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Abstract

Overhead incurred by Sphinx packet processing are accounted using constants in current
literature. This project focuses on one aspect of the packet processing - Sphinx packet
unwrapping. It is demonstrated that the difference in unwrap time is significant for
different test machines, even for the ones with similar processing speeds. Due to the
limited related work on this topic, we propose two approaches for mixes to take when
transmitting packets. Approach 1 attempts counteract the effects of the unwrap time
whilst approach 2 does not. To the best of our knowledge, this is a novel distinction
in terms of packet transmission. Approach 1 introduces the concept of over-delayed
packets, and three additional novel strategies are proposed to mitigate them.

The experiment framework is obtained by integrating the Sphinx packet unwrap function
into a mixnet simulator via Rust bindings. The exponentiality of the packet delays
under strategy 1 of approach 1 and approach 2 are evaluated across 4 test machines on 9
end-to-end latencies, ranging from 0.15000001 second to 10 seconds. The results show
that the actual packet delays deviate from the sender-intended delay when dg>p < 0.25
second for most test machines. The percentage of over-delayed packets also falls below
1% when the end-to-end latency is greater than 1 second.

In addition, two new packet-distinguishing attacks are introduced. Increasing the end-
to-end latency from the minimal is effective in preventing the single-packet case of the
distinguishing attack. Decreasing the proportion of over-delayed packet by increasing
the end-to-end latency is effective in reducing the occurrences of multiple-packet case
of the attack.
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Chapter 1

Introduction

1.1 Motivation

With the increase in privacy awareness with communication on the Internet, there is a
rise in popularity for communication privacy using forms of anonymous communication
systems. The sophisticated state-of-the-art encryption schemes conceal the content
of the packets. However they do not obfuscate sensitive network-level metadata such
as message sending frequency, size of the messages, and packet departure and arrival
times. Many research in current literature highlight that metadata alone is sufficient
to de-anonymise the participants of a network [3} 15, 13, 24]. The prominent network
anonymity schemes in practice is Tor (The Onion Router). It is a low latency anonymous
overlay network which is decentralised yet synchronous; the connections between
participants are routed in a multi-hop manner [[12]]. The sender prepares the packet by
wrapping the message and the header in multiple layers of public key cryptography,
and sends it through a path consists of several nodes where the nodes decrypt their
corresponding layer and forward it to the next node [12]]. In such process, there is
no need for a single trusted server, as the process is distributed among several nodes.
Low latency anonymity systems, such as Tor, offer limited security guarantees against
a stronger global adversary, who can monitor the flow of packets across the entire
network to analyse traffic patterns. These infrastructures also suffer from traffic analysis
attacks, where the adversary is able to exploit the network metadata to correlate and
de-anonymise users by performing timing and traffic analysis - inferring the sender and
the receiver from the network metadata such as the packet size, arrival and departure
times.

In order to protect against such powerful adversary, Chaum [6] conceptualised inte-
grating mix properties into the network using mix servers - computers that processes
and relay the packets between the senders and the recipients. Each mix would delay
and reorder the packets to break the linkability between the incoming and outgoing
packets of a mix, for an observing adversary. The additional latency introduced by the
delays obfuscates the sending and arrival time of a message between the sender and the
recipient. The resultant high latency system is known as a mix network, hereinafter
mixnets.
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There are different mixing techniques used in mixnet designs. A classical approach
is threshold based where a mix batches and shuffles the packets, and forwards them
only when a certain threshold of packets is reached. This results in unbounded delay
thus unpredictable packet arrival time. This project focuses on continuous-time mixing,
presented by Danezis [9]. In continuous-time mixing, each packets are delayed indi-
vidually and independently with the delay at each mix is randomly selected from an
exponential distribution with parameter u. It is shown to provide optimal anonymity
and bounded end-to-end latency. Although the concept of mixnet predates Tor, the
development on mixnet is relatively limited due to the more wider adapted Tor, which
attracted a large deployment and a diverse user base due to its low latency. There is
limited research focused on the computational and latency cost of the mixnet. Transiting
from research to commercialisation, Nym technologies unveils the Nym network [11],
which is a continuous-time mixnet, based on the Loopix anonymity system [21]].

Current literature on evaluating the anonymity property of continuous-time mixnets
such as the Nym and Loopix mixnets, does not consider the overhead introduced by the
cryptographic operations performed at each mix [[11, 21]. Through this work, we focus
on the anonymity of the packets transmitted in the mixnet, with respect to the impacts
of cryptographic operations performed at the mixes. To the best of our knowledge, this
is the first piece of work dedicated on such topic which we wish to provide further
insights on. As a starting basis, we concentrate specifically on the effects of the unwrap
time of the mix running on different hardware specifications. In addition, we wish to
give further insights on the potential suitable machines to operate mixes in a real-word
scenario.

1.2 Project Objectives

The primary purpose of this project is to present the impacts of cryptographic packet
unwrap operation on the exponentially chosen delays.

This project addresses:

* The significance of the cryptographic packet unwrap at the mix on the anonymity
of the packets when evaluating on different hardware specifications.

* Whether there is a value for the parameter u of the exponential distribution of
which the delays are selected from, such that the overall delays of packets at a
mix is no longer exponentially distributed, i.e. over-delayed packets.

* A suitable value for the parameter u to mitigate the effects of the cryptographic
overhead.

1.3 Contributions

As part of this project, the following has been achieved, in addition to the ones listed in
Section
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* Developed an experiment framework that integrates Sphinx packet unwrap opera-
tion into a mixnet simulator.

* Verified that the appropriate parameters to set up the simulator for the experiments.

» Showed that the differences in unwrap time of the mix between various test
machines are statistically significant, even for machines which the different in
their processing speeds are statistically insignificant.

* Demonstrated that there exists values of parameter u of the exponential distri-
bution, such that the sampled sender-chosen delay is shorter than the necessary
cryptographic packet unwrap operation performed at the mix. In particular, for u
very close to 0, 100% (rounded to 2 decimal places) of the packets have unwrap
time greater than the sender-intended delay.

* Discussed the implausibility of completely eliminating over-delayed packets.

* Proposed and analysed two approaches to mitigate the presence of the unwrap
time of the mix on the packet.

* Introduced three strategies for mixes to deploy in the case of over-delayed packets,
and provided detailed analysis for one of them.

* Investigated the limitations of the approaches and introduced a novel class of
distinguishing attacks a global network adversary can perform to correlate inputs
and outputs of the targeted mix.

1.4 Report Organisation

This section outlines the structure of the remaining chapters of this report.

Chapter 2| provides the relevant background on continuous-time mixing and an overview
on related work in current literature.

Chapter [3|defines the threat model of concern for this project and introduces the packet
transmission strategies which form the basis for the experiments. A description of
experimental framework, the relevant modifications and the final workflow of the
simulator are also provided.

Chapter [ presents a summary of key notations and details the parameter configurations
of the framework used for the experiments.

Chapter [5] presents and interprets the results obtained from the experiments, and a
discussion on their implications.

Chapter [] critically analyses and evaluates the work conducted in this project.

Chapter [7]concludes the work in this project and presents an overview for further work.



Chapter 2

Background and Related work

In this chapter, the background on continuous-time mixnets and the exponential distribu-
tion are presented. Then an overview on the design of the Nym network and the Loopix
anonymity system, and the aspects that are relevant to this project are described. We
also provide a discussion on the relevant work in the area of continuous-time mixnets
and topics that warrant further research in current literature.

2.1 Continuous-time Mixnets

Mixnet is a multi-hop decentralised network that is designed to provide anonymity to
its participating users, even with the presence of a strong global adversary. It consists
of machines called mixes; packets are routed through a series of these mixes before
reaching its final destination. The multi-hop design distributes the trust across the
nodes in the network, preventing a single point of failure, since no nodes have the full
knowledge of both sender and receiver for any packets.

Mixnets protect the end users against end-to-end correlation attacks by obscuring the
relationship between the senders and receivers of messages. The traffic sent by end
users are modelled by a Poisson process, which is parameterised by Aepquser per second.
In this case, the Poisson process is stochastic process that models the times at which the
packets arrive at the mix.

Two operations are performed at each mix: mixing and cryptographically transforming
the packets. Each mix mixes - randomly delays and permutates - the packets it received,
which destroys the network patterns of the packets. This prevents a powerful adversary
from de-anonymising the senders and receivers by performing traffic analysis on the
leaked network metadata such as message arrival and departure times. For example, an
adversary observing the endpoints of a low-latency network could correlate the sender
and the receiver by analysing the timing between packet departure and arrival times.
The latency introduced in the hops destroys the timing pattern which can be exploited
by the adversary. The continuous-time mixing technique is individually delaying each
packet at the mix, for a period of time that is sampled from an exponential distribution.
This allows continuous-time mixnets to achieve high entropy in the reordering of a
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sequence of packets.

The mixing technique used in continuous-time mixnet achieves high entropy in re-
ordering of the sequence of packets is individually delay each packet at the mix. The
independent sender-specified delay at each mix is a random variable following an
exponential distribution with parameter y; all sender-specified delays are drawn from
the same exponential distribution. The average delay A of the packets at each mix is
represented by ;lz seconds.

In terms of the strong anonymity of the continuous-time mixnet, the entropy between
incoming and outgoing packets, regardless of their arrival time at the mix, is based
on the memoryless property of the exponential distribution. This ensures that the
probability of a packet being forwarded from a mix is independent of its arrival time.
Hence it is equally probable for any of the packets arrived at the mix to depart at the
next moment in time.

2.2 Exponential Distribution

This section highlights the importance of the exponential distribution in the anonymity
property of the continuous-time mixes.

The delay of a packet at a particular mix is characterised as a random variable X
following an exponential distribution with parameter u. Its probability density function
(PDF) is defined by Equation A denotes the average delay, where A = }l The area

under the PDF for any A equals to 1.

Flxip) = e 2.1)
Or equivalently, in terms of A:
I 1
fxA) = 2e A (2.2)

Figure 2.T]illustrates the PDF of different means of the exponential distribution. The
expected value of X is the mean of the exponential distribution.

The exponential distribution is the only continuous probability distribution with the
memoryless property. In the scenario of the latency on a packet at a mix, the memoryless
property offers unlinkability - there is an equal probability of the outgoing packet being
any of the previously observed incoming packet to the mix. It is not possible for the
adversary to correlate the packets based on arrival times.

In relation to the mean latency of the packets, the smaller value of the parameter u, the
longer the period of time which the packets on average wait for at a mix, increasing
the end-to-end latency of the packet from the sender to the receiver. Note that with the
exponential delays, while the value of the end-to-end latency can be estimated (hence
bounded), it is not possible to determine the exact timings of each packet.
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Figure 2.1: Plot of the probability distribution functions of the exponential distribution
with A = 0.1, 0.25, 0.5, 0.75, and 1.

Finally, we present here a proof that a shifted exponential distribution is not memoryless,
which is important for the analysis.

Proof. First we define mathematically the notion of memoryless. Suppose X is an ex-
ponential distributed random variable such that the range of X is [0, o). The probability
distribution of X is memoryless if the following holds for any s, > 0:

PrX >t+s|X >s5)=Pr(X >1)

Now suppose another random variable Y, obtained by shifting the exponential dis-
tribution by a constant value of ¢, such that ¥ = X + ¢ and the range of Y is [0,00).
Then:

Pr(Y >t+slY >s)=Pr(X+c>t+s|X+c>s)
=Pr(X>t+s—c|X>s—c)
# Pr(X >1)

2.3 Shannon Entropy

Introduced by Shannon [22], the Shannon entropy (denoted simply as entropy in this
report) of a random variable is a measure in information theory of uncertainty. In this
report, in line with existing work in anonymous systems [4} 20]], entropy quantifies the
indistinguishablility of the target message of interest amongst the other messages in the
network; it denotes the number of packets in logarithmic scale that an adversary can
be confused with the target message [4]. Hence the greater the value of entropy, the
stronger anonymity in the network. In continuous-time mxining, due to the memoryless
property of the exponential distribution, which the per-mix delays of the packets are
sampled from, the independent delays of the packets result in high entropy [9, [11} 21]].
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Figure 2.2: The structure of a stratified topological mixnet with 3 layers and 4 mixes per
layer, the total number of mixes is 12. The circles denote the mixes.

2.4 The Nym Mixnet and Loopix Anonymity System

The related systems for this project is the Nym network and its preliminary template
model, the Loopix anonymity system. This section provides an overview on their designs
and highlights the aspects that are relevant to this project, namely the continuous-time
mixes and the Sphinx packet format, along with an evaluation on their implementations.

2.4.1 Overview on the Systems

Shannon [22]] and Danezis [9]] proved that maximum entropy occurs when the probability
distribution is an exponential distribution with the mean equal to A, the average latency
of the packets in the mixes. Since then several systems that utilise such property for
some protection against timing analysis attacks, have been developed, namely the
Loopix system [21] and the Nym network [11].

Nym Technologies has presented the Nym network, a generic infrastructure that consists
of many components and different participants to achieve communication privacy. The
Loopix anonymity system is a continuous-time mixnet for real-time communications
[21]]. The core component of the Nym network is the continuous-time mixnet; the
design of the Loopix system forms the basis for the Nym mixnet which similarly utilises
features such as the Sphinx packet format detailed in Section [2.4.2] The architectural
structure of the mixnet is a stratified topology or restricted route, illustrated in Figure[2.2]
- where the mixes are organised in layers, and each mix in a layer is connected to every
mix in the adjacent layers. This reduces the number of connections between mixes as it
is not a fully connected topology, or free route. The benefits of stratified topology is that
there are fewer connections between the mixes and this enables horizontal scaling whilst
maintaining anonymity [8]. The capacity of the mixnet can be increased by additional
hardware resources to accommodate more traffic without any design modifications on
the network. The mixes in the Nym mixnet are controlled by incentivised mix operators.

Besides the mixes for mixing the packets in the mixnet, the Nym network has employed
additional features for practical deployment and adaptation such as gateways and
validators, as well as bandwidth credentials and service credentials for the proper
functionalities of the network for real-world adaptations. These components are beyond
the scope of this work hence from this point on, we consider only the mixnet aspect of
the Nym network, which is also the Loopix mixnet.
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2.4.2 Sphinx Packet Format

The Loopix and Nym mixnets both leverage the Sphinx packet format for privacy
protection of the content of the messages between sender and receiver. Sphinx packet
format is an efficient cryptographic message format with proven cryptographic security
and small amount of overhead [[10].

Sphinx packet formation To prepare a Sphinx packet to transmit through a sequence
of mixes, the sender derives a set of session keys with each of the mixes in the sequence
using a random cyclic group element and the public key of the mix. The header and
the payload are encapsulated separately in layers of encryption that is reversed to the
order of which the packet is routed through the sequence of mixes. Each mix on the
packet’s journey would learn inherently at most the preceding mix and succeeding mix,
for routing purposes. With multiple hops, no mix has the knowledge of both the sender
and the receiver.

Specifically, a Sphinx packet S is routed through mixes M1, ..., M,,, where n is the number
of hops to route the packet before reaching the receiver. Note that the numbering on
the mixes is sequential for the sole purpose of denoting the order of which the packet
is relayed through the mixnet. The outermost layer of encryption is for the first mix
M; the process repeats for remaining mixes on the route until the final mix M,,, which
forwards the packet to the receiver. Figure [2.3]illustrates the structure of a Sphinx
packet traversing through a three-hop route. At each layer of encryption, the header
contains information for session key derivation, routing information to forward the
packet, a delay randomly chosen from the u-parameterised exponential distribution, and
an integrity protection mechanism, namely a message authentication code (MAC) to
detect any modifications on the header [[10]].

Packet processing At each hop, the mix which receives the packet derives the set of
shared session keys with the element from the cyclic group and its private key. Once
the mix verifies that the header has not been modified, it de-encapsulates ("unwraps”)
the layer of encryption to extract the routing information to the subsequent destination
and the sender-chosen delay for which the packet should wait at the mix before being
relayed. The mix pads the packet to identical lengths to conceal the total length of
the route and the number of mixes the packet has traversed through. The mix also
cryptographically transform the packet before forwarding it such that there is bitwise
unlinkability. This means a third party cannot correlate the inputs and outputs of a mix
by analysing the their bit pattern, without knowledge of the cryptographic keys used for
transforming the packets.

Both packet transformation and unwrapping are cryptographic operations which are
computationally expensive and typically subjects to some form of overhead. In this
project, we focus on the overhead incurred by the cryptographic operation to unwrap a
layer of encryption at a mix, which is denoted as the unwrap time of the mix.

2.4.3 System Implementation

The team at Nym Technologies has made available the code of the Nym network
infrastructure as well as their implementation of the Sphinx packet format in Rust
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Sender 2nd Mix Receiver
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Header Payload

Figure 2.3: The structure of the Sphinx packet, given the packet is routed through three
mixes.

under an open-source license [1, 2]. It includes implementations on the components
besides the ones for the mixnet such as: Nym blockchain, validator, Nym wallet and
its respective components to ensure the proper usage of the network and maintain its
functionalities. Since the current codebase of the Nym network offers much additional
features beyond the scope of this project, specifically the layered continuous-time
mixnet, the discrete-event mixnet simulator is used for the experiments in this work.

2.5 Mixnet Simulation Frameworks

This section discusses MiXiM[4]] and Mix Network Simulator[20] (henceforth, Loopix
Simulator), two generic discrete-event simulation frameworks implemented in Python3
that supports simulations on stratified continuous-time mixnets such as the type of
Loopix and Nym. Specifically they are developed using SciPy discrete event simulation
library. The code for both frameworks are available under open source licences. The
frameworks are extendable to enable further research on the various mixnet designs and
their configurations.

The Loopix Simulator was developed initially to support anonymity analyses of Loopix
under various network configurations and traffic conditions. It is subsequently used
for conducting further experiments for the Nym mixnet [20]. The simulator supports
many network topology such as stratified and cascade, and offers the flexibility for user-
defined configurations. The stratified topology of the mixnet simulator is a simplified
version of the Loopix mixnet - it simulates only the network aspect of the mixnet and
does not include any cryptographic operations, hence the mixes do not perform any
cryptographic operations to unwrap and transform the packets. The provided codebase
of the Loopix mixnet is a 3-by-3 layered mixnet where there are three layers and three
mixes per layer.

Guirat and Diaz [14] conducted their research on optimising parameters for continuous-
time mixnets using MiXiM. It focuses on determining the number of layers and their
width, i.e. the number of mixes per layer in consideration of the network deployment
configurations and the proportion of compromised mixes with Shannon entropy as the
anonymity metric. To the best of our knowledge, it remains unexplored on the topic of
selecting a suitable value for the average per-mix delay with respect to the machines
hosting the mixes, which reflects the real-world scenarios where mixes are hosted on
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machines with different resources that impose variable processing overhead.

Jee et al. [15] investigated on optimising various mixnet parameters to reach acceptable
performance-anonymity trade-off in real-world mixnet. Their analysis concentrated
on parameters such as size of the Sphinx payload, the cover traffic rates, and end user
traffic rates.

Limitations It should be noted that whilst the functionality of the network simulation is
not affected, both simulators simulate solely the network aspect of the mixnet. With
a given configuration for a stratified continuous-time mixnet, the mixnet simulators
are designed such that the exponential delays of the packets are randomly sampled at
the mixes, contrary to design of MiXiM and true continuous-time mixnets, where the
random delay is chosen by the sender. However, note that the packets in MiXiM are not
layered-encrypted Sphinx packets, since it is not necessary for the network simulation
of the mixnet. Hence, the end users in the MiXiM simulation prepares the packets by
encoding the per-mix delays in a list, which is accessed by the mixes on the route by
indexing.

As Nym Technologies unveil their general-purpose privacy infrastructure, there are
emerging areas that have not been fully explored due to the impact of real-world
deployment has on the anonymity guaranteed by the exponential distribution. Most
literature on the anonymity property continuous-time mixnet do not specifically consider
the significance of the overhead caused by the cryptographic operations when evaluating
the anonymity of their proposed system, including Loopix and Nym [11} 21]. From
inspecting the source code of the mixnet simulators, the simulation accounts for the
general packet processing overhead by manually adding a constant of 0.000386 second
to every randomised delay for the Loopix Simulator. The value of 0.000386 is yielded
from benchmarking the creation of a new Sphinx packet on a specific test reference
machine [2]. In the case of MiXiM, the packet processing is considered holistically
with the and altogether accounted conservatively by a constant of 50 ms. The average
end-to-end latency dgog of a packet is calculated based on the sum of three factors: the
total of per-mix latencies, network propagation of the links, and the packet processing
times.

In particular, this project aims to address the influence of unwrapping time of a mix
on the memoryless property of the exponential distribution. We show that while the
overhead of unwrapping the Sphinx packet is small, it is not insignificant. This merits
further research as in theoretical modelling, the value for the chosen parameter u can
tend to zero such that the average per-mix delay becomes very short. However, in
real-world usages, there exists an inevitable packet processing overhead at each mix.
Therefore, the packet would wait in the mix for at least the time taken for the mix to
process it, regardless of how short the sender-intended delay. This is significant when
the sender-selected delay d is less than the unwrap time of the mix u, d < u, as the delay
is chosen such that the memoryless property of the exponential distribution holds. It
calls for further investigation on the impact of such additional delay due to the overhead
at a mix, on the anonymity property of the mixnet.



Chapter 3

Methodology and Experiment
Framework Structure

In this chapter, the threat model and the packet-distinguishing attacks of interest, are
defined in detail. Then, the structure of the mixnet framework for the experiments is
outlined.

3.1 Threat Model

Attack Environment and Adversary Capabilities The threat model considered is a
global passive adversary (GPA) and the following is assumed for the adversary and the
environment. The adversary is able to (1) observe all network communications between
the components - end users and mixes - of the mixnet; (2) measure the sending and
arrival times of any packets to perform traffic and timing analysis attacks to correlate
the sender and receiver of any packet.

The mixnet is assumed to have balanced layers, meaning equal number of mixes in
each layer. Moreover, it is assumed that the adversary is not able to influence the layers
which the mixes are assigned to. Each mix is a physical machine with certain processing
power such that its unwrap time is bounded. The mixnet is assumed to be honest; all
mixes are honest and the adversary is not able to corrupt them. The end users are also
considered to be honest, and they send traffic to the mixnet following a Poisson process
that models the rate at which packets are sent into the mixnet. Corrupted mixes can
cause packets to be dropped and techniques have been proposed for detecting such
malicious mixes [18], therefore we consider them out of the scope of this work. The
adversary targets a single honest mix, and it is not able to corrupt this mix. It is also
assumed that the adversary has the measures and resources to obtain the unwrap time
of each incoming packet to the targeted mix - this assumption will later be relaxed to
average unwrap time of the mix near the end of this report. However, discussion on such
measures is beyond the scope of this work. Regarding the packets, they are assumed
to have identical size, so that the adversary can only correlate the packets using the
metadata on timing.

11
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The adversary can cause compromised mixes to hold onto packets for a period of time
other than the delay specified in the header. It is able to observe all the incoming and
outgoing packets of all mix, including the said targeted mix.

Adversary Goal The goal of the adversary is to gain a non-negligible advantage in
linking incoming packets to an outgoing packet of the targeted mix, using the timing
information of the packets.

3.2 Packet Transmission Strategies

By including the unwrap time of the mix into consideration, we propose two approaches
that mixes can perform for each received packet:

1. Once the mix unwraps the packet and finds the sender-intended delay, the mix
reduces the sender-intended delay by the unwrap time so that the overall delay
the packet experiences at the mix is the sender-intended delay.

2. The mix unwraps the packet and continues to retain the packet for the duration
of delay intended by the sender. The total delay of the packet at the mix is the
unwrap time plus the exponential delay.

Approach 1 counteracts the effects of unwrap time whereas approach 2 does not.
However, approach 1 introduces the possibility that the designated delay intended by
the sender of the packet is less than the mandatory unwrap time, such that once the
mix unwraps the packet and discovers the intended delay encoded in the header, the
packet has already dwelled in the mix for more than the exponentially chosen delay.
These packets are hereafter denoted as over-delayed packets. It is important to consider
over-delayed packets, as the memoryless property of the exponential per-mix delay
contributes to the protection against timing attacks on the packets. In such case, an
apparent question arises: when should these packets be relayed to their next destination?
We propose that there are three potential strategies that can be deployed in order to
resolve these over-delayed packets.

1. The mix transmits the over-delayed packet to its next destination immediately;
the total delay the packet experiences at the mix is just the unwrap time (the
overhead incurred by the cryptographic per-mix packet transformation is left as
future work).

2. The sender ensures that the chosen per-mix delay is greater than the unwrap time
of the mix; the delay at the mix is the sender-chosen delay since there would not
be over-delayed packets.

3. The mix adds some additional delay to the packet on top of the unwrap time and
the sender-intended delay, then relay it to the next destination. The total delay
of the packet at the mix is unwrap time and sender-intended delay plus some
additional delay.

We now discuss briefly about strategies 2 and 3 of approach 1; thorough investigations
of the plausibility of these strategies are left as future work. Strategy 2 delegates the
responsibility of avoiding over-delay packets to the sender. There could be implications
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of de-anonymising packets in the mixnet if the sender is malicious. In addition, since
the senders would not include any delays less than the unwrap time, the resultant
delay distribution is inherently not an exponential distribution by Equation[2.2] This is
because the smallest value a sender can select is at least the unwrap time. Visually, it
results in the area of the delay distribution on the left-hand side of the unwrap time to
be 0. Such information can be advantageous to the adversary. Strategy 3 passes control
to the mix as the mix would essentially be able to delay the packet by arbitrary period
of time. Thus a malicious mix could escalate the situation into denial-of-service attacks.
Further mechanisms are required to govern the behaviour of the mixes to ensure proper
functionality of the mixnet.

In the remaining sections in this report, we focus on strategy 1 of approach 1 and
approach 2 in detail as interesting phenomena occurs for them. In particular there is a
section dedicated to introducing two types of packet distinguishing attacks, described
in this section. These two distinguishing attack scenarios can take place at each mix, in
the presence of an adversary who is observing the inputs and outputs of the mix.

3.3 Structure of Experiment Framework

The experiment framework builds on MiXiM to specifically simulate the network aspect
of a layered continuous-time mixnet, since MiXiM supports different mixnet topolgies
and design options as mentioned in Section The mixnet consists of three principal
components: end user, mixes, and packets. Their interactions within the mixnet are as
such: the end users send packets to each other by relaying the packets through several
mixes - the traversal to each mix is a hop. The network of mixes are responsible for
routing the packets, organised in a stratified topology (more details in Section [2.1).

To address the research questions in section 1.2, we need to measure the unwrap times of
the mixes for each packet they receive. As part of the open-sourced code for the Sphinx
packet from Nym Technologies, a benchmark module on the creation and unwrapping of
a Sphinx packet is also available [2]. Therefore, to construct the experiment framework
for this research, the functionalities of MiXiM and the Sphinx packet unwrap benchmark
should be combined such that the unwrap time of a packet arriving at a mix can be
obtained and recorded extemporaneously.

3.4 Modifications on MiXiM Framework

We obtain the experiment framework for the experiments by adding the Sphinx packet
unwrap benchmark to MiXiM. To achieve this, a Rust binding built with the Py03
library is used. In this section, the modifications to MiXiM and the resultant workflow
of the framework are detailed.

3.4.1 PyO3 Library for Rust Bindings

Since MiXiM is implemented in Python and the Sphinx packet benchmark in Rust, a
method is required to combine their functionalities. An approach could be to implement
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MiXiM in Rust so that the network aspect of the mixnet is compatible with the Sphinx
unwrap benchmark. Considering the overhead in converting the mixnet simulator into
Rust, it is common to leverage a language binding framework to bridge two different
programming languages. One of such framework is the Pyoframework which enables
us to create Rust bindings - native Python modules for Rust binaries. Therefore, for the
purposes of this work, it is possible to take advantage of the ease of use of the Python
programming language and the high performance of Rust to incorporate the Sphinx
unwrap benchmark into MiXiM via a Rust binding. Another framework that could be
used is rust—cpytho the precursor of Py03. rust-cpython has the advantage of
offering a greater degree of flexibility offered to the users with some computational
overhead than Py03, due to differences in their implementationsﬂ For the purpose
of this work, we argue that it is sufficient to create Rust bindings using Py03 as the
types in Rust that are exposed to Python runtime are minimal in the experiments - see
Section [3.4.2] for a more in-depth description on the intergration of the Rust binding.
Once the Rust binding is created, it can be imported into the code section of the mix in
MiXiM such that the the Rust binding can be invoked, in a similar fashion to a function
call in Python, and subsequently the compiled Rust code can be executed.

3.4.2 Design of the Rust binding

As the benchmark for the time taken for cryptographic operations on the Sphinx packets
are separated from the mixnet simulator, the packets transmitted in MiXiM are not
Sphinx packets, with reasons detailed in Section Therefore, we simulate the
unwrapping of a Sphinx packet by calling the Sphinx packet unwrap benchmark in Rust.
At each invocation to the Sphinx packet unwrap benchmark, the time taken to unwrap a
single layer of the packet is measured in Rust as follows:

1. When the Rust binding is triggered by the function call in Python, the code in
Rust begins to run. Firstly, the time instant is recorded, denoted as start_time.

2. The function to unwrap a layer of the Sphinx packet is invoked.

3. Once the unwrap function in the Sphinx packet benchmark returns, the time at
that instant is recorded again, and denoted as end_time.

4. The final elapsed time for unwrapping is defined as end_time - start_time.
This elapsed time is measured in microseconds

Note that all these operations are executed in Rust; the Rust binding only returns the
lapsed time for a single invocation to unwrap a layer of the Sphinx packet, measured
in microseconds. (Note that units are converted where necessary during analysis)
This design has several benefits. It introduces a simpler overall design as there is a
direct mapping of any integer types in Rust to int in Python, which also reduces the
computational overhea Moreover, this maximises the operations performed in Rust

Thttps://pyo3.rs/v0.18.2/

Zhttps://github.com/dgrunwald/rust-cpython

3https://depth-first.com/articles/2022/03/09/python-extensions-in-pure-rust-with-rust-cpython/

“https://www.infoworld.com/article/3687744/how-to-write-python-extensions-in-rust-with-pyo3
.html
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which is more performant than Python.

3.4.3 Logging System

The logging system in MiXiM is extended to record the delays of each packets at each
mix. This includes: (1) the sender-selected delay, (2) the unwrap time of the mix on the
packet, and (3) the actual delay of the packet at the mix.

Sender-selected delay This is the intended delay (in seconds) that is encoded in a list
with the packet, in the order at which the packet is routed through those mixes. Each
mix on a packet’s route from the sender to the receiver belongs to separate layers of the
mixnet. This is because of the stratified topology detailed in section[2.4.1] Hence the
mix accesses the packet’s delay at the mix, by the layer at which the mix is located. For
example, a packet arrives at its second hop which is on the second layer of the mixnet,
so the mix accesses the second element in the list of delays. This design is the part of
the original MiXiM implementation.

Unwrap time The unwrap time (in microseconds) of the mix on the packet according
to the time returned by the Rust binding which measures the time taken to unwrap a
layer of a Sphinx packet. This represents the taken taken to unwrap the packet in the
MiXiM simulation as if they were Sphinx packets.

Actual packet delay The actual delay (in seconds) that the packet experiences at the
mix, taking in consideration the unwrap time of the mix on the packet. Different
values are recorded, depending on the approaches taken towards the additional packet
unwrapping overhead, with further details in Section

3.4.4 Modifications to assumption in MiXiM literature

Guirat and Diaz view the time for the average network propagation and the packet
processing holistically as a constant factor of 50 ms. In this work, we separate the
packet processing time in finer granularity as the packet unwrap time and the packet
transformation time. We consider the network propagation and the packet transformation
time as one single factor of 50 ms, and evaluate the packet unwrap time empirically. We
argue that the value of 50 ms is reasonable as packet transformation is a cryptographic
operation, so it can be encapsulated in the time duration of 50 ms.

3.5 Simulator Workflow

The design basis of the experiment framework follows the one of MiXiM [4] as the
cryptographic benchmark is incorporated into MiXiM. In this section, we outline a
summary on the workflow of MiXiM for continous-time mixnet in a stratified topology
and any additions to the workflow for the purpose of the experiments.

First, the configurations for a stratified topological continuous-time mixnet is defined in
the configuration file. Once the simulation environment is instantiated with the mixes
and end-users, according to their description in the configuration file, MiXiM begins
the burn-in phrase until the network is stable - where the average number of packets
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transmitted and received by the mixes are at the level specified in the configuration file.
Since the goal of the simulation is to record the actual delay for each packet at the mix
when considering the cryptographic operation to unwrap the Sphinx packet. Therefore
for each packet delay, there is a function call to the Sphinx unwrap benchmark.

MiXiM logs packet informations to evaluate the anonymity of the packets in the stable
network. The extension to the logging system described in Section [3.4.3|enables the
data collection required for this project. The log files produced on the delays at the
mixes can then be further analysed.

3.6 Test Machines

This section specifies the specifications of tests machines on which the experiments are
conducted as follows:

1. AMD EPYC 7302 16-Core Processor @ 3.00 GHz with 64GB of system memory
2. Apple M2 8-Core Processor @ 3.49GHz with 16GB of system memory

3. AMD EPYC 7302 16-Core Processor @ 3.29 GHz with 512GB of system memory
4. Raspberry Pi 3 Model B @ 1.20 GHz with 1GB of system memory

The machines selected for this work have a range of processing power: test machines 1
and 3 are powerful compute servers whilst test machine 2 is a laptop and test machine
4 is a small-sized microcomputer. The same simulations with identical configurations
and packages are run on all the test machines.

Test machine aliases For readability for the remaining report, test machine 1 is simply
referred to as lab machine, test machine 2 as Macbook, test machine 3 as DICE (SC ﬂ
and test machine 4 as Raspberry Pi. This section serves as a reference point for their
specifications.

DICE is a computing environment available through the Edinburgh University School of Informatics,
https://computing.help.inf.ed.ac.uk/what-is-dice. SC stands for the “’student.compute” server.



Chapter 4

Experimental Setup

In this chapter, firstly a summary of key notations is provided. Then the configuration
of the mixnet parameters of the simulator is outlined and justified, since this setup is
used for all experiments.

4.1 Summary of Key Notations

This section details the key notations used extensively in the remaining of this report
and their descriptions.

» u: The parameter for the exponential distribution at which the delays are randomly
sampled; it is represented by yu = 7%

» A: The average delay (per second) of the packet at a mix; it is represented by

A=1

u

* Aenduser: the rate of packets (per second) at which the traffic from end users enters
the mixnet.

* dpog: the end-to-end latency (in seconds) of the packets from the senders to the
receiver.

* u: the unwrap time (in seconds) of a mix on a packet.

 L: the number of layers in the mixnet in a stratified topology.

W: the width of the layers; the number of mixes in a layer.

4.2 Configuration of the Experiment Framework

The details of the mixnet simulation parameters are defined in the configuration file,
which determines the deployment and adversarial scenario for the experiments. We
consider the scenario where all the mixes are honest. Therefore, none of the mixes are
controlled by the adversary. In terms of the number of layers, Guirat and Diaz [14]
demonstrated that for a network GPA that does not corrupted any mixes in the network,

17
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the average entropy, which indicates anonymity, peaks optimally when L = 2 for all
end-to-end latencies. It confirms that adding a two-layered mixnet achieves the best
possible mixing when the mixnet itself is honest [14]. Hence we consider that the value
for the number of layers is L = 2. For the width of the layers, the mixnet is assumed to
be balanced, according to Section 3.1} indicating that all the layers have equal width.
Guirat and Diaz proposed that for adversary that controls a constant proportion of
mixes or no mixes at all, the optimal width of the layers is the minimum number of
mixes required to efficiently route traffic in the network. They showed that for the
scenario where L = 3 and dgyg = 1, the average entropy peaked at W = 10, which is
the minimum width evaluated [14]. Such findings are reproduced and we verify that
for L = 2, a similar pattern of decreasing average entropy is displayed as the width
increases. We expand on these results in Section [4.3] For the number of end-users
(clients) in the simulation, we reason that a set of 100 end-sers is suitable as it is greater
than the number of mixes in the network.

Moreover, designs, such as Nym, Loopix and others, leverage cover traffic to maintain
the traffic volume for anonymity within the mixnet at all times even when fewer end
users are transmitting packets [11, 21}, [25]. We consider that the level of input traffic is
sustained to a consistent level throughout the duration of the simulation. Therefore, it is
not necessary to include additional cover traffic in this work, and we leave the inclusion
of cover traffic as future work.

For the user traffic in the simulation, it is modelled as a Poisson process with parameter
Aenduser- One of the services Nym network performs well in is blockchain networks
and it is utilised in cryptocurrencies. Two popular cryptocurrencies are Bitcoin and
Ethereum. Bitcoin can process 7 transactions per second as maximum throughput [7]]
whilst it is around 15 transactions per second for Ethereum. Hence in this work, we
focus on low user traffic and set the value of A.,q,5er to be 15 packets per second.

The mean of the exponential distribution denotes the average per-mix delay of the packet.
The end-to-end latency dgog is directly proportional to the mean of the exponential
distribution from which the per-mix delays are sampled. Therefore dgf is varied across
the experiments to record the effects of per-mix delay in combination with the unwrap
time u. Note that in this report, we represent the mean of the exponential distribution
with the Greek letter A, whereas the Greek letter u is used in the work of Guirat and
Diaz in [14]. In line with [[14]], the average end-to-end latency is directly proportional
to the average per-mix latency, i.e. dgar < A, and is represented by Equation

For a L-layered mixnet with network propagation and packet transform time as v, the
average end-to-end latency dgag of a packet traverses a L-hop route with L+ 1 links is
defined as:

dpop = AL+7Yy(L+1) 4.1)

For the experiments, we consider values of dgyg in seconds of 0.15000001, 0.16, 0.2,
0.25, 1, 5 and 10. Asy= 50ms, the range of possible values for dgyg is when dgyg > 15
for a 2-layered mixnet. For example, dgor = 0.15000001 second results in A = 5 ¥ 107°
second, and dg>r = 10 seconds results in A = 4.925 seconds. Therefore, the dgyr values
selected vary from ones which gives extremely low per-mix latency to latency suitable
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for communications.

4.3 \Verification of Chosen Parameters

Before integrating the Sphinx packet unwrap benchmark to the mixnet simulation via
the Rust binding, the selected mixnet parameters for the simulator is verified to be in line
with previous work. Guirat and Diaz show that for dgop = 1, L =3, and A¢pgyser = 5000,
the average entropy maximised when W = 10. Therefore we propose two scenarios with
low user traffic: (1) when dgag = 1, L = 3, Appauser = 15, (2) when dgrp =1, L =2,
Aenduser = 15 for various layer widths and verify that the findings of Guirat and Diaz
are applicable.
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Figure 4.1: The mean entropies when dg>g = 1, Aenauser = 135, and the cases when
L =2 (blue) and L = 3 (orange), for various widths of the mixnet layers.

Figure [4.1] presents the results: both scenarios demonstrate that the optimal width
is W = 10, and the mean entropy is greater when L = 2; in both cases, there is a
gradual reduction of mean entropy as the width increases. This pattern is in line with
the investigation of Guirat and Diaz, which they conclude that it is also due to the
thinner traffic per mix. Note that the mean entropies for low user traffic (Aepguser = 15)
decrease by around 2 bits compare to the same configuration at higher user traffic
rate (Aenduser = 5000), which confirms that anonymity relies on the presence of large
volumes of traffic. For the scenario of dgyg = 1, L = 3, and A¢pguser = 15, the optimal
value of width for maximum entropy is when W = 10. This is an analogous finding
when dgop = 1, L =2, and Ag,guser = 15. Therefore we verify the anonymity of the
chosen mixnet configurations; we also show that lower user traffic displays a reduced
yet comparable level of anonymity to high user traffic regarding the average entropy.
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Results and Discussions

In this chapter, we conduct the experiments to address the research questions addressed
in Section 1.2l

5.1 Average Unwrap Times

As a preliminary experiment, the average unwrap time of the mix is evaluated on the
test machines detailed in section [3.6] The purpose of this experiment is to analyse
empirically the possible range of unwrap times of the mixes induced by different
hardware specifications. The unwrap time of the mix is defined as the execution time
for an invocation of the Sphinx packet unwrap function in Rust from Python runtime.

5.1.1 Experiment Overview

The experiment consists of two parts. The first part acts as an experimental baseline:
each test machine records the time duration of invocation to an empty function in Rust
from Python runtime. For the second part, the unwrap time of a Sphinx packet on each
test machine is measured.

Since the underlying probability distribution of the unwrap time of a mix running on a
particular machine is unknown, the unwrap time is modelled as a random variable with
unknown distribution. The central limit theorem (CLT) establishes that with sufficiently
large sample size, the sampling distribution of the sample mean approximates a normal
distribution regardless the actual distribution of the variable, indicating that the average
unwrap time of the mix approximately follows a normal distribution given a large sample.
Therefore, in terms of the number of iterations and repetitions of the experiment, we
consider 10,000 invocations of the empty function and the unwrap time function, and
the process is repeated 20 times as they have been found to give meaningful results that
follow the CLT [23]. Moreover, the greater the sample size, the greater the precision
permitted.

20
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Empty Rust Func-
Test Machine tion (mean = std.
dev.)

Unwrap Sphinx Packet
(mean =* std. dev.)

AMD EPYC 7302 16-Core Processor @
3.00 GHz (64GB RAM)

Apple M2 8-Core Processor @ 3.49 GHz
(16GB RAM)

AMD EPYC 7302 16-Core Processor @
3.29 GHz (512 RAM) 0.5477 us £30.6 ns | 5805.7422 us + 51.4828 us
Raspberry Pi 3 Model B @ 1.20 GHz 59176.1129 us £ 179.4019
(1GB RAM) 4.4483 us £ 58.1 ns s

0.5414 us £ 5.6 ns 5523.6380 us + 11.2527 us

0.6352 us £ 105.5 ns | 7576.2365 us + 45.1623 us

Table 5.1: Elapsed time of calling an empty function in Rust (as control) and Sphinx
unwrap packet on different machines

5.1.2 Implementation

The experiment module is built with the timeit library. The execution time of the
calls to the empty function and the unwrap function is measured by the timeit ()
function in the library. By the design of the timeit () function, the execution times of
all the invocation to the testing function are aggregated over the iterations. The mean
unwrap time on the test machine can then be calculated. The 95% confidence interval of
the mean is also computed using the stats.norm.interval () function of the normal
distribution from the scip library, as the distribution of the average unwrap time
approximates the normal distribution with large samples.

5.1.3 Results

From this experiment, a general view of the unwrap time on each of the test machines
is illustrated. A summary of the results is shown in Table [5.1] For each part of the
experiment, we have listed the specifications of the test machines and the mean times
on the corresponding test machines and their standard deviations.

As a preliminary overview on the results, the Raspberry Pi dominates all aspects of the
experiment, recording the highest mean elapsed time for the empty Rust function and
the Sphinx packet unwrap function. From Table 5, to complete an invocation to the
empty function, it takes on average 4.4483 microseconds on the Raspberry Pi, yielding
a 7-fold increase from the Macbook and a near 8-fold increase from the lab machine
and DICE (SC). In terms of the unwrap time, the average unwrap time on the Raspberry
Pi is 59176.1129 microseconds. That is a near 8-fold increase from Macbook, and near
10-fold increase from DICE (SC) and the lab machine. Notice that both aspects of the
experiment, the Raspberry Pi and the Macbook record the greatest variations.

The average unwrap times and times of the empty function are now examined with

'A built-in Python library for measuring execution time of small number of lines of code,
https://docs.python.org/3/library/timeit.html
2A Python library for scientific computing,
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html
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Empty function Unwrap function

Test case Variance ratio t-test type t-statistic p-value Variance ratio t-test type t-statistic p-value

1. Macbook and lab machine 60.1 Welch’s 0.83 0.42 605.7 Welch’s 274.60 8.92x 104
2. Macbook and Raspberry Pi 87.3 Welch’s  -286.02  1.08x 1073 36.0 Welch’s  -1236.81 1.94x 10
3. Macbook and DICE (SC) 101.6 Welch’s 0.04 0.97 1.7 Student’s  142.79 1.71x 103
4. Lab machine and Raspberry Pi 1.5 Student’s  -221.95 9.15x 10T 204.3 Welch’s -1300.34  6.55x 1077
5. Lab machine and DICE (SC) 1.7 Student’s  -0.47 0.64 9.4 Welch’s -47.79 1.65x 102
6. Raspberry Pi and DICE (SC) 1.2 Student’s  195.60 L11x 10758 216 Welch’s  1263.85  3.44x 102

Table 5.2: A summary of the t-tests performed on pairs of the test machines on the
average empty function time and the average unwrap time with significance level of 0.05
and degrees of freedom of 19.

independent samples z-tests. Note that ¢-tests are valid when the data is continuous
and follows the normal distribution. For this case, the average times satisfy both
requirements, the latter condition is by the application of the CLT. Each sample is
collected on a different test machine so the collected average times are independent.
Hence independent samples ¢-tests are suitable. Then, the variances of the data from the
20 repetitions are tested so that the relevant z-test is applied according to the common
practical guidance of using Welch’s 7-test when the ratio between two samples are
greater than fouﬂ

5.1.3.1 t-tests
Empty function

As stated in Table [5.2] for cases (1) to (3), Welch’s r-test is applied as their ratios of
variances are greater than four, whereas Student’s #-test is conducted for cases (4) to (6)
since their ratios are less than four. The null hypothesis for each test is defined as the
true difference between the average time taken for the empty function across pairs of
test machines is zero. The results for the ¢-tests are summarised in Table

We find that, whilst the average time for the lab machine is marginally smaller than
the one for DICE (SC), it is insignificant to cause the difference between the average
time taken for empty function on the lab machine and DICE (SC) to be zero, as there is
insufficient evidence to reject the null hypothesis (1[19] = —0.47, P = 0.64). A similar
conclusion of difference in average times is statistically insignificant is drawn for cases
(1) and (3) where the #-test result are 7[19] = 0.83, P = 0.42 and ¢[19] = 0.04,P = 0.97
respectively. It is worth noting that the difference in average times for the empty
function between Raspberry Pi and all other test machines are significant for #-tests with
degrees of freedom of 19 and the significance level of 0.05.

Sphinx packet unwrap function

As with the previous part of the experiment, the ratio of the variances are computed
in order to categorise the applicable ¢-tests. We find that only case (3) of Macbook
and DICE is suitable for Student’s #-test. Once again, the Null hypothesis is the true
difference between the average unwrap time of the mixes running on pairs of test
machines is zero; the degrees of freedom are 19 and the significance level is 0.05. The
summary of the #-test results is in Table [5.2] It indicates that all the p-values of the

3https://online.stat.psu.edu/stat415/lesson/3/3.2
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t-tests are less than the significance level of 0.05; there is sufficient evidence to reject
the null hypothesis. Therefore there is a statistically significant difference between the
unwrap times of any pair of test machines. In conclusion, we propose that it is important
to consider the hardware specifications of the potential machines which are operating
mixes and their various unwrap times when analysing the infrastructure.

5.1.4 Interpretations and Discussion

The average time of calling an empty function is the longest for the Raspberry pi,
whereas the other machines have consistent and shorter average elapsed time for calling
the empty function, indicating that the Raspberry Pi is less performant than the rest.
Similar findings can also be seen for the average Sphinx packet unwrap times. These
results are expected, as referring to their hardware specifications in Section the
Raspberry Pi has the least amount of processing speed and system memory which limits
its performance. The performance of Raspberry Pi is also in line with the results in
the experiment of the empty function. The Raspberry Pi is significantly slower than
the other test machine statistically. The performance of the Macbook is comparable
to the computing servers. Moreover, the difference in the average time between the
Raspberry Pi and all other test machines in both baseline test and unwrap function is
significantly large at 95% confidence. Whilst the lab machine, Macbook, and DICE
(SC) produced average times of the same magnitude for the unwrap time, the differences
in average time are statistically significant. Specifically we conclude the following
interpretation: the true average unwrap time of a mix is significantly different on all test
machines evaluated. Thus, we establish the significance of the choice of the hardware
specification to operate a mix on the unwrap time that is imposed on the packets arriving
at the mix. To conclude, machines with similar magnitiude of processing speed can
nevertheless produce significantly different average unwrap times. Hence cautious is
required when the evaluation of the mixnet considers the unwrap time.

In addition, the standard deviation is included as a measurement of variation for both
aspects of the experiment. As shown in Table[5.1] the lab machine has the least degree
of variation whilst the Macbook has the greatest spread in the data. We suggest that the
variance is introduced by the system load of the machine at the time of test.

5.2 Actual Packet Delay Exponentiality Test

In this section, the actual delays of the packets during the simulation is examined to test
whether they fit the exponential distribution. Recall that the actual delay of the packet is
represented as the overall delay the packet experiences at the mix, taking into account
the extra unwrap time. Having established the unwrap time of the mix is significantly
different on different test machines, the purpose of this test is to determine whether
the probability distributions of the overall delays of the packets retain the memoryless
property of the exponential distribution on different test machines.
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5.2.1 Experiment Overview

This experiment examines the actual delay of the packets for both approaches 1 and 2
referred to in sSection [3.2] In approach 1, the mix attempts to counteract the overhead
incurred by unwrapping the packet whilst in approach 2, the mix proceeds to delay the
packet by the sender-intended delay after unwrapping it. This results in a difference in
the actual delay - the overall delay that a packet undergoes according to the approach
taken. Therefore the experiment consists of two parts; the simulation is run for both
approaches and separate log files are produced for analysis.

Defining more formally, M, is a mix on the /-th layer of a L-layered mixnet, where
1 <1 < L. Let u;; be the unwrap time in seconds of the mix M; on any packet i that
arrives at the mix during the simulation, and let d;; be the delay in seconds of the packet
i at the mix M;. For the scope of this work, we consider that the mix M; forwards packet
i to its next destination immediately with negligible processing time. Hence we define
the total time the packet i dwells in the mix M; - the actual delay of the packet as Uj;.

For approach 1, the mix deducts the unwrap time u;; from d;; such that the actual delay
of the packet i, Uj;, is generally represented as U = dj; — u;j;. This notation is extended
in Section for the different consequences that arise with this strategy of the mix
according to Section [3.2] For approach 2, the time at which the mix M; begins to
consider the delay dj;; is after the unwrap time u;; has elapsed. The actual delay is
represented as U;; = u;; + d;; for approach 2.

The experiment utilises the experiment workflow detailed in Section On each of
the test machines listed in Section the identical mixnet configuration is applied.
The extended logging system for recording delay information in the mixnet simulation
is detailed in Section [3.4.3] It collects the sender-selected delay, the unwrap time of
the mix for the packet received, the actual delay for every packet transmitted in the
duration of the simulation. We repeat the experiment with different end-to-end latencies
in seconds for every test machine, i.e. dgop = 0.15000001,0.16,0.2,0.25,0.5,1,2.5,5
and 10, resulting in 36 runs in total.

5.2.2 Results

In this section, the results of experiment on the test machines are presented in two parts,
first on approach 1 and then on approach 2 of relating to the effect of unwrap time of
the mix with the test machines.

5.2.2.1 Approach 1

Approach 1 as detailed in Section is when the mixes counterbalance the additional
delay incurred by their packet unwrap time by reducing the sender-intended delay. The
strategies are related to the over-delayed packets - the situation where the per-mix
delay encoded from the sender is shorter than the unwrap time of the mix, causing the
packet to dwell longer than intended at the mix. Sending strategies are also proposed
in Section [3.2]to address when a mix should relay these over-delayed packets. For the
scope of this work, strategies 1 is examined; the mix transmits the over-delayed packet
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Figure 5.1: Distribution of the actual delays (orange) against the distribution of the
sender-intended delays (blue) for dgog = 0.15000001 under strategy 1 of approach 1,
on the Macbook.

immediately.

We start by considering strategy 1 and produce histogram plots of the distributions of the
actual delays of the packet and their sender-intended delays. Histrograms are suitable as
the number of intended delays and actual delays observed are the same so the plots are
comparable. The number of bins in the histogram can affect the visual structure of the
produced plots. Since the experiment is conducted for 9 different values of end-to-end
latency, please refer to Appendix |A| for all the figures of the delay distributions of the
evaluated values of end-to-end latency. Upon inspection, the distributions of the actual
packet delays for dgor = 0.15000001,0.16,0.2 and 0.25 are visibly not exponentially
distributed.

Lab machine For dgyg = 0.15000001, the intended delays are centered around O -
this is expected as the average per-mix delay A is 5 x 10~ second, calculated by
Equation We use the £ itterE] library to fit 50000 data points of the actual delays
selected at random; a subset is necessary due to the large volume of data and the
slow fitting process. 110 distributions are fitted on the data and We select Johnson’s
Sy-distribution as the best fit by the sum of squared errors. For dgog = 0.16,0.2 and
0.25, the distributions have a sharp peak at their respective expected value of the unwrap
time of the mix when running on the lab machine of 0.0055 second. We denote that
the end-to-end latency to be small under such scenario, i.e. the end-to-end latency is
small when dgyg < 0.25 for the lab machine. The actual delay distribution begins to
the resemble the intended delay as the end-to-end latency increases gradually to 10
seconds.

Macbook For dgyp = 0.15000001, the distribution of actual delays is bimodal with

“https:/fitter.readthedocs.io/en/latest/
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Lilliefors test results

Test machine dgyg Over-delayed packets (%) Test statistic p-value
0.15000001 100.00 0.623 <0.001
0.16 66.81 0.416 <0.001
0.2 19.65 0.125 <0.001
0.25 10.36 0.083 <0.001
Lab machine 0.5 3.09 0.028 <0.001
1 1.29 0.013 <0.001
2.5 0.46 0.005 <0.001
5 0.22 0.002 0.043
10 0.12 0.002 0.399
0.15000001 100.00 0.498 <0.001
0.16 57.88 0.361 <0.001
0.2 15.96 0.070 <0.001
0.25 8.42 0.111 <0.001
Macbook 0.5 2.46 0.024 <0.001
1 1.02 0.010 <0.001
2.5 0.36 0.004 <0.001
5 0.18 0.004 <0.001
10 0.08 0.002 0.222
0.15000001 100.00 0.600 <0.001
0.16 69.72 0.417 <0.001
0.2 21.37 0.109 <0.001
0.25 11.22 0.080 <0.001
DICE (SC) 0.5 3.40 0.031 <0.001
1 1.41 0.014 <0.001
2.5 0.50 0.006 <0.001
5 0.24 0.003 0.006
10 0.13 0.006 0.038
0.15000001 100.00 0.629 <0.001
0.16 100.00 0.630 <0.001
0.2 90.64 0.566 <0.001
0.25 69.38 0.436 <0.001
Raspberry P 0.5 28.93 0.145 <0.001
1 13.20 0.101 <0.001
2.5 4.73 0.047 <0.001
5 2.42 0.024 <0.001
10 1.34 0.013 <0.001

Table 5.3: Summary of the percentage of over-delayed packets and the Lilliefors test
results of the actual delay and intended delay distributions at significance level of 5% for
various end-to-end latencies on the test machines under strategy 1 of approach 1.
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one peak centred around 0.0043 and the other centred at 0.0076 (Figure [5.1). From
inspecting the collected 180072 unwrap times, we find that the unwrap times are split
into two groups. At the beginning of the simulation, the unwrap times are consistently
around the mean unwrap time of 0.0076 second for the first 56% of prackets. Then
the unwrap times fall and maintain at a lower value with mean unwrap time of 0.0043
second. Such step-like decrease in unwrap time result in a bimodal distribution which
matches Figure[5.1] as the intended delays are much smaller than the unwrap time. The
mean intended delay is 5.0 x 10~ second - a negligible proportion of either of the mean
unwrap times. The larger proportion of greater unwrap times explains the higher peak
centred at 0.0076. Similar to the lab machine, We consider the end-to-end latency to be
small when dgyg < 0.25 for the Macbook. The peak widens as the end-to-end latency
increases and the actual delay distribution eventually is similar to the intended delay
distribution.

DICE (SC) The peaks in the actual distributions of dgor = 0.15000001 and 0.16 are
less well-defined than in the cases of the lab machine and the Macbook. For all evaluated
end-to-end latencies, the highest peak centred near the unwrap time of the mix at 0.0061
indicates greater number of packets with actual delay similar to the unwrap time (see
Appendix [A.3). Consistent with the previous test machines, the end-to-end latency is
small when dg2E < 0.25 as there is a noticeable peak centred at the mean unwrap time
in the actual delay distribution for dg>r = 0.15000001,0.16,0.2 and 0.25.

Raspberry Pi For the values of dg,g evaluated, the distributions of actual delays are
significantly different compare to the distribution of the intended delays for dp>r =
0.15000001 to 5.0 by performing the Kolmogorov-Smirnov two-sample test at 5%
significance level (p-value = 0.00). The corresponding figures in Appendix |A|reflect
such findings as the area of overlap between the distributions reduces as the end-to
end latency shortens. There is insufficient evidence to reject the null hypothesis of that
the actual delays and intended delays are drawn from the same continuous distribution
(p-value = 0.25). Therefore we conclude that the end-to-end latency is small when
deyp < 5.

Lilliefors Test As the actual delay distribution approximates the distribution of the
intended delays when the end-to-end latency increases, we perform the Lilliefors test
for an exponential distribution [19] to determine whether the distribution of the actual
delays approximates an exponential distribution. The Lilliefors test is a goodness-of-fit
test that is a variant of the Kolmogorov—Smirnov test. Such test is valid when the
mean and the standard deviation of the population distribution is unspecified, hence it is
suitable as the underlying distributions of the actual delays and their true parameters
are unknown.

The null hypothesis of the Lilliefors test is that the actual packet delays are follow
an exponential distribution. The test assumes that the actual delays are consistent
with an exponential distribution and estimates the mean of the exponential distribution
using the observed actual delays. Table [5.3| presents the test results. The Lilliefors
test statistic measures the maximum distance between the empirical distribution of the
actual delays and the exponential distribution. Therefore a low value indicates that the
empirical distribution is good-fitted to an exponential distribution. As the Lilliefors
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test statistic decreases with the increasing end-to-end latency, the difference between
the actual delay distribution and the exponential distribution are statistically significant
with all evaluated values of dgyg for DICE (SC) and Raspberry Pi at 95% level. For
the lab machine and the Macbook, we fail to reject the null hypothesis for dgyg = 10,
so we conclude that the actual delay distribution bears resemblance to an exponential
distribution with 95% confidence level.

5.2.2.2 Approach 2

Approach 2 is, comparably, the simpler scenario. As described in Section approach
2 that is the unwrap time of the mix is not considered when the mix proceeds to delay the
packet by the sender-intended delay encoded in the Sphinx packet header. Figures
in the Appendix shows that the distributions of the actual delays of the packets is
translated more to the right as the end-to-end latency dg,>r decreases; the distributions
become similar in appearance to the exponential distribution as the latency increases. It
is noticeable by the increasing overlap between the distribution with the rising latency
such that the distribution of the actual delays for dgog = 10 resembles the exponential
distribution of the intended delays. Moreover, similar to the finding of approach 1, the
shapes of distributions of the actual delays for dgor = 0.15000001,0.16 and 0.2 are
clearly inconsistent with the exponential distribution by inspection.

To examine whether the distributions of actual delays follows an exponential distribution,
we perform the Lilliefors test for the exponential distribution [19] at significance level
of 5%. Similar to the analysis performed for approach 1, the null hypothesis of the
Lilliefors test is that the observed (actual) delays of the packets follow an exponential
distribution. The results of the goodness-of-fit test are presented in Table

In Table 5.4} the difference in actual and intended delays for all end-to-end latencies
except the end-to-end latency of 10 seconds, are highly statistically significant at 95%
level of confidence. The rise of the test statistic of the Lilliefors test as the end-to-
end latency decreases from 10 seconds, indicates a widening distance between the
distributions of the actual delays and the exponential distribution. This pattern affirms
the one observed in figures in Appendix [B| that the distribution deviates from the
exponential distribution of the intended delays. The test statistic for the end-to-end
latency of 10 seconds is 0.002 (at p-value of 0.222). The p-value of 0.222 is greater
than the significance level of 0.05, thus there is insufficient evidence to reject the null
hypothesis and we conclude that the actual delays are consistent with the exponential
distribution at 95% significance.

5.2.3 Interpretations and Discussion

For approach 1, the sharp peaks in the actual delay distributions are observed when
the end-to-end latency is small, such as in Figure [5.2] This is because the unwrap
time of the mix dominates the overall delay of the packet at the mix. It results in
over-delayed packets and are sent to their next destination immediately. The area at the
right-hand side of the peak in the actual distribution is when the sender-intended delays
of the packets are greater than the unwrap time of the mix, hence these packets are
unaffected by the overhead of the packet unwrap. When the intended and actual delay
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Lilliefors test results

Test machine dgyg Test statistic  p-value
0.15000001 0.628 <0.001
0.16 0.405 <0.001
0.2 0.165 <0.001
0.25 0.095 <0.001
Lab machine 0.5 0.030 <0.001
1 0.013 <0.001
2.5 0.006 <0.001
5 0.003 0.017
10 0.003 0.038
0.15000001 0.622 <0.001
0.16 0.372 <0.001
0.2 0.138 <0.001
0.25 0.077 <0.001
Macbook 0.5 0.024 <0.001
1 0.010 <0.001
2.5 0.004 <0.001
5 0.002 0.046
10 0.002 0.233
0.15000001 0.600 <0.001
0.16 0.396 <0.001
0.2 0.165 <0.001
0.25 0.097 <0.001
DICE (SC) 0.5 0.032 <0.001
1 0.014 <0.001
2.5 0.005 <0.001
5 0.002 0.045
10 0.003 <0.001
0.15000001 0.629 <0.001
0.16 0.601 <0.001
0.2 0.502 <0.001
0.25 0.416 <0.001
Raspberry Pi 0.5 0.221 <0.001
1 0.114 <0.001
2.5 0.048 <0.001
5 0.025 <0.001
10 0.012 0.004

Table 5.4: Summary of the Lilliefors test results of the actual delay and intended delay
distributions at significance level of 5% for various end-to-end latencies on the test
machines under approach 2.
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Figure 5.2: Distribution of the actual delays (orange) against the distribution of the
sender-intended delays (blue) for drpor = 0.16 under strategy 1 of approach 1, on the
Macbook.

distributions resemble each other, it indicates that the unwrap time is not the principle
period of time for the actual delay of majority of the packets. Since there is no notion
of over-delayed packets for approach 2 as the actual delay of a packet is simply the sum
of the unwrap time and the encoded per-mix latency, there is no further implications.
However, we can further interpret this: it indicates that the majority of the packets sent
are not over-delayed when the end-to-end latency is not small; the unwrap time of the
mix is less than the intended delay hence the mix is able to counteract its unwrap time
by reducing the sender-intended delay appropriately.

The multimodal distributions for some of the actual distributions suggest that the system
load on the test machine varied over the duration of the simulation. The unwrap times
of the mixes are longer than the intended delay of the packets such that the unwrap
time dominates the structure of the actual delay distribution. For example in the case of
dpae = 0.15000001 on the Macbook, the distribution of the actual delays reflects the
change in unwrap time, described under the results for Macbook in Section [5.2.2.1} in a
bimodal distribution.

For approach 1, the actual delays approximately follow an exponential distribution when
dp2r = 10 for the 1ab machine and the Macbook at significance level of 5%, hence those
actual delays preserve the memoryless property of the exponential distribution. However,
for approach 2, the actual delays are only close to be distributed exponentially when
dp2r = 10 on the Macbook - for all the evaluated dgag values on other test machines,
there is enough evidence to conclude that the actual delay distributions are significantly
different to an exponential distribution. In conclusion, greater values of end-to-end
latency should be utilised when the mixnet employs approach 2 to mitigate the effects
of the unwrap overheads of the mixes, such that the actual delays approximates an
exponential distribution. This is because the average per-mix latency A of the packet
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increases with the end-to-end latency. When A increases, the probability of selecting
a delay that is less than the unwrap time of the mix reduces. This is illustrated in
Figure where the PDF flattens when A increases as the total area underneath the
PDF is 1. Hence the probability of encountering over-delayed packets decreases.

Finally we address the possibility of the distribution of the actual delays ever achieve
true exponential distribution. we argue that in real-world deployment, it is not possible
to achieve an actual delay distribution that is a true exponential distribution which has the
memoryless property since the unwrap time of the mix incurs a positive, non-negligible
on every packet arriving at the mix. The unwrap time shifts the exponentially distributed
delays, causing the resultant distribution be non-memoryless, by Equation2.2] However,
it is possible to reduce the effects of the unwrap time: (1) increase the per-mix delay and
(2) decrease the unwrap time. Increasing the per-mix latency comes at the expense of
increased end-to-end latency. It is also worth noting that it is not possible to completely
eliminate the possibility of over-delayed packets even when the per-mix latency A is
large due to the exponential distribution being right-skewed. The area underneath the
graph on the left-hand side of the mean is greater than the right-hand side, referring
to Figure for examples. Hence increasing A can at most reduce the proportion
of over-delayed packets encountered in a mixnet. Moreover, there is a limit on the
human tolerance on the latency, for some real-time messaging application, it may not be
acceptable for end-to-end latency to be sufficiently greater than 10 seconds. Reducing
the unwrap time can be achieved by faster machines which is a motivation for future
work.

In the next section, we demonstrate the limitations of these approaches.

5.2.4 Packet Distinguishing Attacks

In this section, we address the implications of approaches 1 and 2 on the anonymity
of the packets. As briefly mentioned in Section there are two possible packet
distinguishing attacks that a GPA can perform on the packets when observing arrival
and departure times of the incoming and outgoing traffic of a particular mix.

The first attack involves a single packet arriving at a mix with an empty queue, i.e. no
messages are waiting at the mix. This is similar to the attack described in [[16]] where
the adversary is only able to correlate an outgoing packet if there are no other packets
waiting or arriving at the mix during the delay time. We demonstrate that packets under
strategy 1 of approach 1 and approach 2 are vulnerable to this attack.

Figure depicts a timeline where there is an incoming Sphinx packet at time /1,
which the mixnode performs the cryptographic operation to unwrap the packet to reveal
the delay selected by the sender - unwrap time, denoted as u;. Outgoing packet is
denoted as the packet at time O. In this scenario, the adversary is able to correlate
packets at times /; and at O with non-negligible advantage, even though the outgoing
packet had been cryptographically transform to provide bitwise unlinkability between
packets at times /; and O - a property of Sphinx packet format. This is because the
adversary can infer that the intended delay is shorter than the unwrap time u; elapses
the actual delay; the packet has already been over-delayed at the mix, and is relayed to
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Figure 5.3: Scenarios where the adversary can correlate the outgoing packet with an
incoming packet it observed earlier.

its next destination immediately to avoid further delay, resulting in a first-in first-out,
queue-like behaviour. Therefore there is no reordering of packets. The same can be
applied to packets under approach 2, even though the delay of the packet is longer due
to the mix is not counteracting its unwrap time, since the culprit for the attack is the
empty queue of the mix.

Since both the packet sending rate and the packet delay time are modelled by two
different Poisson processes (which are realised using exponential distributions), the
probability of the queue being empty at time /; is calculated by e Mu by the method
provided in [16]. Thus, for the experimental setup of the continuous-time mixnet
detailed in Section the parameter u of the exponential distribution of the per-mix
delay by the following formula, given L layers and dg)k:

L
M= e YL+ 1)

As presented Kesdogan et al. [16], the probability of the queue being empty when a
packet arrives is calculated by ¢ Menduser /1 Hence for dgop = 0.15000001, the probabil-
ity of the packet at time /; entering an empty queue is:

2

= = 200000000 = ¢~2000/200000000 1 ¢
0.15000001 — 0.05 x 3 ¢

u

Therefore the adversary has unassailable advantage in launching such attack when the
per-mix latency is close to 0. Similarly, we calculate for dgor = 0.16 and the probability
is ¢79000/200 ~ 1 4 % 10~!'. An 1.1-fold increase in end-to-end latency reduces the
probability of empty queue by a multiple of 7.2 x 10'0. A further increase the end-to-
end latency to 0.25 second and the probability is close to 0. Thus we conclude that
any value of dgsg slightly greater than the minimal end-to-end value is effective in
preventing this first type of attack.
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We now extend such attack to a queue with more than 1 packet waiting - over-delayed
packets under strategy 1 of approach 1 are vulnerable to this type of attack. It is assumed
that only two message are within the queue of the targeted mix, we argue that this is
reasonable as the unwrap time of the mix is small. Figure illustrates the scenario
where there are two incoming packets at times /1 and /; into the mix and an outgoing
packet at time O, where I, — I} < u; and O — I, < u», u; and u; denotes the unwrap
time for packets at times /; and I, respectively. We assume that the packet at time /;
is an over-delayed packet. The adversary can identify the outgoing packet at time O
with a specific previously-observed incoming packet, I in this case, with probability
greater than 50% (the adversary has probability of 50% of identifying successfully by
guessing randomly). This is because with the knowledge of the unwrap times u; and uy,
the adversary has the advantage of inferring that the unwrap time of packet at time I,
lapses the outgoing packet at time O - at time O, the mix would not have completed the
unwrapping operation for packet at time />, hence the outgoing packet could not be the
packet at .

This does not have the memoryless property of the exponential distribution, recalling
that the memory property indicates that the probability of packet at time O being packet
at time /; is equal to the probability of being packet at time />, the adversary gains no
additional information from the difference in arrival times of /; and /.

The probability of the occurrence of the second type of attack depends on the number
of over-delayed packets. Table[5.3]includes the percentage of over-delayed packets for
the evaluated values of dgyr. The possibility of an adversary being able to successfully
correlate the traffic falls as the end-to-end latency increases. For end-to-end latency
greater than 2.5 second, there is less than 1% of over-delayed packets for all test
machines except the Raspberry Pi. Since the Raspberry Pi is at least 10 times more over-
delayed packets with the same mixnet configurations. Thus, we do not advise operating
mixes on Raspberry Pi’s, based on the results presented here. For the remaining test
machines, we suggest that a mixnet with end-to-end latency greater than 1 second is
acceptable as it was found that a webpage takes 10.3 seconds on average to be fully
loaded on a deskto;ﬂ As mentioned in Section there will always be over-delayed
packets in the network due to the unwrap time. However, increasing dg>g can effectively
reduce the adversary’s attack surface.

In addition, we discuss briefly that the packets under approach 2 can also be susceptible
to the second type of attack. For this section, the adversary has knowledge of the
average unwrap time of the mix, relaxing the assumption that the adversary knows every
unwrap time of mix for each arriving packet. Such relaxation is suitable as it presents
a strong yet more realistic adversary., whilst simplifies the analysis of the attack. The
adversary can obtain the average unwrap time of the target machine offline. By the law
of large numbers, which states that the sample mean of independently and identically
distributed data converges to the theoretical mean of the underlying distribution as the
sample size increases. This statement holds even when the underlying distribution is
unknown such as the distribution of the unwrap times. Hence we also note that the
attack analysis for approach 1 holds even when the adversary only gains knowledge on

Shttps://backlinko.com/page-speed-stats
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the average unwrap time.

Suppose the average unwrap time of the mix is u. Let there be 2 packets arriving at
the mix at times /1 and I, for I} < I, and I, — I} < u. Let ;> be the difference in
time between the arrival times of the two packets. The sender-intended delays of the
packets are unknown to the adversary. If a packet is emitted from the mix at time O for
u < O < u+t>. Then the adversary has non-negligible advantage in correlating the
packet at time O with the packet at time I;. Figure illustrates the attack.
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Evaluation

This section provides an overall evaluation on the work in this project. The first section
is on the overall system where the experiments are conducted, and the second is on the
result and discussion section. We also discuss some technical difficulties encountered
during the project and the solutions to resolve them.

6.1 Experimental Methodology, Framework and Setup

Mixnet The mixnet itself is assumed to be honest, with honest mixes and end users
which are strong assumptions that are unlikely to reflect any real-world mixnets real-
istically. However, We consider these strong assumptions apt for the purpose of this
project - to focus exclusively on the effects the additional unwrap time alone can cause
to detriment the level of anonymity protection offered by the memoryless property
of the exponential distribution. The layers of the mixnet are balanced as it has been
demonstrated that it is preferred over mixnet with variable layer widths since it produces
worst-cases that are less advantageous to the adversary in small networks. This is rele-
vant as the mixnet in this work - 2-layered mixnet with layer width of 10 - is relatively
small. These chosen parameters are demonstrated to be optimal in Section 4.3

Choice of mixnet simulator Current literature presents two discrete-event mixnet
simulators, the Loopix Simulator and MiXiM [4} 20]. Both simulators are highly
customisable and very suited for the requirements for this project. To decide on a
simulator to use for this project, we experimented on both of them and we found that the
Loopix Simulator has many additional features such as defining the size of the Sphinx
packets for setting up a complex mixnet design that is beyond the goals of this project.

We decided to build on MiXiM to obtain the experimental framework as it was easier
to verify our selected mixnet parameters against the work of Guirat and Diaz when
running on the same simulator. As a side observation, the average end-to-end latency is
adjustable with a specific field in the configuration file for MiXiM whereas the Loopix
Simulator opted for adjustable per-mix latency in their configuration file. Note that
the end-to-end latency and the per-mix latency are interrelated. The Loopix Simulator
can be used for confirming the work conducted in this project. Since both simulators

35
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are implemented with Python, the Rust binding can be easily ported from MiXiM to
the Loopix Simulator to perform the experiments. We leave the evaluations of the
experiments on the Loopix Simulator as future work.

As a side remark, there is an inconsistency in the Greek symbol used for referring to the
mean or the expected value of per-mix latency and the parameter that characterises the
exponential distribution from which all per-mix delays are sampled. In the literature of
MiXiM, u represents the former - the mean of the exponential distribution, i.e. the aver-
age per-mix latency, whereas u represents the latter - the parameter of the exponential
distribution. We confirmed this by running trial executions on both simulators. As a
clarification, we use u to represent the parameter of the exponential distribution and A
to denote its mean - the average per-mix latency. For further details, please refer to the
summary of notations in Section4.1]

Structure of Rust binding The original Sphinx packet unwrap benchmark is built with
criterionﬂ a feature-rich, sophisticated Rust benchmarking framework that is popular
for measuring code performances in Rust. Since the unwrap time is included in the
time of which the packet waits in the mix during the simulation, the initial idea was to
obtain the unwrap time of the packet extemporaneously by invoking the Sphinx unwrap
benchmark. This was well-thought approach as the design of criterion minimises
the measurement overhead. However, despite a long period of substantial research and
experimenting, we were neither able to find a way to invoke the Sphinx packet unwrap
benchmark via the Rust binding, nor effectively return the unwrap time benchmarked
in Rust to the Python runtime. This period of trial and error inherently slowed down
the progress of the project. The challenges faced in this part of the project was further
amplified by our limited experience with the Rust programming language. Hence
substantial amount time was spent to gain sufficient knowledge in the Rust program
structure, in order for the appropriate modifications to be made for this project.

As a result of the restrictions in the framework, we finally resorted to using a simple
start-stop timer in Rust to measure the elapsed time to acquire the unwrap time. Thus,
small fluctuations in the unwrap time were observed, hence also in part, motivated the
experiment on the average unwrap time.

Overhead of Rust binding From inspecting the source code of the provided Sphinx
benchmark, we find that part of the Sphinx packet unwrap function technically includes
creating a copy of the packet for setup. It is a small portion of overhead compare to
the computationally expensive cryptographic packet unwrapping [2]. Therefore such
overhead is amortised over the duration of the simulation. Moreover, it is important
to consider whether the overhead introduced by the Rust binding impacts the delay
measurements. We confirmed this by calling an empty Rust function and found that the
additional overhead due to the PyO3 library is of magnitude 10~ of the unwrap time,
regardless of the test machine. Thus this overhead is considered to be negligible.

Thttps://docs.rs/criterion/latest/criterion/
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6.2 Results and Discussions

Choice of evaluated dg,r values For the experiments are involved varying the value of
dr>k, the following values were chosen: 0.15000001, 0.16, 0.2, 0.25, 0.5, 1.0, 2.5, 5,
and 10. Although the intervals between the values are not system, they are not arbitrarily
chosen. The lowest values of 0.1500001 is selected as we wanted a small value that can
highlight the gap between between transition from the theoretical models to physical
implementations. This is a common problem in research. Whilst theoretical models
can evaluate the processing time of any program, any empirical evaluation encounters
noises introduced by the environment such as the operating system context switching
of the physical test machine. In our case, an end user could theoretically set the value
of dp>r so small such that the average per-mix latency is or close to zero, to achieve a
low overall latency. By testing 0.15000001, we can evaluate the effect of such small
lambda of a continuous-time mixnet in a real-world scenario. We showed that this
results in 100% over-delayed packets. Moreover, whilst the decision on the dgor values
to evaluate does not affect the findings in this project, the values selected for end-to-end
latency greater than 1 is relatively sparse compared to the values less than 1.

Histogram Plots The delay distributions were visualised using histograms. There was
a key question to address: how many bins should be used to generate the histograms?
There is a trade-off between the bin numbers. Small bin numbers result in some essential
characteristics of the distributions to be overly rounded. Large bin numbers factor in
the fluctuations caused by sampling. To best reproduce the structure of the which can
be affected by suboptimal bin widths, several bin numbers were evaluated and a bin
number of 250 selected which best balance between the representation of the delay
distributions and the rounding of the data. We further supported our investigations by
using various statistical analysis.

However, we recognise that it is difficult to gauge the optimal number of bins by
the common method of trial and error. Knuth [[17] propose an algorithm based on
Bayesian probability theory which attempts to obtain the optimal bin number with
limited or no information on the actual shape of the underlying distribution. It also
does not assume the data to be normally distributed. Such method is implemented in
the data visualisation module of the astrop library to compute automatically the
optimal number of histogram bins based on the data. Whilst we found that Knuth’s rule
computed the bin number efficiently, the algorithm advises fewer bins than the number
we found; this is in line with the evaluation presented in [17]. This results in more
rounding to the delay distributions such that some essential characteristics of the delay
distributions have been overly rounded. Given longer project timeline, this approach
could be explored further as it showed promising results.

Packet distinguishing attacks Two variants of the second type of distinguishing attacks
are illustrated for strategy 1 of approach 1 and approach 2 in Figure [5.3bland Figure
respectively. We were able to compute the probability of an adversary launching such
attack for strategy 1 of approach 1 by computing the proportion of over-delayed packets.

Whilst the library itself is designed for astronomy purposes, the data visualisation module,
specifically the function for plotting histograms is applicable for the usage in this report. Link:
https://docs.astropy.org/en/stable/visualization/index.html
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However, since approach 2 results in no over-delayed packets by definition, the current
experimental setup does not provide means to compute the likelihood of occurrence for
the attack. Specifically, there would be necessary modifications to the simulator and
the logging system such as recording precisely the packet arrival and departure times,
so that anaylsis can be completed. The entire data collection process would have to
be repeated. Therefore, in consideration of the project timeline, we leave the detailed
computation of the distinguishing attack on approach 2 as future work.



Chapter 7

Conclusions

7.1 Summary of Results

It is evident that the unwrap time of the mix has significant effect on the overall time
the packet dwells in the mix. On the various test machines, the unwrap time of the mix
running on one of the test machines is significantly different to the one of another test
machine with a different hardware specification. The Loopix Simulator uses a constant
to represent the Sphinx packet processing time on every mix whilst MiXiM accounts
for the processing time and the network propagation together as a constant value that
occurs per hop. The findings show that such design is no longer suitable, and encourage
future work to take packet processing time, especially unwrapping time, in a sense
that it is variable. Moreover, we advise extra attention is required when analysing a
mixnet that consists of machines with various hardware specifications. This is because
even machines are similar in processing speeds can still produce significantly different
unwrap times.

We demonstrated that for small end-to-end latency, there is a sharp peak in the histogram
depicting the actual delay distribution. This indicates that the unwrap time is forming
an overwhelming proportion of the actual delay which a packet experiences. For most
of the evaluated test machines, the end-to-end latency is small when dgop < 0.25. The
exception is the Raspberry Pi which is significantly slower than the other machine; its
end-to-end latency is small when dgog < 5.

Over-delayed packet occurs when the per-mix latency is shorter than the sender-intended
delay. For u value close to 0 (0.00000001 in our experiments), this studying finds that
such small value results in 100% of packets being over-delayed for all the machines.
In fact, for all the end-to-end latencies evaluated (hence u values evaluated), there is a
non-zero percentage of over-delayed packets. However, the percentage drops below 1
when the end-to-end latency is 10 seconds for all test machines except for the Raspberry
Pi. In conclusion, a suitable value for the parameter u of the exponential distribution
depends on the hardware specification of the machine used for operating the mix. We
advise suitable adjustments must be made accordingly for more accurate analyses.

To the best of our knowledge, the packet-distinguishing attacks presented in this report
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are novel. The adversary can perform timing analysis attack by exploiting the knowledge
of the unwrap time, and gains advantageous information to correlate incoming and
outgoing traffic of a mix. In addition, we have showed that any value slightly greater
than the minimal end-to-end latency permitted by the network latency is effective
in preventing the first type of packet-distinguishing attack. we presented that the
memoryless property breaks down for the over-delayed packets which occurs in strategy
1 of approach 1. This is because the exponentially distributed delays are shifted by the
unavoidable unwrap time, and we also provided the relevant proof.

To conclude, it is to the best of our knowledge that, this project is the first piece of
research focusing exclusively on the implications of the cryptographic Sphinx packet
unwrapping operation on the anonymity of the mixnet. Sphinx packets are a fundamental
component of real-world mixnets such as Nym [11]. We show the anonymity impacts of
the machine-dependent unwrap time of the packet and their mitigations. The limitations
and vulnerabilities of the mitigations have on the packet anonymity are discussed. With
the empirical analysis on the Sphinx packet unwrap presented in this report, we hope to
have provided further insights and motivations for future investigations in this crucial
yet less-explored topic on the continuous-time mixnet.

7.2 Future Work

Throughout the report, we have suggested several potential areas for further work, which
are summarised in this section.

Having established the significance of unwrap time on the actual delay of the packet, it
is natural to continue the investigation on the other aspect of Sphinx packet processing
- packet transformation. When a Sphinx packet arrives at a mix, the packet is crypto-
graphically transformed by the mix before being relayed to its next destination. Such
cryptographic operation is also computational expensive. In this report, the packet trans-
formation overhead is accounted by assuming a constant factor. Looking the findings on
unwrap times, this assumption is likely to be false. This motivates for further analysis
to be performed in order to formalise its implications on the anonymity of the packets.

In terms of the architecture of the experiment framework used, we have used MiXiM as
the underpinning simulator for this work. Alternatively, modifications can be made for
the Loopix Simulator to be used instead.

For the packet distinguishing attack, the analysis of the likelihood of attack occurrence
for approach 2 can be formalised. For strategies 2 and 3 of approach 1, future work can
investigate the plausibility and the relevant mechanisms to ensure the correct functioning
of the mixnet, as well as limiting the impacts in case of malicious senders or mixes.

Finally, the work presented in this paper is the starting basis on analysing the anonymity
of the packets in the presence of cryptographic overhead. We have started by using
a simplified mixnet design. To advance the investigation, we can add the remaining
anonymity mechanisms such as cover traffic and link traffic which reflects more realisti-
cally the holistic mixnet deployed in Nym and Loopix. In future works, we can analyse
the anonymity of such system when taking into account the unwrap times of the mixes.
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Appendix A

Intended and Actual Delay

Distributions of Strategy 1 of Approach
1

This section provides all the distributions of actual and intended delays on the test
machines listed in section [3.6] when considering strategy 1 of approach 1 of section[3.2]
Figures [A.1] [A.2] [A.3] and [A.4] cover strategy 1 of approach 1 for the lab machine,
Macbook, DICE (SC) and Raspberry Pi respectively.
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Figure A.1: Distributions of the intended and actual delays of the packets in the simulation
on the lab machine under approach 1 in section
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Figure A.1: Distributions of the intended and actual delays of the packets in the simulation
on the lab machine under approach 1 in section @
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Figure A.2: Distributions of the intended and actual delays of the packets in the simulation
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Intended and Actual Delay
Distributions of Approach 2

This section presents the figures of delay distributions related to approach 2. Figures[B.T]
for the lab machine, Macbook, DICE (SC) and Raspberry Pi respectively.
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Figure B.1: Distributions of the intended and actual delays of the packets in the simulation
on the lab machine under approach 2 in section
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Figure B.1: Distributions of the intended and actual delays of the packets in the simulation
on the lab machine under approach 2 in section @
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