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Abstract
This project introduces the concept of inspiration. This is when two texts are similar
enough in either phrasing or meaning that if one came first, we could determine that
the second had been written based on the first. Our goal is to develop a system that
can identify this idea of inspiration between film and book dialogue in films that are
based on a book and therefore may display some inspiration. We aim to do this to
both provide a tool for film analysis for students, providing insight into the process of
creating a film based on a book, as well as contribute to the field of Natural Language
Processing by further expanding and developing the practice of similarity measurement.
We evaluate this system by testing on J.R.R. Tolkien’s The Lord of the Rings trilogy,
developing the system initially on dialogue from the first book The Fellowship of the
Ring and subtitles from the film of the same name, and then testing on the held-out third
book/film The Return of the King. We finally test an automated version of the system,
using Automatic Speech Recognition techniques to generate the film dialogue directly
from the film audio.
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Chapter 1

Introduction

Adaptation and inspiration have been a part of storytelling since humans first began
to pass on stories via word of mouth, with each new storyteller naturally rephrasing
and reimagining stories as they are passed down from person to person [1]. Similarly,
this process has woven its way into literature, with writers being inspired by the stories
they have heard or read and putting them into their own writing [2]. Even the process
of multi-media adaption can be traced back hundreds of years, with the adaption of
stories into books, plays, parodies, illustrations, and more [3]. And along with these
adaptations, come the criticisms that the new version does do justice or does not follow
faithfully enough to the original content, even as far back as 1796 [2]. With the dawn
of film in the 20th century this concept has further extended into film [4] with the
adaptation of books into films now seen as a popular practice in the entertainment
industry. Though often, as in the 1700s, these films do not stay entirely faithful to the
book content, there are many, particularly classic, films that are highly inspired or draw
strongly from their book source material.

This project attempts to automatically identify the moments in a text that are directly
“inspired” by another source. Specifically focusing on the example of a film adaptation
of a book and identifying the dialogue in the film that has been “inspired” by the book.
Humans can easily use their own intuitions to determine whether a piece of text is based
on another, but this is a laborious and time-consuming task, that in large texts becomes
unrealistic. Even between a single book and film, this would take an extensive amount
of time and most likely a lot of prior knowledge about both the book and the film. In
this project, we seek to offer a way to quantify this idea of inspiration, so we can apply
these human intuitions automatically. We define two texts as being inspired when two
texts are similar enough in either phrasing or meaning that if one came first, we could
determine that the second had been written based on the first. For example, if we look
at the phrases:

Phrase 1: "It’s a dangerous business, Frodo, going out of your door,"
he used to say.
Phrase 2: "Remember what Bilbo used to say: It’s a dangerous
business, Frodo. Going out your door."

We can determine that if Phrase 1 was written first, Phrase 2 has been inspired by Phrase

1



Chapter 1. Introduction 2

1. Humans can do this with relative ease, but how do we quantify this automatically? We
can identify parts of the sentence that are identical, but even in this example, only five
words align exactly - “It’s a dangerous business, Frodo”. The sentence is rephrased -

“going out of your door” to “going out your door” - and reworded with implied context
- “he used to say” and “Remember what Bilbo used to say” - causing it to be harder
to quantify algorithmically. A sentence can be reworded and structured differently,
but still have the same semantic meaning, but at what level does this cause it to no
longer be classified as inspired? Contextual information also influences our decision, if
a relatively common sentence, for example, “All right!”, appears in two texts in entirely
different contexts, we cannot really say it has been inspired, but if it appears in the
same contexts, then we are much more likely to determine it as inspired. How can we
identify all these different similarities and then decide how similar is similar enough to
have been inspired? Then if we have a way to identify these matches, how can we find
them in two large documents of text of different sizes, that may or may not contain any
matches?

If we can provide a tool to do this, not only would this give critics a tool to accurately
measure faithfulness to the source material, but it also offers a way to quantify this idea
of inspiration, which to our knowledge has previously not been researched in the field of
Natural Language Processing (NLP). NLP is an area of research that essentially enables
machines to “understand” human language. One of the significant challenges in NLP is
to measure the degree of similarity between two or more pieces of text, which arises
in several applications, including information retrieval, which requires similarity in
order to find the most relevant document to a query, text summarization, which requires
similarity to help rewrite text into a summary while retaining the same meaning, and
plagiarism detection, which is most similar to our task, requiring similarity to detect
when text has been copied from an alternate source. There are also many benefits
in wider computer science research by producing an alignment of book text and film
video, we can extract by finding cases of inspiration. This is because it provides a
link between audio-visual data and a textual description of the same scene, as subtitles
are synchronized to the film via timestamping, which can be very useful in providing
machine learning algorithms examples of the same content in different mediums. It also
has numerous applications in the film and publishing industries, as well as for critics,
including audio description, and content adaptation, as well as providing tools for film
analysis for students, as it provides insight into the process of creating a film based on a
book, or as we will refer to it: screenwriting.

1.1 Contributions

In this project I hope to contribute to the existing NLP research on similarity by
developing a system using a combination of previously developed methods for similarity
comparison, as well as novel ones to quantify our introduced idea of inspiration; in
which we can strongly predict that a target sentence has been inspired by a query
sentence, producing a mapping between inspired dialogue in a film and its corresponding
book text. We are also looking to create a lightweight system that can generalize to new
books/films, and is not weighed down by methods with long training or searching times
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so that we can efficiently compare every sentence in two large documents - the film
subtitles and book dialogue.

1.2 Structure

In this dissertation I will present an automated system for identifying inspired sentences
between film dialogue, drawn from film subtitles, to their corresponding dialogue
in the book text, leveraging recent advances in Natural Language Processing (NLP)
and machine learning. The proposed system uses deep neural networks, specifically
transformers, for semantic comparison [5], and established methods in text comparison
developed through years of research [6][7], as well as novel methods developed in this
project. The background of previous research done in this area and the strategies that
have been previously used are detailed in Chapter 2. The details of these methodologies
will be covered in Chapter 3, while the implementation of the system itself will be
detailed in Chapter 4.

The system has been developed and initially evaluated on a single book/film, specifically
J.R.R. Tolkien’s The Fellowship of the Ring from the trilogy The Lord of the Rings,
as this is considered a good example where many matches occur and has ground-
truth labels for evaluation. We have also evaluated it on a second, held-out book in
the trilogy, The Return of the King, to test how well the system generalizes. This
achieved promising results in all areas, demonstrating the success of the proposed
approach. The details of these evaluations are found in Chapter 5. As an extension of
the project, we also experiment with extracting the dialogue directly from the film’s
audio, detailed in Section 5.4. Rather than simply from the already transcribed subtitles.
This is to demonstrate the concept of a fully automatic pipeline of the system, not
requiring a subtitle file, which may be unavailable for less popular films, as well as
testing the system’s ability when the provided data contains errors - which an automatic
speech recognition transcription will naturally have. These experiments also produced
promising results, demonstrating the feasibility and potential of this addition.

The overall success of the system and evaluation of the performance of the combination
of experiments, as well as possible ways this project could be taken forward is then
discussed in Chapter 6.



Chapter 2

Background

As we have established the goal of this project is to automatically capture inspiration
between the dialogue in a book with its corresponding dialogue in a film adaptation. Due
to the specific nature of this task, it falls at an intersection between many disciplines,
including text alignment, semantic matching and information retrieval, as we are both
trying to search through large documents of text, compare their sentence level similarity
and softly align them. And as such, we will need to use a combination of previously
developed techniques to solve this problem. Despite the fact that there is a vast wealth
of literature on related topics, our specific topic is not highly explored. As such I will
provide a background of existing techniques for similarity measuring and information
retrieval to give a general idea of the field, before outlining previous research that has
been done that follows a similar task to our own.

2.1 General Background

2.1.1 Similarity Measures

There are various and extensive techniques for similarity comparison, so we will give
a broad overview and describe some of the most commonly used measures. These
measures can be divided into three broad categories:

• String based Similarity

• Edit-distance based Similarity

• Semantic Similarity

String-based measures are based on comparing the character strings of two words or
phrases. The simplest string-based measure is exact matching, where two strings are
considered similar only if they are identical. Other string-based measures include
Jaccard similarity and cosine similarity. Jaccard similarity measures the similarity
between two sets by comparing their intersection and union, while cosine similarity
measures the angle between two vectors representing the occurrence of words in a
document. While both these methods could be useful in our task as they are not affected
by the length of sentences, Jaccard similarity is unlikely to be useful to us, as it ignores

4



Chapter 2. Background 5

both ordering and frequency of words in a sentence, which are more important when
measuring inspiration. It is also possible that there are only a few similar words between
our inspired sentences, so we want to utilise as many other similarities as possible,
including ordering and frequency. Cosine similarity however is a measure we want to
use if we can find informative vector representations of our sentences.

Edit-distance based measures are based on calculating the minimum number of opera-
tions (insertions, deletions, or substitutions) needed to transform one word or phrase
into another. They include Levenshtein distance [8], which is the simplest form based on
just the number of insertions, deletions or substitutions, Damerau-Levenshtein distance
[9], and Jaro distance [10]. Damerau-Levenshtein distance is similar to Levenshtein
distance, but it also allows for transpositions (swapping adjacent characters or words).
The Jaro distance takes into account the number of matching characters between two
strings as well as the number of transpositions needed to make the strings match exactly.
Edit-distance based measures however are unlikely to be useful in measuring inspiration
as they are better at measuring very similar sentences and we do not always expect
inspired to use exactly the same wording and ordering.

Both string and edit-distance based simple metrics tend to be very well tested as they
have been present in research for decades, and present tried and true methods [11].

Semantic measures are based on comparing the semantic similarity of words, aiming to
capture the similarity between different words that have similar meanings. The most
recent advancement in this area has come in the form of word embeddings based on
deep learning models, the most prevalent of these being BERT [12] and ELMo [13].
Semantic word embeddings are a type of NLP technique used to represent words in
vector space, where each dimension of the vector corresponds to a different feature of
the word’s meaning. These embeddings are created by analyzing large amounts of text
data using state-of-the-art neural network algorithms.

Semantic word embeddings have several advantages over traditional methods for repre-
senting words in language processing tasks. Firstly, they can capture subtle nuances
in word meaning and associations between words, closer to the human concept of
similarity. Secondly, they are more computationally efficient than traditional methods
because they can be used to represent large vocabularies with relatively small vector
sizes. Finally, they can be trained on large amounts of data and can be reused across
multiple language processing tasks. And, as they are essentially still vectors, we can use
traditional methods to compare, with cosine similarity being the most commonly used.

On assessing these methods, we can see that our goal comes somewhere between
string-based similarity and semantic similarity, as edit-distance based similarity, as we
have previously mentioned, is more useful in exact alignment, so we will need to use a
combination of both techniques to accurately capture inspiration.

2.1.2 Information Retrieval

Despite many methods being available to compare the similarity of sentences, to be
able to capture inspired sentences between two texts, we must find them. To do this
efficiently, we must draw on the field of Information Retrieval (IR). IR is the process
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of retrieving relevant information from a collection of documents, given a query or a
user’s information need. One of the key tasks in IR is efficiently computing similarity
comparison in order to find relevant documents. This task has been studied extensively
in the field of IR, and there are many techniques that have been developed for similarity
comparison over large collections of documents.

One of the earliest techniques for similarity comparison was the vector space model
(VSM) [14], which represents documents as vectors in a high-dimensional space, where
each dimension corresponds to a term in the document. Documents are compared based
on the cosine similarity between their corresponding vectors. The VSM has been widely
used in IR and has been shown to be effective for many types of queries and documents.

Another popular technique for similarity comparison is latent semantic analysis (LSA)
[15], which is based on the idea that there are underlying latent semantic dimensions that
capture the meaning of words and documents. LSA uses singular value decomposition
(SVD) to identify these latent dimensions and represents documents as vectors in this
reduced dimensional space. Similarity is then computed based on the cosine similarity
between the vectors in the reduced space. However, this is a method better suited to
broad matching over a huge database of documents, with its benefits coming in the
form of robustness to large data and conceptual similarity, rather than finding the exact
matches we are trying to extract in our project.

More recently, deep learning techniques have been applied to similarity comparisons
in IR, such as using convolutional neural networks (CNNs) [16] and recurrent neural
networks (RNNs) [17] to learn representations of documents and queries. These
techniques have shown promising results in various IR tasks, including document
ranking and question answering. However, these may be suitable for our system as we
are looking to keep it lightweight and avoid large models.

2.2 Related Research

Now we have discussed the general research base in this area, we will now look at
previous research done that is most similar to capturing inspiration between book and
film dialogue. The most similar of these was performed by Zhu et. al [18] and Tapaswi
et. al [19], who in their papers developed systems to match the scenes of books and
films. We can see that this aim is slightly different, as they were attempting to align
visual content from films to their textual description in their corresponding book. As
such the focus is more on the visual/text matching, matching not only the dialogue but
the context, how what is described in the book can be matched to what appears on the
screen. However, we can still take inspiration from their methodology.

One similarity to our own task is that both of these papers also use dialogue matching
to align scenes, using the subtitles contained in the films already, as they provide a way
to align the audio-visual data with the book dialogue, as well as provide an accurate
transcription of the dialogue. This task is very similar to our own, except that we are
looking for broader or partial matches, that can still be described as inspired despite
being quite different, rather than the more directly aligned dialogue that these papers
are looking for. However, we can still adapt some of the similarity/matching techniques
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used in these papers, as they have a similar purpose. Both papers use the common
information retrieval technique of TF-IDF, which we also decide to utilize in our project
and is described in full in Section 3.1, enabling fast matching, while still finding near-
match occurrences, though it is important to note that the drawback of this method is
that it cannot capture semantic similarity. Zhu et. al combats this by also using semantic
word embeddings learned from the book, in order to find semantically similar matches,
where the dialogue may have been paraphrased or reworded slightly. Though this may
partially capture semantic similarity, semantic embeddings are most powerful when
trained on very large datasets, larger than a single book. Another potential issue with
this approach is that training, encoding and calculating the similarity between word
embeddings can be slow and resource intensive, so it may be better to use more efficient
methods. Zhu et. al also uses the BLEU similarity measure [7], as a fast evaluation
method to find very similar matches. This method is usually used in the assessment of
machine translations, but can also be used to assess similarity. The main rationale behind
this measure is to use a weighted average of variable length phrase matches, by modified
n-gram precision and comparing sentence length, against alternative translations, or
possible matching sentences in this case. This scored very highly when compared to
human judgements on the same translations, making it a strong candidate to use in
our project, which we do indeed go on to experiment with and is described in full in
Sections 3.2, 4.4 and 4.5.4. On top of these measures, Zhu et. al also further extends
their approach, by using a deep convolutional neural network (CNN) to measure the
scene contextual similarity around the dialogue to ensure accurate matching, rather than
simply that the same strings are said. For example, they saw that “I love you” appeared
many times, but obviously each occurrence may match a different occurrence in the
text, so using the visual context of the scene aids in determining which occurrence it
matches. However, as we are not developing a visual element in our solution, though
this would aid in finding accurate matches, this extension is beyond the scope of this
task. Instead, we may want to use other methods of ensuring matches are relevant using
the surrounding textual context and comparing for similarity instead. This concept is the
inspiration for the methodology described in Section 3.4 and implemented in Section
4.5.

As we can see there are many strategies we can take from these papers in finding
and measuring the similarity of dialogue in a book/film. However, we also hope to
advance these techniques to be more sophisticated, as although both these papers use
advanced vision and multimedia alignment techniques, the textual matching is still
mostly rudimentary. It is also more important in our task that we do not get false
matches, as we are specifically trying to capture when text has been inspired by another
text.



Chapter 3

Methodology

Now that we have established the context surrounding this project, including its mo-
tivation and the relevant research, we can turn our attention to the methodologies we
employ to solve our task. In this chapter, we will explore the various techniques and
tools that were used to achieve our research objectives.

The problems that we have to face in our project include:

• Finding matching sentences in two large documents of text, where matches may
be sparse or non-existent

• Finding matching sentences where the syntactic structure has changed

• Finding matching sentences where words have been replaced by semantically
similar ones

• Finding matching sentences supported by the surrounding context

• Finding matching sentences with long identical subphrases

The methodologies we can use to address these issues include ranked retrieval using TF-
IDF [20], TF-IDF cosine similarity [14], SBERT cosine similarity [5], Bleu similarity
[7], and context. Each of these methods plays a critical role in achieving the project’s
goals.

Ranked retrieval is a popular information retrieval technique that involves ranking
documents based on their relevance to a query. In this project, we employed a variation
of this technique that utilizes Term Frequency Inverse Document Frequency (TF-IDF)
to calculate relevance. This technique involves computing a score that reflects the
similarity between a query and a document, and then ranking documents based on this
score. We use this to solve the problem of finding matches within two large documents,
using each sentence in the smaller document as a query to find its possible matches
in the larger document. This allows us to narrow down our matches before applying
more fine-grained similarity metrics. The full details of this methodology are defined in
Section 3.1.1, and its implementation into our system is described in Section 4.3.

TF-IDF is also applied as a similarity metric, using the TF-IDF score to represent sen-

8



Chapter 3. Methodology 9

tences in vector space. These vectors can then be compared for similarity using cosine
similarity. This methodology in our project targets the basic matching of sentences,
capturing when two sentences share similar words, where words are scaled based on
their rarity. The details of this are described in Section 3.1.2, its implementation is
described in Section 4.5.1.

Sentence-BERT (SBERT) is another method used to represent sentences in vector space.
SBERT is based on the well-known transformer architecture for semantic embedding
Bidirectional Encoder Representations from Transformers (BERT). SBERT is used
to encode the semantic meaning of a sentence as a vector, which can then, similar to
TF-IDF vectors, be compared using cosine similarity. We use this method to solve the
problems of finding matches where the syntactic structure has changed and finding
matches where words have been replaced by semantically similar ones, as SBERT
allows us to compare the underlying semantic meaning of sentences. We describe the
full methodology of this process in Section 3.3 and demonstrate its implementation into
our system in Section 4.5.3.

The Bilingual Evaluation Understudy (BLEU) similarity is a metric commonly used in
NLP to measure the similarity between two texts. Though this technique is designed for
evaluating the quality of machine translation, it can also be useful as a simple similarity
measure and is one of the methods used previously in aligning books and movies [18].
It is used in our project as a fast metric to calculate similarity and as an attempt to solve
the problem of finding matches with identical subphrases. The full description of this
methodology can be found in Section 3.2, and its implementation into our system in
Sections 4.4.1 and 4.5.4.

Finally, we employ a method novel to this paper as a strategy to deal with the problem
of context influencing similarity. This attempts to address the intuition that matches are
more likely when the surrounding context is the same. The method involves combining
the calculated similarity between sentences with that of the similarity between the
corresponding surrounding sentences. The full details of this method are described in
Section 3.4, and its subsequent implementation is described in Section 4.5.2.

In the following sections, we will delve deeper into each of these methodologies,
explaining what they entail and how they can be applied to identify inspiration. We
will also discuss the advantages and limitations of each method, and how they can be
adapted for use in other projects.

3.1 TF-IDF

3.1.1 TF-IDF Ranked Retrieval

The first approach we will look at in this project is Ranked Retrieval [6]. This is a
common technique used in Information Retrieval when dealing with large corpora of
text such as ours. This method is often used in search engines and other applications
where the goal is to identify documents that are most relevant to a given query.

In this specific version of ranked retrieval, we utilise the TF-IDF metric [20] to rank the
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documents - or possible sentences. The theory behind TF-IDF is that some words will
have greater relevance than others. TF-IDF gives us one way to reflect this, assigning
a weight to each term in a document that reflects how important that term is to the
document relative to the entire corpus. The weight is based on two factors: the term
frequency (TF), which measures how often the term appears in the document, and the
inverse document frequency (IDF), which measures how rare the term is across the
corpus.

To compute the TF-IDF score for a term in a given document, we multiply the term
frequency in that document by the inverse document frequency across the entire corpus.
The resulting score gives us a measure of how important the term is to the document in
the context of the entire corpus.

Given a query(q) tokenized into terms(t) we can use TF-IDF ranking to identify the
documents that are most similar to the given query sentence. To do this, we first
calculate the TF-IDF scores for each of the query terms(t) using the equation:

w[t][d] = (1+ log10 t f (t,d) ) log10(
N

d f (t))

Where:

• t f (t,d) is the frequency of term t in document d ( the number of times t occurs
in d)

• d f (t) is the number of documents in the entire collection that contain term t

• N is the total number of documents in the collection

Using the logarithm of N over the DF allows us to calculate the inverse document,
therefore creating high values when a term is rare and low when a term is common.
We also utilise a variation of TF-IDF scoring called sublinear scaling. This is where
we take one plus the logarithm of the TF (which is set to 0 if TF is 0 to avoid a
mathematical error), to dampen the effect of very frequent words, as we do not expect
high occurrences of a term in a document carry the same weight as a single occurrence,
particularly in the case of text with hyperspecific language like that of a book or film
with low occurrence tokens like names and places.

Once each of the scores for each query token has been calculated, these tokens are
summed for each document containing them. Giving each document a score in relation
to the query which we can use to rank them:

Score(q,d) = ∑t∈q∩d w[t][d]

It is also important to normalize these scores by sentence length to ensure that long
sentences do not receive unfairly high scores, particularly when we are matching
sentences to sentences, which may be of varying lengths.

Overall, TF-IDF ranking is a highly useful technique for information retrieval that can
be used to quickly identify relevant documents or sentences within a large corpus of
text. It is particularly useful in narrowing down a set of search results and is often
used as an initial step in Information Retrieval before using more sophisticated, more
computationally expensive techniques for refinement [21]. And despite the emergence
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of newer techniques, it is still widely used in industry and academia and is a valuable
tool for any researcher working with textual data, and, though it has its limitations
remains the most popular technique for ranking documents in information retrieval.

3.1.2 TF-IDF Vectors

This concept of the TF-IDF can be extended further to represent sentences in vector
form [14]. This becomes very powerful as it allows us to represent sentences in vector
space and therefore perform vector operations, such as using the cosine similarity to
compare vectors.

To represent sentences in the corpus as vectors, we must first create a bag-of-words
model of all the unique terms in the corpus. A bag-of-words model is a simple method
of representing text data by creating a vector system from the corpus vocabulary. A
sentence can be represented as a collection or ”bag” of the words in the vocabulary,
disregarding grammar and word order, but preserving their frequency of occurrence,
where each word is represented by its frequency count. For example, if we have a
sentence and a vocabulary of length n, we would create a vector of length n, where
each element corresponds to a word in the vocabulary, and the value of each element
corresponds to the frequency count of each word in the sentence. To adapt this model
to use TF-IDF, we simply replace the frequency count with the word’s TF-IDF score.

As previously mentioned, we can then compare these vectors using cosine similarity.
The cosine similarity is a measure of the similarity between two non-zero vectors of an
inner product space that measures the cosine of the angle between them. Specifically,
the cosine similarity between two vectors d1 and d2 is defined as:

cosine similarity(d1,d2) =
(⃗V (d1)·⃗V (d2)

|⃗V (d1)||⃗V (d2)|
Where the numerator represents the dot product (also known as the inner product) of
the vectors V (d1) and V (d2), which are the vector representation of the documents d1
and d2. While the denominator is the product of their Euclidean lengths.

This has been shown many times [22][6] to be a good method of comparing TF-IDF
vectors as it ignores differences in document length and word frequency, which can be
important for measuring similarity in high-dimensional and sparse vector spaces, which
TF-IDF vectors create as many of the entries in each vector will be zero.

Another extension of TF-IDF is to use n-grams as well as words. N-grams are a
technique used to represent text as a sequence of overlapping groups of n consecutive
words and aid in identifying combinations of words appearing together. This can be
particularly helpful for finding repeated key phrases. For example, the sentence “One
ring to rule them all” can be represented as:

• Unigrams (1-grams): "One", "ring", "to", "rule", "them", "all"

• Bigrams (2-grams): "One ring", "ring to", "to rule", "rule them",
"them all"
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• Trigrams (3-grams): "One ring to", "ring to rule", "to rule them",
"rule them all"

To incorporate these into vectorization, we simply include each n-gram as a unique term
in the vocabulary. We then compute the TF-IDF weight for each n-gram in the sentence,
using the same formula as we do for unigrams - or words. Finally, we combine the
TF-IDF weights of all n-grams in the sentence to create a single vector representation
of the sentence.

If using a bigram system, we can see that this could be helpful in capturing the phrase
“one ring”, a commonly used phrase throughout the Lord of The Rings stories. And by
utilizing n-grams we can identify its appearance, and calculate its corresponding rarity.

Using n-grams in this way, not only helps with common phrases, but can also help
to capture local context information that may be lost when using only unigrams, and
can lead to better performance in tasks such as text classification and information
retrieval. However, it also increases the dimensionality of the vector space and can be
computationally expensive, where the higher the value of n, the more expensive. The
choice of n-gram size is typically determined by the specific task and dataset and may
require experimentation to find the optimal value.

Although TF-IDF can be a very powerful tool, it cannot capture semantic similarity.
If semantically similar words are used, they are completely separate tokens in the
TF-IDF calculation, so we therefore cannot use it to identify when a sentence has been
rephrased. However, if only word ordering or syntactic structure is altered between
similar sentences, TF-IDF cosine similarity will be able to capture it, as TF-IDF vectors
are based on the bag-of-words model, which disregards grammar and word order.

3.2 BLEU

Another method that we use to measure similarity is BLEU. BLEU is a metric designed
to evaluate the quality of machine-generated translations by comparing them to human
translations. However, it can also be used to compare the similarity between two strings
of text.

Similar to TF-IDF, BLEU utilizes n-grams, however in BLEU n-grams are used more
directly. The basic idea behind BLEU is to compare n-grams in one string of text with
the n-grams in another. The BLEU score is then a measure of how many n-grams in the
candidate text overlap with the n-grams in the reference text.

To calculate the BLEU score, the number of times each n-gram occurs is counted in
the candidate and reference texts. The precision of the candidate text is then calculated
by dividing the sum of the counts of matching n-grams by the total number of n-grams
in the candidate text. However, precision alone is not enough to evaluate the quality
of the candidate text, as it does not take into account the length of the candidate text.
To address this issue, BLEU also calculates the brevity penalty, which penalizes short
candidate texts that match the reference text by reducing the BLEU score. The brevity
penalty is calculated by taking the ratio of the length of the candidate text to the length
of the reference text. If the candidate text is shorter than the reference text, the penalty
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will be greater than 1, and the BLEU score will be reduced accordingly. The precision
and brevity penalty are then combined to calculate the BLEU score. The BLEU score
ranges from 0 to 1, with higher scores indicating better similarity between the candidate
and reference texts.

In addition to the traditional BLEU score, we can also use sentence-level BLEU with
smoothing. Particularly “smoothing method 7”, as suggested by Chen and Cherry [23],
who systematically compared different smoothing techniques for sentence-level BLEU.

Smoothing method 7, also known as Lin and Och method, is a popular smoothing
technique that uses a modified Kneser-Ney smoothing approach [24] to address the
issue of zero counts in the n-gram statistics. This method has been shown to be effective
in improving the performance of sentence-level BLEU, especially for longer sentences.

To calculate the sentence-level BLEU score with smoothing method 7, we first tokenize
the sentences being compared into n-grams. The modified Kneser-Ney probabilities
can then be calculated for each n-gram in the first and second sentences, using the
modified counts with discounting factor d = 0.75. These probabilities are then used to
calculate the precision for each sentence, as well as the brevity penalty as described in
the traditional BLEU score.

The idea behind sentence-level BLEU is to calculate the BLEU score at the sentence
level and then average the scores across all sentences to get an overall score for the text.
This approach can be useful when comparing the similarity between two texts that have
different sentence structures or lengths, as ours may have.

Finally, precision scores are averaged across all sentences and the result is multiplied
by the brevity penalty to get the sentence-level BLEU score. By using sentence-level
BLEU with smoothing method 7, we are able to gain more granular insights in the
comparison and it can be especially effective when dealing with longer sentences.

Though the BLEU metric is ultimately simpler than TF-IDF, it is less computationally
expensive and is able to be to higher-order n-grams because of this, meaning it can be
more helpful for capturing longer continuous matches. However, like TF-IDF it is not
able to capture semantic similarity.

3.3 SBERT

As we have previously discussed, none of these methods so far can quite fully capture
the human intuition of sentence similarity. For example, two sentences with different
wordings and structures we may actually consider to be matching because they have
the same semantic meaning, but traditional similarity metrics, struggle to capture this
similarity accurately. In order to combat this, we will utilize a variation of the widely-
used Bidirectional Encoder Representations from Transformers (BERT) architecture
[12], called Sentence-BERT (SBERT) as introduced by Reimers and Gurevych [5].

BERT is a powerful neural network-based model for natural language processing, used
to encode a word to represent the semantic meaning of the word in vector space - an
embedding. However, unlike BERT, which produces a single, vector representation for
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each input word, SBERT produces a single, fixed-length vector representation for each
sentence in the input text. These sentence embeddings can then be used for comparison.

SBERT has been shown to achieve state-of-the-art results on various sentence-level NLP
tasks such as semantic textual similarity [25], paraphrase detection [26], and sentiment
analysis [27]; and has been used in various practical applications such as chatbots [28],
customer service [29], and content recommendation systems [30].

3.3.1 Model Training

The SBERT model adds to the BERT architecture by adding a pooling operation to
produce fixed-sized sentence embeddings and finetunes using the siamese network
architecture to ensure the model produces similar embeddings for semantically similar
sentences. The siamese network architecture is where two copies of the BERT model
are used to encode two input sentences of known similarity separately. The sentence em-
beddings produced by each BERT model are then compared using the cosine similarity
function, and the model is trained to maximize the similarity score for similar sentence
pairs and minimize it for dissimilar sentence pairs using Mean Squared Error Loss
(MSE). The full process of this can be seen in figure 3.1 This is so the produced sentence
embeddings are semantically meaningful and can be compared with cosine-similarity.

Figure 3.1: Siamese Training

3.3.2 Encoding

To compute new embeddings for a sentence using a trained SBERT model, the BERT
architecture is used, which follows the structure of a Transformer. The sentence
is first tokenized and each token then is converted into a high-dimensional vector
representation using an embedding layer. Tokens are also split into subwords, however
for the simplicity of our example we do not demonstrate this. This layer assigns a unique
vector representation to each token based on its position in the input text and its context
within the surrounding text. So if we take an example input sentence that consists of n
tokens (words), represented as a sequence of one-hot encoded vectors x1,x2, ...,xn. A
one-hot encoded vector, being similar to the previously defined bag-of-words encoding
described in Section 3.1.2, but instead only one element is “hot” (has a value of 1), while
all other elements are “cold” (have a value of 0). The position of the ”hot” element
indicates the word to which the vector corresponds in our vocabulary. Each token,
represented as a one-hot vector, xi is mapped to a d-dimensional embedding vector ei
using an embedding matrix E, such that:

ei = E · xi
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Where E is a d x V matrix, where V is the size of the SBERT model vocabulary and d
is the dimensionality of the embedding space, a hyperparameter set before training the
model. Each column of E represents the embedding for a single token in the vocabulary,
which is learned during the pre-training phase of the SBERT model.

Once this embedding vector for each token has been generated, which we will refer
to as the token embedding, the encoded representation of the input text is generated
using multi-head self-attention [31], which allows the model to capture the contextual
meaning of each token in the input text. To apply the multi-head self-attention to each
token embedding, we compute a set of attention scores for each token, which determines
how much attention to pay to each other token in the sequence, generating a set of
context-aware vector representations for each token. Continuing our previous example,
we define the set of token embeddings for the sentence as a matrix X = [e1,e2, ...,en],
where each column is a token embedding vector. The set of attention scores Asel f is
then calculated for each token i, given by:

Asel f [i] = so f tmax(QiKT
i√

dk
·Vi)

where Qi, Ki, and Vi are dk x d matrices, called query, key, and value matrices, respec-
tively. These matrices are learned parameters of the model that are computed from the
token embeddings using linear transformations. The softmax function normalizes the
attention scores so that they sum to one. The parameter sqrt(dk) is a scaling factor that
helps to stabilize the attention scores during training.

For simplicity, this only describes calculating the self-attention directly for each token.
However in the actual system, multi-head attention is calculated by splitting each token
into “heads”, where Q, K and V are linearly projected to a smaller dimension, and
attention is calculated in parallel for each head, then concatenated and linearly projected
back to calculate the output attention, as depicted in figure 3.2.

Figure 3.2: Multi-head self-attention

The resulting set of context-aware token embeddings is then combined into a fixed-
length vector representation of the entire input text, by using a pooling operation, which
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is a technique for combining and generalizing features. This produces a single vector
that represents the entire input text in a way that captures its semantic and contextual
meaning.

3.3.3 Using SBERT

To then compare the similarity between two sentences using SBERT, we then simply
compare the encoded vectors using the cosine angle between the vectors, as described
in Section 3.1.2. The resulting value will be a measure of the similarity between the
two sentences, with a value of 1 indicating perfect similarity and a value of 0 indicating
no similarity.

BERT methods have been shown to outperform traditional methods such as TF-IDF
and word embeddings for computing sentence similarity in a variety of tasks, including
paraphrase identification, question answering, and text classification [32][33]. And
SBERT has been shown to provide a significant speed-up in comparison to BERT [5].
One of the advantages of SBERT is that it can capture the nuances of sentence meaning
that cannot be captured by simpler methods such as TF-IDF. Additionally, SBERT
is better able to handle out-of-vocabulary (OOV) words and can generalize to new
sentence structures that were not seen during training, as it uses subword tokenization,
as in the original BERT model. This process means that during training words are
segmented into subword units, each with its own embeddings, so when a new word is
encountered, it can be broken down into subwords and meaning can be inferred from
combining subword embeddings in the training set. Though this does not help in all
cases if no subwords appeared in training, this is still an improvement to TF-IDF, which
does not have a strategy to deal with unencountered words.

However, the drawback of SBERT is that it is more computationally expensive, even
when using a pre-trained model. This is because, in contrast to more traditional methods
like TF-IDF and BLEU, SBERT requires more complex input processing, including sub-
word segmentation and encoding. SBERT also requires more computational resources
during inference, as SBERT’s encoding process can take more time and computational
resources than computing a simple TF-IDF vector or shared n-gram score. Therefore
it may be more useful to use this similarity metric sparingly and for getting more
fine-grained matches.

3.4 Context

We have already mentioned that inspiration can be affected by the surrounding context
of the query and target sentences, with similar contexts implying a stronger match. In
other words, we can intuitively say that if the sentences around a target sentence are
similar to the sentences around the query sentence, it is much more likely that the target
sentence and the query sentence are a match. For example figure 3.3:

We can identify that these are similar passages and that some inspiration has occurred.
However, if the query sentence is “Well yes - and no.” and the target sentence is “Well
no, and yes.”, as stand-alone sentences, though the two share the same words, they are
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Figure 3.3: Two Similar Sequences, Target Matches in Bold

commonly used words and the ordering has been rearranged, so would perhaps not be
as conducive to a match. However, by including the surrounding sentences we can see
that the surrounding context is the same, suggesting that this is indeed a match. In our
system, we want to be able to leverage this concept in our comparison, so we introduce
the idea of context.

In our project context is when the similarity of the surrounding sentences, measured
by one of our previously described similarity metrics, is used to “boost” the score of
query and target sentence similarity. To capture this context, we first define a window
around each sentence in parallel texts, 1-2 sentences long. We can then use a previously
discussed similarity method and together the similarity of the target and query sentences,
with that of the context window to give us a combined score. This means that the higher
the similarity of the surrounding sentences and the sentence themselves, the higher the
score. This can also be normalised by the size of the chosen context window for scaling.

Though this does present some potential issues with edge cases - with very similar
matching sentences in the context window potentially skewing the results, this is usually
what we want and it does a good job at rudimentarily addressing this intuition. And,
when used in conjunction with other methods, can be very effective. Though it inherits
all the benefits of the chosen similarity metric, it also inherits all the drawbacks.

Though this is particularly useful in our task, it could also be used in various settings
when aligning two accounts of a scenario, even in machine translation.
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Implementation

Figure 4.1: System Overview

Now we have detailed the methodologies and the different ways they can be useful, we
will move on to describing how we utilised them in our task.

This first involves preprocessing the data, extracting the sentences and normalising the
text, described fully in Section 4.2. Then the cleaned data goes through three phases of
matching on varying levels to refine the matches, detailed in figure 4.1. Phase 1 is a
basic refinement of the sentences using TF-IDF ranking, which is expanded in Section
4.3. In this phase, we use each film sentence as a query to return the top 5 “closest”
sentences in the book, provided they are above a certain threshold. This allows us to
narrow down the sentences and discard any sentences that have no possible matches.
In this Phase we simply aim to maximize the number of true positives that our system
produces, as more intensive refining occurs later in the system.

Phase 2, detailed in Section 4.4, addresses the problem that some sentences may have
been split into multiple sentences in the film, or been drawn from multiple book sen-
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tences. As such, to try to optimize our matching, we want to combine any surrounding
sentences that improve the matches, which Phase 2 attempts to do using BLEU as a fast
metric to test if adding the surrounding sentences improve the matches.

Once the sentences have been expanded, we go into our third and final phase where we
perform more fine grain similarity checking, using a combination of cosine similarity
between TF-IDF vectors, “context” of surrounding vectors (as introduced in Section
3.4), cosine similarity between SBERT vectors and finally BLEU as a last check to
try to catch any remaining sentences. In this Phase we now aim to balance the true
and false positives our system produces, as we are aiming to extract as many “real”
matches as possible without also returning many false ones - ones we would not judge
to be inspired. We can say our system has been successful if a large proportion of the
gold standard matches are found, while not also returning a large proportion of false
matches.

4.1 The Data

To develop the system, the data we used comes from book/film of J.R.R. Tolkien’s The
Fellowship of the Ring. This provides many benefits, as it is famously a good example
of a film adaptation that takes many lines from the source material. Also due to its
popularity, its resources are widely available, including a fan-made list of matches
between the book and the film, which we are able to use as a gold standard, which I
will detail in section 5.1.

This data comes in the form of the entire original book text, which we will have to
extract the dialogue from and the official subtitles used in the film. Using the subtitles
also provides many benefits as it contains time-stamped data, allowing us - if desired to
link the audio-visual content of the film to our matches as well.

4.2 Preprocessing

To use this extracted data, we first need to preprocess it. Preprocessing is an essential
step when approaching any natural language processing task and this project is no
different. Preprocessing is vital to ensure text is cleaned and prepared, extracting
the meaningful information from the text while removing irrelevant or redundant
information, and ensuring all text is normalised to the same level.

4.2.1 Dialogue Extraction

The subtitles are easy to extract dialogue from as they are already only made up of
dialogue, but in the case of the book, we want to remove all non-dialogue text, as we
are unlikely to find matches between the film dialogue and the descriptive parts of the
book. Though it is possible that a scriptwriter has adapted some description from the
book into the dialogue, it is unlikely to be a very concrete match and it is much more
beneficial to the system to decrease the amount of text we need to search through to
find matches.
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The most obvious way to extract the dialogue from the book is to use take text sur-
rounded by quotation marks, for example:

"Well, if you want my ring yourself, say so!" cried Bilbo. "But you
won’t get it. I won’t give my precious away, I tell you."

For this, all we need is a simple regex to extract the text between quotation marks.
Regular expressions are powerful tools for pattern matching and can be used to extract
specific patterns of text from a larger corpus. We utilized the standard Python python
library re and the additional module regex [34] to perform sentence extraction. How-
ever, like much of language processing, it is rarely simple and one rule does not usually
cover all. As the text only uses single quotes, there is no way to distinguish between
actual quotes in the book, apostrophes and dialogue quotation marks. This is the first
example of something that humans can easily intuit, but is hard to fully capture with a
computer. The way that I got around this was to use a regex that captured sequences
where the first quotation mark is preceded by a space and the ending quotation mark is
followed by a space (or a full stop, which covers some edge cases). The text in between
is limited to 2500 characters (over the length of the longest speech in the book) to
prevent incorrect matches from stacking and accidentally capturing the large sections of
the book.

As the regex used is greedy, often non-dialogue is also captured in favour of capturing
longer sentences, usually, he said/she said descriptors. So in a broad attempt to capture
this, I also used another regex to remove rogue dialogue descriptors.

Quotation marks were also not only signifiers of dialogue in the book, indents, italics
etc. were also used, however, these were less consistent, but be trivially captured.

4.2.2 Normalisation

4.2.2.1 Document Division

Once the dialogue is extracted, the next step is to perform text normalization, which is
the process of converting text to a standard format to make it easier to process. The first
step here is to split the dialogue into usable chunks. I chose to use sentences, as they
are the most natural way to split up language, even if it produces documents of varying
lengths.

During my development, I experimented with the idea of using a rolling window to
extract matches: comparing the “window” of text in the film with a “window” of text in
the book. Where a window is a list of a fixed number of words that moves along the text
one word at a time. This would be able to exactly capture similar segments, picking out
snippets of the text that match, provided we are able to find a suitable window length.
However, not only does this become very computationally expensive, as we must at
least compare every word in the film to every word in the book, but it is also not as
useful, as it simply picks out snippets. In our task we are trying to do something slightly
more complex - identifying when a sentence has been inspired, whether or not all the
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words in the sentence match. So we may only have a small section of a sentence that
matches, but we still want to be able to identify that the sentences are inspired.

4.2.2.2 Text Cleaning

Once the sentences were extracted, all punctuation was removed using Python’s built-in
string.punctuation library. Removing punctuation is a common preprocessing step,
as it helps to ensure that the analysis is focused on the content of the text rather than its
formatting.

We also converted all text to lowercase. This step is important for several reasons.
First, it helps to ensure consistency in the text data by treating all words as the same
regardless of their case. Secondly, it can improve the accuracy of text retrieval by
matching queries to documents more effectively. In this step, however, we chose not to
remove stopwords. Stopping is often performed in normalisation, however, stop words
were not removed in this project as they may be important in finding matches between
book and movie dialogue. We also chose not to stem the words as this may alter their
meaning unexpectedly, instead using SBERT semantic similarity to account for small
changes in wording.

The output of the preprocessing step is clean, normalized text data that is ready for
matching, without additional noise. By extracting sentences, removing punctuation,
and converting all text to lowercase, we ensure that the comparisons in the system are
focused on the meaningful content of the text while ignoring irrelevant information.

4.3 Phase 1

4.3.1 Ranked Retrieval

Once the dialogue is extracted, for the first step in our system, we treat the problem
as an information retrieval problem - effectively each film sentence is a query that we
are searching for in a large corpus - the book dialogue. However, our task is slightly
different from a standard information retrieval problem, as we don’t just want to find the
“most relevant document” (where document here refers to sentence), we want to only
return “documents” that we consider relevant to the query. To do this we applied the
methodology of ranked retrieval detailed in section 3.2.1, combined with thresholding
using the TF-IDF score to ensure only sentences that may be possible matches are
returned. We use the film sentences as our query terms, as not only is the corpus smaller
but it is also written based on the book. For each film sentence, we are trying to find
the sentence that has inspired it. This then becomes the base results for our next step to
refine.

4.3.1.1 Inverted Index

To enable efficient retrieval we can calculate the TF-IDF score with the aid of an
Inverted Index, another commonly used Information Retrieval Technique. This means
that rather than simply storing each document, we use a dictionary-like object with each
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word (or token) in the corpus as the key and all the documents containing that token as
the values. This allows us to easily calculate the TF-IDF weighting of a token in a query
that, immediately retrieving all the documents that contain that token and discarding
any that do not, rather than searching through the entire corpus each time for a specific
token, which would greatly increase runtime.

In our system, we implement this by turning the book text into an Inverted Index. For
each term, a list of the sentences in which it appeared is stored, along with the positions
of the term in those sentences. We also stored the frequency of each term in the entire
dialogue corpus.

4.3.1.2 TF-IDF Weighting

Once the inverted index is created, we use the film sentences to query the index. The
film sentences are represented as a set of terms and each “document” - book sentence -
can be ranked on their relevance to the query using the TF-IDF weighting scheme as
described in 5.2.

For each query, the top 5 are selected as possible matches, as long as they have a score
over 0.5, considered to be a value of at least vague similarity. Giving each query a range
of possible matches, while discarding any film sentences that do not even slightly match
any book sentences.

4.4 Phase 2

4.4.1 Sentence Expansion using BLEU

The next phase of our system expands the possible matches gained from TF-IDF
ranking, to try to address the problem that some sentences may have been split into
multiple sentences in the film, or been drawn from multiple book sentences. For
example, if we look at figure 4.2, we can see an example of a match that is split into
multiple sentences: in the book, this match is contained in one sentence, but in the
screenwriting process, this has been turned into two, presumably to give more direction
to the actor on how the sentence should be delivered. However, we still want to be able
to capture this as a match. To do this, we take our refined matches: film sentence:
[possible book sentences] and treat each film sentence as the “input sentence” and
each possible book sentence as the “target sentence”. We first check if the sentences
adjacent to the target sentence, contain any words similar to the input sentence using
a set intersection. This allows us to very quickly filter out any adjacent sentences that
have no relation to the input sentence. We then combine any adjacent sentences that are
included in the set intersection, with the target sentence and take the combination with
the highest BLEU score, as mentioned in Section 3.2, to the input sentence. This should
then return the closest combination of sentences to the input sentence. These matches
are then passed on to the next phase for a more computationally expensive, granular
similarity comparison

As this problem can occur in both directions - the book sentence can be split into
multiple film sentences, or vice versa - we also want to perform this in reverse: where
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each book sentence is treated as the input sentence, and each film sentence is treated as
the target sentence. We then take the combination of book/film sentence combinations
with the overall highest BLEU score to return the most likely match.

Figure 4.2: Sentence Expansion

4.5 Phase 3

Figure 4.3: Phase 3

For the final phase of the algorithm, once the results have been refined down to what we
think are the most likely matches, we use a combination of the techniques sequentially:
TF-IDF cosine similarity, context, SBERT and BLEU, as described in Chapter 3, to
extract the different types of matches we expect; a breakdown of which can be seen in
figure 5.2. Sentences go through each similarity test - testing if a sentence is over a
certain score of that metric - and those that pass the test are counted as matches, while
those that do not, go on to be tested using the next metric. Sentences that pass none of
the similarity tests are then discarded. Using these different tests allows us to be very
modular in targeting different types of matches, particularly in deciding the order they
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are used and deciding the thresholds of each metric. Experimentation on which of these
produces the best results is detailed in section 5.2.5.

4.5.1 TF-IDF Cosine Similarity

The first of these metrics we used in this phase was TF-IDF cosine similarity between
the vector representations of the TF-IDF weighted scores as described in Section 3.1.2.
To use TF-IDF vectorization in our project, we used the implementation provided by
the Python library sklearn [35] so as to utilise its n-gram capabilities.

The TF-IDF weights for each word or n-gram in the text are computed using the sklearn
TfidfVectorizer class. This class takes as input the preprocessed text data and a number
of parameters, including the n-gram range and whether or not to use sublinear scaling,
which we utilize in our system, as described in 3.1.1. The n-gram range determines
the length of the n-grams used in the TF-IDF calculation. In our project, we chose the
n-gram range of (1,3), which includes n-grams from 1 to 3. This is to find a balance
between allowing higher-order n-grams and not bloating our vocabulary.

Once the TF-IDF weights have been computed, the cosine similarity between the two
texts can be calculated using the sklearn cosine similarity function. This function takes
as input the TF-IDF weight matrices for the two texts and returns a similarity score
between 0 and 1. This score is then thresholded and sentences with a cosine similarity
over this threshold are counted as matches, while sentences under the threshold move
on to be tested using the other similarity metrics in the phase. I experimented with
tuning this threshold in Section 5.2.4.

TF-IDF cosine similarity is chosen as our initial comparison in this phase, as we expect
the majority of matches to be collected in this step, as we are using TF-IDF to return
our “generally similar” sentences, where the words may have been rearranged, but the
words used in the sentences are mostly the same, for example:

"I know I don’t look it, but I’m beginning to feel it in my heart."
VS.
"I don’t look it, but I am beginning to feel it in my heart of hearts."

4.5.2 Context

In the previous step of Phase 3, I described how I used TF-IDF similarity to refine the
search for potential matches in the dialogue. The next step is to catch any matches
that are a little under our previous threshold, but the surrounding sentences of the film
are very similar to the surrounding sentences of the book, which therefore makes the
sentences more likely to be similar. This is done using the idea of Context introduced in
Section 3.4. By incorporating contextual similarity into the search process, we aim to
further refine the search and reduce the number of false positives, as well as catch any
borderline similarity matches that can be called matches due to the context.

To incorporate contextual similarity into the search, we first define a context window
around each sentence in the book and movie. I experimented with different window sizes
and found that a window size of 2 sentences before and after the sentences provided the
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best results. We then compute the TF-IDF cosine similarity, of each sentence within the
context window for the film and book sentences. This cosine score is then added to the
cosine similarity of the initial TFIDF cosine score of the book sentence to “boost” it to
be a possible match, provided the initial cosine score is over a similarity of 0.6. Putting
this in place ensures that the target book sentence has at least some degree of similarity
to the film sentence and doesn’t just have very similar surrounding sentences. The
boosted score is then also thresholded, and sentences over this threshold are counted as
a match. The exact values of this final threshold are experimented with in Section 5.2.4.

Context is used twice in Phase 3, once after calculating the TF-IDF cosine similarity
and once after calculating the SBERT cosine similarity, which will be described in the
next section. In this second usage, the initial TF-IDF cosine similarity is replaced with
the SBERT cosine similarity in order to boost SBERT cosine similarity of sentences
that fall slightly under the initial SBERT cosine threshold using the similarity of the
surrounding sentences.

4.5.3 SBERT

The next metric used in Phase 3 is the cosine similarity between SBERT semantic
embedding vector representations of the sentences, as described in Section 3.3.

To incorporate SBERT into the search, we first generate the SBERT embeddings for each
sentence in the book and movie. We used a pre-trained SBERT model to generate these
embeddings [36]. A pre-trained model is utilized as training our own would require a
huge dataset, which we do not have in our example, and the process is computationally
expensive and time-consuming when we already have access to state-of-the-art fine-
tuned models trained on billions of sentence pairs, giving us the ability to take full
advantage of SBERT’s semantic capabilities. Once these embeddings are created, we
then compute the cosine similarity between each pair of sentence embeddings. Again
producing a similarity score between 0 and 1, where a score closer to 1 indicates
high similarity, while a score closer to 0 indicates low similarity. Similarly to the
TF-IDF cosine similarity step, we then threshold the SBERT cosine similarity, taking
all sentences over a certain value and passing any under it on to the next step.

This metric attempts to capture matching sentences where the wording of the sentence
may have been changed or been paraphrased, but the meaning remains the same and is
still recognisable as matching the original sentence. For example:

"Already the writing upon it, which at first was as clear as red flame,
fadeth and is now only barely to be read."

VS.
"The writing, which at first was as clear as red flame, has all but
disappeared."

Though there is an identical subphrase - “which at first as clear as a red flame” - the
rest of the sentence has been rewritten, but is still clearly identifiable as being inspired.
This kind of match would be discarded just by using TF-IDF, as this sentence scores a
low 0.58 in this metric, whereas using SBERT cosine similarity it scores a strong 0.81.
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We are also able to capture matches such as:

"Today is my 111th birthday."
VS.

"Today is my one hundred and eleventh birthday."

Where TF-IDF cannot capture that “111th” is the same as “one hundred and eleventh”,
SBERT is able to capture that these are equivalent.

As we can see this is a very powerful measure of similarity, however it is more compu-
tationally expensive, as we must encode the semantic embeddings. We therefore use
it towards the end of Phase 3 to avoid uneccessary computation that can caputured by
TF-IDF similarity.

4.5.4 BLEU

In the final part of Phase 3, we again use the BLEU metric, described in Section 3.2, to
try to catch any remaining matches that have not been caught in the previous steps. We
use BLEU, as it is a useful metric in targeting similar phrases.

To calculate the BLEU score, we used the nltk Python library [37], using the function
sentence bleu, using smoothing method 7 introduced by Chen and Cherry that we
also described in Section 3.2; which is particularly useful when comparing sentences
of different lengths. The BLEU similarity is calculated between each film and book
sentence, and the pairs over a certain threshold are taken as matches.

BLEU can sometimes capture sentences that have nearly identical words, but may not
mean the same thing, for example:

"It is already begun."
VS.

"It is already begun."

BLEU scores this highly, as it has the shared phrase “it is already”, and though the
last word is different, because it is only one word, the score is only lightly affected.
For this reason we only test the BLEU score of sentences over a certain SBERT score,
as SBERT embeddings can capture that these sentences have very different meanings;
so the sentences have to be at least marginally semantically similar to be tested using
BLEU to avoid these kinds of errors. This is also why the BLEU metric is used after
the SBERT embeddings have been calculated in the system.
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Experiments

In this Chapter we describe the experiments undertaken to test the performance of the
system we have implemented in how well it can capture sentences inspired sentences.
The first experiment, detailed in Section 5.2, shows the process of tuning all the
parameters described in Chapter 4 to produce the optimum output. While the second
experiment, described in Section 5.3 was to test the performance of the system on a held-
out book/film combination to test if the system has been overtuned to the The Fellowship
of the Ring. In this experiment the system is tested on the held-out book in the Lord
of the Rings trilogy, the film/book of J.R.R. Tolkien’s Return of the King, as we have
similar gold standard data to The Fellowship of the Ring. The third experiment, detailed
in Section 5.4, was to test the performance of the system when using automatically
transcribed text from the film audio rather than the film subtitles, to test if the system
can be fully automated.

5.1 Gold Standard Evaluation

To evaluate whether or not we have extracted all the possible sentences, we can compare
the output of our system with our gold standard. In this project, we are lucky enough
to have a human complied gold standard due to the popularity of the franchise. This
compilation was created by an enthusiast who had read the book and watched the movie
multiple times. They identified and compiled all the instances where the dialogue in the
movie matched the book’s dialogue.

This gold standard is used throughout the evaluation of the experiments. Using a human
gold standard was important in this process as it allowed me to evaluate the accuracy of
the system’s output. It also helped to identify areas where the system could be improved
during development by demonstrating which matches are not being found.

Specifically, this gold standard is used in evaluation to identify the number of true
positives, false positives, true negatives, and false negatives, from which we can then
calculate the precision, recall and F1 scores for our system. A true positive occurred
when our system identified a match that was also present in the gold standard. A false
positive occurred when our system identified a match that was not present in the gold
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standard. A true negative occurred when our system correctly identified a non-match. A
false negative occurred when our system failed to identify a match that was present in
the gold standard.

Precision measures the proportion of true positives, drawn from our gold standard, to
all identified positives. This is particularly useful as a metric to evaluate how many of
the matches returned are false. It is calculated using the equation:

Precision = TruePositives
TruePositives+FalsePositives

Recall measures the proportion of true positives to all actual positives in the gold
standard. This is particularly useful as a metric to evaluate how many of the gold
standard matches we are managing to capture. It is calculated using the equation:

Recall = TruePositives
TruePositives+FalseNegatives

The F1 score is the harmonic mean of precision and recall and is often used as an overall
performance metric [38], as it balances both precision and recall. It is calculated using
the equation:

F1 = 2∗ Precision∗Recall
Precision+Recall

However, it is important to note that through testing we discovered that this gold
standard was not exhaustive, and there were many matches which we would consider to
be true positives that our system was able to identify that were not in the gold standard.
This means that it is not a true gold standard as we initially thought, and we ultimately
cannot fully evaluate our system. However, it is still a valuable tool in evaluation, as it
provides a baseline and allows us to at least measure the percentage of matches in the
gold standard our system can find.

5.2 Parameter Tuning

5.2.1 Dialogue Extraction

The first step of the system that we tested was dialogue extraction. As this step is not
trivial and does not always extract all the sentences due to varying indicators of dialogue
in the book text and some that have no indication, it is important that we test the system
to check how many of the gold standard sentences we have managed to extract.

To assess the dialogue extraction from the text, we directly compared the gold standard
with the extracted sentences. Showing that my methods had achieved extraction of all
185 gold sentences (sentences that we consider correct matches) possible to extract out
of the 207 gold standard sentences. This is a strong result as 10 of the gold standard
sentences are from other Lord of the Rings books, and therefore cannot be found, and
others have no identifiable textual signals of dialogue, so it is expected that we will
not capture all of them. Despite this we manage to capture 94% of the gold sentences,
not including those from other texts, therefore I believe this can be considered a very
successful extraction, maximising our likelihood of successful matches for the matching
phases of our system.
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5.2.2 Phase 1

To evaluate the output of Phase 1, aimed at refining the sentences, I used the evaluation
detailed in 5.1 to measure the accuracy of the system’s output. In this first case, however,
we are only interested in the recall metric, as we want to ensure as many matches as
possible are found so that none are discarded going into the second phase, and we
expect precision to be very low. However, we also want to discard any matches that are
complete non-matches, to avoid unnecessary computation, narrowing down the book
sentences from a starting number of 11826 and the film sentences of 1846. We tested
three different values of thresholding the TF-IDF score: 0.1, 0.3 and 0.5. The results of
this can be seen in table 5.1.

Threshold Recall Film Sents Book Sents No. Matches
0.1 0.99 1664 3796 9133
0.3 0.99 1664 3796 9133
0.5 0.99 1654 3762 8918

Table 5.1: Results of Varying the TF-IDF Score Threshold

From these results we can see that thresholds 0.1 and 0.3, perform the same, whereas
0.5 performed the best, still providing a recall score of 99%, as well as effectively
narrowing down the number of sentences; for the book from 11826 to 1654, and for
the film from 1846 to 3762, meaning we only need to perform 8918 comparisons in the
next phase. We, therefore, use the output of this test going forward in the next phases.

5.2.3 Phase 2

Evaluation of Phase 2 is similar to Phase 1, as our main goal still is to ensure no gold
standard matches are discarded while reducing the number of matches to compare.
Therefore we once again focus on the recall score and reduction in the number of book
and film sentences.

No thresholding is done in this step, so we can simply evaluate the output, which
produces a recall score of 98% and reduces the number of film sentences from 1654
to 1536, and the number of book sentences from 3762 to 3423 by combining some
possible matches. We expect to see the recall score drop slightly, as some gold standard
sentences are combined together and therefore no longer match the original sentences.

5.2.4 Phase 3

Now sentences have been sufficiently narrowed down, Phase 3 is the phase in which
the most intensive similarity comparisons occur, using various different metrics. This,
therefore, requires rigorous testing to find the correct thresholds for each metric to
capture the optimum amount of matches.
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5.2.4.1 TF-IDF Cosine

The first threshold we tested is for the cosine similarity between TF-IDF vectors. The
results of this can be seen in table 5.2.

Threshold Precision Recall F1
0.70 0.71 0.56 0.62
0.75 0.76 0.49 0.60
0.80 0.79 0.43 0.55
0.85 0.75 0.33 0.46
0.90 0.78 0.29 0.42

Table 5.2: Results of Varying the TF-IDF Cosine Threshold

As this is just the initial step in Phase 3, we want to prioritize precision, as recall will rise
throughout the other steps. Looking at the results we can see that precision is highest
when the threshold is set to 0.80, so we, therefore use the TF-IDF cosine similarity
threshold of 0.80.

5.2.4.2 First Context

The next threshold we tested is the TF-IDF cosine similarity boosted by the similarity
of either the sentences before or after the target book sentence - the first use of context.
The results of this can be seen in table 5.3

Figure 5.1: Visualising the Additional True and False Positives by Varying the First
Context Threshold

As with the TF-IDF Cosine score, we want to prioritize precision, which would suggest
that 1.2 is the optimum threshold. However, we can further evaluate these thresholds
by analysing the additional true and false positives gained in this step, as shown in
figure 5.1. Here we want to maximise the blue bar - the additional true positives - while
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Threshold Precision Recall F1
0.9 0.72 0.67 0.69
1.0 0.72 0.63 0.67
1.1 0.74 0.59 0.66
1.2 0.75 0.56 0.64

Table 5.3: Results of Varying the First Context Threshold

minimising the red bar - the additional false negatives - above all else. Here we can
see that despite the threshold of 1.2 providing a slightly higher precision score, using
the threshold of 1.1 returns the same amount of false positives, but more true positives.
Therefore we chose to use the threshold of 1.1 for the first context threshold.

5.2.4.3 SBERT Cosine

The next threshold we tested is the SBERT cosine similarity used to test the semantic
similarity of sentences. The results of this can be seen in table 5.4

Threshold Precision Recall F1
0.70 0.51 0.85 0.64
0.75 0.58 0.79 0.67
0.80 0.64 0.74 0.69
0.85 0.70 0.67 0.68
0.90 0.72 0.63 0.67

Table 5.4: Results of Varying the SBERT Cosine Threshold

At this stage, though we still want to prioritise precision, we want to begin to consider
recall, as after this step, we expect the majority of matches to have been found, with
the second use of context and the BLEU metric being used as a catch for matches that
have not quite met the previous thresholds. Therefore, though the highest value of
precision was produced by setting the threshold to 0.90, giving a result of 72%, setting
the threshold to 0.85 still maintains high precision at 70%, while producing a better
recall of 66%. It is important to also consider that setting the threshold to 0.95 - the
upper limit of cosine being 1 - means that we would only accept sentences that are very
nearly identical, which is not the objective of our task. However, we do want to set it
to a high value like 0.85, as we do not want to consider vectors that are too broadly
semantically similar as if the content is just vaguely similar, it is hard to say that the
film sentence is really inspired rather than just following a similar plot.

5.2.4.4 Second Context

The next threshold we tested is the SBERT cosine similarity boosted by the TF-IDF
cosine similarity of either the sentences before or after the target book sentence - the
second use of context in our system. The results of this can be seen in table 5.5. Initially
in this experimentation, sentences were only tested for context if they were over an
SBERT similarity of 0.60, as in the first use of context. However as described in the
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previous section, we want to exercise greater selectivity in testing sentences for semantic
similarity. We therefore also experiment with raising this threshold to 0.70.

Initial Cosine Threshold Precision Recall F1
0.6 1.1 0.51 0.84 0.63
0.6 1.2 0.57 0.77 0.66
0.6 1.3 0.61 0.72 0.66
0.7 1.1 0.59 0.79 0.68
0.7 1.2 0.62 0.74 0.68
0.7 1.3 0.66 0.72 0.69

Table 5.5: Results of Varying the Second Context Threshold and the Initial SBERT
Cosine Threshold

As we are nearly at the end of Phase 3 and do not expect to get many more matches, we
are now looking to maximise the F1 score - the harmonic mean of the precision and
recall - in addition the precision. Therefore we selected the thresholds with the highest
F1 score and precision scores, initial SBERT Cosine at 0.7 and the Context Threshold
at 1.3.

5.2.4.5 BLEU

In the final stage of Phase 3, we tested the threshold for the BLEU similarity metric,
which is used as a final test to try to capture any remaining matches that have slipped
through that have similar phrases. The results of this test can be seen in table 5.6.

Threshold Precision Recall F1
0.2 0.62 0.82 0.71
0.3 0.64 0.78 0.70
0.4 0.65 0.77 0.70

Table 5.6: Results of Varying the BLEU Threshold

At this final stage, we must now fully prioritise the F1 score and therefore chose the
threshold for BLEU of 0.2. However, this is also supported by analysing the output
results, as not only have we managed to capture 82% of the gold standard matches, but
the majority of false positives are also what we would call matches, as we can see from
an example of the “false positive” matches below:

1: Film sentence: "welcome legolas son of thranduil"
Book sentence: "welcome son of thranduil"
2: Film sentence: "gandalf the grey did not pass the borders of this
land"
Book Sentence: "gandalf the grey set out with the company but he did
not pass the borders of this land"
3: Film sentence: "the writing which at first was as clear as red flame
has all but disappeared"
Book sentence: "already the writing upon it which at first was as clear
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as red flame fadeth and is now only barely to be read"
4: Film sentence: "every league you travel south the danger will increase"
Book sentence: "the danger will increase with every league that we go
south under the naked sky"
5: Film sentence: "i hope the others find a safer road"
Book sentence: "we will go and may the others find a safe road"

5.2.5 Results

We can see how many matches each metric managed to extract in fig 5.2. Showing that
TF-IDF is used to find the majority of matches as it is aimed to do.

Overall our system achieved a precision score of 62%, a recall score of 82% and an F1
score of 71%. Alone these are already successful results, however, they are enhanced
further by looking at the extra matches found, as mentioned in the previous section. This
shows that the false positive matches are in fact in the majority of cases, extra matches
that were not found in the gold standard, though this is very difficult to quantify other
than manually. To outperform the human gold standard is exactly what we are aiming to
do. Humans will always make mistakes and can easily miss things, particularly at this
scale of content, both audio-visual and textual. This demonstrates that our model has
been successful in its task, capturing both the majority of the gold standard matches, as
well as ones that the gold standard has missed. Though if we did have a more efficient
way to quantify the extra true positives, it is possible we might be able to improve our
model further with different parameter tunings. 5.2

Figure 5.2: Number of Matches Gained from each Similarity Metric
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5.3 Experiment with Unseen Book

In this experiment, we tested our now parameter-tuned system on a second new
book/film combination to test if the system has been overtuned in Section 5.2. In
this experiment, the system is tested on the film/book of J.R.R. Tolkien’s Return of
the King, as we have similar gold standard data to The Fellowship of the Ring. This
book/film will have similar language to the first one, so we cannot fully test it on an
“unseen” example, but it will still contain completely new sentences. Using Return of
the King also allows us to use a similar gold standard to the first book for this text from
the same source.

5.3.1 Results

Using exactly the same preprocessing steps as for the first book, we are able to extract
169 of 176, 96% of the possible gold sentences, extracting a total of 8379 book sentences
and 1864 film sentences. The system was then run with these sentences without any
changes to the parameters used in Section 5.2. In Phase 1 we got a recall score of 90%,
which is a slight decrease compared to the previous recall in Phase 1 in Section 5.2.2,
but is still a strong result. In Phase 2 we got a recall score of 94%, again a decrease, but
still similar to the previously found recall in Section 5.2.3. We can also see here that
the methodology must have been successful, as many sentences have been combined,
causing us to increase the recall from Phase 1. However, this decrease can possibly be
attributed to more sentences being expanded than in the previous example. In Phase 3
we returned the final output of the system, finding the results shown in figure 5.7.

Precision Recall F1
0.66 0.73 0.70

Table 5.7: Results of Experiment on Held-out Book/Film

We can see that the overall F1 score achieved is 0.70, very similar to what we previously
found in experiment 1, though the Recall and Precision scores are slightly different,
with this experiment gaining a higher Precision, with a lower Recall. However we
are still capturing a high percentage of the gold matches. The change in Recall and
Precision may suggest that the parameters have been overturned, though we can also
speculate, that as the gold standard matches are still quite informal and fan-made, it is
possible the author of these matches was more lenient in what they counted as a match
in this version.

5.4 Experiments with Audio

In this experiment, we tested the performance of the system when using automatically
transcribed text from the film audio rather than the previously used film subtitles. This
tests whether the system can be fully automated if subtitles are not available. We
expect this to perform worse than the more accurate subtitles, as we expect even a well-
trained Automatic Speech Recognition (ASR) system to produce errors in transcription,
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particularly when the audio we are trying to transcribe uses words that are very specific
to the fantasy world of Lord of the Rings, for example, Gollum - one of the character
names.

5.4.1 Setup

To transcribe the film audio we utilize the state-of-the-art google cloud speech-to-text
API [39], using Google’s “most advanced deep learning neural network algorithms”.
This provides many benefits as well as using a well-trained model: it allows us to use
the API’s various features to customize the model to our domain, as well as generate
punctuation with the transcription, allowing us to split up the sentences normally, as
when using the subtitles, it also allows us to transcribe a very large audio file - the full
length of the film without having to divide it into smaller chunks which would possibly
interfere with the sentence structure.

Even using this advanced model we are not able to fully capture all dialogue in the
audio and many sentences are not transcribed or are transcribed incorrectly. This is in
part due to the model being very general as it has been trained on a large amount of data.
To extend this experiment we would want to implement a language model based on the
dialogue from the book that could be used to fine-tune a pre-trained model. However,
ultimately this fell out of the scope of this project.

5.4.2 Results

Upon analysing the transcript by comparing it with the previously used subtitles, we
can calculate that we have been able to extract 1101 out 1845, only 60% of the original
film sentences, leaving us with only 79% of the gold standard matches. The system was
then run with these sentences without any changes to the parameters used in Section
5.2. In Phase 1 we got a recall score of 98%, which is very successful compared to
the previous recall in Phase 1. In Phase 2 we got a recall score of 99%, again very
successful. However in Phase 3 we returned the final output of the system, finding the
results shown in figure 5.8.

Precision Recall F1
0.60 0.52 0.56

Table 5.8: Results of Experiment using ASR Transcript

As we can see, though the precision remains similar, the recall has dropped considerably.
This is as expected, as though we are able to capture semi-falsely transcribed sentences
in the initial Phases, if the transcription is off even by only a few words, it will no longer
score as higher as it previously did. However, it may be possible that by lowering the
thresholds in Phase these results could be improved, though this will subsequently cause
the precision to drop as false positives are accepted under the new threshold. The better
way to counteract this would be to
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Conclusions

Our goal in the project was to quantify inspiration between sentences and overall, as we
have seen through our experimentation, the developed system shows strong potential,
able to capture over 82% of the sentences in our text determined to have been inspired.
We can also see that our system generalizes reasonably well to unseen data from our
experiments on a held-out book/film, reproducing similar results to our original tests,
though some parameter tuning may still be required to fully optimize the system. We
have also evaluated the system when converted from text-to-text similarity comparison
to speech-to-text, transcribing the dialogue directly from the film to fully automate the
system for use without subtitles. And though we do not reach the same accuracy as
the text-to-text system, the system shows potential if an improved ASR system was
developed alongside.

Thus we have set a baseline tool for capturing inspiration. This provides a tool that could
be used for creative analysis and data extraction, as well as the general methodologies
providing contributions in similarity detection, with a variety of extended use cases, by
using the concept of inspiration, from plagiarism detection to even comparing victims’
accounts of criminals.

6.1 Further Additions

Though the system has achieved strong results, there are many ways it can still be
enhanced.

6.1.1 Extend ASR Transcription

As we found in our Audio experiment, the transcription process that we use is not
perfect and produces many incorrect results which greatly affect the accuracy of our
system. To fully automate our system for use without subtitle data, we would need
to extend the ASR methodology to improve transcription. As we have suggested, this
could be done via a language model trained on the dialogue in the book text, as this
would allow the system to recognize the words and phrases that are most likely to be
used in that film context and skewing it towards the dialogue seen in the book. For
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example, the complex fantasy names could better be captured as the model “expects” to
see them.

6.1.2 Use WFSTs in Matching

One type of match that the system is not as good at recognising is in longer sentences,
where there is a long phrase that is very similar or nearly identical, but the rest of the
sentence deviates significantly. For example:

"For in the days of Isildur the Ruling Ring passed out of all
knowledge, and the Three were released from its dominion."

VS.
"And for two and a half thousand years...the Ring passed out of all
knowledge."

As humans, we can recognise that the first sentence may have inspired the second, due
to the phrase “the Ring passed out of all knowledge”. We therefore need a way to try to
capture long matching strings, though the BLEU metric attempts to do this, it is limited
to the comparison of 4 n-grams, so phrases longer than this are not effectively rewarded.
One way to do this would be to utilize Weighted Finite State Transducers (WFSTs) to
score sentences. This allows us to directly compare two sentences word by word and
for each time this train of matching words remains unbroken, i.e. a long phrase is found,
we add to the score and penalize the sentence when the train is broken. [add diagram].

6.1.3 Speaker Identification

Another way we could extend this project further is by extending the speech recognition
and utilising which character is speaking to determine more likely matches - i.e. if a
character says similar dialogue in the book and the film, it is more likely to be a match
than if two different characters say a similar line. We would not want to enforce this as
a rule, as there may often be cases when a scriptwriter or director has switched around
who speaks what lines, and we would not want to lose these matches, so we would
want to add this as an extra component, similar to context or perhaps in conjunction
with the context. If the same character says a similar line in the same context in both
the book and the film, this has a very strong chance of being a match. In the case
of the film, the most straightforward option would be to extract the speaker from the
film screenplay. However, though this is a very simple solution, it may be problematic
if the screenplay is not available or has been extensively changed in the film itself.
Other options include either the extension of the ASR experiment, adding speaker
recognition, or using speaker identification from the text - using linguistic style and
POS (part-of-speech) tags [40], or a combination of the two [41]. While for the book
we may be able to utilize cues in the text, as often it will describe who is speaking -
e.g. “said Gandalf”, however, it is also often implied who is speaking, similar to the
problem we faced when trying extract the dialogue in [insert a reference to section]. We
therefore may need to use a similar method as the film when isolated to just text [40],
or utilize methods more specific speaker identification in fiction texts [42].

The drawback however of adding this is it may require extensive training, additional
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resources, and/or extra time complexity that may detract from the speed and lightweight
nature of the current solution, while only adding a small percentage of increase to the
matches. However, it may improve the precision.
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