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Abstract
The modelling of student performance is a task with growing engagement from the
machine learning community. One of the most common methods for tackling this
challenge is Bayesian Knowledge Tracing (BKT). This model aims to predict student
mastery on any given topic by examining the student’s answers to multiple choice
questions, and while it has clear advantages it is - like most machine learning approaches
- prone to bias. In this study such a model is trained using data from the Eedi challenge,
and it is found that the model gives more favourable predictions to students not receiving
income support when compared to those who are. The potential cause(s) for this
disparity are explored and it is found that the bias present is most likely a result of the
model disregarding answer speed when making predictions. To combat this flaw a new
variation of the BKT model is proposed. The model is altered to take answer speed
into account so that predictions on questions answered quickly are more generous, but
harsher on questions answered slowly. This change results in a significant increase in
fairness, thereby providing a causal link between answer speed and the bias present in
the original BKT model.
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Chapter 1

Introduction

The already fast-growing field of E-learning was sent into overdrive during the Covid-19
pandemic. Many existing methods of E-learning grew vastly in popularity, and several
new methods cropped up to allow student learning to continue naturally from their
own homes [7]. Pupils have since returned to classrooms, but the potential benefits of
E-learning have not been forgotten. While these new learning opportunities are almost
certainly a positive thing, they bring along with them a new set of risks and challenges.
One of these risks is the potential for bias and unfairness [4].

While there has been research into the area of fairness and how it interacts with student
learning and performance prediction [10] [12], the work done investigating the violations
of formally defined ”fairness” within a knowledge tracing setting have been lacking,
and there is limited work looking at how to address the issue.

The demographic of interest to this study is socio-economic status (measured by student
eligibility for income support), this was chosen for investigation as while there are
failures in the model’s handling of other fields such as gender, the bias present over this
field proved to be the most egregious. Unlike other demographics - such as age and
gender - discrimination based on economic standing is not protected by the Equality Act
2010. Despite this, it remains a serious issue and much work has been done exploring
the harm that can be caused by this sort of discrimination [6] [11]. Additionally, there
have been calls for economic standing/class to be added to the protected characteristics
covered by the Equality Act [13] [14]. Because of this, it is crucial that for any
knowledge tracing model to be considered ”fair” it must have a consistent prediction
accuracy for students with the same mastery level, irrespective of income support
eligibility.

This study aims to examine and then help combat this risk within the context of a
Bayesian Knowledge Tracing (BKT) model (one of the most widely used student
modelling techniques [16]) by documenting, explaining, and correcting the violations
of fairness that appear when the model is used without appropriate safeguards against
bias. Specifically, the questions answered by this report are as follows.

• What bias is present in the predictions made by a BKT model that is trained using
the Eedi data set?

1



Chapter 1. Introduction 2

• How does this bias impact the fairness of the model when considering the income
support eligibility demographic?

• What aspect of the data set and/or model is causing this bias?

• How can the model predictions be improved such that the bias is reduced?

In search of answers to these questions, this study begins with the training of a standard
BKT model using data from the Eedi challenge [5]. The model then makes predictions
on more samples from this data set, and the accuracy of these predictions is compared
across the income support eligibility demographic. From this analysis, it is seen
that the model exhibits bias and unfairness over the demographic of income support
eligibility. This analysis is then focused on predictions of questions answered at varying
speeds, and it is hypothesised that the model’s failure to consider answer speed in its
calculations is the cause of the bias. Finally a solution - whereby answer speed is
considered - is presented, one that has minimal impact on model accuracy yet provides
a significant increase in measurable fairness. As such, this study proves a promising
step in understanding and fighting the bias present in BKT models.



Chapter 2

Related Works

In this chapter the pieces of literature that proved most relevant to the study are reviewed.
This includes past examinations of unfairness within BKT models, a comprehensive
description of unfairness within machine learning as a whole, and an example of
modifications improving the fairness of a BKT model.

2.1 Fairness and Knowledge Tracing

The core of this study is the understanding of bias and unfairness within BKT models.
As such, the work that proved most helpful and influential to this study were those that
also held this concept as their core.

In 2021 Barrett set out to explore the extent to which bias can manifest in student
learning models and subsequently cause unfairness in the predictions these models
make [2]. This was achieved by training a BKT model on the publicly available Eedi data
set [5](the same data set used for this study). The predictions made by the BKT model
were then compared to the widely-used N Consecutive Correct Responses (NCCR) [8]
mastery predictor and it was found that the model violates fairness principles when
evaluated over the fields of gender and income support eligibility. This paper provides
many interesting results and was a strong initial exploration into this problem. That
being said, this paper spent very little time exploring or explaining the causes of these
biases, and did nothing to provide a causal link between the bias and these fields.
To build upon this, I recreated much of the same data exploration as the author in
order to fully understand the nature and location of the bias found. After this, my
own exploration began into the cause(s) of the bias, effectively carrying out the further
research suggested in the original paper.

In 2019 Doroudi and Brunskill showed that student learning models have a tendency to
be inequitable in their results, and suggested that one major reason for this is that they
are typically trained on global populations. They show that this results in the models
failing to take into account the variations that exist within the population (The example
given in the paper is that of slow learners and fast learners being modelled in the same
way) [15]. The authors reached these results after building two student learning models
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Chapter 2. Related Works 4

(the first a Bayesian knowledge tracing model, the second an additive factor model), and
then analysing their performance over data belonging to fast learners and slow learners.
From this it was shown that more fast learners mastered the skills than slow learners,
even though the same model prediction confidence was consistent across the learning
speeds (95%).
This study effectively demonstrates an inequality in results predicted by student knowl-
edge models, then provides and explains potential reasons for it. However, one sig-
nificant flaw of the study is that it labels all its subjects as either fast or slow learners
without explicitly explaining what these categories entail, how they were measured, and
where distinctions were drawn between the two types. Additionally, this difference is
treated as a binary class rather than a spectrum, which likely results in less accurate
results, though they may be clearer. Fortunately for my own work, I am less interested
in the learning speed descriptor as I aim to investigate the effect of income support
eligibility, and much of the methodology used and results found were still applicable
to this study. For example, while it is not an exact comparison, this study’s treatment
of differing answer speeds is along the lines of how the authors described modelling
students of different learning speeds.

2.2 Measuring Fairness

In order to understand the problems with fairness in a BKT setting, the concept of
fairness within AI in general must be understood.

In 2016 Hardt et al identified that despite the growing understanding of the potential
impact of bias in AI, not much has been done to further combat it. Accordingly, they set
out to define criteria for discrimination and design a framework for how to adjust learned
predictors to minimize discrimination[9]. To this end, they defined two measures of
fairness; those being equality of opportunity (true positive rates are consistent regardless
of the protected attribute(s)), and equality of odds (both true positives and false positives
must be consistent). They then define mathematically how to compute and analyse
these measures, alongside demonstrating how to apply this to a learned model in order
to reduce the discrimination present.
While it is doubtful that this would actually be an issue in practice, the authors only
demonstrate the effectiveness of their model with one factor on one real-world data
set. It is therefore possible the same success would not be achieved with factors more
nuanced than race when trying to improve fairness in the ways the authors suggest.
Fortunately however, this is not a flaw that impacts the usefulness of the paper to this
study. Equality of opportunity and equality of odds are key concepts in this work, and
many insights on their usage and meanings were drawn from this paper.

2.3 Modifying BKT for Improved Fairness

The final result of this study is a modified BKT model that provides fairer predictions.
As such, it is of great help to consider previous works that also modify BKT in search
of improved fairness.
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In 2022 Tschiatschek et al investigated the effects of a modified BKT model that was
tuned individually to the students it was making predictions on [17]. They define what
constitutes an ethical AI-assisted tutoring system and then explain that a key factor for
realizing this system is individualised model performance for each student. The model
they propose is called Bayesian Bayesian Knowledge Tracing (B2KT). In this model the
four BKT parameters guess, slip, learn, and prior (defined and described in Section 3.1)
are continually updated throughout the runtime to try and represent each student more
accurately. They conclude their research by demonstrating the benefits this model can
have when compared to regular BKT but concede the point that this type of research
may not be enough to result in truly equitable tutoring systems.
While the modifications made by the authors are fundamentally different from the ones
proposed in this work (They change the model’s behaviour based on student character-
istics, whereas here the model is changed based on answer speed), the motivation and
end results share similarities. As such, many of the decisions made in this study were
informed by the work presented here, and were this study to extend in search of further
fairness, the modifications would likely be very similar to the ones described by the
authors here.



Chapter 3

Methodology

In this chapter, the key pieces of background information are outlined and described.
Familiarity with these subjects is required for the results presented in this study to
become meaningful, so they are individually explained, and then details of how they
work together are provided.

3.1 Bayesian Knowledge Tracing

Bayesian knowledge tracing (BKT) is an application of artificial intelligence that allows
a student’s academic performance to be modelled. Models of this kind take in a list of
the students’ answers (in this case answers to multiple choice maths questions), whether
each answer was correct, and what subject each question was testing. This list is ordered
by date and time so that the model can follow the user’s path of answers.

The key difficulty in predicting mastery with any model is that it is a latent variable,
meaning it cannot be directly observed from data and rather must be inferred from other
variables. Because of this, a confidence value between 0 and 1 is derived describing the
likelihood that the student has achieved mastery. At step n it predicts whether the student
has answered the nth question correctly and then updates its predicted probability that
the student has mastered the chosen skill. This is achieved using the following formulas:

P(C j) = P(G)(1−P(L j))+(1−P(S))P(L j) (3.1)

P(L j) = P(L j −1)+P(T )(1−P(L j −1)) (3.2)

- P(C j) is the probability that the student answers question j correctly.
- P(L j]) is the probability that the student has mastered the skill at step j.
- P(G) is the probability of a correct guess if the student does not know the skill. It is
referred to as the guess parameter.
- P(S) is the probability of an incorrect answer despite the student knowing the skill. It
is referred to as the slip parameter
- P(T ) is the probability of the student learning the skill at any given step. Note that
P(T ) is assumed to be constant over time. It is referred to as the learn parameter.

6
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P(G),P(S),P(T ) and the prior probability (the likelihood that a student has mastered
a given skill before answering any questions) are initialised at pre-defined values and
then optimized during training using a method such as expectation maximisation (EM).
After training they remain constant for future model usage.

To demonstrate the predictions made by this model, consider an example student who
answers 15 questions in the following pattern: [0,1,0,1,1,1,1,1,0,1,0,0,1,0,0] (with a 1
indicating a correct answer, and a 0 indicating an incorrect answer). When this list of
answers is passed into the BKT model, it produces the following result:

Figure 3.1: Example predictions produced by BKT model

The majority of this study utilised pyBKT (a Python implementation of BKT) to carry
out modelling. This is a straightforward open-source implementation and was well-
suited suited to the task at hand. However, for the final section of the research, a new
implementation was built based on the formulae above and those provided in section
4.4. For more information on BKT models please see: Properties of the Bayesian
Knowledge Tracing Model[18]

3.2 Eedi data set

For this project the model was trained and evaluated using the Eedi data set [5]. This
data is collected via an online learning tool that contains crowd-sourced multiple-choice
maths questions. This tool is primarily deployed in schools and is used by children
from ages 7 – 18. Students’ answers are collected along with metadata regarding the
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questions, the subjects in the questions, the students, and the student’s answers. More
specifically, this study utilises the Eedi data for 12 to 13-year-olds.

The data is provided in the form of multiple files each pertaining to one category of
information. The extensive quantity of data made it suitable for all desired analysis
but also resulted in redundant data that was not useful. Accordingly, experiments were
primarily performed using a master dataframe composed of the following fields:

• Order: Acts as the index for the dataframe

• QuestionID: Uniquely identifies each question in the data set

• UserId: Uniquely identifies each user in the data set

• AnswerId: Uniquely identifies each answer in the data set

• IsCorrect: A binary value, indicating whether each answer is correct or incorrect

• Name: The name of the subject that that particular question tests

• SubjectId: Uniquely identifies each subject in the data set

• DateAnswered: The date and time of the answer submission aggregated to
minutes

• Gender: An integer value, indicating whether each student is male or female.
(There were two other options in the data set for this field - ”unspecified” and
”other” - but they did not have enough entries to be useful for analysis)

• PremiumPupil: A binary value, indicating whether the student is eligible for some
sort of financial aid e.g. free school meals.

3.3 Equality of Opportunity/Odds

Since fairness and bias are both core concepts for this project and will be referenced
frequently, a definition is provided here. Bias – in an AI context – is when two “similar”
inputs are treated dis-similarly. That is to say that if relevant factors are consistent
between inputs A and B, A and B should have the same output, even if they differ on
some factor x which is irrelevant to the prediction being made. Should A and B have a
different output, this is identified as a bias on factor x. A level deeper than this and we
get to the concept of fairness. For this report, two metrics of fairness will be considered,
as defined by Hardt et al[9]: equality of opportunity and equality of odds.

Equality of opportunity is satisfied when students who have mastered a skill are gen-
erally predicted to have mastered it irrespective of any demographic variables. The
other, stricter metric considered is equality of odds. This is satisfied when equality of
opportunity is satisfied and additionally when students who have not mastered the skill
are generally predicted not to have mastered it consistently across any demographic
values.

Formally, in a knowledge tracing context, equality of opportunity requires that students
who have mastered a given skill (y= 1) who are a part of demographic values D∈ {0,1}
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have the same predicted value for mastery in the model, Ŷ .

P(Ŷ = 1|D = 1,Y = 1) = P(Ŷ = 1|D = 0,Y = 1) (3.3)

For equality of odds, the requirements are made stricter so that regardless of the ”true”
mastery status Y , students of different demographic groups D ∈ {0,1} have equal access
to a correct prediction Ŷ .

P(Ŷ = 1|D = 1,Y = y) = P(Ŷ = 1|D = 0,Y = y),y ∈ {0,1} (3.4)

To understand the demographic bias present, an odds ratio (OR) is calculated across the
demographic value in question. To compute equal opportunity in this way, only cases
where the student’s ”true” value of mastery is positive (y = 1) were examined, but for
equal odds all cases regardless of ”true” mastery y ∈ {0,1} are examined.

OR(D,y) =
P(Ŷ = 1|D = 1,Y = y)
P(Ŷ = 1|D = 0,Y = y)

(3.5)

For demographic values D ∈ {0,1}, an odds ratio above 1 shows that the model is
overly assigning mastery to students of demographic group D = 1 irrespective of actual
performance (and vice-versa a value below 1 would show favouritism to D = 0). Should
the ratio be sufficiently far from 1 then this would be evidence that the model is biased
over demographic variable D. Likewise, a model without bias would have an odds ratio
of approximately 1.

3.4 N Consecutive Correct Responses (NCCR)

To evaluate the accuracy of the trained BKT model a baseline criteria for student mastery
is needed. Quantifying mastery in a truly objective manner is very difficult. This report
chooses to replicate the approach of Barrett[2] by recording the maximum number
of consecutive correct responses (NCCR) on a per-topic basis that each student has
achieved, and comparing that value to thresholds of 3, 5 and 10. The satisfaction of each
threshold provides a lower bound for mastery, with weak, fair and strong confidence
respectively.

If we consider the example student used in section 3.1, the highest consecutive number
of correct responses they achieved was 5. Therefore the CCR data for them would look
like this

Student ID 3 CCR 5 CCR 10 CCR
0 1 1 0

Table 3.1: Example Entries of NCCR

Naturally this measure is not without flaws, as NCCR will be affected by factors
such as lucky guesses, forgetfulness or test-taking stress. Nonetheless, it provides a
customizable strictness and is easy to implement and utilise, making it appropriate for
this project. Additionally, as shown by Kelly et al [8] it provides accuracy on par or
above that offered by more complex measures.
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3.5 Putting it all Together

Before the model could be trained, the data had to be split into training and testing sets.
To accomplish this the list of unique User Ids was randomly split such that 20% would
be used for training and the remaining 80% for testing. It is necessary to split based on
users rather than splitting all answers in the data set as the model requires all of any one
student’s answers in order to make meaningful predictions. This split provides 3,934
training users with 1,104,209 answers, and 984 test users with 274,016 answers. These
testing samples were then used to analyse various aspects of the model’s performance
and fairness. Both the random splitting of user Ids and the parameter optimization of
the model were performed with fixed seeds to maintain the necessary randomness but
enable the recreation of results when necessary.

As described in section 3.1, a correctness is then predicted for every question in the
training set, alongside a prediction that the student has mastered the corresponding skill
at any given time. This set of predictions is grouped by User Id and Skill, then sorted
by the date and time answered. This allows the final chronological prediction to be
extracted for each unique user Id and skill pair.

Before an analysis of fairness can be carried out, a baseline for mastery is required. For
this, the complete collection of each student’s answers is examined, and the highest
number of consecutive correct responses is counted for each subject. Finally, three
Boolean values are added to the predictions table, indicating whether, for each student
subject pair, each strictness level of NCCR mastery (3, 5, or 10) has been satisfied.

With the mastery predictions made and a baseline in place, fairness can finally be
examined. Equality of odds can be computed by splitting the predictions by the income
support eligibility demographic and then taking a ratio of their average values. For
equality of opportunity, the same process is completed, but first the student subject pairs
are filtered such that they only include the entries that satisfy that required baseline
mastery (measured by the values in the three NCCR columns).



Chapter 4

Results

In this section the analysis and experiments that were carried out are described and
explained. Firstly The base model performance is examined and found to be unfair.
Secondly the cause of this bias is investigated and a hypothesis is drawn up. Finally, a
new model is proposed that aims both to provide evidence for the hypothesis, and to
improve model fairness.

4.1 Analysing fairness

To analyse the performance of the model, it must be compared to the baseline of NCCR.
While this is the most suitable measure in this situation, there is still an issue; NCCR
values can only ever be either 0 or 1, while the model’s predictions are continuous
probabilities. That being said, since the predictions will always be between 0 and 1,
calculations and comparisons can still be drawn from these two measures together.
Specifically, by subtracting the value in a NCCR column from the predicted mastery,
we can determine to what extent the model has over or under-predicted mastery by how
far the result strays from zero. For example, if the final prediction for a student skill
combination is 0.9 and the value in the chosen NCCR column is 1, then

0.9−1 =−0.1 (4.1)

showing that the model has under-predicted by a small margin, and therefore has
performed well. Alternatively, if the predicted mastery is 0.9 but the value in the CCR
column is 0, then

0.9−0 = 0.9 (4.2)

showing that the model has greatly over-predicted mastery and therefore has performed
very poorly. This process can be repeated for all three NCCR thresholds to provide
various levels of strictness on what counts as mastery.

By applying the above calculations across the data, results were gathered to explore the
model’s output across the demographic of eligibility for income support.

11
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Figure 4.1: Average values for mastery when measured by different metrics (3 d.p.)

3 CCR Difference 5 CCR Difference 10 CCR Difference
Eligible for Support -0.196 0.031 0.186

Not Eligible for Support -0.168 0.055 0.268

Table 4.1: Difference between average predicted and ”real” mastery at different NCCR
thresholds (3 d.p.)

From table 4.1 we can conclude the model tends to over and under-predict fairly evenly
when a medium strictness is chosen for the threshold (this explains why the difference
is so much lower than for 3 and 10 CCR, as the over and under predictions will cancel
each other out), tends to over-predict mastery when a strict threshold is used, and tends
to under-predict mastery when a weak threshold is used. More interesting, however,
is the effect that eligibility for income support has on predictions. When compared
to the ”real” mastery value, students eligible for income support have lower mastery
predictions across all CCR thresholds when compared to the same results for non-
eligible students. On average, an eligible student will be predicted 30.3% lower despite
only performing 15.9%, 28.1%, and 29.7% worse when judged by NCCR thresholds
of 3, 5, and 10 respectively (1 d.p.). Therefore it is evident that the model does not
satisfy equality of odds as the predictions are not the same across the demographic
value. however, to show that equality of opportunity is violated requires investigation
of only the students who achieved mastery:
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Figure 4.2: Average mastery confidences for eligible and non-eligible students who have
satisfied different NCCR thresholds

From figure 4.2 it is evident that even when considering only those students who have
”mastered” the skill, favourable predictions are still given to those who are not eligible
for economic support when compared to those who are. More precisely, the odds ratios
of predictions for non-eligible and eligible students are 1.320, 1.134, and 1.098 for
mastery thresholds of 3, 5, and 10 CCR respectively (3 d.p.). Thus this model fails to
satisfy both equality of odds and equality of outcome, and is not a fair model when
analysed over the income support eligibility demographic.

4.2 Students eligible for income support answer more
quickly

Now that bias has been demonstrated to be present, identifying its source is key. After
some data exploration answer speed became the field of interest, and thus it was
hypothesised that students qualifying for income support were more prone to rushing
through questions, perhaps due to a more hectic home life that results in less ideal
studying conditions and/or less time available to spend on homework. These factors
could negatively impact their answers causing a misrepresentation of their actual mastery.
To illustrate this point, consider the example student described in section 3.1. Suppose
they were assigned 15 homework questions and having performed well on the first 10
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questions - achieving 5 consecutive correct answers and only making three mistakes
- ran out of time and had to answer the remaining 5 questions in just a few minutes,
resulting in rushed answers and only 1 correct response. Most people watching this play
out would likely be happy that the student had demonstrated their mastery regardless
of the final 5 questions, but the BKT model would continue lowering the predicted
probability of mastery over these final questions, resulting in a lower final prediction.

To demonstrate a correlation between a pupil’s premium status and answer speed,
answer speed first had to be calculated using the timestamps provided for each answer.
There was however the caveat that the timestamp did not include seconds and therefore
all answer times were expressed as a whole number of minutes. Additionally, any
answer that took over 10 minutes was viewed as the start of a new session and therefore
not included in the calculations as there is no way to tell how long the student spent on
it (10 minutes may seem like a short cut off, but the questions asked were mostly very
short and simple).

Using this method, the average time to answer a question (t) can be calculated and it
becomes possible to demonstrate the fact that higher proportions of students eligible for
income support answer at fast speeds when compared to non-eligible students.

t < 1 minute t >= 1 minute t < 2 minutes t >= 2 minutes
2.139 3.430 2.449 4.158

Table 4.2: ratio of the quantity of non-eligible student answers to eligible student answers
at different answer speeds (3 d.p.)

As shown in table 4.2, the ratio of non-eligible students to eligible students is far greater
when looking at questions that have been answered more slowly, meaning that on
average, the eligible students are answering more of their questions quickly than the
non-eligible students are.

4.3 Students eligible for income support perform worse
when at faster speeds than non-eligible students

Of course it is clear that this difference only presents an issue of unfairness if it is
the case that increased speed correlates with decreased accuracy. To examine this,
the average correctness for answers at differing answer speeds is compared across the
income support eligibility demographic.

t < 1 minute t >= 1 minute t < 2 minutes t >= 2 minutes
1.205 1.117 1.201 1.053

Table 4.3: ratio of non-eligible student average correctness to eligible student average
correctness at different answer speeds (3 d.p.)
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From table 4.3 we can see that non-eligible students tend to perform better at faster
speeds when compared to eligible students than they do at slower speeds.

The results provided in tables 4.2 and 4.3 strongly support the idea that students eligible
for income support are likely to have lower accuracy answers as a result of insufficient
time to complete questions. There are many possible ways to justify the connection
between income support eligibility and more rushed answers in this setting. It seems
most likely that students eligible for income support - who on average will come from
lower socioeconomic backgrounds - will have less time to spend studying and fewer
tools to aid with their studying such as laptops, tablets, etc. Additionally, these students
will have a higher likelihood of additional responsibilities and disruptions, such as being
young carers[3] which will further detract from their time available for homework.

Of course, this is all simply pointing out correlation. To demonstrate causation the
potential issue (the disregarding of answer speed) must be fixed within the model so
that the fairness can once again be analysed. Should this result in a fairer model then
that would present evidence for a causal relationship.

4.4 An Improved Model

Having located the source of the bias, reducing its impact becomes the most pressing
challenge. Working from the hypothesis that the bias manifests as a result of answer
speed not being accounted for, an obvious solution appears: take account of answer
speed. Fortunately, there is no need to change the model’s architecture for this, as there
is already a parameter in BKT fit for this purpose. The slip parameter - as described in
section 3.1 - controls the probability that the student has answered a question incorrectly
despite having mastered the skill. In a regular BKT model this parameter is a static
value, meaning it is calculated during training time and then stays at that value whenever
the model is used to make predictions. To improve upon this, the slip parameter is
tweaked so that it can adapt to the speed at which each question was answered. In
practice this is as simple as scaling the parameter up or down based on the time taken for
the question to be answered, but the result is a slip parameter that can more accurately
represent the likelihood that the student really has failed to apply a skill despite having
mastered it. Thus, a new model was built that Incorporated this dynamic slip parameter.

Since pyBKT is no longer being used at this point, it becomes necessary to explain
precisely how the BKT model operates at runtime. The model recursively moves
through all of a student’s answers for a given topic, continually updating the posterior
probability that the student has mastered the skill based on each answer’s correctness.
If O j (the observation of a student’s answer at time j) is correct then equation 4.3 is
used, and if the answer is incorrect then 4.4 is used. These formulas recurse until they
hit the base case for P(L j) which is the prior parameter (a learned value indicating the
probability that the student has mastered the skill before answering any questions). For
clarification on the parameters of the model see section 3.1.

P(L j|O j) = 1−
(1−P(T ))[1−P(L j−1|O j−1)]P(G)

P(G)+(1−P(S)−P(G))P(L j−1|O j−1)
(4.3)
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P(L j|O j) = 1−
(1−P(T ))[1−P(L j−1|O j−1)](1−P(G))

1−P(G)− (1−P(S)−P(G))P(L j−1|O j−1)
(4.4)

All that has changed for the model proposed here is that the slip parameter P(S) is
scaled up or down depending on answer speed, but this presents the question of what
values to scale by. Interestingly - and unfortunately - there is very little literature on this
subject. Additionally, since the answer times in Eedi do not include seconds the scaling
will not evenly change, and rather will fluctuate between set values. While this is not
ideal, the quality of the data set in all other areas means it is still the best available for
this study overall.

After some analysis of student performance at differing speeds, the scaling values of
2.5, 1.5, and 0.5 were arrived at for questions answered in under a minute, one minute
to two minutes, and two and above minutes respectively. For example, if the base slip
parameter is 0.15 and the model is making predictions on a question that was answered
in under a minute, then the slip parameter would be increased to 0.375, meaning the
model views this answer as more likely to be the result of a careless mistake than
others, and therefore calculates a more favourable prediction of mastery at that step.
Alternatively, if the same model is predicting on a question answered in 4 minutes, then
the slip parameter would be decreased to 0.075, meaning the model views this answer
as less likely to be the result of a careless mistake than others, and therefore calculates a
less favourable prediction of mastery at that step. No guarantee is provided that these
values are optimal for this problem, but in the context of the question difficulty and
student ages, they seem intuitively appropriate.

When choosing values for the prior, slip (before scaling), guess, and learn parameters,
the optimized per-subject values calculated by pyBKT were used at first. Unfortunately,
the scaling of the slip parameter combined with these optimized values caused the
predictions to fluctuate significantly and therefore provided less meaningful results. As
such, the average value across all subjects was calculated for each of the four parameters,
and it is these values that were used for the new model. While there is certainly room
for some form of per-subject optimization in this section of the model, it will likely
need to be more nuanced than the current practice for BKT, as swapping to the averaged
values resulted in an increase in both model accuracy and fairness.

To demonstrate the effect of this changed model, let us consider again the example
student described in Section 3.1. The predictions for this student made by the default
BKT model will not vary no matter how fast or slow the questions are answered. On
the other hand, the modified model will provide different results depending on answer
speeds. As such, we can graph the predictions made on our example student if they
speed up and rush the last five questions, alongside the predictions made if they answer
at a consistent speed throughout.
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Figure 4.3: Example predictions produced by pyBKT and the modified model for a
student if they maintain a steady pace throughout (slow), or if they rush the final 5
questions (fast)

As shown in figure 4.3, the modified model follows the default pyBKT model very
closely for the first 10 answers. For these 10, an answer speed of 1 minute was used,
meaning a scaling value of 1.5 was applied to the slip parameter. This scaling (alongside
the other parameters differing slightly) explains why the predictions grow and fall
slightly more slowly than the pyBKT model (see equations 4.3 and 4.4). For the final 5
answers, the Modified-Slow answers continue to be completed in 1 minute each, and
therefore the performance continues to closely resemble that of pyBKT. However, for
the final five answers on the Modified-Fast line, each question is answered in under a
minute, representing the scenario described in section 4.2 where a student has run out
of time in their homework. While the predictions still drop over the course of these five
questions, the drop is far less substantial than the other two plots, resulting in a much
higher (and more accurate given the hypothetical situation) final prediction of mastery.

Following the definition of this model, the same test group used for the pyBKT model
was fed into it, and results on performance and fairness were gathered. Firstly, to
compare the performance of the new model with pyBKT, the mean squared error(MSE)
is examined.
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3 CCR 5 CCR 10 CCR
pyBKT 0.227 0.142 0.195

Modified Slip 0.176 0.147 0.242

Table 4.4: Mean Squared Error (MSE) of both models when calculated using various
NCCR baselines (3 d.p.)

As demonstrated above in table 4.4, the performance of the two models is comparable;
with the new model providing slightly more generous predictions overall as shown by a
lower error on a weaker bound of mastery and higher error on a stricter bound of mastery.
Additionally, the accuracy of the new model could almost certainly be improved upon
with a more dynamically adjustable slip parameter that would be possible for data that
includes seconds in its Date Answered field.

Finally then, the fairness of the new model is examined in comparison to the original
model. To do this, the odds ratios of eligible and non-eligible students who have
mastered skills according to different thresholds are compared across the two models.

3 CCR 5 CCR 10 CCR
pyBKT 1.320 1.134 1.098

Modified Slip 1.179 1.063 1.057

Table 4.5: Odds ratios of both models considering student performance for those who
have mastered skills according to differing NCCR baselines (3 d.p.)

It can be seen from table 4.5 that the odds ratios of the new model are lower for all
thresholds of NCCR. This provides some causal evidence that the bias and unfairness
present in the original pyBKT model is due - in at least some capacity - to the disre-
garding of answer speed. Furthermore, it shows that the odds ratio can be improved
by as much as 12% - indicating a large increase in fairness - as a result of the dynamic
slip parameter. While the trade-off between accuracy and fairness is a heavily studied
and debated topic[1], there can be little doubt that the results presented here show the
potential for improved fairness within BKT, potentially (depending on the NCCR of
interest) with a minimal decrease in accuracy. This is an intuitive result, as we are
feeding more information into the model, indicating that a higher overall accuracy
and/or fairness should be achievable.
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Conclusions

In this section the study and its results are summarized, and the implications of these
points are discussed. Finally, some suggestions for future work within the field are
provided.

5.1 Summary

This study investigated the impact of income support on the fairness of BKT model
predictions and finds that it is inherently biased when evaluated with the metrics of
equal odds and equal opportunity, and therefore is not a ”fair” model. Specifically, for
any two students A and B who have attained mastery, where A is eligible for income
support and B is not, the model is 10-30% more likely to predict mastery for B than for
A. A large part of the reason for this is that students eligible for income support tend to
answer the questions more quickly (perhaps due to a more hectic and demanding home
life) than those not eligible, a factor that the model fails to account for.

This finding demonstrates a significant problem with the BKT model, as students eligible
for income support already have a lower average answer accuracy[3], a difference that
would only be reinforced by unfair models. As such, it is clear that work must be
done to incorporate more fairness considerations into BKT before it is appropriate to
be deployed for widespread use in student learning tools. One such way to do this -
as demonstrated in this study - is changing the model such that it actively considers
answer speeds when making its predictions. This solution has shown the potential for
a strong improvement in fairness while maintaining similar accuracies to the original
model. Additionally, this work has been achieved with a limited data set, meaning the
results gained can be seen as a lower bound on success for improvements made in this
manner. This means that should similar improvements continue to be made, it is very
much possible that BKT models could provide a practical, useful, and most importantly
fair tool to be used within the setting of AI-assisted education.

19
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5.2 Future Work

The next logical step in this area would be to further explore the effect that dynamic
parameters can have on BKT model performance and fairness. The results provided
in this report are promising but by no means comprehensive, and there is much room
for both the accuracy and the fairness of this model to be improved further with more
fine-tuning.

As mentioned in the report, one potential way to do this would be to train a model on
data that has more precise timing information such that a direct relationship between
answer speed and slip chance may be calculated, as opposed to the simplistic solution
used here, made necessary by the lack of such precise time information present in the
Eedi data set. Additionally, there is much room for experimentation with different
optimization techniques regarding the trainable model parameters and how they interact
with the slip parameter now that is no longer a static value.

Should these suggested improvements be implemented successfully, there is a real and
lasting improvement to fairness within the field of AI-assisted education that can be
made here. While the improvements made to BKT are the particular interest in this
paper, modifications and considerations of the kind discussed here could likely have
benefits and implications in many other areas of the field.
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