A mobile phone app for drone-based lunch
delivery

Maria Guran

4th Year Project Report
Computer Science
School of Informatics
University of Edinburgh

2023

Abstract

With the increase in popularity of mobile food delivery applications, developers have
started to look towards improving interface usability in order to increase customer
satisfaction. However, not even the most popular apps on the market fully take advantage
of all the industry guidelines on usable design. This project details the development of
a mobile phone food delivery app that aims to prove this by introducing some revamped
features to the widely known interface. It builds on the idea of a drone-based lunch
delivery app introduced as part of the University course Informatics Large Practical. The
app was evaluated through a user study that indicated there is potential for improving
certain areas of current apps, however, further studies should be conducted to truly
measure the impact of these features.

Research Ethics Approval

This project obtained approval from the Informatics Research Ethics committee.
Ethics application number: 840955

Date when approval was obtained: 2023-02-28

The participants’ information sheet and a consent form are included in the appendix.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Maria Guran)

Acknowledgements

I want to thank my supervisor Marc Juarez for overseeing my work and providing
invaluable feedback throughout the whole process.

I want to thank my family for supporting and motivating me throughout the duration of
my studies, even from so far away in another country.

Last but not least, I would like to thank my friends, both at the University and outside
of it, for encouraging me every step of the way.

Table of Contents

Introduction

I.1 Motivation
1.2 Researchgoals,
1.3 Summary of achievements
1.4 Dissertation structureo

Background

2.1 Prerequisites (Informatics Large Practical)

2.2 Appdevelopment
2.2.1 Feature-driven development (FDD)

2.3 Guidelines on designing user interfaces

24 Implementation
2.4.1 Types of mobile applications
2.4.2 Android development with Kotlin
2.4.3 Android application components
2.4.4 Model-View-Controller architecture
245 Database

2.5 Usability evaluation methods
2.5.1 Think-aloud protocol

2.5.2 Thematicanalysis.
Methodology
3.1 Review of existing systems: setting a baseline
32 Design e

3.3 Implementation
34 Evaluation

Existing systems and initial requirements

4.1 AIms. . ..

4.2 Initial requirements L. oL oL oL

4.3 Existing applications oo
43.1 Gooddesignchoices
4.3.2 ”Bad” (or debatable) design choices

4.4 Summary e e e e e e

Design

DN =

Nelio olio b N IR e NIV BV, I -

5.1 AIMS o e e

5.2 Designoverview e e e
5.3 Designchoices
5.3.1 Designof base features
5.3.2 Design of new and improved features
5S4 Summary ... e
Implementation
6.1 Aims.
6.2 Database structure
6.3 Implementation
6.3.1 Signup/login. oo
6.3.2 Homepage
6.3.3 Restaurantpage
6.3.4 Itemselectionscreen
6.3.5 Cartpage e
6.3.6 Useraccountscreen
6.3.7 Elements left for futurework
6.4 Summary
Evaluation
7.1 AIMS . . .o e
7.2 Participants e e e
7.3 Datacollectionmethods
7.4 Materials e e
7.5 Protocol
7.6 Analysis e
777 Results. e e
7.7.1 TFast-add”feature
7.7.2 Indication of items already incart
7773 Listandgridview L oo
7.7.4 ”Back-to-top” button L.
7.7.5 Bottom navigationbar
7.7.6 Other observations
7.8 Summaryo e e e
Conclusion
8.1 Discussion e
8.1.1 Challenges
8.1.2 Limitations
82 Futurework
83 Conclusion
83.1 RQI
832 RQ2. e
833 RQ3
Bibliography

22
22
22
23
23
24
24
26
27
27
28
28

29
29
29
30
30
31
31
32
32
33
33
34
34
35
35

36
36
36
37
37
38
38
38
38

39

A Participant Information Sheet
B Participant Consent Form

C Interview script

vi

42

46

48

Chapter 1

Introduction

1.1 Motivation

The food delivery business has been on a gradual increase in popularity in recent
years, thanks to the convenience it offers [33][38]. This can be mainly attributed to the
increased usage of smartphones and mobile applications. What initially started off with
people phoning restaurants to order delivery has slowly evolved into an industry that
enables customers to have food from their favourite restaurants delivered to their door
in a matter of minutes. As a result, many companies have created highly innovative
mobile food delivery apps [6]. With the increasing competition in the industry, usability
has become a very important aspect of app development that helps ensure customers
stay loyal and satisfied [41].

One of the main motivations for usability in food delivery apps is customer satisfaction.
Having a user-friendly interface will guarantee that customers have an enjoyable and
stress-free ordering experience. Now more than ever, customers are spoiled for choice
when it comes to food delivery apps, so providing them with a seamless experience is
paramount to a company’s success. Designing an attractive interface, simplifying the
system and adding novel features are some of the ways in which the user experience
can be enriched.

Additionally, a well-designed app that is intuitive and easy to navigate will help in
guaranteeing customer retention. The app should cater to all types of users, even those
who are not tech-savvy [25]. When customers have a positive experience, they are more
likely to use the app again in the future.

In spite of this, even the most popular companies nowadays sacrifice or ignore certain
usability aspects when developing their food delivery apps [19]. As a result, long-
time customers have gotten used to seeing a specific layout and have some predefined
expectations of what a food delivery app should do, diminishing the potential benefits
of their user experience. Although there are industry standards and recommendations
for usable design, most apps do not fully follow them.

Chapter 1. Introduction 2

1.2 Research goals

The aim of this project is to design, implement and evaluate a food delivery app for
students, that builds on previous work carried out in the Informatics Large Practical
[36] course, to discover whether improvements can be made to current popular food
delivery apps in terms of user interface usability. This is reflected in the following
research questions:

RQ1 Do commercial apps follow industry standards for usability? To what extent or in
what ways do they follow them?

RQ2 What improvements can we make over existing apps, in accordance with the
guidelines?

RQ3 What is the potential impact of the new and improved features in terms of usabil-
ity? Do the users notice the existence of these features? Do they actively use
them? Do they find that the features aid or hinder their experience?

1.3 Summary of achievements

To address RQ1, I analysed the interface of three of the most popular food delivery
apps on the market: UberEats [40], Deliveroo [8] and DoorDash [10]. I compared their
layouts against a list of relevant guidelines for usable design (see Section 4.3).

To address RQ2, I designed and implemented a prototype of a food delivery app that
closely resembles existing applications. Based on the usability guidelines from Section
2.3, implemented additional features as potential improvements to existing systems.
The app was implemented in Android Studio [4] with Kotlin [26], using the feature-
driven development process described in Section 2.2.1.

To address RQ3, I conducted a user study with 14 participants using the think-aloud
protocol described in Section 2.5.1. I transcribed the interview data and compiled the
results using thematic analysis (see Section 7.6). The results indicate that there are
potential areas for improvement in terms of the usability of food delivery app interfaces.

1.4 Dissertation structure

The dissertation is divided into eight chapters and has the following structure:

Chapter 2. This chapter introduces all the background information related to previous
work, as well as the processes and technologies used in each stage of the project.

Chapter 3. This chapter provides an overview of the methodology used for each step
of the development and evaluation of the project.

Chapter 5. This chapter describes the process of designing the prototype application,
with a focus on the features to be evaluated.

Chapter 1. Introduction 3

Chapter 6. This chapter describes the process of implementation of the design de-
scribed in Chapter 5, as well as the challenges encountered during this stage.

Chapter 7. This chapter shows the protocol and results for the user study conducted
to evaluate the app.

Chapter 8. This chapter presents a discussion on the outcome of the whole project, as
well as the limitations and proposed future work.

Chapter 2

Background

This chapter is an overview of the concepts needed to understand the content of this
report and to undertake future work described in Chapter 8.

2.1 Prerequisites (Informatics Large Practical)

In the academic year 2021/2022, the course Informatics Large Practical (ILP) [36]
involved creating a prototype of an algorithm for a drone to deliver lunch orders to
students in the central campus area [16]. The algorithm would have to retrieve all the
orders for the day and then plan a path to allow the drone to deliver them before running
out of battery. Additionally, the drone was confined to the main campus (see Figure
2.1) and was not allowed to fly over certain buildings called no-fly zones (see Figure
2.2). All locations were encoded in GeoJSON format [21].

In order to function, the system required access to a locally run database and web server.
The database was used to manage the list of daily lunch orders, while the web server
held information about the location of no-fly zones, available restaurants and menus. In
the coursework specification, it was assumed that the orders would be collected through

Forrest Hill KFC N (G
(=3.192473,55.946233) (=3.184319,55.946233) i .
N Ve
The drone
is confined
to this
area.
7z N
(—3.192473,55.942617) (—3.184319,55.942617)
Top of the Meadows Buccleuch St bus stop

Figure 2.2: No-fly zones (in red).
Rendered using geojson.io [29].
Image taken from [16].

Figure 2.1: Coordinates of drone confinement area
(image taken from [16]).

Chapter 2. Background 5

Initial Model
Modeling Storming
G |
Develo Build a - -
P Plan by N| Design by Build by
an Overall :D Features :D
. Feature V| Feature Feature
Model List
(moare shape A list of features A development plan A design package
than content) grouped into sets Class owners Completed
: and subject areas Feature set owners (add more content client-valued
An object model to the object function
+ notes. <] model)

Copyright 2002-2005 Scolt W. Ambler
Original Copyright S. R. Palmer & J.M. Felsing

Figure 2.3: The FDD lifecycle (image taken from [1])

an online system in the morning and placed into the drone’s database of orders to be
delivered during lunchtime.

2.2 App development

In this section, I describe the software development process I chose for the design and
implementation stages.

2.2.1 Feature-driven development (FDD)

In the early days of software, popular development methods were focused on creating
a rigorous and detailed plan for designing a product. This plan-driven development
approach was created by teams working on critical, long-lifetime systems which needed
a high degree of accuracy and planning to ensure as few errors as possible passed through
to the deployed product. As the software market grew, these methods were quickly
dismissed because of the massive overhead in planning, design and documentation [42].
Most software systems did not need the amount of detail expected of a critical system,
and sticking to these methods meant that it would take a significant amount of time to
release a product and fixing errors would require a lot of time and resources.

The notion of agile development was thus introduced; it would allow teams to focus
more on adding functionality incrementally than sticking to a rigorous, inflexible design
[37]. By minimizing development overheads, agile engineering allows developers to
deliver smaller components faster and make changes more easily to fit the ever-changing
software market. There are many different agile methods but for my project I decided
to go with feature-driven development (FDD).

As the name implies, FDD [1] is an agile method that focuses on splitting the system

Chapter 2. Background 6

into individual features or functions based on requirements. The FDD lifecycle (Figure
2.3) is comprised of five stages:

1. Develop an overall model — The first stage of FDD focuses on creating a high-
level conceptual model of the system in order to identify key elements and their
relationships.

2. Build feature list — During this stage,a list of features is devised based on the
initial model by decomposing the functionality into subject areas. Each subject
area will have a corresponding set of features to be developed. Each feature
should be small enough to be implemented in less than two weeks, otherwise, it
should be broken down into smaller features.

3. Plan by feature — In this step, tasks are planned for completing each feature. The
complexity, risks and dependencies of each feature will be used to determine the
order in which tasks are completed.

4. Design by feature — During this stage, individual features are designed in detail,
including the user interface, database and business logic aspects. The overall
model also gets refined in this stage.

5. Build by feature — The features designed in the previous step are implemented,
starting with the most critical ones. After the feature is unit tested and reviewed,
it is promoted into the main build.

2.2.1.1 Motivation

The reason why I picked FDD for the design and implementation steps for my project is
that it allows me to add on features as I see fit. Instead of starting off with a predefined
list of goals, I could have a flexible set of features which would allow me to continue
researching and refining my model even during the late stages of my project. I found
this incremental approach to be more suitable for my work style and easier to adapt to
changing requirements and testing.

2.3 Guidelines on designing user interfaces

Usability is one of the most important aspects of any software product, as it helps ensure
not only that the product will be used correctly, but also that it will leave a lasting
impression on the user, prompting them to use it again in the future [41]. As a result,
many guidelines have been created to encourage usable design in software systems.
Some of these are applicable only to specific types of systems, while other more general
ones have been applied to all types of software, ranging from computer applications to
web and mobile applications.

For designing my application, and also for evaluating existing apps, I compiled a list of
relevant categories of usability guidelines:

UG1 Page layout: the layout should follow a general convention of top-to-bottom,
left-to-right reading [17]; related information should be grouped together [2]

Chapter 2. Background 7

UG2

UG3

UG4

UGS

UG6

24

Visibility: prioritise making important features and actions highly visible and/or
discoverable [32][2]; if using illustrations, these should convey a clear and obvi-
ous meaning [39]; every user action should produce evident feedback from the
application [2]

Readability: favour high contrast between the background and application text;
avoid colours that would diminish the contrast, and, as much as possible, use a
minimalist, black and white design [2][39]

Size: make important objects (text, buttons) bigger; use smaller objects for
functions that are less common or important [32][39]

Clutter: aim to reduce visual clutter by removing information which is not
relevant to the user’s task [2]

Ease of navigation: support different usage patterns for different users; create
shortcuts for advanced users[2][17]; aim to reduce the number of keystrokes
needed to complete an action [2][17]

Implementation

In this section, I review the different types of apps and technologies I considered for the
implementation stage of this project.

241

Types of mobile applications

I decided to develop a mobile app because I wanted to offer students a quick and
portable alternative to ordering food in person. With that in mind, I considered three
types of mobile apps:

Native apps: these apps are designed for a specific mobile operating system
(OS), such as Android [3] or 10S [23]. The main advantages of having a platform-
specific design are performance, consistency and enhanced user experience. Be-
cause they are built for a particular OS, they can make full use of the device’s
resources and hardware functionality. The disadvantage of native apps is that they
cannot be used on devices which do not have the required OS, which means that
in order to accommodate other systems we need to build a separate app with new
code, using a different programming language.

Web-based apps: these apps are essentially running in the browser. Unlike native
apps, they do not need to be installed on the device in order to be used. A big
advantage of web apps is that they can be run on any device that has an internet
connection, unlike native apps which are OS-specific. On the other hand, because
the app is running in the browser, its functionalities are completely dependent on
those of the browser itself. Their performance is also similar to that of a website,
which can be noticeably slower than a native app which is optimized to run on
specific devices.

Chapter 2. Background 8

* Hybrid apps: as the name suggests, these apps are a combination of a native app
and a web app — they can be downloaded on a device, but they run through web
browsers. Similar to web apps, they have the advantage of being available for
different platforms, however, they have worse performance than native apps for
this same reason.

Taking everything into account, I decided to go with a native Android app for my project,
because of the performance and user experience advantages. Since the app must handle
live updates on the order status and the location of the user and the drone, it is crucial
that it offers a fast and reliable experience, otherwise, it could be deemed unusable.

2.4.2 Android development with Kotlin

Android [3] is one of the most popular mobile operating systems at the moment, with
over 3 billion users worldwide as of May 2021 [7]. Its popularity can be attributed to
a number of factors, including the ease of development of Android apps. Android is
open source, which gives developers a lot of freedom to customize their apps and take
full advantage of the available software and hardware features. Moreover, the Android
software development kit (SDK) included in Android Studio [4] is free to access and
includes a multitude of development tools and features that allow for the easy creation
of complex applications.

Kotlin [26] is one of the programming languages compatible with Android development.
It was introduced as a more lightweight and concise alternative to Java [24]. It combines
aspects of both object-oriented programming and functional programming and has
continued to rise in popularity since its release in 2016 [15].

2.4.3 Android application components

In this section, I describe the different components that are needed to build an Android
app.

Activity. Activities are the main entry points for the user’s interaction with the app.
They represent individual pages inside an app, and they are used to display output on
the screen and respond to user actions, by using fragments and views.

Fragment. A fragment is a part of an activity which represents a portion of the tasks
in the activity. An activity can contain any number of fragments, and the lifecycle of a
fragment is closely tied to the activity it belongs to. A fragment has a view inside it,
which is displayed as part of a ViewGroup within the parent activity (Figure 2.4).

View. A view represents the main building block of the user interface and can be any
type of visual component, such as text, an image or a button.

Layout. A layout represents the visual structure of interface components within a
screen. It is usually represented in XML format.

Chapter 2. Background 9

Add fragment
Activity Fragment User
Interacting
with View VI EW
Activity
Content View R " S i
equest endering the
USER Process content
o |
Fragment Fragment CONTRO LLER
View View
Asking Model S
to provide eturning
i ;lata the Data Requesting
T data from DB
| Response
ViewGroup - data from DB
parent for Fragment View x& InterviewBit DATABASE

Figure 2.4: Relationship between ac- Figure 2.5: Model-View-Controller architecture
tivities and fragments (image taken (image taken from [22]).
from [9]).

Intent. An intent is a type of asynchronous message that can communicate with the
OS layer to start new activities.

2.4.4 Model-View-Controller architecture

For the implementation, I decided to use the Model-View-Controller [22] (MVC)
architecture (Figure 2.5) because it fits well with the structure of Android applications.
MVC has three main components: Model, View and Controller.

The Model represents the data layer, which takes care of the business logic by manipu-
lating data from the database and passing it onto the Controller. In Android, it consists
of the classes which define the different objects of the domain or the database schema.

The View represents the user interface logic or the visual layer, which generates all the
interface elements that users interact with. In Android, this is represented by the layout.

The Controller acts as the glue between the Model and View. It interprets the user input
and issues commands that update the View and the Model. In Android, it corresponds
to activities and fragments.

2.4.5 Database

For managing user accounts and restaurant information, I decided to use Firebase’s
Cloud Firestore [14], which is a flexible, scalable NoSQL database that can be accessed
through native SDKs. This means it is easy to integrate within Android Studio [4], and
is compatible with other Firebase services such as Authentication [12], which I used
for storing user emails and passwords. In Cloud Firestore, data is stored in a tree-like
structure. Unlike SQL databases which contain tables with rows, Cloud Firestore stores
data in documents, which are organised in collections. Each document stores key-value
pairs and nested collections.

Chapter 2. Background 10

2.5 Usability evaluation methods

2.5.1 Think-aloud protocol

The think-aloud protocol is a method used for gathering qualitative data in user testing
[27]. This involves participants completing a series of tasks on the system that is being
evaluated, and talking out loud while doing it. The purpose is to extract information
about the ways in which users approach tasks, what elements they notice, and what
causes confusion, either through notes or recordings. The interviewer assumes a mostly
passive role, without answering questions or trying to influence the participant to
respond or react a certain way. Think-aloud is often used in usability testing for gaining
insight into how users interact with the product.

2.5.2 Thematic analysis

Thematic analysis is a method for analysing qualitative data in order to identify common
themes and patterns [20]. It is usually applied to interview data or transcripts. The
method involves coding the data such that the main content is captured and can be
systematically grouped into themes. Paired with the think-aloud protocol for usability
testing, this results in a fairly thorough analysis of user behaviour.

Chapter 3

Methodology

This chapter presents the methodology used in different stages of the project, including
which research question is addressed in each section and what methods and tools I used
for each step.

3.1 Review of existing systems: setting a baseline

During this stage, my aim was to answer RQ/: Do commercial apps follow industry
standards for usability? To what extent or in what ways do they follow them?

I started by setting some baseline requirements for my app based on well-known food
delivery apps. I then reviewed multiple guidelines on usability for different types
of applications and created a list of the most relevant ones, which is presented in
Section 2.3. I compared three of the most popular food delivery apps with each of
the six identified guidelines, checking whether their interface is designed according to
these recommendations or not. I identified specific layout elements that respected the
guidelines (Section 4.3.1), as well as ones that did not (Section 4.3.2). The full process
is described in Chapter 4.

3.2 Design

During this phase, my aim was to answer RQ2: What improvements can we make over
existing apps, in accordance with the guidelines?

I used the feature-driven development process [1] described in Section 2.2.1 to create
the base features of my app. In order to properly evaluate the improvements I wanted
to make, I needed to make sure that the rest of the app provided a similar experience
to other food delivery apps shown in Section 4.3. This way, users are less likely to
be distracted by small, insignificant differences which are not part of the intended
improvements.

I created system diagrams to indicate the main components of the system, after which
I designed screen mock-ups based on the layout of popular food delivery apps. After

11

Chapter 3. Methodology 12

designing the base features iteratively, I focused on designing the improved features
using the guidelines in Section 2.3, as well as my previous analysis of existing apps
from Section 4.3. I analysed other popular types of apps (not related to food delivery)
and what kind of features they provide, and I drew inspiration from them to create
new features of my own. The reason for this is that users are likely to be familiar with
the gestures from these apps, so even if they are not commonly seen in food delivery
systems, they would quickly understand how to use them based on their experience with
other apps. The details of this process are described in Chapter 5.

3.3 Implementation

During this phase, I also had the aim to answer RQ2: What improvements can we make
over existing apps, in accordance with the guidelines?

I focused on the last step of the feature-driven development process, which was to
implement the individual features outlined in Chapter 5. I chose to implement a native
Android [3] app (see Section 2.4.1) so I could make use of the improved performance
characteristics. I used Android Studio [4] with the programming language Kotlin
[26]. For the database, I used Firebase [11] both for authenticating users as well as
storing data (with Cloud Firestore [14]), because it provides seamless integration with
Android Studio and ways to set rules for allowing database access only to authenticated
individuals. The process is described in more detail in Chapter 6.

3.4 Evaluation

For this stage, my aim was to answer RQ3: What is the potential impact of the new
and improved features in terms of usability? Do the users notice the existence of these
features? Do they actively use them? Do they find that the features aid or hinder their
experience?

I designed a usability study based on the think-aloud protocol described in Section
2.5.1. I created templates for the Participant Information Sheet (Appendix A) and
Consent Form (Appendix B), which were approved by the Informatics Research Ethics
committee.

I came up with a series of realistic tasks that focus on getting the user to notice and
use the improved features. I conducted interviews with students from the University
who are familiar with food delivery apps. The participants were asked to complete each
task while talking out loud. I recorded whether they used the implemented features and
what their reactions were to them. I then followed up with some open-ended questions
based on the think-aloud part of the interview. Using thematic analysis, I organised the
interview feedback and results into categories based on each implemented feature. The
full process is described in Chapter 7.

Chapter 4

Existing systems and initial
requirements

In this chapter, I review existing systems against the guidelines in Section 2.3. I used
existing apps as an example to establish some of the initial requirements for my app.

4.1 Aims

My goal during this stage was to determine the initial requirements I had for my app,
based on the design of other food delivery apps as well as the requirements imposed by
ILP [36] and my platform of choice. I then compared some of the popular delivery apps
against usability guidelines in order to tackle RQ1:

Do commercial apps follow industry standards for usability? To what extent or in what
ways do they follow them?

4.2 Initial requirements

The main functional and non-functional requirements were determined based on already
existing systems — as a minimum, I decided that my app should support the basic
ordering functionality of existing apps (browse restaurants, browse the menu, add items
to order, place order). Additionally, I would create improvements for some of the
”bad” design choices mentioned in Section 4.3.2, as well as some new features which
are in line with the guidelines in Section 2.3. The design of these new and improved
features is described in Chapter 5. I decided to use this approach because changing
only the design of the enhancements while keeping the rest of the app consistent with
pre-existing systems would allow me to evaluate the impact of the improvements alone.
Adding minor variations throughout the app would only serve to distract the user and
skew the results.

Previous work done for Informatics Large Practical (see Section 2.1) imposed some
additional functional requirements on the app:

13

Chapter 4. Existing systems and initial requirements 14

— General information

47(89) " Dashpas
3 . °

% 39 (45 ratings) - Japanese - ££+ & =

. ks

’ e roup Oger

s over £25 va in

o ek yiee aivery time

- Group order
2.6 Excellent earch this M

o 5 orders until £15 reward - £15 > '

minmam & veliverin10-20 min Featured Items

Free with £20 Purchase (ad: =

tocart) Your recent orders R

Big picture

MISO SOUP
£300
Free w

No navigation bar

Picked for you

595
O Spend 520+ for 15% off M

UberEats Deliveroo DoorDash

Takoyaki 5pes
£720

Figure 4.1: Comparison of menu pages of UberEats [40], Deliveroo [8] and DoorDash
[10], with common features highlighted.

* the drone could only deliver orders in the confinement area (Figure 2.1)

* the delivery location could be anywhere in the confinement area that is not in a
no-fly zone

* users can add items from multiple restaurants in the same order

Android Studio still offers compatibility features for very old versions of Android. To
support as many versions as possible, I set a non-functional requirement for guaranteed
compatibility up to version 5.0 Lollipop, which means my app will run on 99.3% of all
Android devices.

4.3 Existing applications

There are many food delivery apps already available on the market, and their popularity
has been on a gradual rise, especially since the COVID-19 pandemic [33]. In this
section, I will be reviewing the user interface (Ul) design of three of the most popular
ones — Uber Eats [40], Deliveroo [8] and DoorDash [10] — focusing on their menu
interfaces and evaluating them against the categories identified in Section 2.3.

4.3.1 Good design choices

The menu pages for all three apps respect the page layout convention for top to bottom,
left-to-right reading, as highlighted by UGI. More specifically, as seen in Figure 4.1,
general information about the restaurant is displayed at the top of the page (name,
opening hours, delivery times), followed by a list of menu items. Each menu item
section contains a name, price and description on the left and a picture on the right. In
Uber Eats’s case, the most important information (name, price) is also grouped together
(Figure 4.2).

Chapter 4. Existing systems and initial requirements 15

LB QWX 0T o 0K 51 90%8 2me0 e mR RO
& PaulFrenchBakery&Café Q=

with £20 Purcha.

Long description

Grouped Picked for you

Takoyaki 5pcs
720

Pork Gyoza
£650

Floating button

UberEats Deliveroo DoorDash

Figure 4.2: Comparison of menu pages of UberEats [40], Deliveroo [8] and DoorDash
[10], with one item added to the cart. Common features are highlighted.

In all three apps, visibility (UG?2) is also prioritised. Important actions are easy to spot,
through buttons and/or large text. For example, after adding items to the cart, a floating
button appears at the bottom of the screen (Figure 4.2) that the user can press to review
the items in their cart.

Each menu page has good readability (UG3). Most Ul elements are shown in black and
white; occasionally they are shown in brand colours, which contrast well with the white
background.

4.3.2 ”“Bad” (or debatable) design choices

The menu pages are cluttered with unnecessary information, which distracts from the
important information. For example, the huge restaurant picture at the top of the menu
(Figure 4.1) is identical to the one on the home page and does not serve much purpose
when the user has already selected a restaurant. The item descriptions are often too long
to even fit the allotted space (Figure 4.2), and they are repeated when the user selects
a menu item. Unlike the name, price and picture of the item, the description does not
provide any immediately useful information. Both of these go against the guidelines
highlighted in UG5. In the case of Deliveroo and DoorDash, the price is shown after
the description, which makes it harder to spot at first glance, going against UG which
states that important fields should be grouped.

Unlike what is suggested by UG4, all three apps have very subtle indications of the
items that are already in the cart (Figure 4.3). In the case of Uber Eats and DoorDash, a
small circle with the item quantity is displayed over the picture of items which have
been added to the cart, while in the case of Deliveroo, a number next to the name and a
coloured left margin are the only indications of an item being in the cart. These marks
are easy to miss when scrolling through the menu.

More notably, neither of the apps mentioned fully addresses UG6. While their interfaces

Chapter 4. Existing systems and initial requirements 16

Quantity indicated over picture Quantity indicated next to
name and with coloured bar
Takoyaki 5pcs %1 .

UberEats Deliveroo DoorDash

& Cheese Sandwich

alata Tonkotsu
Paris ham, swiss cheew grspread

gi¥rly rated - From Fukuoka, Ikigai onatraditional baguette. gttt TR

$14.40 - 03100% (6)
#2 Most Liked

Ramen, this is one of the most popular ..

Figure 4.3: Comparison of the way the quantity of cart items is shown in UberEats [40],
Deliveroo [8] and DoorDash [10].

are very sleek and professional, none of them strives to reduce the ease of navigation by
reducing keystrokes; in the case of very long menus, users have to scroll a lot to view
all the items. The bottom navigation bar is also removed (Figure 4.1), which means
the user has to first use the back button to return to the home page before being able to
access the icons in the navigation bar.

4.4 Summary

In this chapter, I set the initial requirements for my app based on already existing
apps. I then compared three of the most popular apps, UberEats [40], Deliveroo [8]
and DoorDash [10], identifying common good and bad design choices, based on the
usability guidelines in Section 2.3. This comparison will serve as the input into the
design stage of the project, which is described in Chapter 5.

Chapter 5

Design

This chapter presents the process of designing the features of the food delivery app,
focusing on the features that have been used for evaluation in Chapter 7.

5.1 Aims

The aim of this stage was to focus on steps 1-4 of the feature-driven development
process [1] described in Section 2.2.1, by identifying the key features that would be
part of the app, as well as the modifications that could be made to the Ul to improve
usability. My goal was to tackle the following research question:

RQ2 What improvements can we make over existing apps, in accordance with the
guidelines?

5.2 Design overview

Following the first step of FDD, I started by creating a high-level view of the system
(Figure 5.1), which includes the main components in the domain. The user interacts
with the app interface through various actions, which trigger related actions in the
back-end, creating specific data structures that are in turn used to interface with the
database system. The user account deals with authentication and holds information
about the user profile and the current order, as well as actions for amending the order.
Each restaurant contains some general information such as location, opening hours and
a menu.

I then created a transition model for the different states (screens) in my app (Figure
5.2). I used this model as the start of the second step of FDD: building a feature list.
I split my system into 8 subject areas, based on the states from the transition model.
For each subject area, I created a list of features (back-end and UI elements) to be
implemented. Out of them, I first prioritised designing features that would satisfy the
base functionality of the app. I then focused on designing features related to specific
usability improvements.

17

Chapter 5. Design

Front end User account
T uiD
/ \\ orderlD
——{ Signup }—| orderStatus
\ / location
\\1, pd
e N /" Verity N
L[Login }— L | credentials |
AN J/ - _
TN T
/ N\ h
‘/ Vi \ / Retrieve \»\
| view account / _ credentials)
\ % \\, P /
SN
/ Addiremove ™\ order
[itemtoffrom | | \
order / })
\\ / — cartitems
/// n\‘ ‘ L J
View cart
4 Restaurant
~_
J— menu
Ve ™ location
/ Place order \\ openingHours
\ 4 J
//" ~ o ~
/[Browse 4 \
\ restaurants | | Browse menu |
N 4 . 4

18

Figure 5.1: High-level diagram of the system (made with LucidChart [28]), showing the
main actions a user can perform in the app and the main data structures that interact

with the database.

p
App start Hsign up screen
N

Sign up

Select restaurant

Existing user

Home page

Log in screen

New user

Login

/S

Go to home page*

Restaurant

transitions marked with * are
part of the navigation bar layout
item

Go to account*
Go to home pag:‘ Account page
\

Go to cart*

Go to home page*

menu page

Select item

\L Back/ltem added

- |
‘ Item page

Delivered

Go to account*

Go to cart*

View cart/Go to cart*

Cart

Order

/g%

Delivery page
-

Figure 5.2: Transition diagram for main app states (made with LucidChart [28]). Each
arrow represents a one-way transition between two screens in the app, which can be

triggered by interacting with layout elements such as buttons.

Chapter 5. Design 19

5.3 Design choices

5.3.1 Design of base features

In order to ensure that the evaluation of the menu improvements would not be overshad-
owed by the other design aspects, I designed the base screens and features to resemble
the Uber Eats [40] app.

Unfortunately, there is no API available for accessing menu data for specific restaurants.
Because of this, I had to remove some of the advanced functionality of UberEats such
as the option to sort items by cuisine or into categories.

5.3.2 Design of new and improved features

In order to answer RQ?2 I designed the following features for the restaurant menu screen
according to usability guidelines UG4 and UG6:

* a shortcut for "fast-adding” items to the cart
* a bottom navigation bar that can be accessed in the menu screen
* a ”back-to-top” button for returning to the top of the menu

* buttons that allow switching between viewing a menu in either a list or a grid
format

* more clear indication of items that are already in the cart

”Fast-add” feature. None of the apps analysed in Section 4.3 has any features for
shortening the process of adding individual items to the cart. Whether you order 1 or 10
of a specific item, the app still takes you through the Home - Restaurant - Item pages.
This can be a long and tedious process for users who are ordering one of each item
rather than more of the same item.

With this in mind, I decided to design a feature that would allow users to add an item
to their cart without having to go through the item screen. I considered two gestures
for this that are common in messaging apps: swipe and tap-and-hold (Figure 5.3). The
reason why I picked these is that messaging apps are also a very popular category of
apps, which means that users are likely to be familiar with the gesture patterns and
will not need to learn any new gestures to use the feature. Between the two gestures, |
settled on the swiping gesture, because tap-and-hold is usually associated with either
screen pop-ups or dragging the selected element across the screen [18]. This would
create more screen clutter and increase the number of keystrokes, which is the complete
opposite of the effect I hoped to achieve. Instead, swiping gives users the option to add
items to the cart with just one movement.

Since this is a new feature that does not appear in other food delivery apps, users are
unlikely to think about such a feature in this context, even if they use it regularly in
messaging apps. To make sure that users are aware of this feature, I also decided to

Chapter 5. Design 20

I've got something on at that time,
I'm afraid.

v"EOIDD 4 -

Yo gt vvriivuinay v s e

2. i'm afraid.
(a) Swiping right reveals a shortcut for

replying to a message. (b) Tapping and holding a message

reveals the option to add a reaction.

Figure 5.3: Swipe and tap-and-hold gestures in Messenger [34].

include helper text for each menu item to indicate it can be added to the cart by swiping
it.

”Back-to-top” button. A lot of restaurants have really long menus, which makes
scrolling through them a time-consuming activity. Often times people change their
minds, which means users might find themselves scrolling back and forth to find items
they want to buy. Despite that, none of the food delivery apps presented in Section 4.3
has an option to easily go back to the top of the screen after scrolling all the way to the
bottom.

For this reason, I decided to include in my design a small button that would allow
users to instantly go back to the top of the page when they are viewing a menu. I took
inspiration from clothing websites which usually have a button on the bottom-right side
of the screen which takes you back to the top of the page when pressed. As with the
swiping feature mentioned above, users are likely to be familiar with this type of button
already, although in a different context.

Switching between list and grid view. All apps mentioned in Section 4.3 display
their menus in the form of a vertical list, where each list entry is a menu item. This
layout leads to a lot of scrolling for large menus. To shorten this scrolling time, I
decided to add the option to switch to a grid layout with three columns. I based this idea
on the grid layouts which are common on e-commerce websites. Since e-commerce is
especially popular nowadays, users are also likely to be familiar with grid layouts and
might enjoy having the option to switch to one.

Bottom navigation bar. All food delivery apps I showed in Section 4.3 include some
form of navigation bar for switching between the main screens. However, this bar
usually disappears on the menu page, which means that in order to use it we first have
to go back to the last screen where it was present. This decision can be justified by the
fact that the apps only allow items from the same restaurant in one order, so users are
unlikely to want to go back to view other restaurants once they have picked one. Since
my app allows for items from multiple restaurants to be included, having to go back
and forth to view different restaurants could have a negative impact on usability. For
this reason, I decided to preserve the bottom navigation bar on the menu page.

Indication of items in cart. As mentioned in Section 4.3.2, food delivery apps have
cues to indicate which items on the menu have already been added to the cart, but they

Chapter 5. Design 21

are hard to spot. This means mistakes such as adding too little or too much of one item
are easy to overlook. To fix this, I thought of different ways I could signal to the users
which items are in their cart. I decided to replace the item description with a coloured
line of text which says what quantity of that item has been added. This also helps to
reduce visual clutter, as descriptions often had multiple rows of text. I also decided to
surround each selected item with a border of the same colour as the text, which is an
extension of Deliveroo’s coloured bar I showed in Figure 4.3.

Decluttering. As highlighted in Section 4.3.2, all three apps have cluttered interfaces.
I tried to reduce clutter through design choices, such as removing the description, which
allowed me to make the list entries smaller and also reduce scrolling, which I also
reduced by removing the restaurant picture at the top of the menu. Additionally, as
mentioned earlier, I opted to use the swipe method for the “fast-add” feature so I would
not introduce additional layout elements such as pop-ups or movable items.

5.4 Summary

In this chapter, I reviewed the design decisions I made for my app. I introduced
the feature-driven approach I used for defining a model of the system and designing
individual features and improvements and motivated my design choices for each feature.
Overall, I focused on emulating the layout that is common to most food delivery apps
so I can more accurately evaluate the new features I designed against the ones users
would expect to see. I also came up with 5 new or improved features which are not
present in other food delivery apps. I also managed to come up with ways to improve
the user experience by removing distracting layout elements.

Chapter 6

Implementation

This chapter presents the details and challenges of the implementation of the design
described in Chapter 5 and the technologies used.

6.1 Aims

The goal of this step was to focus on the last step of the FDD [1] process (see Section
2.2.1) by implementing the features presented in Chapter 5, in order to address RQ?2
about the development of the food delivery app:

What improvements can we make over existing apps, in accordance with the guidelines?

6.2 Database structure

In order to store restaurant and user information, I used Firebase’s Cloud Firestore [14].
To connect the app to Firebase, I created a new project in the Firebase console [13] and
then used Android Studio [4] to link my app with the new project. I then added the
necessary dependencies for Authentication [12] and Cloud Firestore to my Android
project.

The database contains two tables:

 Users: this table contains the personal data of each user, such as delivery address
and contents of previous and current orders. Each user profile is based on the key
given by the User UID, which is the same as the one used for authentication. This
UID is generated by Firebase when creating the account.

* Restaurants: this table contains the information of all restaurants, including
location, opening times and menus. Currently, there is no information about
different food categories, as that would have to be provided by the restaurants
themselves, but this can be added easily in the future thanks to Firebase’s tree-like
structure. I added restaurant information from the menus.json file provided by the
ILP web server (see Section 2.1). I manually added some additional information
for evaluation purposes.

22

Chapter 6. Implementation 23

Deliver to: Appleton Tower v

Sign Up Log In (= searn stauam)

First name Email

Last name Password ©

Email LOG IN

Password ® Don't have an account? Sign up

Confirm password ©

CREATE ACCOUNT

Already have an account? Log in

Figure 6.1: Sign up screen. Figure 6.2: Log in screen. Figure 6.3: Home page.

6.3 Implementation

For this stage, I decided to implement an Android [3] app with Kotlin [26] in Android
Studio[4]. Due to my lack of familiarity with app development in Android, I ran into
quite a few challenges during this part of the project. In this section, I describe the
implemented features and the problems I encountered.

6.3.1 Sign up/log in

In this section, I go over the implementation for the authentication pages: creating an
account and logging in.

The sign up and log in screens (see Figures 6.1 and 6.2) were implemented using two
different fragments for the same activity. When the blue ”Sign up”/’Log in” text at the
bottom of the page is pressed, it triggers a transition to the other fragment. I decided to
use this approach in order to provide more seamless switching between the two screens,
which is easier to achieve using separate fragments rather than separate activities. The
latter creates more overhead because of the interaction with the OS when triggering an
intent (see Section 2.4.3).

Most of the error checking is done through Firebase, which does basic checks on the
validity of the inputted email and password. For the form fields I used the TextInputLay-
out component with a TextInputEditText component, which provides features such as
error labels and password visibility toggle.

Chapter 6. Implementation 24

6.3.2 Home page

In this section, I go over the features I implemented in the home page, where the list of
all restaurants is displayed.

This page (Figure 6.3) displays the list of available restaurants. It also allows the user to
edit the delivery location by pressing the “Deliver to:” text at the top or to search for
a specific restaurant using the search function. It also contains a navigation bar at the
bottom of the screen for easy switching between the main pages of the app.

I first ran into an issue when retrieving the restaurant information from the database.
Because it was my first time using Cloud Firestore, I did not properly understand
how access rules work, but I eventually learned what rules I should set such that any
authenticated user can retrieve the restaurant list.

For displaying the restaurant list, I decided to use a RecyclerView. This type of View-
Group can display large sets of data dynamically by recycling individual list elements
when they are not on the screen. This improves performance and reduces power con-
sumption. It took me a long time to understand how to use this component, but after I
understood it I could use it for other screens as well which proved very beneficial. |
created the template layout for an individual list element (restaurant), which is contained
in a ViewHolder object that the RecyclerView uses to bind data to each list item template.
In order to use the RecyclerView 1 also implemented a RecyclerViewAdapter. This
adapter assigns a position to each ViewHolder so it can be bound to the correct data in
the dataset (which is an array-like structure). In order to make the list scrollable I used
a NestedScrollView. 1 realized that making only the list scrollable drastically reduces
visibility on smaller screens, so in the end I added all the layout components into the
NestedScrollView.

To create the navigation bar, I used a RelativeLayout to bind it to the bottom of the
screen. Initially, I used a LinearLayout but this created some issues with the navigation
bar not sticking to the bottom, but the RelativeLayout allowed me to align it to the
bottom of the parent screen. Clicking each of the images switches the screen to the
corresponding activity.

6.3.3 Restaurant page

In this section, I introduce the implementation of the restaurant page, which shows the
menu of a specific restaurant.

The restaurant (Figure 6.4) page contains all the improved features I implemented for
the evaluation. For the basic features, I used much of the same functionality as the
home page. I used a Relative Layout so I could include the bottom navigation bar. |
added a back button at the top of the screen, which I also enclosed in a RelativeLayout
so I could fix it to the right side of the screen. I used a similar RecyclerView to display
the items in the menu.

The "fast-add” feature. The fast-add” feature (Figure 6.4(b)) was the hardest to
implement. I created a FastAdd class which extends ItemTouchHelper.SimpleCallback;

Chapter 6. Implementation 25

10:04 B ©

Barburrito ° Barburrito ° Barburrito °

11:00 AM - 9:45 PM @ 55 Forrest Road 11:00 AM - 9:45 PM @ 55 Forrest Road Guacamole
=8 = £3.5

> slidetoadd1tocart

» Sslidetoadd 1tocart 3

Signature Fries
£3.45
% Slidetoadd 1tocart 3

Signature Fries Signature Fries
£3.45 £3.45

» sidetoadd1tocart >

Chocolate Brownie & Sauce y, Y

Naked Burrito
£10.5

» sidetoadd1tocart >

Naked Burrito
£10.5
% Slidetoadd 1tocart 3>

Naked Burrito
£10.5
» Slidetoadd1tocart >

Superfood Burrito
£11.5

» sidetoadd1tocart >

Classic Burrito
£10.5

» sidetoadd1tocart >

Classic Burrito
£10.5

» slidetoadd1tocant >

Classic Burrito
£10.5

» Slidetoadd 1tocant >

California Burrito
£11.5

Irn Bru » Slidetoadd 1tocart >

£1.95

» sidetoadd1tocart >

Irn Bru
£1.95

% Slidetoadd1tocart >

Irn Bru
£1.95

% Slidetoadd1tocart >

Vegetarian Burrito
£10.5

» sidetoadd1tocart ¥

Coleslaw Coleslaw Coleslaw
£1.95 £1.95 4% £1.95 4 San Pellegrino Lemon
3 Slidetoadd 1tocart > Y > Slidetoadd 1tocart > Y > Slidetoadd1tocart > Y £2.0
Chipotle BBQ Wings B O Chipotle BBQ Wings B O~ Chipotle BBQ Wings D > Sidetoaddrocan 3
EiASa dd » i S £1>t4ga dd » > 3 £i4§a dd » i 3 Churros & Sauce 7
ide 0 add 1 0 cart , ide to add 1 o cart) ide to add 1 o cart) 4
£4.75
VIEW CART i
THIS Isn't Chicken Burrito °ﬁi THIS Isn't Chicken Burrito °ﬁi THIS Isn't Ch “ﬁ d S““E“”“”
.
(a) (b) () (d)

Figure 6.4: (a) Page of an individual restaurant. The back button is on the top right. Also
on the right, under the location, are the buttons to switch between list and grid view. (b)
"Fast-add” action in the middle of execution. (c) Restaurant page, with items in the cart
highlighted in blue. The floating action button "View cart” is also visible. (d) Scrolling
down the page reveals the back-to-top button (bottom right).

this class controls actions for gesture movements such as swiping or sliding. I used it
on the restaurant page to trigger a function call when a menu item was swiped right.
This function adds one of that item to the cart and refreshes the view. I struggled with
getting this feature to work with the RecyclerView, as the items that were swiped away
would just disappear off the screen, instead of falling back into place after being added
to the cart. I figured out how to solve this by notifying the adapter after each item was
added and then forcefully refreshing the view to bring the item back. I noticed that this
problem happened because I misunderstood how the view of the page itself is loaded:
after it gets rendered initially, the view does not get updated unless a specific event
is called to update it, such as moving to or coming back from a different action. The
view will respond to event listeners (such as OnClickListener), but it will never refresh
itself to reflect future changes after the view was initialised, which is why the items
disappeared unless I refreshed the view after each one was added to the cart.

Indication of items already in the cart. [added more clear indication of items which
are already in the cart (Figure 6.4(c)). The actual change itself was easy to implement
by changing the colour and width of the box around each item. What I struggled with
was figuring out how to properly refresh the view to reflect which items are added to
the cart. This is the same issue I had with the “fast-add” feature. The main problem was
the lack of a onResume function to update the items in the RecyclerView. 1 made sure to
implement this method and notify the RecyclerViewAdapter that the layout has changed.
When items are added to the cart, a floating button appears at the bottom of the screen
that redirects the user to the cart page.

Chapter 6. Implementation 26

List and grid view. I also added the option to switch from a list to a grid view (Figure
6.4(a)). In a grid view, items are displayed three per row rather than one at a time. I
wanted to reuse the ViewHolder 1 implemented for the list view because much of the
information was the same. I had to remove the slide feature and the helper text, as
the available space was much smaller than for the list view, and in order to keep them
I would have to reduce the text size which would be impossible to read on a mobile
screen. | enabled switching between list and grid with two separate fragments attached
to the same activity. [added icons that change between the two views when pressed.

”Back-to-top”. The last feature I added is a back-to-top” button (Figure 6.4(d)). This
button appears when the user starts scrolling down the page and, if pressed, returns the
view to the top of the page. I wanted to make sure that the button would only appear
when the user is scrolling through the page, not when they are already viewing the top
of the page. To enable this, I added an OnScrollChangeListener to the NestedScrollView
that contained the list. This allowed me to check the vertical scroll parameter scrollY,
which determines the pixel location of the top of the current screen view. I used this to
trigger the appearance of the ’back-to-top” button whenever the user scrolled down the
list and to make it disappear again if the user scrolled to the top. Pressing the button
would reset the scrollY parameter to 0, bringing the user back to the top of the restaurant
page. I struggled for a while with this feature because I initially thought I could statically
check when the user goes down the page, but I quickly realised that because the view
only gets rendered once the scrollY parameter will always be zero when the view is
created. For this reason, I switched to using the OnScrollChangeListener which would
update every time the user scrolled up or down.

6.3.4 Item selection screen
In this section, I go over the implementation of the screen for adding an item to the cart.

The item selection screen (Figure 6.5) has a similar layout to other food delivery
apps. The information about the item is at the top of the page (picture, name, price,
description), and there are buttons which allow the user to increase or decrease the
quantity of the item, the effects of which are also reflected on the ”Add to cart” button.

The main issue I had with this page was with retrieving the name and price of the
specific item that was selected from the previous activity, the restaurant page. I realised
that the easiest way to achieve this was to pass them as parameters to the intent that
triggers the ItemSelectionActivity when a user clicks on a menu item. Then I could
retrieve the key-value pairs for the name and the price from the intent’s Bundle, which is
a data structure that the intent uses to store parameters that are passed between activities.
However, there are two methods for retrieving the value associated with a key in the
Bundle, one of which is deprecated in newer versions of Android. In order to support
older versions as well, I created a custom function that picks one of the two methods
based on the API level.

Chapter 6. Implementation 27

618 © ©

Signature Fries

Barburrito H eI IO,
© 1 ® £345 .
John Smith
Naked Burrito
Barburrito & Account info
@ 1 @ £105 Email: testemail456@gmail.com
) . Address: Appleton Tower
£195 Classlc Burrito
Description © 1 ® £105

Delivery fee: £0.50
Total: £24.95

@ 1 @ CHECKOUT
ADD 1 TO CART FOR £1.95

I @] <

Figure 6.5: Selection screen. Figure 6.6: Cart screen. Figure 6.7: Account page.

6.3.5 Cart page
In this section, I introduce the cart page, where users can view and place their order.

For the cart page (Figure 6.6), I also used RecyclerViewAdapter to implement the list
view of the items in the order. I also added plus and minus buttons similar to the ones
in the item selection screen, which allow users to amend their order. The hardest part
was figuring out how to remove an item from the list when the quantity is reduced to
zero. To do this, I created a function that removes an item in the adapter by deleting it
from the dataset (in this case the list of items in the cart) and notifying the adapter of
the change at that specific position in the array, prompting it to reload the data into the
RecyclerView again.

6.3.6 User account screen

In this section, I go over the user account page, which contains basic information about
the current user.

The information on the account page (Figure 6.7) is retrieved through the FirebaseAuth
instance, which contains the display name and log in details and the FirebaseFirestore
instance which contains the address of the user. Thanks to Android’s Studio integration
with Firebase, retrieving user information is fairly straightforward.

Chapter 6. Implementation 28

6.3.7 Elements left for future work

There are some additional features that I did not have time to fully implement. My aim
was to have a delivery page that simulates a real delivery using the ILP [36] code. Each
movement of the drone would be reflected on a map, and the user would be able to see
updates to the status of their order, such as which restaurants the drone has visited and
which ones are left.

Although it was written in Java [24], integrating the ILP code is fairly straightforward,
since Kotlin [26] is designed with Java interoperability in mind. Java code can be called
in Kotlin or even converted to Kotlin files. The only major change comes from the
database and web server access, which is no longer needed, and should be replaced with
calls to Firebase.

The other major feature that needs to be implemented is the map. This can be achieved
using the Maps SDK for Android [31], and there is an official tutorial [30] available for
setting up the necessary dependencies in Android Studio and customising the map.

6.4 Summary

In this chapter, I reviewed the features that were implemented for the app in accordance
with the design presented in Chapter 5. I managed to implement a fully functional app
in Android and integrate it with Firebase. I used the last step of the FDD process to
iteratively build new features, and I described the technologies I used and the challenges
I encountered during this step, as well as the features I could not implement due to time
constraints.

Chapter 7

Evaluation

This chapter presents the methodology, results and limitations of the user study run to
evaluate the app. This study was approved by the nformatics Research Ethics committee,
reference number 840955.

7.1 Aims

Most of the popular food delivery apps seem to follow a similar layout. This is due to
a variety of reasons, including design conventions, common functionality, and more
importantly, user familiarity. Over time, users have become accustomed to a specific
layout and have developed specific patterns for navigating food delivery apps. They
also have set expectations towards the functionality and layout of the apps they use.
Thus, the aim of the evaluation stage was to answer RQ3:

What is the potential impact of the new and improved features in terms of usability? Do
the users notice the existence of these features? Do they actively use them? Do they
find that the features aid or hinder their experience?

7.2 Participants

I recruited 14 University of Edinburgh students for this study. All of them had some
familiarity with food delivery apps. I focused on students who have used food delivery
apps before because they are more likely to notice any differences compared to the UI
they are normally used to, whereas a new user would not be able to tell whether the
features they are trying out are not like the ones in other apps. I also wanted to see if
there are any differences in how people perceive these changes based on how much
they use food delivery apps, so I asked each user how often on average they use them to
order. The breakdown of participants is shown in Table 7.1.

29

Chapter 7. Evaluation 30

Table 7.1: Breakdown of user study participants and their usage of food delivery apps.

Participant | Usage category Exact usage

P1 Often Twice per month
P2 Often Once every 2 weeks
P3 Rarely 1-2 times per year
P4 Sometimes Once every 1-2 months
P5 Very often Every day

P6 Sometimes Once per month
P7 Rarely Once per year

P8 Often Once every 2 weeks
P9 Often Once every 2 weeks
P10 Often Once every 2 weeks
P11 Very often A few times per week
P12 Often Once every 2 weeks
P13 Rarely A few times per year
P14 Very often Once a week

7.3 Data collection methods

I interviewed each participant in person using the think-aloud protocol described in
Section 2.5.1. I chose this method because it would give me insight into the way users
perceive and respond to the features. This was followed by some general questions
about features they liked or disliked, or improvements they would like to see, and some
clarifying questions based on the observations made during the interview, as well as
some more general questions about which features they liked or disliked. With the
consent of the participants, I audio-recorded each interview and I also took notes during
the interview about the usage of the features described in Table 7.2.

Table 7.2: Features whose usage was checked during the study.

’ Feature ‘ Description
F1 “Fast-add” feature
F2 Bottom navigation bar in the restaurant menu view
F3 ”Back-to-top” button
F4 Buttons to switch between list and grid view
F5 Indication of menu item already in the cart

7.4 Materials

In accordance with the ethics procedure, I created a Participant Information Sheet
(Appendix A) and a Participant Consent Form (Appendix B) and submitted them for
approval to the Informatics Research Ethics committee. I also created a list of tasks
and follow-up questions. The participants were introduced to the tasks one by one. To

Chapter 7. Evaluation 31

facilitate the think-aloud protocol and to make sure that the collected data reflected how
real users would interact with the app, the tasks were designed to reflect realistic use
cases as much as possible, while still addressing each specific feature improvement. The
script for the interviews, containing the tasks and questions, is presented in Appendix
C. Part of the script was adapted from a tutorial of the Human-Computer Interaction
Course [5].

In order to avoid more hassle for the study participants, all tasks were completed on the
same smartphone that I provided. This was done to avoid loading the app as an APK,
which would require participants to enable downloads from unknown sources on their
phones; this is generally not recommended and takes quite a few steps to achieve.

7.5 Protocol

I contacted each participant individually to arrange a date for the interview. On the
set date, I met them in Appleton Tower and we went over the Participant Information
Sheet, allowing them to ask questions if they had any. Afterwards, I asked them to sign
the Participant Consent Form so we could start the study. I reminded each participant
that the audio of the meeting will be recorded.

I started the recording and proceeded to walk through the script in Appendix C, in-
troducing the think-aloud process, and stopping at certain points to get confirmation
from the participant or to have them practice thinking aloud. I also answered any other
questions they had before proceeding with the tasks. I opened the app on my phone
and presented it to them, and then introduced the tasks one by one. The tasks were
completed with minimal intervention from myself; I only assisted if the participants
forgot parts of the tasks. While they were working on the tasks, I took notes about
which features each participant used, and if they made any comments about them.

After finishing the tasks, I showed them any of the remaining features they did not
notice or use and asked them what their opinion was about them. Afterwards, I asked
whether there were any features they liked or disliked, or whether there was anything
they would like to see added to the app. Finally, I asked them how often on average
they use food delivery apps, after which I stopped the recording, answered any final
questions, and thanked them for participating.

7.6 Analysis

After the sessions, I transcribed each recording using the transcribe feature available
with the University Microsoft 365 account [35] and analysed them together with the
notes I took, using thematic analysis (see Section 2.5.2). I compiled the results into
themes and sub-themes based on each feature that was evaluated.

Chapter 7. Evaluation 32

7.7 Results

In this section I present the results of the user study, splitting them into categories
based on each feature that was tested. For each feature, I was interested in whether
participants would notice it and use it, and whether they would find it improves their
ordering experience.

7.7.1 ’Fast-add” feature

Most of the participants (11/14) noticed and used the "fast-add” feature during the
interview. Most of the ones who used it (10/11) commented on it being a feature that
they enjoyed using. Some mentioned they found it more convenient than the traditional
way of ordering through the item selection screen:

“Because I know this is actually more convenient than opening the page |
will simply slide it twice, and I really like this functionality.” - P3

“And it’s very convenient that you can just order it with a swipe rather than
like having to go in and confirm, customize all options...” - P4

“I’ve never seen the sliding thing before, so that’s very interesting. I think
it makes it faster than like selecting an item and then going into another
window like the typical food delivery thing.” - P10

While this feature was generally well-received, some students remarked that the on-
screen sliding animation was disruptive:

“Slightly annoying that you have to wait for it to finish, kind of registering
until you can select the second one so I can’t go through it really fast.” - P4

“So apparently while the animation is doing its thing, you cannot swipe,
which is a bit frustrating if I already know what I want and [want to do it
quickly.” - P9

Two participants tried alternative ways of ordering: one student, upon finding out about
the “fast-add” feature, tried to swipe left to remove an item from the cart. The other
tried to press and hold to select multiple items at once before noticing the “fast-add”
feature. One of the participants that did not use this feature mentioned that a user guide
may be needed to introduce the feature:

“It’s quite useful, but you would need like a ghost screen to like show you
how this works.” - P6

Overall, the feature was appreciated by most participants, although there is room for
improvement in the design to make the ordering process even faster. There is also room
to explore other usage patterns besides sliding that other groups of users might find
more intuitive.

Chapter 7. Evaluation 33

7.7.2 Indication of items already in cart

Most participants (13/14) noticed and commented on the box and text suggesting that an
item was added to the cart. Some (5/13) mentioned that they found it useful in keeping
track of the items they have ordered:

“The feature that the food that I've already added in the card was high-
lighted was very useful because it’s a bit difficult to, you know, scroll

through and like locate a particular dish. So it being highlighted was very
helpful.” - P1

“It’s nice. I can see what’s already been added so I can keep track of how
many I’'ve done.” - P8

“Easy to find cause it’s already highlighted cause you’ve added it before.” -
P13

The only person that did not notice the feature mistakenly added more items to the cart
than the task mentioned and only noticed it when they viewed the cart.

Overall, this feature achieved its purpose successfully, although there is still room for
improvement in making it more noticeable. One participant suggested adding the total
number of items to the ”View cart” button or the navigation bar, which would provide
another layer of confirmation that could potentially reduce the number of errors in
adding items to the cart.

7.7.3 List and grid view

The possibility of switching to a grid view received mixed reviews, with few people
noticing and using it (3/14), out of which some expressed that they liked it:

“I quite like the multi item view. Yeah, that was quite helpful, especially
because if you have a long list, it’s going to help to have it in a more
interesting way, and it’s also easier to navigate.” - P12

Some of the participants that did not use it (4/11) mentioned that it was a useful feature
for visualising the individual dishes when it was shown to them:

“Having these thumbnails would be very appealing, like a real menu in a
real restaurant.” - P3

“Just like the case of this (talking about the example in the think-aloud),

there are a lot of dishes. This can help you better visualize all the items.” -
P5

The other participants that did not use it (7/11) mentioned that they would rather have
categories or a search button to filter through the items:

“If you’re trying to categorize food as you know, savoury and desserts, then
it just becomes a bit cumbersome” - P2

“Maybe a search button will be more useful.” - P5

Chapter 7. Evaluation 34

“There are no categories for items which usually there are in these apps
and I actually find this quite useful because I can just go to that category.” -
P9

Overall, the grid feature received mixed reviews, and the majority of participants seemed
to prefer the alternative of having categories of items that they can select from, which
5/14 suggested as a possible improvement. Additionally, 2/14 participants suggested
adding an option to search for a specific item instead.

7.7.4 “Back-to-top” button

None of the participants used this feature during the interview, however, after being told
about it, 11/14 claimed it would be a useful addition for scrolling through large menus:

“I've often found it very difficult in food delivery apps having to scroll all
the way up to the screen.” - P2

“That seems like a very convenient thing to have, especially if you have
60+ menu items.” - P3

Two participants highlighted that the size and placement of the button on the page
negatively affected their experience:

“And I think the buttons, especially for the up and exit buttons could be
slightly further away from the edges.” - P7

“I think it could maybe be useful, but maybe have it instead of having a
circle, maybe something that takes up a little less space.” - P8

Overall, the "back-to-top” button was appreciated by participants who thought it would
be a useful addition to restaurants with long menus. Despite this, no one used it during
the interview, which could be attributed to a number of causes. One possible reason
could be the placement of the button on the side of the screen, which made it hard to
spot. Another reason could be the lack of familiarity of the participants with the button’s
function, although 13/14 participants responded correctly when asked what they think
the button represents. Finally, it could be due to their preference for scrolling, as some
have mentioned:

“Personally, I don’t use it as much because I'm just used to scrolling things
with my finger.” - P1

“It’s a nice feature, but I feel like it’s pretty smooth to just scroll.” - P8

“In all fairness, unless I use this app like religiously every day, it will
probably take me less time to just scroll up very quickly.” - P9

7.7.5 Bottom navigation bar

Participants used a mix of the navigation bar and back button to move between screens.
Some used both (4/14), while others only used the back button at the top of the menu

Chapter 7. Evaluation 35

page (6/14). Some students mentioned that the visibility of the navigation bar made
them overlook it:

“Somehow the design of the bottom notch is not that visible so you can
glance over it on the front screen.” - P6

“I thought this was like part of the phone. Especially as it blends in with
the phone’s main background ” - P7

Overall, participants did not seem to prefer one over the other, although the visibility of
the navigation bar could be improved to make sure it does not blend in with the rest of
the screen.

7.7.6 Other observations

Some of the participants mentioned they prefer certain features because they are used
to seeing them in food delivery apps:

“I have previously used UberEats and other such apps, so I'm kind of more
used to that kind of Ul [...] I think my answers are also biased because I'm
used to certain kinds of food delivery apps and they don’t have this option
in the UL” - P1

“I generally find myself not really using these buttons on these apps.” - P9

“No part of me when trying to order any of these was thinking if I could
make it easier to view it, it’s very easy to see what the options are and
everything.” - P11

“Probably I got used to typical apps where they have like different menu
suggestions on top.” - P14

Interestingly enough, less experienced users did not seem to have similar preferences:

“Both ways work and whatever is forced upon me, I won’t really seek ways
to change it.” - P7

Thus, it seems that more experienced users tend to lean towards using the features they
are already used to and tend to view them as more usable than other alternatives.

7.8 Summary

In this chapter, I described the process of evaluating the improved features of the
app, and I have collated and presented the results. Overall, the reception was more
positive for some features (“fast-add”, indication of items), while others were mixed
(grid view, "back-to-top”). Additional research with more participants would be needed
to determine the true impact of these features, however there is definitely room for
improvement, and the suggested changes I gathered from the participants could be
evaluated in future iterations of the app.

Chapter 8

Conclusion

This chapter outlines the main achievements, the challenges encountered, limitations of
the built prototype and potential directions for future work.

8.1 Discussion

8.1.1 Challenges

Due to the direction of the project being very open-ended, I initially struggled with
thinking of ways to innovate a type of application that has already been done successfully
by multiple companies. I was also unfamiliar with usability guidelines before starting
this project, so I gained a lot of knowledge about usable design in mobile apps while
researching how existing apps adhere to the guidelines. I enjoyed trying out different
designs for my app and analysing popular app designs to find inspiration. In the end, I
believe [managed to come up with a satisfactory design, although there are still many
opportunities for further improvements (see Section 8.2).

The implementation was quite challenging because of my lack of familiarity with
the technologies involved. Inevitably, I spent a lot of time learning how to use them
properly and fixing various bugs. Thankfully, there is plenty of documentation and
other resources available online which helped clarify a lot of my doubts. I am glad to
have had the chance to try mobile app development, as it gave me the opportunity to
learn a lot about how apps I use on a daily basis are constructed and opened up a new
area of interest for me in Computer Science.

I also learned a lot about the evaluation process, which was the central part of my
project. I was unfamiliar with Human-Computer Interaction research methods and I
am particularly proud of how I conducted my evaluation and the results I gathered. I
am glad I managed to recruit so many participants and get a wide variety of opinions.
As an avid user of food delivery apps myself, it was interesting to hear other people’s
opinions and suggestions and compare them to my own view of these apps.

36

Chapter 8. Conclusion 37

8.1.2 Limitations

In terms of the implementation of the prototype, the main limitation comes from the
fact that there is no public API available for restaurant information. The information
I used in my app was partly given in ILP [36] and partly created manually. In order
to turn it into a fully functional system, additional background services would have to
be created to onboard local restaurants that wish to appear on the app. This way, they
would be able to add their own menu information to the app, which would open up the
possibility of implementing some of the features suggested during the evaluation, such
as sorting items into categories.

The issues I encountered during development due to my lack of familiarity with Android
Studio [4] kept me from implementing all the features I would have liked. During the
design process, I should have into account that this is a very complex app and I am not
an experienced Android developer. Thankfully, because of the FDD [1] process, the
completion of the main prototype features was not affected.

For the evaluation of the app, because of the nature of the think-aloud protocol, it was
not possible to gather statistically significant results that would indicate with certainty
which areas can benefit from usability improvements. Instead, these qualitative methods
can help in identifying the potential impact of the prototype on the user experience and
can serve as a stepping stone for future studies on improving app usability based on
industry guidelines.

8.2 Future work

Based on the results of the user study (see Section 7.7) and the aforementioned limita-
tions, the app could be improved further. Thus, I propose a few suggestions for future
work:

Delivery screen. As mentioned in Section 6.3.7, the delivery screen was never fully
finished and integrated with the drone path algorithm. A potential first step in improving
the app could be to implement these features based on the suggestions given in that
section.

Features suggested during evaluation. During the evaluation process, participants
suggested potential improvements to the implemented features. As these features are
quite varied, one possibility would be conducting additional interviews to gather updated
requirements and prioritise the most highly requested features.

Bringing the app into production. The current app is a prototype. In order to
turn it into a full product, additional services need to be created for adding or updating
restaurants in the database. As highlighted in Section 8.1.2, there is currently no publicly
available API for restaurant data, and no way to send order requests to restaurants, so
another service would need to be created for restaurants to be able to register on the
app and receive orders. Moreover, if the app was brought into production, there would

Chapter 8. Conclusion 38

be more than one drone doing deliveries, which would require additional services to
manage.

Further usability evaluations. As mentioned in Section 8.1.2, the methods used for
this project cannot provide quantitative data regarding the usability of each feature.
Additional studies would have to be conducted with more participants in order to
determine whether changing certain features to adhere more closely to guidelines can
significantly improve the current user experience.

8.3 Conclusion

As part of this project, I successfully designed, implemented and evaluated a fully
functioning prototype of a food delivery app. I started by comparing existing apps with
industry guidelines for usability. Based on these findings, I designed some improved
features for the restaurant menu page. I implemented the app in Android [3] using
Kotlin [26] and integrated it with the Firebase [11] database. Lastly, I conducted 14
think-aloud interviews in order to evaluate the potential impact of the implemented
features, and received positive feedback from study participants.

8.3.1 RQ1

The answer to this question is described in Section 4.3. I compared three popular food
delivery apps against relevant guidelines for usable design identified in Section 2.3.

8.3.2 RQ2

The answer to this question is described in Chapters 5 and 6. I used the feature-driven
development [1] approach to design and implement a set of base features based on
existing apps, as well as some new features based on the guidelines from Section 2.3.

8.3.3 RQ3

The answer to this question is described in Section 7.7. The results of the user study
show that some of the implemented features were highly appreciated and used more
frequently, while others could be improved. Suggestions for future improvements to the
user experience are also given in Section 8.2.

[1]
(2]

[3]

[4]

[5]

[10]

11]
12]
13]

[
[
[
[14]

Bibliography

Scott W. Ambler. Feature Driven Development (FDD) and Agile Modeling.
http://www.agilemodeling.com/essays/fdd.htm.

Inc. Ameritech. Ameritech Graphical User Interface Standards and Design Guide-
lines.

Android (operating system). https://en.wikipedia.org/w/index.php?t
itle=Android_(operating_system)&oldid=1148572990, April 2023. Page
Version ID: 1148572990.

Download Android Studio & App Tools. https://developer.android.com/
studio.

Neil Brown. Human Computer Interaction Course Page. https://www.inf.
ed.ac.uk/teaching/courses/hci/. Publisher: School of Informatics, The
University of Edinburgh.

Food Delivery App Revenue and Usage Statistics (2023). https://www.busine
ssofapps.com/data/food-delivery-app-market/.

Alex Cranz. There are over 3 billion active Android devices. https://www.thev
erge.com/2021/5/18/22440813/android-devices-active-number-sma
rtphones-google-2021, May 2021.

Deliveroo - Takeaway Food Delivery from Local Restaurants & Shops. https:
//deliveroo.co.uk.

Android Fragment Lifecycle |Digital Ocean. https://www.digitalocean.com
/community/tutorials/android-fragment-1lifecycle.

DoorDash Food Delivery & Takeout - From Restaurants Near You. https:
//www.doordash.com/.

Firebase. https://firebase.google.com/.
Firebase Authentication. https://firebase.google.com/docs/auth.
Firebase console. https://console.firebase.google.com/u/0/.

Firestore. https://firebase.google.com/docs/firestore.

39

Bibliography 40

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

Agile Fuel. The Top 5 Trends In Programming Languages For 2021 | Agile Fuel.
https://agilefuel.com/blog/the-top-5-trends-in-programming-1lan
guages—-for-2021.

Stephen Gilmore and Paul Jackson. Informatics Large Practical coursework
specification. School of Informatics, 2021-2022.

Jun Gong and Peter Tarasewich. GUIDELINES FOR HANDHELD MOBILE
DEVICE INTERFACE DESIGN. Proceedings of the 2004 DSI Annual Meeting,
2004.

Touch & hold delay - Android accessibility Help. https://support.google.c
om/accessibility/android/answer/60069892hl=en-GB.

Colin M. Gray, Yubo Kou, Bryan Battles, Joseph Hoggatt, and Austin L. Toombs.
The Dark (Patterns) Side of UX Design. In Proceedings of the 2018 CHI Confer-
ence on Human Factors in Computing Systems, CHI "18, pages 1-14, New York,
NY, USA, April 2018. Association for Computing Machinery.

Bruce Hanington and Bella Martin. Universal Methods of Design: 100 Ways
to Research Complex Problems, Develop Innovative Ideas, and Design Effective
Solutions. Rockport Publishers, February 2012. Google-Books-ID: pCVATIpzY-
fUC.

Internet Engineering Task Force (IETF). GeoJSON. https://geojson.org/.

MVC Architecture - Detailed Explanation. https://www.interviewbit.com
/blog/mvc-architecture/, May 2022.

10S. https://en.wikipedia.org/w/index.php?title=I0S&oldid=11477
65857, April 2023. Page Version ID: 1147765857.

Java (programming language). https://en.wikipedia.org/w/index.php?t
itle=Java_ (programming_language) &0ldid=1148359816, April 2023. Page
Version ID: 1148359816.

Almitra Karnik. Council Post: Seven Customer Retention Strategies That Drive
Growth For Mobile Apps. https://www.forbes.com/sites/forbescommu
nicationscouncil/2019/09/18/seven-customer-retention-strategie
s-that-drive-growth-for-mobile-apps/. Section: Leadership.

Kotlin (programming language). https://en.wikipedia.org/w/index.php
?title=Kotlin_ (programming_language)&oldid=1148285237, April 2023.
Page Version ID: 1148285237.

C. Lewis and J. Rieman. Task-centered User Interface Design: A Practical
Introduction. University of Colorado, Boulder, Department of Computer Science,
1993.

Intelligent Diagramming. https://www.lucidchart.com.

Mapbox. geojson.io | powered by Mapbox. https://geojson.io.

Bibliography 41

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

Add a map to your Android app (Kotlin). https://developers.google.com/
codelabs/maps-platform/maps-platform-101-android.

Maps SDK for Android overview. https://developers.google.com/maps/d
ocumentation/android-sdk/overview.

Lukas Mathis. Designed for Use, Second Edition. https://pragprog.com/tit
les/lmuse2/designed-for-use-second-edition. ISBN: 9781680501605.

Ordering in: The rapid evolution of food delivery [McKinsey. https://www.mc
kinsey.com/industries/technology-media-and-telecommunications/
our-insights/ordering-in-the-rapid-evolution-of-food-delivery.

Messenger. https://www.messenger.com/.

Transcribe your recordings - Microsoft Support. https://support.microsoft.
com/en-us/office/transcribe-your-recordings-7fc2efec-245e-45f
0-b053-2a97531ecf57.

University of Edinburgh. Course Catalogue - Informatics Large Practical
(INFR09051). http://www.drps.ed.ac.uk/21-22/dpt/cxinfr09051.htm.

The History of Agile. https://www.planview.com/resources/quide/agile
-methodologies-a-beginners-guide/history-of-agile/.

Statista. Topic: Restaurant delivery and takeaway in the United Kingdom. https:
//www.statista.com/topics/4679/food-delivery-and-takeaway-mar
ket-in-the-united-kingdom-uk/.

Bruce Tognazzini. First Principles of Interaction Design (Revised & Expanded).
https://asktog.com/atc/principles-of-interaction-design/, March
2014.

Order food online | Food delivery app | Uber Eats. https://www.ubereats.com.

What Is Usability And Why Does It Matter In App Development? | UX 4Sight.
https://ux4sight.com/blog/what-is-usability-and-why-does-it-m
atter-in-app-development, January 2023.

Peter Varhol. The complete history of agile software development. https:
//techbeacon.com/app-dev-testing/agility-beyond-history-1legac
y-agile-development.

Appendix A

Participant Information Sheet

42

Page 1 of 3

Participant Information Sheet

Project title: A mobile phone app for drone-based lunch delivery

Principal investigator: Marc Juarez

Researcher collecting data: | Maria Guran

Funder (if applicable): None

This study was certified according to the Informatics Research Ethics Process, RT
number 840955. Please take time to read the following information carefully. You

should keep this page for your records.
Who are the researchers?

The researcher is Maria Guran, who is a 4™ year undergraduate student at the
University of Edinburgh School of Informatics, and Marc Juarez is the supervisor.

This study is conducted as part of the honours project of Maria Guran.
What is the purpose of the study?

We are developing a mobile application which will allow students to order food from
local restaurants in the main campus area. The app will simulate the delivery as if it
was done by a drone, but there is no physical drone involved. The purpose of this
study is to evaluate the usability of the application and gather feedback which will be

used in improving the user experience for the app.
Why have | been asked to take part?

You have been asked to take part because you are a student at the University of
Edinburgh, and this app is created with the students’ opinions and interests in mind.
You might already be familiar with other food delivery apps available on the market.
We hope that you could interact with the prototype and help evaluate the usability of
the app and provide suggestions to improve it.

Do | have to take part?
No — participation in this study is entirely up to you. You can withdraw from the study
at any time, without giving a reason. After this point, personal data will be deleted

and anonymised data will be combined such that it is impossible to remove individual

THE UNIVERSITY of EDINBURGH

informatics

Page 2 of 3

information from the analysis. Your rights will not be affected. If you wish to
withdraw, contact the Pl. We will keep copies of your original consent, and of your

withdrawal request.

What will happen if | decide to take part?

You will be invited to participate in a 1:1 interview with the researcher (Maria Guran).
During the interview, you will be asked to interact with the mobile application and
complete a series of tasks. A mobile phone will be provided by the researcher. You
will be asked to think aloud while you complete these tasks, and the researcher will
be taking notes based on your observations. Then, you will be asked a few open-
ended questions about your experience and suggestions. The whole process will
take at most one hour. With your permission, we would like to record the audio of

this interview.
Are there any risks associated with taking part?

There are no significant risks associated with participation. Your comments and
answers will remain strictly confidential, and the audio recordings will be deleted
after being transcribed. Your participation and answers will not have any impact on
your studies and progression.

Are there any benefits associated with taking part?

There are no physical benefits associated with participation, but we hope that the

resulting app will be useful to all students at the University.

What will happen to the results of this study?

The results of this study may be summarised in Maria Guran’s honours project
report. Quotes or key findings will be anonymized: we will remove any information
that could, in our assessment, allow anyone to identify you. With your consent,
information can also be used for future research. Your data may be archived for a
maximum of 1 year. All potentially identifiable data will be deleted within this

timeframe if it has not already been deleted as part of anonymization.
Data protection and confidentiality.

THE UNIVERSITY of EDINBURGH

informatics

Page 3 of 3

Your data will be processed in accordance with Data Protection Law. All information
collected about you will be kept strictly confidential. Your data will be referred to by a
unique participant number rather than by name. Your data will only be viewed by the

researcher Maria Guran and the Pl Marc Juarez.

All electronic data will be stored on the University’s secure encrypted cloud storage
services. Your consent information will be kept separately from your responses in

order to minimise risk.

What are my data protection rights?

The University of Edinburgh is a Data Controller for the information you provide. You
have the right to access information held about you. Your right of access can be
exercised in accordance Data Protection Law. You also have other rights including
rights of correction, erasure and objection. For more details, including the right to
lodge a complaint with the Information Commissioner’s Office, please visit

www.ico.org.uk. Questions, comments and requests about your personal data can

also be sent to the University Data Protection Officer at dpo@ed.ac.uk.

Who can | contact?

If you have any further questions about the study, please contact the Principal
Investigator: Marc Juarez (marc.juarez@ed.ac.uk) or the researcher: Maria Guran
(s1904031@ed.ac.uk).

If you wish to make a complaint about the study, please contact

inf-ethics@inf.ed.ac.uk. When you contact us, please provide the study title and

detail the nature of your complaint.

Updated information.

If the research project changes in any way, an updated Participant Information Sheet
will be emailed to you by Maria Guran (s1904031@ed.ac.uk).

Alternative formats.
To request this document in an alternative format, such as large print or on coloured

paper, please contact Maria Guran (s1904031@ed.ac.uk).

General information.

For general information about how we use your data, go to: edin.ac/privacy-research

THE UNIVERSITY of EDINBURGH

informatics

Appendix B

Participant Consent Form

46

Participant number:

Participant Consent Form

Project title: A mobile phone app for drone-based lunch delivery
Principal investigator (PI): Marc Juarez

Researcher: Maria Guran

PI contact details: marc.juarez@ed.ac.uk

By participating in the study you agree that:

¢ | have read and understood the Participant Information Sheet for the above study,
that | have had the opportunity to ask questions, and that any questions | had were

answered to my satisfaction.

e My participation is voluntary, and that | can withdraw at any time without giving a

reason. Withdrawing will not affect any of my rights.

e | consent to my anonymised data being used in academic publications and
presentations.

¢ | understand that my anonymised data will be stored for the duration outlined in the

Participant Information Sheet.

Please tick yes or no for each of these statements.

1. | agree to being audio recorded.

Yes No
2. | allow my data to be used in future ethically approved research.

Yes No
3. | agree to take part in this study.

Yes No
Name of person giving consent Date Signature
Name of person taking consent Date Signature

THE UNIVERSITY of EDINBURGH

informatics

Appendix C

Interview script

Hello, my name is Maria. Thank you for agreeing to participate in this study today. If
at any point you wish to withdraw your participation, you are free to do so.

I will present a scenario then I will ask you to perform some tasks on a prototype of an
Android food delivery app. I am interested in hearing what you think as you are doing
these tasks, but we are not testing your thoughts, we are testing the app.

In order to do this, I am going to ask you to talk aloud as you work on the task. What
I mean by “talk aloud” is that I want you to tell me everything you are thinking from
the first time I tell you the task till you finish the task. I would like you to talk aloud
constantly from the time I give you the task till you have completed it. I do not want
you to try and plan out what you say or try to explain to me what you are saying. Just
act as if you were alone, speaking to yourself. It is most important that you keep talking.
If you are silent for a long period of time, I will ask you to talk. Do you understand
what I want you to do?

Good. Now we will begin with some practice problems. First, I will demonstrate by
thinking aloud while I solve a simple problem: “How many windows are there in my
mother’s house?”

[Demonstrate thinking aloud.]
Now it is your turn. Please think aloud as you multiply 120 * 8.
[Let them finish]

Good. Now, those problems were solved all in our heads. However, when you are
on your phone you will also be looking for things, and seeing things that catch your
attention. These things that you are searching for and things that you see are as important
for our observation as thoughts you are thinking from memory. So please verbalize
these too. As you are doing the tasks, I won’t be able to answer any questions. But if
you do have questions, or if something confuses you, go ahead and ask or verbalize
them anyway so I can learn more about what kinds of questions the app brings up. I
will answer any questions after the session. Also, if you forget to think aloud, I'll say,
“please keep talking.” Do you have any questions about the think aloud?

48

Appendix C. Interview script 49

Now, here is the scenario for today:

You are in Appleton Tower with your classmates, working on 5 deadlines that are all
due tomorrow. You are all extremely hungry, but you are also too tired to get food on
your own. You decide to order some food together, so you open up your favourite food
delivery app, and you start to order...

* 2 Loaded Burritos and a Vegetarian Burrito from Barburrito
* the first 10 items from the Bing Tea menu (F1, F2/F3)

e Menu Item 1 from Restaurant 6 (F2/F3)

e Menu Item 61 from Restaurant 6 (does not exist) (F5)

* (when they realize Menu Item 61 does not exist) It seems they decided to remove
that one from their menu. One of your friends says Menu Item 2 is good, so you
decide to get that one instead (F4)

* another Loaded Burrito and 2 Vegetarian Burritos from Barburrito, so now you
have 4 Loaded Burritos and 3 Vegetarian Burritos in total (F6, F2/F3)

Follow-up questions:
» were there any features that you liked in particular or found very useful?

» were there any features you wish were not there? What did you like about them?
What did you not like about them?

* are there any other features you wish were there instead? Why do you think they
would be useful?

* more follow-ups based on what they do/say during the think-aloud part

Thank you for participating.

