraphQL Resolvers to provide a GraphQL-based interface for
the client application.

4.4.2 Consuming Records from Kafka Topic

One of the main goals is to move away from batch processing and classify orders as
suspicious or genuine (this is done through dynamic thresholds explain in section 4.5.1).

Hence, consuming data from Kafka topics can allow you to move from batch processing
to near real-time processing by receiving data as soon as it is publish into the topic
(which acts as a channel). To do so, Java allows to use Kafka Listener framework
(Figure 4.4) which subscribes to a given topic (raw topics) and initializes an instance of
an Order for each message the producer sends into the topic.

2This includes JSON, Avro, BSON, Apache Thrift, Protocol Buffers or MessagePack.

Chapter 4. Implementation 26

Figure 4.4: Kafka Listener for Incoming Data.

”Order” Java Class

Since we serialized data to input into Kafka, the project has an Order Class with four
main attributes, the same ones the producer reads from the csv file. These are: ID,
High, Low, Price, Volume and Timestamp.

Hence, the main usage is to parse the JSON input into an instance of an Order class
(for later usage in classification). Hence, the class has getter methods to later call its
attributes when classifying the order/activity.

4.5 Data Aggregation – Dynamic Thresholds

Once data has been consumed by our Spring Boot Listener, the transition to (near)
real-time Trade Surveillance would only occur if potential illegal activity is captured
as soon as it takes place. To do so, every incoming order is checked upon specific
threshold values (more on next section).

4.5.1 Why Dynamic Thresholds

Monitoring financial transactions most frequently involves using fixed thresholds which
that could indicate possible suspicious or fraudulent behaviour. These thresholds are
part of metric type alerts known as threshold-based, which will trigger by checking if a
particular value of the incoming order crosses or exceeds this value. These thresholds
may be based on factors such as trade volume, trade frequency, trade price, or other
relevant variables. When these thresholds are exceeded, an alert is generated and sent
to the appropriate parties for further investigation.

The main underlying issue that has sparked interest among the industry is that although
these static thresholds can be useful for detecting some types of suspicious activity, there
are potential drawbacks to this. Since they are fixed, they can quickly become outdated
as market conditions evolve, as they fail to capture real-time activity patterns [27]. They
are prone to generate a high number of false positives, as legitimate transactions may
trigger alerts, leading to wasted time and resources for investigation [27]. Additionally,
these threshold values are only updated after, and if, threshold calibration is deemed
appropriate after periodic manual review [43].

Originally, having fixed values provided an approachable way of monitoring transactions
for companies with limited resources. However, the release of Kafka, among other

Chapter 4. Implementation 27

streaming platforms, has certainly made it easier to process and analyse real-time data
streams.

As such, the project aims at employing dynamic threshold-based alerts, and develop a
simple algorithm that would allow to recognize anomalies within trading activity. This
essentially would allow to prevent noisy (low precision) or wide (low recall3) thresholds
that don’t have an expected pattern. Dynamic threshold would help configure up metric
alerts using high-level concepts without extensive domain knowledge about the metric.

Conceptual Challenge: How to implement Dynamic Thresholds and
which Streaming Framework to use

The main goal is shifting from static thresholds to dynamic ones, and employ an
appropriate architecture to do so. Dynamic thresholds are designed to adjust and
update in real-time as new trading data comes in, to enable more accurate and effective
monitoring, adapting to changes in market conditions and individual trading patterns.

This poses a different perspective to current approaches in static threshold calculations,
as these values could be calculated once all data has been fully ingested (and hence
follow a batch workload approach). The main challenge therefore is understanding
which streaming framework to use, which would allow to simultaneously receive,
calculate and update new values according to current trading patterns.

In order to understand which framework fit best our use case, it involved carrying out
an overall understanding of open-source streaming frameworks available to use.

MongoDB recently release MongoDB Change Streams, which was originally launched
in 2017 [40] to deal with a real-time stream of changes in a database, collection, or
deployment [40], and would notify our current application of any changes to the data.
Since our system makes use of MongoDB to store trading activity, it deemed appropriate
to make use of MongoDB Streams watch() method to compute and update the overall
price value mean every time an incoming order was received.

If a trade price is significantly outside the expected range of prices for a particular
security, this may indicate that the trade was executed under unusual circumstances and
may require further investigation.

However, there were certain subtleties which lead to migrate to the current frame-
work (Kafka Streams). While MongoDB certainly allows to watch streams of data
and perform aggregations, it does not have native support for windowed operations.
MongoDB’s query language allows to efficiently retrieve individual or collections
of documents, but is not ultimately designed to perform running calculations across
fixed-length windows. This completely dismisses the original purpose, which is to use
dynamic thresholds to adapt to current patterns. Hence, these patterns could only be
captured if only the most recent orders were averaged (and not the entire collection
of documents): a phenomenon known as windowing. Since it’s a document-oriented
database, a possible way to perform windowed operations in MongoDB is by writing
custom code, which proved to be very impractical;

3A low recall means that threshold values are set too high, and suspicious activity is not being flagged.

Chapter 4. Implementation 28

Using Kafka Streams to Perform Window Operations

Kafka offers a client library known as Kafka Streams, which is part of the Kafka
ecosystem. Kafka Streams’ library allows to build processing applications that perform
operations such as filtering, aggregating or joining data in real-time.

As such, the project makes use of it to develop a near real-time aggregation (which
will compute the dynamic threshold) to process and analyse streaming data from our
incoming Kafka topic (Figure 4.5).

In Kafka Streams, windowing aggregations are performed using the concept of a ”win-
dow,” which is a fixed-size or time-based segment of a stream. Previous work on
computing running aggregations highlighted Kafka Streams Windowing operations
[17][48], proving to be an efficient way of performing running aggregations with
streaming data. Kafka supports four main types of windows, namely Tumbling, Sliding,
Hopping and Session windows. The project makes use of Tumbling windows, employ-
ing the important characteristic of having non-overlapping windows to calculate new
averages every few seconds.

The project uses dynamic thresholds based on a statistical measure of price values for
every timed window in Kafka. This was accomplished by using a combination of Kafka
Streams and a streaming aggregation function that computes the statistical measure q3
+ 1.5 * IQR4 over each incoming time window.

This statistic will be computed every window, and will be the threshold used. The use
of q3 + 1.5 * iqr as a threshold for outlier detection is a commonly used method in
statistical analysis. Q3 discriminates the top 25% of the data and IQR is calculated by
subtracting the first quartile (Q1) from the third quartile (Q3).

4.5.2 Methodology to Implement Dynamic Threshold using Kafka
Streams

• Using the previous kafka listener for incoming data, Kafka Streams consumes
trades from the Kafka topic using a KStream. A KStream represents an un-
bounded, continuously updating stream of data records in Kafka.

• The Spring Boot application has a TradeStats Class, which holds three main meth-
ods used in the running aggregations, namely ComputeMetric(), ComputeSum(),
and add().

• The Kstream aggregation is constantly running under the main() Spring Boot
method (figure 4.5), as it is iniliased as soon as the server starts running. It uses
the map operator to transform the KStream into a stream of trade prices. It then
uses the windowedBy method to create a tumbling window every second. By
using the aggregate operator, it allows to initialise the TradeStats class for every
inbound order.

4IQR is Interquartile Range: measure of the spread of a dataset. Q3 is the median of the upper half of
the dataset (third quartile). This measure is a standard outlier detection metric for upper limit.

Chapter 4. Implementation 29

A time windowed serde 5 is responsible for serializing and deserializing data
within a time window. Every time window will have to be serialized using a
supporting method named TradeStatsSerde() which is a customised serializer
developed to create time windowed serdes for the TradeStats class.

Figure 4.5: Computing running Price Thresholds using Kstreams. Developed by me,
adapted from Apache Tutorial Documentation [29].

Caching Challenge and Solution Testing

After calculating running averages to be used as dynamic thresholds every timed-
window, the system should be able to retrieve an updated threshold to compare against
new incoming orders.

The challenge lies in caching (store temporarily) this threshold such that the system
would not need to constantly query the value to check if every incoming order exceeds
it. Constantly fetching the threshold would allow to ensure that the threshold used for
comparison is updated. However, a message system can indeed become a bottleneck
itself when carrying out outlier detection in Trade Surveillance if the rate of messages
sent increases (and queue them up). Constantly querying a threshold numerous times
every second/millisecond will eventually become a bottleneck as seen in Figure 4.6.

Figure 4.6: Caching vs Non-Caching Latency Tests Undertaken

The project thus injects every new calculated threshold into Kafka Topic 2 (named
Kafka Theshold), and sets up a new listener which is subscribe to this topic. The system
has a local variable name current theshold, which is updated automatically every time

5Serde is a Rust library used for serializing and deserializing Rust data structures to formats including
JSON

Chapter 4. Implementation 30

the listener receives an updated value (Figure 4.7, meaning that the time window has
finished and a new value has been injected into the Kafka Topic. This way, the system
ensures there is no constant querying to an outside database (as the value is stored
locally), and it ensure it is continuously updated by subscribing to a new Kafka topic
which receives a new value every time the time window ends.

Tests were run by varying the load frequency received per second, and tested the mean
average latency (measures the time delay between when a trade is executed until it is
processed by the surveillance system to trigger an alert). Results show that this caching
solution, although not fully optimal, it does reduce the linear latency by a factor of more
than x5 for same input rate streams as showcased in Figure 4.6 (more on Evaluation
Chapter 5).

Figure 4.7: Caching Solution.

Running Alerts and Injecting Data into MongoDB

After setting up the streaming architecture and the additional layer to compute dynamic
thresholds, the algorithm checks the incoming data against the these latter ones through
threshold-based alerts.

For this prototype, a simple threshold-based alerts on the price value was setup, as
shown in figure 4.8.

Figure 4.8: Data Flow from Alert to MongoDB.

Chapter 4. Implementation 31

If the price value for the incoming order exceeds the threshold value, an alert is triggered.
This means that the order is classified as suspicious, and sent into the Suspicious
collection in MongoDB. Otherwise, the order is considered genuine, and sent into the
genuine collection.

4.6 Query Language: GraphQL Interface

The second component of the project involved developing an interface using GraphQL
language to retrieve information from MongoDB. The main underlying reason is that
data analysis is the last component in a data pipeline; When these thresholds are
exceeded, an alert is generated and sent to MongoDB where, should the system be
deployed, appropriate parties will query this data for further investigation. Hence, the
GraphQL interface will serve as an API, to provide a flexible and efficient approach for
it. Spring Boot is used as the backend server to implement the GraphQL Queries and
Javascript for GraphQL subscriptions.

GraphQL allows for three main types of processes, namely queries, subscriptions and
mutations. This section will involve describing and showcasing these processes, and
how they have been implemented.

Code-First vs Schema-First Approach Decision

There are two main approaches to develop a GraphQL API: Schema-first, in which
resolvers are generated after a schema has been defined, and Code-first, which involves
writing the code first and then generating the schema from it.

Both approaches have their own advantages and disadvantages, and choosing between
them greatly depends on the use case. A code-first approach offers more flexibility,
enabling more dynamic and iterative development. Any changes to either the schema
or the code is done directly on the code, whitout having to modify a separate schema
definition.

A Schema-first requires a clear blueprint for the API, needing therefore a strict Schema
Validation. This allows to pinpoint errors earlier, useful for projects in which defining
the schema first can help to establish a clear structure and hierarchy for the data.

The project implements both GraphQL Queries using a Code-first approach and Sub-
scriptions using Schema-first.

The underlying reason for this is given by the type of methodologies employed when
developing the system. GraphQL queries were developed iteratively, as the data format
changed while the Kafka environment was being finalised in parallel. The code for
query resolvers was constantly modified to accommodate new changes, and therefore a
Code-first approach allowed for rapid changes to both the data model and the GraphQL
schema in Java.

On the other hand, subscriptions were used to generate real-time charts in JavaScript,
which required a clear well-defined structure and format. As such, these were generated
using a Schema-first approach.

Chapter 4. Implementation 32

4.6.1 Queries

The project development followed a number of steps to develop Code-first GraphQL
queries by fetching data from MongoDB into Spring Boot.

4.6.1.1 Defining data model using Java classes

Even though a Code-first approach does not initially require a schema definition, the
resolvers, which are in charge of retrieving the data, need to be able to map structure of
the data that is stored in the database to a Java class.

As such, the Spring Boot application counts with a class called DocumentScalar, which
represents a document matching those stored in a MongoDB collection.

This class is crucial to easily interact with the database, since Java inherently receives
data from MongoDB as a built-in Document class, and the system parses it as a
customised DocumentScalar class to add the trade order attributes (Price, High value,
Low Value, ID, Volume).

4.6.1.2 Defining Interface Service for MongoDB data fetching

The system communicates with MongoDB by using a UserService interface. This
is a Spring Data MongoDB library which has been further customised (since it only
provides a high-level abstraction for interacting with MongoDB) by adding methods
that carry out the resolvers’ requests, as seen in figure 4.9.

Figure 4.9: Example Method on Interface for MongoDB Connection.

4.6.1.3 Resolvers for Queries

The system needs to implement methods known as resolvers, which allow to retrieve
data from MongoDB and return it in the format specified by the user.

These are methods using the @GraphQLQuery annotation to map the resolvers to the
corresponding queries.

Simple Code-First Queries

The system defines simple resolvers such as the one shown in Figure 4.10, which allows
the user to select all possible attributes (eg. Price, Volume, High, Low values) for the
order with the highest price.

Chapter 4. Implementation 33

Figure 4.10 showcases the resolver which has been implemented in Sping Boot, and the
corresponding GraphQL UI client (GraphQL Playground [24]) to test GraphQL queries.

Figure 4.10: Simple Highest Price GraphQL Query.

Code-First Query Variables

GraphQL queries also accept arguments or parameters, which allow the user to further
specify dynamic values to be used in the query.

In order to implement it, two main methods were created; one as the main GraphQL
resolver (Figure 4.11) and the MongoDB userService method (Figure 4.12)

Figure 4.11: GraphQL resolver for Query Parameters.

Figure 4.12: MongoDB userService method for Query Parameters.

4.6.2 Subscriptions

GraphQL subscriptions allow to maintain a long-lived connection to the server and
receive updates whenever the data changes. This makes subscriptions a feasible appli-
cation for developing a real-time chart that displays real time charts for the incoming
trading data.

Chapter 4. Implementation 34

4.6.2.1 Real time charts using GraphQL subscriptions

This is an extension to the GraphQL section, as it develops GraphQL subscriptions in
JavaScript to display real-time charts in Python. The main challenge involved under-
standing the basics of JavaScript (since I had not coded in JavaScript before) to establish
a WebSocket connection to the server and subscribe to the data stream. The project
on JavaScript required installing libraries including websocket-client, subscriptions-
transport-ws or py-graphql-client.

• Defining GraphQL schema, Server setup and MongoDB connection

This GraphQL project was developed schema-first, since the previous implemen-
tation was already finished and the data involved has a clear and defined structure.
As such, the schema includes a Subscription type. The next stage involved setting
up an Apollo GraphQL server with WebSocket support for real-time subscriptions,
connecting it to a MongoDB database and listening on port 4000 for incoming
requests.

• Create the Resolver

Now that the websocket connection is established, the GraphQL subscription
needs a resolver to retrieve data and publish the message to a subscription topic.
This part is required to notify all all subscribers who have subscribed to that topic
about the new data (our python script in the next step).

• Implement the GraphQL subscription in Python to create a chart

After setting up the GrahQL Subscription, we want to use a python script to
subscribe to it and continuously plot the real-time chart whenever the database
gets updated. Steps portrayed in Figure 4.13

Figure 4.13: Steps Followed to Implement Subscriptions.

Chapter 5

Evaluation

This chapter aims at critically evaluating how the requirements previously laid out in
Chapter 3 were met, as well as testing the basic functionality of the system. Several
basic Unit Tests were created, targeting both Kafka and GraphQL components. This
section will evaluate, and discuss the system’s performance and how it aligns with
current expectations.

5.0.1 Evaluating Kafka: Functionality Validation - Handling Errors

The project includes several unit tests (see Appendix) to test the basic functionality
of the Kafka component in our system. The unit tests run check that the producer is
connected to the correct Kafka topic (Unit test 1) . It also tests for possible incorrect
serialization of the message data (Unit test 2), and ensures messages are injected and
received following the expected ordering (Unit test 3). To test the above cases, a basic
producer/consumer was set up, tested using JUnit’s @Test annotation. Kafka is also
tested on handling errors, specifically on Lost Network Connection 1. Unit test 4 verifies
that the consumer has not consumed any messages during the network outage. Unit test
5 tests that once the server is back online, it is capable of retrieving all messages that
were sent while the server was down.

5.0.2 Evaluating GraphQL: Functionality Validation

This section ensures Functional requirements 4 & 5 are met. Figure A.6 in the Appendix
shows how the system’s Queries’ resolvers work as intended. Figure A.8 in Appendix A
verifies that the GraphQL subscriptions work correctly and returning the expected data.

5.0.3 Evaluating Overall System Performance

The main objective was to build an end-to-end pipeline addressing current gaps between
research papers and industry focus (mainly addressing batch workload processing and
dynamic thresholding). As such, this project requires meeting basic current functionality

1A lost network connection occurs when a consumer no longer receives messages from Kafka due to
a network outage.

35

Chapter 5. Evaluation 36

(tested using unit tests), understanding how the requirements are met, and identifying
current strengths and weaknesses from a technical standpoint. After testing the system’s
basic functionality through unit tests, now the aim is to ensure that it performs as
intended. This involves analysing the system’s overall performance under different use
cases, simulating possible business scenarios on Trade Surveillance.

5.0.3.1 Testing Robustness: Scalability vs Latency

Testing scalability vs latency is key when implementing Kafka. Latency can have a
considerable impact on meeting current non-functional requirements (system’s perfor-
mance) when handling increasingly large volumes of streaming data [35].

Kafka was initially chosen given its ability to handle high throughput and a low latency
[35]. A key challenge faced when designing the system was ensuring that running
alerts would not pose a significant bottleneck to the system. As such, the system aims
to optimize performance while minimising the risk of missing potential violations
(addressed by using dynamic thresholds).

As mentioned in the Implementation Chapter, the system addresses updating these
dynamic thresholds using the proposed caching solution, reducing linear latency by
a factor of x5 for same input rate streams, optimising the inbound bottleneck (Figure
5.1). By measuring the latency between the producer and the alert generation, we can
determine how long it takes for trade data to be processed by the system and for alerts to
be generated. This information can thereafter be used to pinpoint areas for optimisation
or improvement and identify any bottlenecks.

Figure 5.1: Caching vs Non-Caching Latency for different throughput.

In a trade surveillance system, the amount of data being processed can increase rapidly
due to changing market conditions or the addition of new trading sources. Testing
scalability helps to ensure that the system can handle this increase in data without
slowing down or crashing. Hence, different scenarios with different throughput per
second were tested (Table 5.1). While it is true that the caching solution helps reduce
and maintain a relatively low latency level for considerably large volumes per second, it
does delay alert generation by a few seconds for very big throughput. In fact, processing
200k per second has a maximum latency of 5 seconds.

Chapter 5. Evaluation 37

Messages/Second (Throughput) Max Latency (seconds)
1 0.015676

100 0.020675
200 0.049367
400 0.086347
5k 0.165723

10k 0.187191
30k 0.423977
50k 1.4343

100k 2.8800
200k 5.928531

Table 5.1: Latency Levels Achieved.

Can this be considered real or near-real time performance?

The fact that there is a 5 second delay for throughput of 200k per second does indeed
imply that the system will require further optimization should the prototype scale up.
The different experiments run on different loads suggests that although local caching
proves to successfully keep latency levels relatively low for smaller throughput, it will
become a bottleneck for bigger loads. This suggests that in order to meet scalability
requirements (for very big throughput), further Kafka configuration is needed. Thus,
further investigation on partitioning and distributing data across multiple brokers should
help reduce latency by spreading the load across multiple nodes and allowing for parallel
processing of message streams.

5.0.3.2 Performance Evaluation: Detecting Suspicious Activity

This section will test a range of values which will allow to reflect the expected variation
of use cases.

• Use Case 1: High Throughput and Big Window Size: This tests the expected
behaviour of detecting a single outlier whose value is higher (in this test, doubled)
than the previous injected order. As seen in the first confusion matrix (left
Figure 5.2), with 200 trades per second and a 1 minute window that computes
the running price threshold (chosen for standard testing purposes), the system
efficiently singles out the suspicious transaction while having zero orders as false
positive 2 and correctly discard all other activity as genuine (True negative 3) This
suggests that detecting outliers using dynamic thresholds works effectively on
use cases whose input rate is high and wider threshold windows.

• Use case 2 - Low Throughput and Small Window Size : The confusion matrix
in Figure 5.2 (right) showcases the system with lower input rate (60 per second)
and size window (30 seconds). The high number of misclassified genuine orders
suggests that the system is sensitive to the selection of Kafka’s window size,

2A false positive occurs when the system generates an alert but that order is found to be genuine.
3The system does not generate an alert and it is not suspicious activity.

Chapter 5. Evaluation 38

which can potentially have an impact on the system’s effectiveness. Hence, the
system would require further fine-tuning to accommodate to any given specific
use case’s throughput rate.

Figure 5.2: System Performance Confusion Matrix.

• Use case 3 - Detecting Manipulation Patterns: Trading activity can also
be a continuous set of illegal follow-up actions from a trader, that exhibit a
certain pattern (e.g. executing multiple consecutive illegal orders to, for example,
increase the current price value). As seen in Figure 5.3, the system is able to
capture it. However, if these consecutive orders (trading patterns) happen to fall
within two different Kafka windows, the threshold will be raised high enough
and not detect these last ones.

While the current implementation can easily tackle this issue by excluding these
suspicious higher price values when computing the metric each window, this
showcases how the system developed serves as a groundwork framework upon
which future research can build. Figure 5.3 shows how the dynamic threshold
using wider windows are able to capture real time patterns on increasing price
values.

Figure 5.3: Detecting Trading Patterns. Red Lines show threshold value.

Chapter 6

Conclusion

6.0.1 Reflection

By combining Kafka and GraphQL, the system leverages the strengths of both technolo-
gies and successfully attains the main goal of efficiently addressing current industry
issues. With a context in trade surveillance, the project builds an end-to-end optimised
new data pipeline architecture which fulfils the functional and non-functional require-
ments specified. Given the scarce literature focusing on this topic, the completion of
the project serves to bridge the existing application gap between industry and academia
research in anomaly detection in finance, and proposes a combined architecture which
has yet remained unexplored in the literature.

With the overall goal of exploring the optimal integration of these two technologies,
there are two main goals the project successfully tackles. The first one constitutes
building a monitoring end-to-end system allowing to shift current industry standards
from batch processing to a streaming architecture. Evaluating the system showed
that this small-scale solution allowed to shift from batch-processing to near-real time
classification with a delay of around 5 seconds on higher throughput. This proof-of-
concept hence demonstrates its scalability for future research, while also meeting this
required non-functional requirement.

The second goal attained was improving the system’s design to compute dynamic
thresholds in parallel. While current approaches in the literature use historical values,
these fail to capture real-time patterns. There are no recent papers that provide an
end-to-end architecture for dynamically monitoring trading activity. Challenges such as
understanding how to best dynamically update threshold values in parallel to the system
monitoring, and avoid bottlenecks allowed to improve the system’s design. The tests
performed showcase how the system’s choice design reduces the linear latency by a
factor of more than x5 for same input rate streams, optimising the inbound bottleneck
and ensuring the system remained fault tolerant and with low latency requirement.

This system was developed using an iterative approach, which allowed to accommodate
for new perspectives which refined and improved the architecture in accordance to
functional and non-functional requirements. The project consisted on a two-staged
approach: building a live data pipeline that would allow for dynamic threshold settings

39

Chapter 6. Conclusion 40

and classify fraudulent activity by performing windowed continuous aggregations using
Apache Kafka, and a second stage in which a GraphQL interface is developed to recreate
the compliance post-trade analytics. The project was thereafter extended to include
GraphQL subscriptions and perform further system evaluation metrics. This project
marked my initial experience with using multiple technologies, including JavaScript,
GraphQL, Kafka or Docker.

There are several limitations that limit the overall scope of the project. The system’s
performance evaluation illustrates that both the system’s performance and the adherence
to non-functional requirements are highly dependent on the parameter settings used
during its operation regarding Kafka windows size and input rate (throughput). The data
available remains anonymised and unclassified since trading activity datasets remain
private to each institution. Therefore, the project incorporates random synthetic outliers,
thus the findings may not be fully representative of all potential illegal trading patterns.
The system only uses one producer to simulate a trading floor, and while throughput rate
was increased to account for variable input loads, further analysis should be performed
to test Kafka’s cluster configuration.

This project thus serves as a groundwork framework upon which future research can
build. While there is no current end-to-end data pipeline on this field using Kafka and
GraphQL, the project provides a novel architecture capable of monitoring and flagging
suspicious trading activity in (near) real time while calculating dynamic thresholds in
parallel, and provides a dynamic query API to inspect fraudulent activity. On top of
this, it yields valuable insights as to how a streaming pipeline architecture performs
on a trade surveillance context, highlighting the system’s sensitivity to kafka window
fine-tuning and uncovers further research areas.

6.0.2 Future Work

As mentioned, there are several limiting factors to the project that nonetheless provide
further future research opportunities. The system’s architecture reduces latency levels
compared to an initial design. However, the different experiments run on different
loads suggests that although local caching proves to successfully keep latency levels
relatively low for smaller throughput, it will become a bottleneck for bigger loads.
Hence, further investigation on partitioning and separating incoming orders across
different brokers/queues should help reduce latency. This will spread the load across
multiple nodes and allowing for parallel processing of message streams. Different
criteria could be applied, such as trade type or risk level.

Moreover, the system is a small-scale proof-of-concept which could be further expanded
to incorporate multiple different alerts. Given that Java (Spring Boot) was chosen to
monitor alerts, its low coupling features will accommodate evolutionary requirements.
Further data enrichment could be applied, incorporating account IDs for enhanced
personalization and enable tracking and sequencing of orders. This would allow to
expand GraphQL queries, and provide a greater comprehensive audit.

Bibliography

[1] Nice. Markets Surveillance Enterprise Solution Overview. https:
//www.niceactimize.com/compliance/resource-center/NICE_
Actimize_Markets_Surveillance_Brochure.pdf. Accessed: 2022-11-
06.

[2] McKinsey Analytics. The age of analytics: competing in a data-driven world.
McKinsey Global Institute Research, 2016.

[3] Rishikesh Bansod, Sanket Kadarkar, Rupinder Virk, Mehul Raval, Rushikesh
Rashinkar, and Manoj Nambiar. High performance distributed in-memory archi-
tectures for trade surveillance system. In 2018 17th International Symposium on
Parallel and Distributed Computing (ISPDC), pages 101–108. IEEE, 2018.

[4] Rishikesh Bansod, Rupinder Virk, and Mehul Raval. Low latency, high throughput
trade surveillance system using in-memory data grid. In Proceedings of the 12th
ACM International Conference on Distributed and Event-Based Systems, pages
250–253, 2018.

[5] Gleison Brito, Thais Mombach, and Marco Tulio Valente. Migrating to graphql:
A practical assessment. In 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 140–150. IEEE, 2019.

[6] Gleison Brito and Marco Tulio Valente. Rest vs graphql: A controlled experiment.
In 2020 IEEE international conference on software architecture (ICSA), pages
81–91. IEEE, 2020.

[7] Ruiqing Cao and Marco Iansiti. Digital transformation, data architecture, and
legacy systems. Journal of Digital Economy, 1(1):1–19, 2022.

[8] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. Apache flink: Stream and batch processing in a single
engine. The Bulletin of the Technical Committee on Data Engineering, 38(4),
2015.

[9] Roman Čerešňák and Michal Kvet. Comparison of query performance in relational
a non-relation databases. Transportation Research Procedia, 40:170–177, 2019.

[10] Felipe Cerezo, Carlos E Cuesta, José Carlos Moreno-Herranz, and Belén Vela.
Deconstructing the lambda architecture: an experience report. In 2019 IEEE

41

https://www.niceactimize.com/compliance/resource-center/NICE_Actimize_Markets_Surveillance_Brochure.pdf
https://www.niceactimize.com/compliance/resource-center/NICE_Actimize_Markets_Surveillance_Brochure.pdf
https://www.niceactimize.com/compliance/resource-center/NICE_Actimize_Markets_Surveillance_Brochure.pdf

Bibliography 42

International Conference on Software Architecture Companion (ICSA-C), pages
196–201. IEEE, 2019.

[11] Samarjit Chakraborty, Tulika Mitra, Abhik Roychoudhury, and Lothar Thiele.
Cache-aware timing analysis of streaming applications. Real-Time Systems, 41:52–
85, 2009.

[12] Confluent. What is Data Streaming? Examples, Benefits, and Use Cases. https:
//www.confluent.io/learn/data-streaming/. Accessed: 2023-02-01.

[13] Ilias Dimitriadis, Ioannis Mavroudopoulos, Styliani Kyrama, Theodoros Toliopou-
los, Anastasios Gounaris, Athena Vakali, Antonis Billis, and Panagiotis Bamidis.
Scalable real-time health data sensing and analysis enabling collaborative care
delivery. Social Network Analysis and Mining, 12(1):63, 2022.

[14] Philippe Dobbelaere and Kyumars Sheykh Esmaili. Kafka versus rabbitmq: A
comparative study of two industry reference publish/subscribe implementations:
Industry paper. In Proceedings of the 11th ACM international conference on
distributed and event-based systems, pages 227–238, 2017.

[15] IBM Documentation. Point-to-point Messaging. https://www.ibm.com/docs/
en/wip-mg/2.0.0?topic=concepts-point-point-messaging. Accessed:
2023-01-10.

[16] IBM Documentation. What is a Rest API? https://www.ibm.com/topics/
rest-apis. Accessed: 2023-03-20.

[17] Simon Ehrenstein. Scalability benchmarking of kafka streams applications. PhD
thesis, Kiel University, 2020.

[18] M Fevzi Esen, Emrah Bilgic, and Ulkem Basdas. How to detect illegal corporate
insider trading? a data mining approach for detecting suspicious insider transac-
tions. Intelligent Systems in Accounting, Finance and Management, 26(2):60–70,
2019.

[19] EY. The Future of Trader Surveillance. https://assets.ey.com/content/
dam/ey-sites/ey-com/en_gl/topics/emeia-financial-services/
ey-trader-surveillance-report.pdf. Accessed: 2022-10-22.

[20] Ashfaq Farooqui, Kristofer Bengtsson, Petter Falkman, and Martin Fabian. To-
wards data-driven approaches in manufacturing: an architecture to collect se-
quences of operations. International Journal of Production Research, 58(16):4947–
4963, 2020.

[21] Paul Gibson. Trade Surveillance and how to Improve Accuracy
and Detection Rates. https://ibsintelligence.com/blogs/
trade-surveillance-and-how-to-improve-accuracy-and-detection-rates/.
Accessed: 2023-01-09.

[22] Annabelle Gillet, Éric Leclercq, and Nadine Cullot. Lambda+, the renewal of
the lambda architecture: category theory to the rescue. In Advanced Information
Systems Engineering: 33rd International Conference, CAiSE 2021, Melbourne,

https://www.confluent.io/learn/data-streaming/
https://www.confluent.io/learn/data-streaming/
https://www.ibm.com/docs/en/wip-mg/2.0.0?topic=concepts-point-point-messaging
https://www.ibm.com/docs/en/wip-mg/2.0.0?topic=concepts-point-point-messaging
https://www.ibm.com/topics/rest-apis
https://www.ibm.com/topics/rest-apis
https://assets.ey.com/content/dam/ey-sites/ey-com/en_gl/topics/emeia-financial-services/ey-trader-surveillance-report.pdf
https://assets.ey.com/content/dam/ey-sites/ey-com/en_gl/topics/emeia-financial-services/ey-trader-surveillance-report.pdf
https://assets.ey.com/content/dam/ey-sites/ey-com/en_gl/topics/emeia-financial-services/ey-trader-surveillance-report.pdf
https://ibsintelligence.com/blogs/trade-surveillance-and-how-to-improve-accuracy-and-detection-rates/
https://ibsintelligence.com/blogs/trade-surveillance-and-how-to-improve-accuracy-and-detection-rates/

Bibliography 43

VIC, Australia, June 28–July 2, 2021, Proceedings, pages 381–396. Springer,
2021.

[23] GraphQL. GraphQL Documentation. https://spec.graphql.org/draft/.
Accessed: 2023-03-20.

[24] GraphQL. Graphql Playground Documentation. https://www.apollographql.
com/docs/apollo-server/v2/testing/graphql-playground/. Accessed:
2023-02-19.

[25] Mike Gualtieri, A Rowan Curran, K TaKeaways, and MTBPP To. The forrester
wave™: Big data predictive analytics solutions, q1 2013. Forrester research, 16,
2013.

[26] Shenheng Guan, John C Price, Stanley B Prusiner, Sina Ghaemmaghami, and
Alma L Burlingame. A data processing pipeline for mammalian proteome dy-
namics studies using stable isotope metabolic labeling. Molecular & Cellular
Proteomics, 10(12), 2011.

[27] Linda Haelsen. Surveillance: Is Real-Time the Right Time?
https://www.niceactimize.com/compliance/blog-surveillance_
is_real-time_the_right_time.html. Accessed: 2023-01-9.

[28] Sören Henning and Wilhelm Hasselbring. A configurable method for benchmark-
ing scalability of cloud-native applications. Empirical Software Engineering,
27(6):143, 2022.

[29] Apache Kafka. Apache Kafka Streams Documentation. https://kafka.apache.
org/20/documentation/streams/developer-guide/dsl-api.html. Ac-
cessed: 2023-04-01.

[30] Martin Kleppmann. Designing data-intensive applications: The big ideas behind
reliable, scalable, and maintainable systems. ” O’Reilly Media, Inc.”, 2017.

[31] Gerard Klijs. Getting started with graphql and apache kafka.

[32] Alexey Kovtunenko, Azat Bilyalov, and Sagit Valeev. Distributed streaming data
processing in iot systems using multi-agent software architecture. In Internet
of Things, Smart Spaces, and Next Generation Networks and Systems: 18th
International Conference, NEW2AN 2018, and 11th Conference, ruSMART 2018,
St. Petersburg, Russia, August 27–29, 2018, Proceedings 18, pages 572–583.
Springer, 2018.

[33] J. Kreps. Putting Apache Kafka to Use: A Practical Guide to Building an
Event Streaming Platform (Part 1). https://www.confluent.io/en-gb/blog/
event-streaming-platform-1/. Accessed: 2023-02-12.

[34] Armin Lawi, Benny LE Panggabean, and Takaichi Yoshida. Evaluating graphql
and rest api services performance in a massive and intensive accessible information
system. Computers, 10(11):138, 2021.

https://spec.graphql.org/draft/
https://www.apollographql.com/docs/apollo-server/v2/testing/graphql-playground/
https://www.apollographql.com/docs/apollo-server/v2/testing/graphql-playground/
https://www.niceactimize.com/compliance/blog-surveillance_is_real-time_the_right_time.html
https://www.niceactimize.com/compliance/blog-surveillance_is_real-time_the_right_time.html
https://kafka.apache.org/20/documentation/streams/developer-guide/dsl-api.html
https://kafka.apache.org/20/documentation/streams/developer-guide/dsl-api.html
https://www.confluent.io/en-gb/blog/event-streaming-platform-1/
https://www.confluent.io/en-gb/blog/event-streaming-platform-1/

Bibliography 44

[35] Paul Le Noac’H, Alexandru Costan, and Luc Bougé. A performance evaluation
of apache kafka in support of big data streaming applications. In 2017 IEEE
International Conference on Big Data (Big Data), pages 4803–4806. IEEE, 2017.

[36] Guo-Liang Lee and Chi-Sheng Shih. Clock free data streams alignment for sensor
networks. In 13th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA 2007), pages 355–362. IEEE, 2007.

[37] Mr Kasper Lund-Jensen. Monitoring Systemic Risk Basedon Dynamic Thresholds.
International Monetary Fund, 2012.

[38] Cristian Martı́n, Peter Langendoerfer, Pouya Soltani Zarrin, Manuel Dı́az, and
Bartolomé Rubio. Kafka-ml: Connecting the data stream with ml/ai frameworks.
Future Generation Computer Systems, 126:15–33, 2022.

[39] Francesco Mazzarotto, Upasana Tayal, Rachel J Buchan, William Midwinter,
Alicja Wilk, Nicola Whiffin, Risha Govind, Erica Mazaika, Antonio de Marvao,
Timothy JW Dawes, et al. Reevaluating the genetic contribution of monogenic
dilated cardiomyopathy. Circulation, 141(5):387–398, 2020.

[40] MongoDB. Mongodb Documentation on Change Streams. https://www.
mongodb.com/docs/manual/changeStreams/. Accessed: 2023-02-23.

[41] Chris Montagnino. Running a Trade Surveillance System
Without Proper Calibration and Procedures is Like Having
a Race Car With No Brakes. https://www.eventus.com/
running-a-trade-surveillance-system-without-proper-calibration-and-procedures-is-like-having-a-race-car-with-no-brakes/.
Accessed: 2023-01-09.

[42] Nasdaq. Changing the Game: Artificial Intelligence In
Market Surveillance. https://www.nasdaq.com/articles/
changing-game-artificial-intelligence-market-surveillance-2017-04-05.
Accessed: 2023-04-10.

[43] M. O’Brien. Nasdaq Inside Peek: 2023 Report on FINRA’s Examina-
tion and ´Risk Monitoring Program. https://www.nasdaq.com/articles/
understanding-trade-surveillance-systems-and-procedures. Ac-
cessed: 2023-04-02.

[44] Nur Banu Oğur, Mohammed Al-Hubaishi, and Celal Çeken. Iot data analytics
architecture for smart healthcare using rfid and wsn. ETRI Journal, 44(1):135–146,
2022.

[45] D. Owczarek. Lambda vs. Kappa. https://nexocode.com/blog/posts/
lambda-vs-kappa-architecture/#:˜:text=Lambda%20architecture%
20uses%20two%20separate,to%20handle%20complete%20data%
20processing. Accessed: 2023-02-11.

[46] Hooman Peiro Sajjad, Ying Liu, and Vladimir Vlassov. Optimizing windowed
aggregation over geo-distributed data streams. In 2018 IEEE International Con-
ference on Edge Computing (EDGE), pages 33–41. IEEE, 2018.

https://www.mongodb.com/docs/manual/changeStreams/
https://www.mongodb.com/docs/manual/changeStreams/
https://www.eventus.com/running-a-trade-surveillance-system-without-proper-calibration-and-procedures-is-like-having-a-race-car-with-no-brakes/
https://www.eventus.com/running-a-trade-surveillance-system-without-proper-calibration-and-procedures-is-like-having-a-race-car-with-no-brakes/
https://www.nasdaq.com/articles/changing-game-artificial-intelligence-market-surveillance-2017-04-05
https://www.nasdaq.com/articles/changing-game-artificial-intelligence-market-surveillance-2017-04-05
https://www.nasdaq.com/articles/understanding-trade-surveillance-systems-and-procedures
https://www.nasdaq.com/articles/understanding-trade-surveillance-systems-and-procedures
https://nexocode.com/blog/posts/lambda-vs-kappa-architecture/#:~:text=Lambda%20architecture%20uses%20two%20separate,to%20handle%20complete%20data%20processing
https://nexocode.com/blog/posts/lambda-vs-kappa-architecture/#:~:text=Lambda%20architecture%20uses%20two%20separate,to%20handle%20complete%20data%20processing
https://nexocode.com/blog/posts/lambda-vs-kappa-architecture/#:~:text=Lambda%20architecture%20uses%20two%20separate,to%20handle%20complete%20data%20processing
https://nexocode.com/blog/posts/lambda-vs-kappa-architecture/#:~:text=Lambda%20architecture%20uses%20two%20separate,to%20handle%20complete%20data%20processing

Bibliography 45

[47] Jaime Sayago Heredia, Evelin Flores-Garcı́a, and Andres Recalde Solano. Com-
parative analysis between standards oriented to web services: Soap, rest and
graphql. In Applied Technologies: First International Conference, ICAT 2019,
Quito, Ecuador, December 3–5, 2019, Proceedings, Part I 1, pages 286–300.
Springer, 2020.

[48] Mitch Seymour. Mastering Kafka Streams and ksqlDB. O’Reilly Media, 2021.

[49] T Sharvari and K Sowmya Nag. A study on modern messaging systems-kafka,
rabbitmq and nats streaming. CoRR abs/1912.03715, 2019.

[50] Tinku Singh, Vinarm Rajput, Umesh Prasad, and Manish Kumar. Real-time traffic
light violations using distributed streaming. The Journal of Supercomputing, pages
1–27, 2022.

[51] Ralph Steurer. Kafka: Real-time streaming for the finance industry. The Digital
Journey of Banking and Insurance, Volume III: Data Storage, Data Processing
and Data Analysis, pages 73–88, 2021.

[52] Sashko Stubailo. Graphql vs. rest. https://www.apollographql.com/blog/
graphql/basics/graphql-vs-rest/. Accessed: 2022-12-12.

[53] Brian Swarbrick. Building a quality bi framework solution starts with a quality etl
architecture. Information Management, 17(7):22, 2007.

[54] Daniel R Torres, Cristian Martı́n, Bartolomé Rubio, and Manuel Dı́az. An open
source framework based on kafka-ml for distributed dnn inference over the cloud-
to-things continuum. Journal of Systems Architecture, 118:102214, 2021.

[55] Maximilian Vogel, Sebastian Weber, and Christian Zirpins. Experiences on
migrating restful web services to graphql. In Service-Oriented Computing–ICSOC
2017 Workshops: ASOCA, ISyCC, WESOACS, and Satellite Events, Málaga, Spain,
November 13–16, 2017, Revised Selected Papers, pages 283–295. Springer, 2018.

[56] Gustav von Heijne and Mattias Mogard. Conceptual dynamics on the trade
surveillance market: A study of changes in the swedish trade surveillance market
in conjunction with mifid2/miFIR and MAD2/MAR, 2016.

[57] Theo Zschörnig, Robert Wehlitz, and Bogdan Franczyk. A personal analytics plat-
form for the internet of things-implementing kappa architecture with microservice-
based stream processing. In International Conference on Enterprise Information
Systems, volume 2, pages 733–738. SCITEPRESS, 2017.

https://www.apollographql.com/blog/graphql/basics/graphql-vs-rest/
https://www.apollographql.com/blog/graphql/basics/graphql-vs-rest/

Appendix A

Unit Tests

Figure A.1: Unit test 1

46

Appendix A. Unit Tests 47

Figure A.2: Unit test 2

Figure A.3: Unit test 3

Appendix A. Unit Tests 48

Figure A.4: Unit test 4

Figure A.5: Unit test 5

Appendix A. Unit Tests 49

Figure A.6: GraphQL Queries

Figure A.7: GraphQL Queries

Appendix A. Unit Tests 50

Figure A.8: GraphQL Subscriptions test 8. Done in Python since subscriptions were
developed in JavaScript and plotted in Python.

	Introduction
	Motivation
	Goals
	 Project Contributions - Critical Evaluation of Previous Work
	Structure of the Dissertation Report

	Background
	Event streams
	From Batch Workload to Stream Processing
	Technology used for Streaming Live Data – Messaging Systems
	Distributed Messaging Systems - Why Are They Useful for the Project?
	From REST API to GraphQL - Web API Query Standards
	Modelling through Graphs in GraphQL
	Research Landscape

	System Design and Architecture
	System Specifications and Requirements
	Streaming Data Processing Architecture
	Challenges on Streaming Application
	Possible Streaming Architectures

	High Level Overview of the Prototype's Architecture

	Implementation
	Getting Started - Setting up Docker
	Data Collection
	Dataset

	Kafka Producer
	Data Manipulation: Generating Outliers and Price values
	Data Serialization

	Data Processing
	Spring Boot Server
	Consuming Records from Kafka Topic

	Data Aggregation – Dynamic Thresholds
	Why Dynamic Thresholds
	Methodology to Implement Dynamic Threshold using Kafka Streams

	Query Language: GraphQL Interface
	Queries
	Subscriptions

	Evaluation
	Evaluating Kafka: Functionality Validation - Handling Errors
	Evaluating GraphQL: Functionality Validation
	Evaluating Overall System Performance

	Conclusion
	Reflection
	 Future Work

	Bibliography
	Unit Tests

