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Abstract
Inertial navigation systems estimate the position and velocity of a moving object by
measuring the accelerations and angular velocities it experiences using sensors called
IMU. However inertial-based method suffers from accumulated errors over time and is
unreliable for long-term navigation. Therefore in order to obtain reliable navigation for a
long time, a feasible way is to fuse the inertial information with other sources of position
information, an example is GPS and IMU fusion. This is a common technique used for
tracking, navigation, and mapping applications. However, GPS signals can be affected
by various factors, especially in indoor environments, resulting inaccurate position and
velocity estimation. This project aims to develop a pedestrian inertial navigation system
with uncertainty awareness in indoor environments and use the predicted displacement
and uncertainty integrating with the position obtained from indoor WiFi measurement
to obtain a reliable IPS (Indoor Positioning System). Mobile phones are a versatile
platform for this project as most modern smartphones are equipped with a variety of
sensors, including WiFi and IMU. Therefore the data can be collected using a single
device. Another advantage is that most people already have a mobile phone. This means
that the IPS can be easily deployed without requiring additional hardware.
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Chapter 1

Intorduction

Indoor navigation refers to the process of using various technical means to determine
and track the location of people in an indoor environment. The demand for indoor
location-based services in indoor environments has been rapidly increasing in recent
years, for example, in public places such as hospitals, museums and shopping malls,
an accurate and reliable navigation system can provide location-sensitive guidance,
information, or marketing.

While outdoor navigation systems can heavily depend on GPS (Global Positioning
System), designing a reliable Indoor Positioning System (IPS) remains a challenging
problem. With GPS signals often blocked or weakened by solid materials such as walls
and roofs, IPS utilizes onboard sensors such as inertial measurement units (IMU), and
building-dependent infrastructures such as WiFi, Bluetooth or magnetic fingerprints.
The noisy nature of these measurements often means leveraging multiple sources of
sensor measurements is a must.

Among these sensor measurements, inertial navigation methods such as pedestrian dead
reckoning (PDR) have the benefit of high frequency and short-term accuracy while
suffering from long-term drift due to the accumulation of sensor errors. On the contrary,
WiFi localization has the benefit of uniqueness across large areas, while suffering from
low location resolution in short distances. The fusion of inertial navigation and WiFi
localization will logically create an IPS that is simultaneously accurate in the short
term and reliable in the long term. The IPS project of the MAPS Lab is an ongoing
project that focuses on the research of (1) uncertainty-aware inertial navigation, (2)
uncertainty-aware WiFi localization, and (3) the effective use of uncertainty estimation
in IPS sensor fusion.

As a further context of the MAPS Lab IPS project, we aim to build a novel IPS without
the need for custom infrastructure in public buildings. Normally in a WiFi-based
localization system, we either need to place custom WiFi Access Points (APs) or send
surveyors to survey the WiFi signals in each building of the IPS. This will significantly
limit the IPS’s wide deployment in the countless indoor public spaces in the world. To
solve this problem, we use crowdsourced WiFi data from everyday smartphone users
visiting these public spaces and use the anonymised data to build a WiFi radio map for
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Chapter 1. Intorduction 2

each building. While this solves the wide deployment problem, the WiFi localization
will have larger errors than traditional methods, and the crowdsourced radio map will
often not have full coverage of the building. We aim to solve these challenges with our
novel uncertainty estimation and fusion techniques.

This thesis tackles two of the three research branches of the MAPS Lab IPS project. The
first task is to develop an uncertainty-aware inertial navigation system based on deep
learning for indoor positioning using a mobile phone. The data-driven based model
will estimate the user’s position and uncertainty in real time using the IMU sensor data
and deep learning techniques. The second task is to construct a sensors fusion IPS that
can effectively use the estimated displacement and uncertainty from the inertial model
for further positioning fusion with a WiFi location system developed by partners in the
IPAB MAPS Lab.

In this thesis, the following research questions are aimed to address:

• How to implement the uncertainty-aware inertial navigation system?

• How to fuse the motion uncertainty estimation from the uncertainty-aware inertial
navigation system with the localization from the WiFi system?

• Whether the estimated uncertainty is useful for the fusion?



Chapter 2

Background

2.1 Inertial navigation

Pedestrian Dead Reckoning (PDR) is a method of tracking the movement of pedestrians
using an inertial sensor (IMU). IMU typically contains accelerometers, gyroscopes, and
magnetometers. These sensors measure the linear acceleration, angular acceleration and
magnetic field of the device. Relative motion is estimated using these measurements
and thus construct a trajectory from the starting point.

Kalman filter [Kalman, 1960] is a recursive method to update the state estimate with
the corresponding covariance matrix over time. In the context of PDR, the Kalman
filter can be used to fuse inertial sensors, such as accelerometers and gyroscopes to
estimate the displacement. However traditional Kalman filter assumes linearity and
the PDR problem is highly non-linear. To address this problem, a variant of KF – the
Extended Kalman Filter (EKF) is commonly used in PDR. The EKF works in two stages.
First, the prediction stage uses the motion model to predict the state and its associated
covariance matrix. Second, the correction stage incorporates the measurements from the
sensors to correct the state estimate and corresponding covariance matrix. The accuracy
and reliability of EKF methods depend on the accuracy of the motion model and the
measurement model, thus developing accurate models for PDR is essential in order to
obtain high-quality PDR using EKF.

ZUPT (Zero Velocity Update) is a technique used in inertial navigation systems, espe-
cially the foot-mounted IMU. In Foxlin’s seminal paper [Foxlin, 2005], the sensor data
is processed using a Kalman filter to estimate the position and velocity of the pedestrian,
and zero-velocity update is used to reduce accumulated velocity errors by detecting
and correcting the drift in the velocity estimates when the pedestrian is stationary using
the fact that the pedestrian is stationary while the foot in on the ground. When the
foot is stationary, an zero acceleration measurement show be observed and non-zero
measurement can be attributed to sensor noise. In short, ZUPT detects the stationary
period of the pedestrian using a threshold-based approach and set the velocity state to
zero for these periods.

Besides traditional methods, recently deep learning has shown its power in the inertial
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Chapter 2. Background 4

navigation area. IONet [Chen et al., 2018] first proposed to regress the velocity and di-
rection using LSTM (Long Short-Term Memory) [Hochreiter and Schmidhuber, 1997].
IONet breaks the cycle of continuous integration by segmenting inertial data into in-
dependent windows, and the authors show this can be formulated as an optimization
problem and demonstrate how deep recurrent neural networks can produce highly ac-
curate trajectories. Their experiments show that IONet can even predict the odometry
for non-periodic movements, such as shopping trolleys. RoNIN [Yan et al., 2019] short
for Robust Neural Inertial Navigation, is another deep learning-based PDR system. It
explores residual networks, temporal CNNs and RNNs to regress the footpaths in 2D. It
is trained on a large dataset of sensor data and corresponding ground truth positions,
which enables it to learn the complex relationship and achieve high robustness whatever
the phone pose is.

LSTM (Long Short-Term Memory) is a type of recurrent neural network (RNN) that
is most commonly used in deep learning-based inertial data processing problems.
LSTM is designed to handle the vanishing gradient problem, which occurs when
training very deep recurrent neural networks. The vanishing gradient problem arises
when the gradients used to update the weights in the network become very small,
causing the network to converge very slowly or not at all. The principle of LSTMs
is using a memory cell that can store information over long periods of time, allowing
the network to learn long-term dependencies in the series data [Hochreiter, 1998]
[Hochreiter and Schmidhuber, 1997]

It is crucial to note that RIDI [Yan et al., 2017] is a significant data-driven approach to
pedestrian dead reckoning, which does not rely on a deep learning network. It proposed
an important technique called stabilized-IMU frame. This preprocessing technique
rotates the measurements from the imu’s frame to the world frame, it plays a vital role
in the proposed system presented in this thesis.
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2.2 Uncertainty estimation

Uncertainty is a fundamental concept in many areas of science, engineering and decision-
making. It is often expressed as a range of possible outcomes or a probability distribution
that describes the likelihood of different outcomes and can arise from many sources,
including imperfect models or predictions, and inherent randomness or variability in
the system being studied. In the context of neural networks, the quantification and esti-
mation of uncertainty are essential for understanding the limits of model performance,
generalisation and robustness. This chapter aims to provide an overview of the different
types of uncertainty and methods for estimating uncertainty in neural networks.

Uncertainty estimation involves determining the range of possible outcomes or the
level of confidence in a given prediction or measurement, taking into account noise,
error and variability in the data or model. Uncertainty in neural networks can be
broadly classified into two types: aleatoric uncertainties and epistemic uncertainties
[Kendall and Gal, 2017].

Aleatoric uncertainty arises from the inherent noise or variability in the data. Therefore
it is also called data uncertainty. Aleatoric uncertainties exist even in an ideal model,
and they can be further divided into two classes:

Homoscedastic uncertainty: constant across all input data, representing the uniform
noise.

Heteroscedastic uncertainty: varies across different input data, representing the varying
noise.

Epistemic uncertainty exists because of the limitations of the neural network model in
capturing the true underlying data-generating process. Therefore it is also called model
uncertainty. This uncertainty could theoretically be minimized by using a better training
approach.

Since the importance of uncertainty in neural networks was realized, a great number
of uncertainty prediction methods have been proposed. Bayesian neural networks
consider the weights of the neural network as random variables with a prior probability
distribution and use the posterior distribution to make predictions and output uncer-
tainties [Blundell et al., 2015]. In general, BNNs are more complex and need more
computational resources to train compared to traditional neural networks.

MC dropout [Gal and Ghahramani, 2016] extends the dropout technique to inference
by using the same dropout layers used during training to generate multiple predictions
with different dropped-out neurons to estimate the model uncertainty, in their work, the
author proved that dropout can be used as a Bayesian approximation. However, one
disadvantage of using MC dropout is that an accurate uncertainty estimation required a
large number of forward inferences, therefore not very suitable for real-time application.

To overcome these problems [Kendall and Gal, 2017] firstly proposed a method to
combine the aleatoric and epistemic uncertainty in a novel Bayesian deep learning
framework.However, Bayesian neural networks often face a number of limitations, such
as the difficulty of directly inferring the posterior distribution of weights given the data
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and the large computation resources required to sample the distribution during inference.
[Amini et al., 2020] proposed Deep Evidential Regression. This method learns both
epistemic and aleatoric uncertainty on continuous regression problems without sampling
during inference or training.

2.3 Positioning Fusion

Positioning fusion refers to the process of integrating data from multiple sources to
provide accurate and reliable position, and motion information for various applica-
tions, such as navigation, robotics, and mapping. For example, GPS-Inertial fusion
is a common and important application. GPS-Inertial Fusion combines data from
Global Positioning System (GPS) receivers and Inertial Measurement Units (IMUs)
to improve the accuracy and reliability of positioning information. Fusion algorithm
can combine the advantages of sensors to overcome the problem when using a single
sensor, such as lack of credibility of GPS signal in some cases and the drift of IMUs
[Caron et al., 2006].

The extended Kalman filter(EKF) and the particle filter(PF) are widely used for recursive
state estimation. These recursive filter algorithms estimate the state at time k using all
data from time 1 to time k. Both extended Kalman filter and particle filter are employed
to estimate the state of nonlinear and non-Gaussian systems in the presence of noisy
measurements, therefore are very suitable for positioning fusion tasks.

The Extended Kalman Filter is an extension of the Kalman filter for nonlinear systems.
It linearizes the nonlinear system equations at each time step using first-order Taylor
series expansions, thereby allowing the use of the classic Kalman filter framework. The
EKF consists of two main steps: the prediction step and the correction step (update
step).

EKF propagates the state estimate and its covariance forward in time using the nonlinear
motion model and its Jacobian in the prediction step. In a fusion positioning problem, the
motion model usually comes from sensors that bring high-frequency position updates,
such as visual/wheel/inertial odometry. The model typically includes equations that
describe how the state variables change with respect to time, as well as any known inputs
or disturbances. In the correction step, EKF incorporates the measurements into the
state estimate, such as the GPS measurement, lidar measurement or WiFi measurement.
The Kalman gain is computed based on the measurement model using the predicted
covariance and the Jacobian. Then Kalman gain is then used to update the state estimate
and its covariance by using the difference between the actual measurements and the
predicted measurements obtained from the measurement model. It is a widely used
algorithm in fusion with different sensors such as GPS and IMUs in different areas
like autonomous vehicles, robotics, and aviation. However, one limitation of EKF is it
assumes that the motion and measurement model noise is Gaussian.

Unlike EKF, the particle filter (PF) is a recursive Bayesian filtering technique for
estimating the state of nonlinear and non-Gaussian systems. It uses a set of particles
to represent the state’s posterior probability density function, where each particle
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represents a possible state. The PF algorithm consists of three main stages: predicting,
importance weighting, and resampling.

In the predicting stage, particles are propagated forward in time using the process
model (as the motion model in EKF) The updates depend on previous states and the
process model noise. During the importance weighting stage, the same measurements
are used for every particle to compute the particle likelihood using the difference
between the predicted observations and the actual measurements. The resampling stage
resamples the particles to maintain a set of particles with an effective representation of
the posterior distribution to avoid particle degeneracy, which means only a few particles
have significant weights.



Chapter 3

Uncertainty aware inertial navigation

In this chapter, a comprehensive approach is proposed to achieve accurate displacement
and uncertainty estimation through the development of two distinct parts: the inertial
navigation component and the uncertainty estimation component. The first component
is responsible for providing precise relative position while the latter deals with the
estimation of the confidence level associated with the location estimation. These two
components make up a deep neural network that can be trained end-to-end using a
self-collected dataset using the Vicon tracking system.

3.1 Inertial navigation

Since IONet [Chen et al., 2018] explored using the LSTM to regress the velocity and
heading of IMUs, the field of inertial navigation has experienced a significant shift
towards deep learning methods because of the superior performance.

This thesis seeks to leverage the power of deep learning in pedestrian location tracking
using smartphones. Unlike foot-mounted IMUs, the traditional approach of using zero-
velocity updates can not be easily adapted. Deep learning-based methods require vast
data to train, consequently, this chapter is dedicated to explaining the extensive effort
put into collecting and preprocessing the data for the neural network model.

3.1.1 Data collection

The data required to train a deep neural network for inertial navigation consists of two
parts: the raw IMUs measurement and the ground truth location.

The raw IMU data can be recorded using a high-quality smartphone IMU sensor at a
specific frequency. The frequency of data recording is a crucial parameter, it determines
the accuracy and performance of the resulting prediction. While a higher frequency can
indeed bring better accuracy, it also comes with several trade-offs. For example, higher
IMU frequencies can increase power consumption a lot, particularly on limited battery
life devices such as mobile phones. In this thesis, the raw IMU data was collected at
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Chapter 3. Uncertainty aware inertial navigation 9

100Hz using a HUAWEI Mate 40 Pro phone for a better user experience. The HUAWEI
Mate 40 Pro use an ICM-20690 IMU from InvenSense.

Accurate ground truth data is essential for creating a high-quality dataset that can be
used to train the deep neural network. In this thesis, the ground truth data was recorded
using the Vicon tracking system in the Informatics Forum G.17. The Vicon tracking
system is a high-precision motion capture system. It is commonly used in research
and industry. The system uses multiples high-speed cameras to capture the motion of
reflective markers placed on the object or person being tracked. Then the captured data
is then processed using specialized software to output an accurate and precise position
and orientation of the desired tracking object within the tracking area.

4 markers are used for the data collection, these markers are placed asymmetrically
around the phone to make sure the recorded Vicon ground truth is correct. Because the
tracking will lose when markers are absent from the tracking cameras when the phone
pose changes a lot, such as the phone is placed in the trouser pocket. An assumption is
made for this dataset, which is the user also holds the phone.

6 sequences of walking data were recorded for the training, each sequence contains
about 8 min of data.

3.1.2 Data prepocessing

3.1.2.1 Time synchronisation

Time synchronisation is an essential process for the ground truth recorded and the raw
IMU data recorded to obtain a high-quality training dataset. To achieve this, three
quick squats were done at the beginning of every sequence. Figure 3.1 shows the three
quick squats resulting in three clear peaks in the z-axis acceleration of the phone IMU.
Similarly, 3 valleys in the z-axis position of Vicon recorded ground truth is shown in
Figure 3.2.

Figure 3.1: Phone z-axis acceleration Figure 3.2: Vicon z-axis position

Time synchronisation is done by aligning the peaks and valleys, as shown in Figure 3.3.

3.1.2.2 IMU frame stabilization

[Yan et al., 2017] proposed stabilized IMU frame for the inertial navigation problem.
Unlike inertial navigation in an autonomous car, the orientation of IMU is not consistent,
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Figure 3.3: Time synchronisation

it varies with time. This technique rotates the IMU measurements from the IMU frame
to the World frame using the IMU orientation. This allows the learning algorithm to
work with a consistent and coherent set of measurements. An ablation study of this
would be shown in the later chapter. There are different ways to obtain the orientation
to perform the frame stabilization, and this significantly affects the training.

[Yan et al., 2019] and [Yan et al., 2017] use the orientation from phone device orienta-
tion (e.g., via Kalman filter on IMU signals) In an android device, this is called the game
rotation vector sensor, in their implementation, the geomagnetic field is not used as
the authors claim that the magnetic field would damages rotation estimations due to its
instability. The determination of the roll and pitch angle is not hard as the information
on the direction of gravity can be obtained from the accelerometer. However, the yaw
angle depends on gyroscope readings and this integration process is subject to drift, it is
the accumulation of small errors over time.

[Liu et al., 2020] use an external Visual-inertial ground-truth rotation to perform the
frame stabilization in their work. In our dataset, high-quality external ground-truth
rotation is also available from the Vicon tracking system. This can provide a better
orientation than the device orientation obtained from the phone.

Another orientation that can be used for IMU frame stabilization is the phone device
orientation that uses the geomagnetic field-generated yaw. This is useful when the
Vicon orientation is not available. This approach can outperform the first stabilization
method for the training set.

When orientation is obtained, the stabilized measurement can be simply computed by
incorporating the unstabilized measurements with the orientation rotation matrix using
matrix multiplication. However, some data points might be Nan among the recorded
dataset due to the sensor error/tracking loss in the Vicon, orientation interpolation is
necessary to prevent runtime error.
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Figure 3.4: The yaw of an object

SLERP (Spherical Linear Interpolation) [Shoemake, 1985] is a method for interpolating
between two orientations represented as unit quaternions. Iterpolating is done along
the shortest path between the two quaternions on a unit sphere, instead of interpolating
linearly between the quaternion components.

q(t) =
sin((1− t)θ)

sin(θ)
q0 +

sin(tθ)
sin(θ)

q1

where q0 and q1 are two unit quaternions representing the two orientations being
interpolated, t is the interpolation parameter (a value between 0 and 1), θ is the angle
between the two quaternions.

The stabilized IMU measurements are shown in Figure 3.5 and 3.6. The x-axis accel-
eration would centre in 0 meters per second square, and the z-axis acceleration would
centre in around 9.8 meters per second square (gravitational acceleration).

Figure 3.5: stablized x-axis acceleration Figure 3.6: stablized z-axis position
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3.1.2.3 Data augmentation

Data augmentation is a technique commonly used in machine learning to artificially
increase the size of a dataset by creating new training data from existing examples. A
larger dataset can improve the model performance by obtaining a better generalization
ability to unseen data.

The network aims to regress the 2D displacement given the stabilized IMU measurement.
It is important to note that the heading of the displacement should be influenced by
the yaw information obtained from the orientation used for stabilization. Therefore
the dataset can be augmented by giving different horizontal rotations to sequences
following [Yan et al., 2019]. Therefore the overall data preprocessing pipeline is:

Algorithm 1 Data prepocessing
quaternion← orientation obtained from sensors
accerlation← measurements obtained from accelerator
gyroscope← measurements obtained from gyroscope
prepocessed←
interpolated quaternion = SLERP(quaternion)
for rotation = [r1,r2, ...,rn]

rotated quaternion = interpolated quaternion.yaw+ rotation
stablized accerlation = rotated quaternion@accerlation
stablized gyroscope = rotated quaternion@gyroscope
prepocessed APPEND (stablized accerlation,stablized gyroscope)

RETURN prepocessed

3.1.3 Deep learning network and architecture design

The network is designed to regress the 2D displacement from a window of IMU
measurements (3-axis stabilized acceleration from the accelerator and 3-axis angular
velocity from the gyroscope). This network inherits the approach proposed by IONet
[Chen et al., 2018] to extract features from IMU data using LSTM. However, unlike
IONet, which regresses relative rotation and translation from raw IMU measurements,
in this task, the orientation is known. Only 2D displacement in the world frame needs to
be regressed just as Ronin [Yan et al., 2019]. Apart from these, a self-attention module
is inserted into the network to increase the capacity and representational power.

Figure 3.7 shows the visualization of network architecture. In this application, the
IMU windows have a length of 100, and because the IMU records data at 100Hz, the
network estimates one prediction per second. The LSTM is a great tool to handle the
time sequence data [Hochreiter and Schmidhuber, 1997], the two LSTM layers used
in the network have [128,256] units correspondingly. FCs in the Figure represent the
fully connective layers. 3 FC layers [128,32,2] are stacked to regress the desired 2D
displacement.

The self-attention mechanism was initially designed for NLP tasks with the purpose of
addressing the issue of long-term dependencies. [Vaswani et al., 2017] [Cheng et al., 2016]
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Figure 3.7: Network architecture

milliEgo [Lu et al., 2020] propose to use self-attention to capture the long-range depen-
dencies and global correlations of the IMU features, and prove that it is good for the
odometry regression task. Therefore the self-attention module used here aims to realize
ego-motion self-regulation by using the channel-wise IMU feature attention. Firstly an
attention map is generated using the similarity between embedding channels.

aM = σ[WMZM]

where WM is a learnable matrix that projects the IMU feature ZM to the same embedding
space. σ represents a non-linear activation such as sigmoid and softmax.

After this attention mask is generated, the attended feature ẐM is calculated by:

ẐM = aM⊙ZM

By doing so, the information from different channels in the features is reweighted
and fused together. High-dimensional features might be noisy, and they may contain
irrelevant or redundant information. Self-attention can help the model learn informative
feature representations by allowing it to attend to the most relevant features at each time
step, for example, attend more to the linear acceleration during straight walking. As we
aim to regress the displacement from acceleration, and the displacement is the double
integral of acceleration over time, the network can also benefit from the fact that the
self-attention mechanism takes into account the long-term dependencies in IMU data,
as time series data may contain complex temporal dependencies that are challenging to
capture.
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3.2 Uncertainty estimation and loss function

3.2.1 Theory of Deep Evidential Regression

Compared to MC dropout[Gal and Ghahramani, 2016], which only considers the epis-
temic uncertainties and is slow during inference, the method proposed by deep evidential
regression [Amini et al., 2020] is more lightweight and can simultaneously consider
both the aleatoric uncertainties and the epistemic uncertainties without a large modifica-
tion on the original network.

The goal of uncertainty estimation is to estimate the posterior distribution q(µ,σ2) =
p(µ,σ2|y1, ...,yN) where (µ,σ2) are the unknown mean and variance; y1, ...,yN are the
observed targets. Assuming that the estimated distribution can be factorized such that
q(µ,σ2) = q(µ)q(σ2), the distribution is a Normal Inverse-Gamma (NIG) distribution:

p(µ,σ2|γ,ν,α,β) = βα
√

ν

Γ(α)
√

2πσ2

(
1

σ2

)α+1

exp
{
−2β+ν(γ−µ)2

2σ2

}
The Normal Inverse-Gamma (NIG) distribution is a four-parameter family of probability
distributions that are commonly used in Bayesian statistics and finance. It is a conjugate
prior to the normal distribution with an unknown mean and variance. (such as the
x-axis displacement and y-axis displacement in the inertial navigation network). Virtual
observations are a technique used in Bayesian statistics to incorporate prior information
into the likelihood function. The idea of a virtual observation is to add a ’virtual’ set
of data points to the actual data to represent prior knowledge about the parameters.
Virtual observations are usually generated from a prior distribution associated with the
parameter being estimated. For example, if the parameters are the mean and variance
of a normal distribution, then the prior distribution might be a normal inverse gamma
(NIG) distribution. The effect of adding virtual observations is to move the posterior
distribution towards the prior distribution. In other words, the prior has a greater effect
on the posterior distribution as more virtual observations are added. [Jordan, 2009]

In the formula above, the mean µ can be estimated from the virtual observation ν with
sample mean γ and the variance σ2 can be estimated from the virtual observation α

with sample mean γ and sum of squared deviations 2ν. Therefore, instead of predicting
a single mean µ value using the neural network, the uncertainty estimation network
should also estimate γ,ν,α,β for each value that is desired to be regressed.

3.2.2 Loss function of Deep Evidential Regression

The loss function of this task inherits the loss function from the loss function proposed
in [Amini et al., 2020]. There are 2 optimization goals for a neural network with
uncertainty estimation. The first one is maximizing the model evidence.

LNLL(w) =
1
2

log
π

ν
−α log(Ω)+(α+

1
2
) log

(
(yi− γ)2

ν+Ω
)
+ log

(
Γ(α)

Γ(α+ 1
2)

)
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where Ω = 2β(1+ν), this loss fitting the data to the evidential model.

The second goal is to enforce a prior to inflating uncertainty while removing incorrect
evidence.

LR(w) = |y−E[µi]| ·Φ = |y− γ| · (2ν+α)

where y is the ground truth label. A hyperparameter coefficient, λ, is added to balance
these two goals.

In summary, for each target (x-axis displacement and y-axis displacement), 4 parameters
correspond to the NIG hyperparameters, (γ,ν,α,β). These four values determine the
location and also the uncertainty of the prediction. Then the loss function is modified as
mentioned above.

Levidence(w)+ = LNLL(w)+λLR(w)

As what [Liu et al., 2020] mentioned, training an inertial navigation network with
uncertainty-aware loss can be hard to converge. Therefore MSE (mean squared error) is
used for the first several epochs to stabilize the network.

Lmse(w) =
1
2

2

∑
i=1

(yi− γi)
2

where the y1 represents the x-axis displacement and y2 represents the y-axis displace-
ment and γ1 and γ2 are the corresponding NIG mean prediction.
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Figure 3.8: Data rolling

3.3 Experiment and Evaluation

3.3.1 Experiment implementation

The uncertainty-aware inertial navigation model is implemented using TensorFlow
[Abadi et al., 2015]. 2D-IONet is also implemented for a baseline comparison. The
2D-IONet estimate the translation and relative rotation using the raw 6-axis IMU data.
Therefore data preprocessing is skipped for the IONet training. For both models, the
rolling window technique is used for the training set with a step size of 20 to further
augment the training set as shown in Figure 3.8.

Both models are trained on an evidential version as described above. The 2D-IONet
converges in around 10 epochs, while the proposed network converges in around 30
epochs.

3.3.2 Inertial navigation performance evaluation

3.3.2.1 Evaluation metrics

Two metrics are used for the evaluation:

Average Trajectory Error (ATE): defined as the Root Mean Squared Error (RMSE)
between estimated location and ground truth location. ATE measure the accuracy of the
estimated trajectory and the ground truth trajectory. ATE is a standard metric that was
first proposed in [Sturm et al., 2012].

Average Relative Displacement Error (ARDE): defined as the Root Mean Squared
Error (RMSE) between estimated displacement and ground truth displacement. Com-
pared with ATE, ARDE measures the motion in the local frame and ignores the location
error accumulation.

3.3.2.2 Vicon validation sequences

The models are first evaluated on the Vicon recorded validation sequences. Figure
3.9 and 3.10 show the trajectories estimated from the models, the proposed method
has a better performance on both metrics. Notice that the 2D-IONet has a poor ATE
performance as it suffers from heading error accumulation. The proposed method
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Figure 3.9: Vicon validation sequence 1. The proposed ATE = 0.3076, ARDE = 0.1186.
The IONet-2D ATE = 1.135, ARDE = 0.1493.

Figure 3.10: Vicon validation sequence 2. The proposed ATE = 0.6566, ARDE = 0.1460.
The IONet-2D ATE = 1.135, ARDE = 0.2871.
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estimates the 2D-displacements given orientation, therefore can have a much better
ATE performance.

3.3.2.3 Informatics Forum test sequences

The test sequences are recorded in the Informatics Forums building, the IMU-Lidar
odometry is used as the pseudo-ground truth. The initial heading is ambiguous for both
IONet-2D and the proposed method, thus heading is aligned using the first 10 seconds
of the test sequence.

Figure 3.11: Proposed; ATE = 4.017,
ARDE = 0.2986

Figure 3.12: IONet-2D; ATE = 39.48,
ARDE = 0.8437

Figure 3.13: Proposed; ATE = 3.033,
ARDE = 0.2579

Figure 3.14: IONet-2D; ATE =20.93,
ARDE = 0.9344

Figures 3.11 to 3.16 show the displacement estimation from the proposed model in
the test sequences recorded in the Forums F0. In these long ( > 6 mins) test data,
the proposed method shows a great improvement from IONet-2D, especially in ATE.
IONet-2D fail to return a reasonable motion estimation most of the time in test data.

3.3.3 Error correlated uncertainty estimation

Uncertainty refers to our level of confidence in the prediction while error refers to the
discrepancy between the predicted value and the ground truth.
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Figure 3.15: Proposed; ATE = 13.57,
ARDE = 0.6671

Figure 3.16: IONet-2D; ATE =47.34,
ARDE = 0.8694

The uncertainty estimation is used to inform the accuracy of the prediction of the filter
algorithm model in the fusion. The Kalman gain in EKF is designed to minimize the
impact of the motion uncertainty on the estimation process, therefore a bad uncertainty
would result in a less optimal Kalman gain. In PF, the motion noise affects the prop-
agation of these particles, and if not properly accounted for, it can lead to particle
degeneracy or divergence, which degrades the accuracy of the estimation.

In other words, we hope that a data point with high error has greater estimated uncer-
tainty. Therefore, we expect the predicted uncertainty to positively correlate with the
error.

Figure 3.17 shows the scatter plot of estimated uncertainties and corresponding ARDE
error in all 3 Forums F0 test sequences (about 1200 data points). A positive correlation
between uncertainty and the ARDE error can be observed, and thus the estimated
uncertainty is reasonable and can provide information in the fusion.

3.3.4 Stabilization methods analyzing

Experiments using different stabilization methods when the Vicon orientation is not
available. The dataset used for this experiment is recorded in the Bayes Center with an
external Lidar-IMU pseudo ground truth [Shan et al., 2020] [Shan and Englot, 2018].
Approach 1: the geomagnetic field-free orientation and approach 3: the geomag-
netic field-aided orientation are compared in this experiment. For a relatively fair
comparison, the orientation of approach 1 is generated using the Madgwick filter
[Madgwick et al., 2010] from the raw IMU reading as it generates a better yaw estima-
tion than the EKF during test time.

Figures 3.18 to 3.21 show the estimated trajectories during the training process. Where
after the first 10 epochs, the data stabilized using approach 3 starts to show a converge
signal while approach 1 fails to learn even the straight line. Approach 3 converges to a
reasonable and acceptable point where the test ATE = 4.449m in epoch 30 and approach
1 still doesn’t converge at all.

I argue that this is because, in this regression problem, the goal is to estimate a global
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Figure 3.17: Error Uncertainty Correlation

frame displacement instead of the local frame translation and rotation, therefore even
though the magnetic field might damage the relative rotation estimations due to its
instability, it can provide a better global consistent yaw angle throughout the training
sequence, which is more important in the training process. The gyroscope measurements
are instantaneous and local therefore they are prone to drift. The accelerator can
only aid with the estimation of roll and pitch using the gravity direction. Using an
external information source to provide the reference of yaw can be helpful to the whole
system. Therefore in the situation when the Vicon data is not available, using the yaw
angle generated aided by the magnetometer can benefit the training of global frame
displacement estimation.

Figure 3.18: Epoch 10 Apporche 3: geo-
magnetic field-aided

Figure 3.19: Epoch 10 Approach 1: geo-
magnetic field-free
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Figure 3.20: Epoch 30 Apporche 3: geo-
magnetic field-aided

Figure 3.21: Epoch 30 Approach 1: geo-
magnetic field-free

3.4 Limitations and future works

As mentioned in the dataset section, the current dataset is a small dataset that makes
several strong assumptions. Especially assuming that the pedestrian is holding the
phone while using the system.

Another problem observed from the trained model lacks of generalization ability, i.e
performance is somewhat degraded when testing with other people’s recorded test data.

Thirdly the model tends to underestimate the user velocity in the Forums and the Bayes,
I argue that this is because of the large difference in average speed between the training
set and the test set. The Vicon system works within a small area (about 5m * 3m), this
results in more deceleration due to turning and stopping in the training data, leading to
a smaller average speed.

In conclusion, most of the limitations of the current model are due to insufficient training
data. Therefore future works include finding suitable methods for recording Ground
Truth data for multi-pose phone IMU. Secondly, to enrich the diversity of the training
data and enhance the model’s generalization ability, it is better to have different users
record the training data instead of just one person. To address the speed ratio problem,
different normalization approaches can be explored and considered.
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Indoor fusion positioning

4.1 Introduction to WiFi localization

WiFi fingerprinting, also known as WiFi-based indoor localization, is the process of
determining the location of a person or object within a building using WiFi signals.
WiFi signals are generated by routers or access points (AP) to create a wireless network
that devices can connect to. [Crow et al., 1997] When a smartphone or a laptop is
connected, it receives WiFi signals from the access point or router and uses them to
transmit and receive data.

WIFI indoor localization using fingerprint can be broadly divided into two phases: the
offline sampling stage and the online positioning stage. In the offline sampling stage, a
WiFi radio map is created using the AP’s MAC address, received signal strength indica-
tion (RSSI) value and position information by collecting WIFI data in the desired region
as shown in 4.1. In the positioning stage, user location is estimated by incorporating
current WIFI data (RSSI values and corresponding MAC addresses) and the WiFi radio
map. [Crow et al., 1997][BASRI and El Khadimi, 2016][Ge and Qu, 2016]

The WiFi localization system used in the fusion section of this thesis is the work of
other members of the MAPS lab, so the implementation and algorithm details will not
be described here. But unlike other approaches, this WiFi localization system relies on
crowdsourced data and is infrastructure-free. It means that this is a low-cost, scalable
solution that can be easily deployed to different indoor environments. This localization
system estimates the current position and corresponding uncertainty of the phone holder
and takes WiFi raw signal data as input. The average localization error varies from 4
to 7 meters depending on the radio map quality. Due to hardware limitations and user
experience, the experimental smartphone collected raw WiFi data approximately once
every 3 to 10 seconds.

22
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Figure 4.1: Bayes F1 radio map

4.2 Extended Kalman Filter

The Extended Kalman Filter (EKF) is a mathematical algorithm that is used to estimate
the state of a system in the presence of uncertain or noisy sensor measurements[Kalman, 1960].
It can be used for inertial WiFi positional fusion as follows:

4.2.1 The motion model

The motion model for the EKF is used to predict the next state of the system based on
the current state and control inputs. In the proposed EKF system, the motion model
receives dx (x-axis displacement) dy (x-axis displacement) as inputs, and calculates the
states:

xk = xk−1 +


vcosθk−1 −vsinθk−1
vsinθk−1 vcosθk−1
0 0
0 0

([ dx
dy

]
+wk

)

where xk = [x,y,θ,v]T

x and y are the world (map) frame 2D position. θ represents the inertial frame to the
world (map) frame rotation. v is the ratio of the estimated velocity from IMU to the
EKF velocity. wk is the motion model noise.

4.2.2 The measurement model

The measurement model for EKF is a mathematical function that describes the rela-
tionship between the state of a system and the sensor measurements. In the proposed
system, the measurement model relates the current state 2D coordinates to the WiFi
localization yk = [wi f ix,wi f iy]T in the world frame:

yk =

[
1 0 0 0
0 1 0 0

]
xk +nk
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4.2.3 The prediction step

The prediction step of the Extended Kalman Filter is the first step of the algorithm. It
is used to predict the state of a system at the next time step based on the current state
and control (inertial) input. The prediction step involves two main stages: the state
prediction and the covariance prediction.

x̌k = f(x̂k−1,uk,0)

where x̃k is the predicted state at time k from the corrected state at time k-1 using the
control uk. f represents the defined motion model. The 0 represents noise is ignored
when calculating the x̌k.

P̌k = Fk−1P̌k−1FT
k−1 +Lk−1Qk−1LT

k−1

where P̌k is the state covariance at time k, QK−1 is the noise covariance at time k.

Fk−1 =
∂f

∂xk−1
,Lk−1 =

∂f
∂wk

Fk−1 is the motion model jacobian with respect to the last state while Lk−1 is the motion
model jacobian with respect to the noise of the last state. In the defined model:

F =


1 0 −v∗dx∗ sin(θ)− v∗dy∗ cos(θ) dx∗ cos(θ)−dy∗ sin(θ)
0 1 v∗dx∗ cos(θ)− v∗dy∗ sin(θ) dx∗ sin(θ)+dy∗ cos(θ)
0 0 1 0
0 0 0 1



L =

[
v∗ cos(θ) −v∗ sin(θ)
v∗ sin(θ) v∗ cos(θ)

]

Q =

[
estimated x axis uncertainty 0

0 estimated y axis uncertainty

]

4.2.4 The correction step

The correction step is the second step of the algorithm. It is used to update the state
estimate based on the sensor measurements. Therefore the correction step is skipped
execute when WiFi measurements are not available. The measurement correction is
done using the current state estimate and the measurement model.

Firstly, the measurement model Jacobians at time k are computed:

yk = h(xk,nk)
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Hk =
∂h
∂xk

,Mk =
∂h
∂nk

where h is the measurement model.

Then incorporate covariances to compute the Kalman Gain:

Kk = P̌kHT
k
(
HkP̌kHT

k +MkRkMT
k
)−1

where Rk is the measurement noise covariance. The Kalman Gain Kk is used to correct
the predicted state:

y̌k = h(x̌k,0)

x̂k = x̌k +Kk (yk− y̌k)

Covariance correction is done through:

P̂k = (I−KkHk) P̌k

The measurement model is linear in the proposed system, therefore the

Hk =

[
1 0 0 0
0 1 0 0

]
Mk =

[
1 0
0 1

]

The measurement noise covariance Rk is constructed using the estimated uncertainty
from the WiFi localization model.

4.2.5 Fusion results

Figure 4.3 shows the trajectory error of the EKF fusion result with respect to the
timestamp in a test sequence recorded in the Informatics Forum. The filter needs a
number of measurements at the beginning of the sequence to initialize. During the
initialization phase, the error is high as the filter the v and θ in states are not converged.

Figure 4.2 shows the EKF fusion result in the same test sequence after the initialization
phase (120s). The ATE (average trajectory error) of the original IMU result from the
inertial navigation model is 6.875m. The average position error of the WiFi measure-
ment of this sequence is 3.929m. And the EKF result trajectory has an ATE of 3.272.
The filter algorithm combines the motion estimates from IMU represented in the IMU
frame with the map frame localization from WiFi, resulting in a more accurate trajectory
compared to using only IMU with manually set frame transformations. Additionally,
this fusion method provides localization results once per second, and these results have
smaller errors compared to using WiFi measurements alone which only appears once
per 9 seconds in this sequence.

Figure 4.4 shows the result of another test sequence, the ATE of the EKF result is
3.167m while the IMU alone is 13.10m and the WiFi measurements have an average
location error of 4.021m.
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Figure 4.2: EKF fusion result 1 IF F1

Figure 4.3: EKF fusion error 1 IF F1
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Figure 4.4: EKF fusion result 2 IF F1

4.2.5.1 Uncertainty ablation study

The above experiments use the estimated uncertainties from the proposed IMU nav-
igation system and the WiFi localization system. An ablation study is necessary to
evaluate whether the estimated uncertainties are useful for filter fusion4.1. Figure 4.5
shows an experiment using constant covariance (mean of estimated uncertainty) and
the estimated uncertainty in another test sequence. Figure 4.6 shows the cumulative
distribution function (CDF) of the ATE of the EKF fusion results. This result shows that
using the estimated uncertainty from the uncertainty-aware inertial navigation model
can benefit the EKF fusion for this test sequence. It holds for most of the cases, for
example in the test sequence 1 (Figure 4.2) the ATE of using constant motion model
covariance is 3.348m, which is worse than the 3.272m from the estimated uncertainty,
the CDF is in 4.7. However, on some occasions, the results can be pretty close. For
example, in the test sequence 2 (Figure 4.4). Using the mean uncertainty gives an ATE
of 3.170m, which have only a 0.1% improvement from 3.167m.

Therefore, the conclusion is that the estimated uncertainty from the uncertainty-aware
inertial navigation model can usually benefit the EKF fusion, but this improvement
is very small, usually around 1%, occasionally even smaller, and sometimes does not
improve at all.
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Figure 4.5: Uncertainty ablation study

Figure 4.6: CDF of uncertainty ablation study
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Sequence Estimated Uncertainty Constant Uncertainty Improvement
1 3.272 3.348 1.02%
2 3.167 3.170 0.10%
3 3.189 3.562 1.12%

Table 4.1: ATE of ablation study

Figure 4.7: CDF of test seq 1 Figure 4.8: CDF of test seq 2

4.2.5.2 Limitation

The EKF have multiple limitations that hurt the fusion. Firstly, the EKF assume the
process noise and the measurement noise are Gaussian and have zero means, and the
linearization introduces errors if the model is highly nonlinear. Secondly, it lacks
robustness and is sensitive to noise measurements. If the initial estimates are poor or
the WiFi measurements are too noisy, the EKF may converge to a suboptimal solution
or diverge altogether for example in the test data in the Bayes where our radio map has
a poor quality. Figure 4.9 shows the diverged EKF result.
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Figure 4.9: EKF diverged

4.3 The Particle Filter for positional fusion

The Particle Filter is a powerful algorithm for state estimation in nonlinear systems and
can be a good alternative to the EKF when nonlinear models and non-Gaussian noise
distributions are present. The first step of the PF is initialization.

4.3.1 Initialization

For each particle i, the initial state x(0)i is drawn from the initial state distribution
p(x(0)). The state x contains 4 parameters the 2D position, the heading and the velocity
ratio. From the initial state distribution of this fusion problem, the 2D position is
initialized using the first WiFi measurement in the sequence, with a noise depending
on the estimated measurement uncertainty. The heading is randomly initialized from 0
to 2π as no heading information is available from both sources. The velocity ratio is
set to 1, it can be set to a different number if any prior information about the estimated
velocity and the real velocity is known. The weight of the particle w is initialized to 1.

4.3.2 The prediction step

During the prediction stage, for each particle, the state is propagated forward using the
motion model.

x(k) = f (x(k−1),u(k),w(k))

where f is the model, u(k) is the control input at time k, and w(k) is the motion
uncertainty estimated from the model.

x(k)x = x(k−1)v ∗u(k)distance ∗ cos(x(k−1)heading)+noise(w(k))

x(k)y = x(k−1)v ∗u(k)distance ∗ sin(x(k−1)heading)+noise(w(k))

x(k)heading = x(k−1)heading +u(k)heading)+noise(w(k))

where x(k−1)v, x(k−1)heading, x(k−1)x, x(k−1)y are the previous state velocity ratio,
heading and the 2D position correspondingly. The noise is a function that generates
random Gaussian noise using the estimated uncertainty.
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4.3.3 The important weighting step

The part weight w is updated during the correction phase. Given WiFi measurements
and corresponding uncertainty at time k wi f ik and ucertaintyk:

wk = wk−1 ∗ likelihood(xk,wi f ik,uncertaintyk)

where the likelihood is a function that calculates the likelihood of the particle state
matching with the measurements.

likelihood(xk,wi f i,uncertainty) = ea∗L2Norm(wi f i,xk)
2∗uncertainty

where a is a negative number, this is a hyperparameter to control the weight update
rate. Its principle is to assign higher probability weights to particles that are closer
to the WiFi measurements and to decrease the probability if the WiFi measurement
value has greater uncertainty. This function can extend to the case when multiple WiFi
measurements are available at time k, i.e using top M estimated locations from the WiFi
localization system.

likelihood(xk,wi f i,uncertainty) = e
a
M ∑

M
i=1 L2Norm(wi f ii,xk)

2∗uncertaintyi

4.3.4 The Resampling step

The ratio of effective particles in the Filter can be calculated by:

Ne f f =
1

∑
N
i=1(wi)2

where N is the total number of particles in the filter. Resampling takes place when
Ne f f < r, r is a hyperparameter between 0 and 1 to control the frequency of resampling.

During the resampling, the standard systematic method [Liu and Chen, 1998] is per-
formed. Calculate the cumulative sum of the particle weights:

wcum(i) = wcum(i−1)+wi

where wcum(0) = 0 and w(i) is the weight of the ith particle. Then generate a random
number u1 between 0 and 1

N :

u1 =
1
N
·Uni f orm(0,1)

After u1 is obtained, select the first particle with weight w(1) that satisfies: u1 ≤wcum(1)
For each i = 2 to n, generate the next random number ui:

ui = u1 +(i−1)/n

and select the particle with weight w(i) that satisfies:

ui ≤ wcum(i)≤ ui+1

This process is repeated until n particles have been selected, and then the particle
weights wi to wN are reset to 1.
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Figure 4.10: Sequence 4 PF fusion result Bayes F1

4.3.5 Fusion results

Unlike the EKF, tracing back history is possible in the PF, which means in offline
mode, a better result can be obtained compared to the online mode. Therefore both
online particle filter (current best estimation during the predictions and corrections)
results and offline particle filter (mean history position of particles after all predictions
and corrections ) results will be shown in this section. In these experiments, the 1000
particles are sufficient for the filter prediction, the hyperparameter a in the likelihood
function is set to be -0.002 and Neff ratio r is set to be 0.9. The top 3 WiFi measurements
are used for the likelihood function as it generates the best result during test time. With
an Intel i5 10400f CPU, this setup of PF takes about 100 times longer than the EKF
fusion.

The figures and table below show the PF fusion on test sequences 4, 5 and 6. Compared
with the EKF, PF has the ability to handle noisy measurement data, for example
in sequence 4, where EKF fail to converge (Figure 4.9), a significant performance
improvement can be observed from the table 4.2. Especially the offline PF fusion
can even benefit the localization results when the WiFi measurements are poor as in
sequence 6, the ATE have a 131% improvement from using the IMU model alone with
aid of WiFi measurements with an average error larger than 9.3m.

4.3.6 Uncertainty ablation study

Unlike EKF, the PF algorithm is highly stochastic, and in multiple experiments, different
initialization and propagation can lead to different results as shown in Figures 4.13
and 4.8. However, the differences between using estimated uncertainty and constant
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Figure 4.11: Sequence 5 PF fusion result Bayes F3

Figure 4.12: Sequence 6 PF fusion result Forum F1
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Sequence Online PF ATE Offline PF ATE WiFi Average error IMU ATE
4 2.560 1.993 5.887 8.996
5 2.404 1.857 6.550 4.499
6 6.005 3.110 9.307 7.174

Table 4.2: Particle filter fusion results

uncertainty are often smaller than those caused by randomness. Therefore, sometimes
better performance is observed with estimated uncertainty and sometimes the opposite
is true. This means that it is difficult for PF to fully utilize the information provided by
uncertainty estimation.

Figure 4.13: CDF 1 of test seq 4 Figure 4.14: CDF 2 of test seq 4

4.3.7 Partial radio map fusion experiment

Unlike traditional single-sensor IPS, the proposed system uses a multi-sensor fusion
algorithm and therefore brings the benefit of being able to rely on another sensor for
position prediction when one sensor is unreliable. In this section, a partial radio map
fusion experiment is done by using an incomplete radio map as shown in Figure 4.16,
which makes the WiFi measurements unreliable in the south corridor. The uncertainty
estimation technique can act as a indicator to reflect these situations to the filter.

Table 4.3 and Figure 4.3 show the result of this experiment. It can be observed that the
PF especially the offline PF can return a reasonable trajectory even if the radio map is
incomplete (i.e when the user walks outside the service-provided region). The table 4.3
also shows that, the performance is better when using the estimated uncertainty from
the WiFi localization model instead of using a constant uncertainty in the fusion.
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Figure 4.15: original radio map Figure 4.16: partial radio map

Figure 4.17: Partial radio map fusion experiment (estimated WiFi uncertainty)
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Experiment Online PF ATE Offline PF ATE WiFi error
original baseline 2.560 1.993 5.887

partial map estimated uncertainty 4.525 2.372 7.259
partial map constant uncertainty 4.832 2.589 7.259

Table 4.3: Particle filter partial map fusion experiment

Figure 4.18: Partial radio map fusion experiment (constant WiFi uncertainty)

4.3.8 Limitations

Even though the PF is a powerful algorithm that can successfully fuse noisy motion
and measurement data, it has a high computational complexity. The resampling is
computationally expensive, particularly when the effective sample size is small. Addi-
tionally, determining the particle sizes and other hyperparameters can be a difficult and
time-consuming process especially when during the inference, these can only be set
empirically.
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Discussion and Conclusions

5.1 Conclusions

This thesis develops an uncertainty-aware inertial navigation system and uses it for
indoor positional fusion in the Informatics Forums and Bayes Center. With the help of
external WiFi positioning measurements with an average error of 4 to 10 meters, the
proposed system can provide more accurate localization results once per second, and in
the best case, has an improvement of over 140%.

The inertial navigation component itself is a deep learning-based regression network that
predicts the 2D displacements from the IMU readings. Compared to its ancestor IONet
[Chen et al., 2018], the proposed method uses a better data preprocessing pipeline and
converts the predicted state from the translation and rotation in the IMU self-frame to
2D displacement in the world coordinate system, resulting in a significant performance
improvement.

Two methods are used for the fusion, the PF and the EKF. While both methods are
effective, the PF is more resilient and can handle situations with noisier measurement
data. However, the PF introduces randomness and necessitates more computational
resources.

According to Figure 3.17 and the EKF fusion results, the estimated uncertainties from
the inertial navigation component show a desired error-correlated tendency and it can
slightly improve the EKF fusion performance. The experiment in 4.3.7 illustrates that
the uncertainty-aware technique can help the PF fusion in extreme cases, i.e. when a
sensor is unreliable.

5.2 Novelty

The novelty of the proposed system lies mainly in the concept of using uncertainty to
help the multi-sensor fusion IPS. When the results of a sensor are unreliable, e.g. if the
user is out of range of the WiFi radio map, or if the IMU is accidentally damaged, etc.
The estimated uncertainty can expose this information to the fusion algorithm and the

37
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algorithm can rely more on the other sensor. The experiment in section 4.3.7 is a great
example.

5.3 Limitations and future works

The improvement of using uncertainties estimated from the inertial navigation model
in fusion is small in normal cases, even the performance impact of the randomness of
PF outweighs this improvement. Even though the uncertainty in the model predictions
is meaningful, neither fusion method can make good use of this information. Thus a
question worth continuing to explore is adding the uncertainty estimation goal to the
network turning the problem into a multi-objectives regression problem, such a network
is more difficult to converge and suffers some performance losses. Then whether the
uncertainty estimation is meaningful for the EKF and the PF positional fusion should
be reconsidered in future works.

For the inertial navigation component, future works on this project should focus on
building a better and more generalized dataset as described in section 3.4.

For the indoor positioning fusion, it is worth exploring better algorithms that can take
advantage of this estimated uncertainty information for fusion, potentially the learning-
based method, such as the differentiable particle filter and differentiable extended
Kalman filter [Jonschkowski et al., 2018] [Kloss et al., 2021].

The Conditional Random Field (CRF) [Lafferty et al., 2001] can be a way the address-
ing randomness in the PF by discretizing the state representations, it can also potentially
benefit the computational complexity.
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