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Abstract
We present a new visual de-animation model for spheres on planar surfaces, demonstrat-
ing high performance in object detection, object parameter estimation, scene prediction,
and reconstruction. Our model improves upon the original visual de-animation model
by using circularity-based object proposal generation and optical flow for extrinsic
parameter estimation, as opposed to colour filters and a neural network for both intrinsic
and extrinsic parameters. This approach results in increased robustness and precision, as
circularity is a more direct detection method for spheres and extracting velocity directly
from optical flow reduces the risk of estimation corruption during CNN feed-forward
processing.

The model exhibits impressive results for object proposal generation, as well as strong
performance in scene reconstruction and future prediction. The blob detection method
used for object proposal generation proves effective for identifying spheres regardless
of size and colour. Further, our results suggest that a neural optical flow network is not
necessary for high model performance.

We provide open-source utilities for training, evaluation, and testing of our model, as
well as a new data set generator for spheres on planar surfaces using PyBullet, allowing
for easy experimentation with a structured generation process.
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Chapter 1

Introduction

Humans have an intuitive understanding of their physical environment and interactions.
This allows us to quickly adapt to scenarios where we only have partial information and
leverage it to achieve our desired outcomes. Machines struggle when it comes to these
scenarios, generally requiring full information to achieve high performance. Inspired
by this, we seek to imbue robots with an intuitive understanding of physical scenes. In
a practical sense, human scene understanding is

1. Predictive. Our understanding allows us to make causal connections and infer
how a scene is expected to evolve into the future. This suggest that an intuitive
model should estimate the physical properties of individual and grouped objects
in the scene.

2. Fast. Little thought is required for us to generate scene representations and a plan
for manipulating them to achieve short-step goals, e.g., pick-and-place, or rigid
object reorientation. This suggest that an intuitive model should be single-pass
feed-forward.

A promising approach, satisfying both these properties, was found using an inverse
graphics model to construct the scene representation and physics engine to imagine
how the scene would move forward in time [49]. The inverse graphics engine relies
on convolutional neural networks for efficient object detection, structure and property
estimation to do scene reconstruction. Remaining scene properties are then inferred by
forward simulation of the physics engine, which can be non-differentiable [9] or neural
differentiable [8].

We propose an extension of this model, which relies more on optical flow for efficient
property estimation. We train and demonstrate our system on a synthetic data set, which
we generate, involving spheres of varying physical properties. The system accurately
predicts the motion of the spheres by estimating their properties from a small number
of interactions, capturing the predictive and fast nature of human scene understanding.
Our results show the promise of this approach in advancing the field of intuitive physics
towards more human-like scene understanding.
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Chapter 1. Introduction 2

1.1 Dissertation Structure

In Chapter 2, we state the problem for spheres on planar surfaces, the theory behind
visual de-animation, other approaches to intuitive physics, and the data sets used for
training and benchmarking intuitive physics models. In Chapter 3 we present our visual
de-animation model for spheres on planar surfaces. In Chapter 4 we introduce the
synthetic data set, evaluation metrics and model implementation details. In Chapter 5,
we discuss metric and qualitative results on the data set, including an ablation study.
This is followed by a summary and final discussion of results in Chapter 6, after which
potential future work and a plan for MInf Part 2 is proposed.

1.2 Contributions

1. Visual de-animation has been introduced and discussed in the context of spheres
on planar surfaces.

2. New data set and simulation environment for spheres on planar surfaces created
using PyBullet.

3. Visual de-animation model has been proposed which achieves high performance
for spheres on planar surfaces with varying physical properties.

4. Extensive ablation study has confirmed the usefulness of visual de-animation
model.

5. A new repository for visual de-animation has been created. As far as we know,
the only open source implementation based on [49]. Allowing for data generation,
multi-GPU training, training and test visualisations. It can be found at https:
//github.com/J0HNN7G/intuitive_physics.

https://github.com/J0HNN7G/intuitive_physics
https://github.com/J0HNN7G/intuitive_physics


Chapter 2

Background

2.1 Problem Definition

Let there be n uniformly rigid matte spheres intrinsically parameterised:

• Radius, r ∈ R+, in metres.

• Surface colour, c⃗ =
[
cR cG cB

]T
,cR,cG,cB ∈ [0,1]. Represented in RGB

colour space.

• Mass, m ∈ R+, in kilograms.

• Rolling friction coefficient, µr ∈R+, affects the resistance to rolling motion of an
object as it moves along a surface.

• Lateral friction coefficient, µl ∈ R+, affects the resistance to lateral motion of an
object as it moves along a surface.

• Spinning friction coefficient, µs ∈ R+, affects the resistance to rotation of an
object that is in contact with another surface.

• Restitution coefficient, b ∈ [0,1]. Determines the ratio of the relative velocities
of two colliding objects after the collision to their relative velocities before the
collision, ranging from 0 (objects stick together) to 1 (objects bounce perfectly
without losing energy).

and extrinsically parameterized in Cartesian coordinates at time step t by

• World frame pose p⃗ =
[
px py pz

]T where px, py, pz ∈ R3 are in metres. We
will let origin O be the center of the plane on which the motion of spheres occurs.

• Linear velocity v⃗ =
[
vx vy vz

]T where vx,vy,vz ∈ R3 are in metres per second.

We will order the spheres, so that p⃗(i, t) refers to the world pose vector for the i-th
sphere at time step t for a given simulation of the spheres. Further, when discussing
estimates, we will differentiate between ground truth (var∗) and estimate (var′ ) using
∗ and ′ in superscript.

3



Chapter 2. Background 4

These are the parameters used to define the dynamics of a sphere in PyBullet, the
simulation software we are generating a synthetic data set to train and test visual de-
animation [9]. For our experiments, we will assume that these parameters are sufficient
to accurately capture the dynamics of a simulation involving several moving spheres. In
the real-world, it is possible that further parameters are required.

The initial configuration for any i-th sphere in any simulation is

p⃗(i,1) =

px(i,1)
py(i,1)

r(i)

 , (2.1)

where px(i,1), py(i,1) are sampled uniformly such that the sphere does not overlap with
any previously initialized spheres,

px(i,1), py(i,1)∼U(−0.5+ r(i),0.5− r(i)), (2.2)

s.t. (px(i,1)− px( j,1))2 +(py(i,1)− py( j,1))2 > (r(i)+ r( j))2 (2.3)
∀ j = 1,2, . . . , i−1, (2.4)

and

v⃗(i,1) =

vx(i,1)
vy(i,1)

0

 , (2.5)

where vx(i,1),vy(i,1) are sampled uniformly

vx(i,1),vy(i,1)∼U(−2.5,2.5) (2.6)

The simulation environment is an open cube centered at origin with a floor plane at z = 0
and boundaries at x =−0.5,x = 0.5,y =−0.5,y = 0.5 (Figure 2.1). These conditions
were chosen to be similar to how spheres would behave on a pool table, as it provides a
straightforward source of real world data on which visual de-animation model can be
evaluated on, although this is not done in the dissertation [1].

As the simulation evolves, the extrinsic properties of the spheres will be effected by
the spheres interactions with their environment and each other based on their intrinsic
properties, with all spheres having reached stationary positions by some time step t f .

Figure 2.1: Simulation environment with two spheres from top-down view including
velocity vectors arrows, axes (x,y), origin O, and boundary dimensions.
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Figure 2.2: Image sequence from a simulation with two spheres.

As the spheres move on a planar surface, we can make the assumption that

pz(i, t) = r(i), vz(i, t) = 0, ∀t ∈ Z+ (2.7)

As part of the problem, at each time step t, there is an RGB image I(t) ∈ [0,1]3×h×w of
the simulation from a top-down view, so that the boundary of the image corresponds to
the boundaries of the box (Figure 2.2). Where h is the height of the image in pixels and
w is the width of the image in pixels. Specifically for images, we will use I(i)[x,y] to
denote pixel vector at row x and column y.

Our primary optimization problem (Fp), is as follows, given images from q consecutive
time steps starting from time step t + 1 such that 1 < q and t + q < t f , estimate the
intrinsic parameters θi and extrinsic parameters θe(t+q) at time step t+q for all spheres
so that

θi =


θ⃗i(1)
θ⃗i(2)

...
θ⃗i(n)

=


r(1) c⃗(1)T m(1) µr(1) µl(1) µs(1) b(1)
r(2) c⃗(2)T m(2) µr(2) µl(2) µs(2) b(2)

...
...

...
...

...
...

...
r(n) c⃗(n)T m(n) µr(n) µl(n) µs(n) b(n)


(2.8)

θe(t +q) =


θ⃗e(1, t +q)
θ⃗e(2, t +q)

...
θ⃗e(n, t +q)

=


p⃗(1, t +q)T v⃗(1, t +q)T

p⃗(2, t +q)T v⃗(2, t +q)T

...
...

p⃗(n, t +q)T v⃗(n, t +q)T

 (2.9)

Jp(θ
′
i,θ

′
e(t +q)) =

1
n(t f − (t +q))

n

∑
j=1

t f

∑
k=t+q

∥∥p⃗∗( j,k)− p⃗′( j,k,θ′i,θ
′
e(t +q))

∥∥2 (2.10)

(Fp) min
θ′i,θ

′
e(t+q)

Jp(θ
′
i,θ

′
e(t +q) (2.11)

Where p⃗′( j,k,θ′i,θ
′
e(t +q)) is the estimated world pose of the j-th sphere at time step

k using parameters θ′i and θ′e(t +q) (Figure 2.3). For our case, p⃗′( j,k,θ′i,θ
′
e(t +q)) is

calculated by inputting θ′i and θ′e(t + q) into a physics engine at time step t + q and
recording pose at time step k. To make the problem more tractable given we only access
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top-down images, we will focus on estimating only r, c⃗,m,µr for intrinsic properties,
letting the rest be known constants.

Figure 2.3: Simulation with single sphere from time step t +q to t f , where estimated
world pose p′(1) is visualized with actual world pose p∗(1) as they diverge.

The feasible region is constrained by the range of values that each intrinsic and extrinsic
parameter can take. The range of possible values for the intrinsic parameters are stated
in the beginning of the section. For the extrinsic parameters, the pose is constrained by
the environment:

−0.5 < p′x( j, t +q), p′y( j, t +q)< 0.5 (2.12)

p′z( j, t +q) = r′( j) (2.13)
∀ j = 1,2, . . . ,n (2.14)

For the velocity, a lower or upper bound constraint is less apparent, as the spheres can
transfer energy in such a way that velocity for a given sphere can potentially increase
beyond its initial value by time step t +q.

Trivially, the set of optimal solutions is,

S∗ = {(θ∗i ,θ∗e(t +q))} (2.15)

such that
Jp(θ

∗
i ,θ

∗
e(t +q))≈ 0. (2.16)

We can produce an upper bound on the objective function given our environmental
constraints, as they constrain the maximum possible radius of a sphere (rmax = 0.5),
and the maximum displacement along x,y axis between two spheres. The maximum
displacement between the actual pose of a sphere and its pose estimate is when the
actual sphere is positioned in a corner and its pose estimate is positioned in the corner
on the opposite side (Figure 2.4),∥∥p⃗∗( j,k)− p⃗′( j,k,θ′i,θ

′
e(t +q))

∥∥<
√

12 +12 +0.52 =
3
2
, ∀ j = 1,2, . . . ,n (2.17)

=⇒ Jp(θ
′
i,θ

′
e(t +q))<

1
n(t f − (t +q))

n

∑
j=1

t f

∑
k=t+q

9
4

(2.18)

<
9
4

(2.19)
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Figure 2.4: Configuration of two spheres, where the actual poses ( p⃗∗) and estimated
poses (p⃗′) are maximally displaced, with boundary dimensions included.

A secondary optimization problem, (FI), which is attempted by many end-to-end
systems, which is not explicitly interested in solving for the underlying world represen-
tation, but solely future images of the simulation, solve for the following, given some
model Θ:

φ ∈ Θ (2.20)

Θ = [0,1]3×h×w × [0,1]3×h×w ×·· ·× [0,1]3×h×w︸ ︷︷ ︸
q images

×Z+ → [0,1]3×h×w (2.21)

JI(φ) =
1

n(t f − (t +q))

n

∑
j=1

t f

∑
k=t+q

∥I∗(k)−φ(I∗(t +1),I∗(t +2), . . . ,I∗(t +q),k)∥2 (MSE)

(2.22)

(FI) min
φ

JI(φ) (2.23)

We will not discuss this further, given we focus on the primary problem, but it provides
context to other physics models and a common evaluation metric.

2.2 Previous Work

To achieve human-like behaviour in machines we seek a method that provides an
intuitive physical perspective. Such approaches are referred to as intuitive physics
models within the research community.

2.2.1 Intuitive Physics

Several methods have been proposed to analyze and model the motion of objects in
natural scenes by learning physical intuition [50, 13, 27, 3, 46, 49, 15, 34]. All of these
methods have suggested that the most promising approach is through deep learning given
several images from proceeding time steps for the physical system that is to be predicted.
How this is done exactly differs from between the methods. Visual de-animation (VDA)
[49], differs from its predecessors by incorporating a world-model and simulator for
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training and prediction, and thus far, provides the highest performance when compared
on the same tasks. This approach is supported by cognitive science, where a capacity
for simulating scenarios is believed to be pivotal to for human physical intuition [4].
The preceding methods rely on an end-to-end learning approach, [13, 27, 15], where no
world representation is implicitly given. Given the superior performance and support
from human cognition, methods coming after VDA have adopted the principle of
utilizing a world model and simulation rather than a purely end-to-end approach [34, 3].
In the rest of the related work, we will explain and discuss the components that make
up these approaches to intuitive physics.

2.2.2 Inverse Graphics

The usage of a world model and simulator in VDA is inspired by inverse graphics,
the process of recovering scene properties from images by finding the underlying 3D
structure and other attributes of objects, such as shape, pose, and material, primarily
through the use of neural networks [17]. Inverse graphics has been used to recover scene
properties and object poses for various applications, including object recognition [51],
human body pose estimation[20], 3D scene reconstruction [44] and intuitive physics
[49].

2.2.3 Neural Networks & Deep Learning

Neural networks are a biologically inspired form of machine learning, originating from
1940, with the McCulloch-Pitts neuron, a simplified model of a biological neuron [29].
This was further developed in 1958 with introduction of the perceptron, allowing for
simple feed-forward networks (multi-layer perceptron model, MLP) [39]. A method for
effectively training these models was developed in 1986 with the introduction of the
backpropagation algorithm [40]. The final concept that made the development of the
intuitive physics models possible was the invention of convolutional neural networks
(CNN) in 1989 [25]. The key innovation of CNNs was the use of convolutional layers,
which exploit spatial invariance and local connectivity in images, making them more
efficient for processing visual data. As hardware improved, the scale and size at
which neural networks could be trained increased dramatically, leading to milestone
performances of CNNs on tasks such as image classification, object detection and
semantic segmentation, and the era of deep learning, which revolves around utilizing
deeply layered neural networks trained on vast amounts of data [26, 23, 14, 42, 24, 16].

2.2.4 Residual Neural Networks (ResNet)

ResNets are a specific architecture of neural networks that employ residual connections
to facilitate the training of deeper models [16]. This differs from previous methods in
that certain layers feed not only to the the direct following layer, but layers further ahead,
leading to improved performance as the model better leverages hierarchical features and
avoids the vanishing gradient problem, a problem in which deep networks stop learning
effectively as the backpropagated gradient becomes too small to effectively alter model
weights. ResNets are core to many of the proposed intuitive physics models, including
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VDA and PhysNet, an end-to-end model [49, 27]

2.2.5 Recurrent Neural Networks (RNN)

Although not used in VDA, RNNs are relevant for a number of existing intuitive physics
models. RNNs were made to handle sequential data of variable lengths, capturing the
temporal dependencies between data points. They do this through a looped feedback
mechanism, which leverages a buffer of previous inputs to generate outputs. The basic
component of an RNN is the recurrent neuron, which contains a state representation
updated at each time step and encodes information about the inputs seen up to that
point, passing it to the next time step. RNNs are typically trained with backpropagation
through time, a variation of backpropagation designed for recurrent architectures [40].

2.2.6 Long Short-Term Memory Networks (LSTM)

The LSTM is a recurrent neural network architecture used by many intuitive physics
models. It was made to capture long-range dependencies in sequential data, which
matches well with many problems found in intuitive physics. It consists of intercon-
nected memory cells that process input sequences step-by-step. Each memory cell
contains an input gate, a forget gate, and an output gate. LSTMs utilize this gating
mechanism to selectively remember and forget information. The input gate determines
the importance of the current input, the forget gate decides which information from
the previous input cell state should be retained and the output gate determines the
information from the cell state that should be passed to the next layer or the next time
step [18].

2.2.7 Encoder-Decoder Architecture

The encoder-decoder architecture is a two-component system comprised of an encoder
and a decoder, both which can be composed of a feed-forward neural network, RNN,
CNN or transformer. The encoder processes input data and produces a fixed-size vector
representation that summarizes the input’s relevant information. The decoder takes the
context vector generated by the encoder and produces the desired output. Generally, the
encoder down scales its input, and the decoder up scales its input. They are primarily
trained by having the encoder downscale the input, and then have the decoder attempt
to reconstruct the original input from the encoder output, using the difference between
the original and reconstruction as training loss [43].

2.2.8 Optical Flow

Optical flow is a pivotal aspect of VDA. The aim of optical flow estimation is to
compute a vector field that represents the motion of objects, surfaces, and edges in
a scene over time by using their correspondence with the motion of brightness in an
image sequence. The original Horn-Schunk method modeled optical flow as a global
optimization problem with a smoothness constraint [19]. Various other optical flow
methods have developed, relying on other underlying assumptions [28, 41, 12]. More
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recently, deep learning-based methods have been adopted, exploiting the ability of
convolutional networks to learn features at multiple levels of scale and abstraction [10].
As part of processing image frames, VDA applies a spatial pyramid network (SpyNet)
to calculate the optical flow. SpyNet is a lightweight optical flow estimation network
that employs a spatial pyramid structure to process multi-scale image features [36].

2.2.9 Self-Supervised Learning (SSL)

Self-supervised learning is a type of learning in which a model learns to predict certain
aspects of the input data without explicit supervision. The learning signal comes from
the data itself, rather than from any external labeling or annotation. This is in contrast
to supervised learning, where a model learns the data by receiving labels associated
with each sample. An important aspect of intuitive physics models are that they should
not require human annotation, and thus should avoid being supervised, so that they can
handle new scenarios independent from human supervision. In a strict sense, VDA is
a supervised method, however, as these labels are generated without requiring human
annotation, they satisfy some criteria of being self-supervised.

2.3 Related Work

2.3.1 Models

This section provides an overview of the key advancements in the development of
intuitive physics models. The following list summarizes the significant contributions in
the field:

• Galileo (Wu et al., 2015): a self-supervised LeNet model (CNN) that processes
a single image containing two objects and estimates their mass and friction.
The model generates self-supervised labels for object parameters from real-
life training videos using maximum likelihood estimation (MLE) through the
single-site Metropolis Hastings algorithm (SSMH). Mass and friction sampling is
performed in simulation for a given scene [50, 26, 30].

• Billiard Learning Network1 (Fragkiadaki et al., 2016): an encoder-decoder
network that, given four frames of a simulated billiard sphere and forces applied
by an agent on the ball, predicts the ball’s velocities in the next h frames. The
encoder follows an AlexNet architecture (CNN), and the decoder incorporates
long short-term memory (LSTM) units to capture long-range temporal dynamics
[13].

• PhysNet (Lerer et al., 2016): a ResNet34 architecture with upsampling that
processes three frames of stacked simulated blocks and predicts segmentation
masks for each block in the subsequent frame as they fall. This model was also
applied to real-world blocks [27].

1We chose this name.
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• Visual De-Animation (VDA) Wu et al. (2017): a ResNet18 model takes in
three frames of a simulated billiard balls, calculates optical flow between frames
using a SpyNet, and inputs the three frames and two optical flow frames masked
for each object into a ResNet18 to predict the pose, velocity, friction and mass
for each ball. This approach was demonstrated on real-world billiard balls and
adapted for predicting how stacking blocks fall [49].

• Visual Interaction Network (VIN) (Watters et al., 2017): consists of three
components: a visual encoder, a dynamic predictor, and a state decoder. The
visual encoder, a CNN, takes in three frames and returns a state code, which is a
list of vectors representing the position and velocity of each object in the scene.
The dynamic predictor processes a sequence of state codes and predicts the state
code for the next frame using interaction networks (IN), which model the state
code as a graph structure in matrix form, with each interaction between objects
represented by an edge. A multi-layer perceptron (MLP) model is applied to
predict the future state code. The state decoder, a linear layer, then decodes the
future state code into the position and velocity of each object in the subsequent
frame. VIN was demonstrated on synthetic data of various physical systems
[3, 46].

• Plato (Piloto et al., 2022): further extended the VIN model to incorporate an
LSTM with the dynamic predictor for capturing long-term temporal dependencies
[34].

There has been no comprehensive benchmark of all these models for the same task. In
the visual de-animation paper, VDA is compared against PhysNet for a real-world stack
stability task, where the goal is to predict how a stack of unstable blocks will fall. This
was the original task for which PhysNet was developed. VDA outperforms PhysNet
by a far margin [49]. We chose to use a VDA approach to our problem, because in the
original paper, VDA achieved promising results for predicting dynamics of spheres on
planar surfaces. Our approach however, relies less on the ResNet18 for state estimation,
and more on optical flow. Further, we utilize a more sophisticated object proposal
generation method. We believe this provides improved performance and robustness.

2.3.2 data sets

We present a list of prominent intuitive physics data sets developed to facilitate research
and evaluation in the field of physical reasoning and visual understanding. They are as
follows:

1. CLEVR (Johnson et al, 2017): A diagnostic tool for evaluating compositional
language and elementary visual reasoning. It consists of a large number of
rendered images and associated questions to assess models’ understanding of
various visual and linguistic concepts [21].

2. AI2-THOR (Kolve et al., 2017): an interactive 3D environment for visual AI
research. It provides a rich set of tasks and scenes that require navigation,
manipulation, and interaction with objects in a visually realistic setting [22].
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3. IntPhys (Riochet et al., 2018): benchmark for visual intuitive physics reasoning.
It includes a collection of video sequences depicting simulated objects interacting
in physically plausible or implausible ways, testing a model’s ability to reason
about underlying physical principles [37].

4. Roll4Real (Erhardt et al., 2018): consists of videos of real objects rolling on
complex terrains (pool table, elliptical bowl, and random height-field) [11].

5. ShapeStacks (Groth et al., 2018): consists of 3D-rendered scenes of stacks of
objects with varying levels of complexity. It aims to test a model’s ability to
predict the stability of the stacks [15].

6. PHYRE (Bakhtin et al., 2019): benchmark for assessing physical reasoning
abilities. Provides diverse and challenging tasks that require understanding of
physical interactions and relationships [2].

None of the existing data sets perfectly address our specific problem. Roll4Real comes
closest to meeting our requirements; however, it has several limitations. Primarily
designed for object tracking, this data set does not offer ground truth for the intrinsic
parameters of the balls in the scenes, and the balls are not rolled on planar surfaces.
Additionally, the data set mostly contains recordings of a single ball, or at most two,
which limits the potential for interaction between them. Consequently, our model has
less opportunity to infer the underlying object states from these interactions.
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Visual De-Animation

3.1 Overview

visual data visual data

physical world physical world

Figure 3.1: Visual de-animation — recover the world representation from a visual input
and combine it with generative physics simulation and rendering engine [49].

In this section, we will describe the method of VDA for predicting the temporal evolution
of visual scenes, and how it will used for modelling moving spheres on planar surfaces.
VDA is a three-component system involving a perceptual module, physics engine, and
graphics engine (Figure 3.1). The method works by extracting the world representation
from the visual input using the perceptual module. This world representation is then
fed into a physics engine to predict how the world will evolve over time. Finally, the
evolved world representation is rendered using a graphics engine.

13
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3.2 Perceptual Module

We will treat the perceptual module, ψ, as follow,

ψ(x) = y, (3.1)

x =
[
I(t +1) I(t +2) . . . I(t +q)

]T ∈ Rq×3×h×w, (3.2)

y =
[
θi θe(t +q)

]
∈ Rn′×(κ+τ), (3.3)

where x is a tensor of consecutive frames from a given visual scene starting from some
time step t +1 to time step t +q for some buffer size q, and y is a tensor with estimated
intrinsic and extrinsic parameter vectors for the estimated total number of objects in the
scene at time step t +q. We let n′ be the estimated total number of objects and κ, τ be
the number of intrinsic parameters and extrinsic parameters respectively. In our case
κ = 7 and τ = 6, as determined in Section 2.1.

Object proposal generation From x we generate a set of object proposals P′(i) for
each I(i),

P′(i) =
{

p⃗′(1, i), p⃗′(2, i), . . . , p⃗′(n′(i), i)
}

(3.4)

where n′(i) is the number of object proposals made for I(i), and p⃗′( j, i) is the j-th object
proposal made for I(i).

When VDA was applied to predict motion of spheres in the original paper, this was
done using colour filters, which assumes that we know the colour of each ball, or what
the background colour of the scene is in each frame I(i) [49]. We make object proposals
based on blob detection, filtering by circularity. Blob detection works by identifying
regions of an image that have a similar appearance by applying filters to highlight areas
of high contrast. Circularity of a region is determined by comparing the perimeter of
a proposal to the perimeter of a circle with the same area, such that high circularity
proposals have perimeters that closely match that of a circle:

circularity =
4π ·Area

(Perimeter)2 (3.5)

OpenCV, an open source computer vision library, is used to do the blob detection [6].
Pseudo-code is provided for single image proposal generation in Algorithm 1. Blob
detection specifically estimates the pixel-wise px, py, and r for each proposal. This
is sufficient to generate P′(t + q). We make the assumption that n′ = n′(t + q), and
estimate all p⃗ components of θe(t +q) and r components of θi using P′(t +q).

Algorithm 1 Object Proposal Generation (I(i))
1: Initialise Blob Detector D
2: Initialise Set P′(i) = {}
3:
4: D.minCircularity = 0.1
5: D.filterByCircularity = True
6: P(i) = D.detect(I(i))
7: for all p( j, i) ∈ P(i) do
8: P′(i).add(p( j, i))
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For later stages of the model, we need to create object masks for each I(i) using
P′(i). We generate P′(t +q−1),P′(t +q−2), . . . ,P′(t +1) by backtracking the object
proposals from P′(t +q) using optical flow:

Ω : Rh×w ×Rh×w → R2×h×w, (optical flow) (3.6)

g : R3×h×w → Rh×w, (grayscale) (3.7)

G(i) = g(I(i)) ∈ Rh×w, (I(i) grayscale) (3.8)

For optical flow to work, we must satisfy several conditions:

1. Brightness Constancy: The brightness of a moving object remains constant
between consecutive frames:

G(i)[x,y] = G(i+1)[x+u,y+ v] (3.9)

Ω(G(i),G(i+1))[x,y] =
[

u
v

]
(3.10)

where (x,y) are the coordinates of a pixel in G(i) and (x+u,y+ v) is the corre-
sponding pixel in G(i+1).

2. Small Motion: The motion of objects between consecutive frames is small.

3. Spatial Coherence: The neighboring pixels have similar motion.

Given the problem definition in Section 2.1, we satisfy all these conditions. Now, given
that we can use Ω and have access to I(i), I(i+1) and P′(i+1), we calculate P′(i) as
follows

Ω(G(i+1),G(i))[p′x( j, i+1), p′y( j, i+1)] =
[

u
v

]
(3.11)

p⃗′( j, i) =

 p′x( j, i)+u
p′y( j, i+1)+ v

p′z( j, i+1)

 (3.12)

∀p⃗′( j, i) ∈ P′(i) (3.13)

Thus we can backtrack the object proposals.

Physical object state estimation In object proposal generation, we found that P′(t +q)
is sufficient to calculate all p⃗′ components of θe(t +q) and r′ components of θi under
the assumption that n′ = n′(t +q).

We use optical flow to calculate the v⃗ components of θe(t +q):

Ω(G(t +q),G(t +q−1))[p⃗′x( j, t +q), p⃗′y( j, t +q)] =
[

u
v

]
(3.14)

v⃗′( j, i) =

−u
−v
0

 (3.15)

∀ j = 1,2, . . . ,n′ (3.16)
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This approach assumes that v⃗′( j, i)≈ v⃗′( j, i−1), which only holds when the interval
between time steps is short.

We calculate all c⃗′ components for θi as the mean I(t + q) pixel value inside the
corresponding proposal boundary:

ε
′( j, t +q) =

{
[x,y]

∣∣(p′x( j, t +q)− x)2 +(p′y( j, t +q)− y)2 ≤ r( j)2} (3.17)

c′( j) =
1

|ε′( j, t +q)| ∑
[x,y]∈ε′( j,t+q)

I(t +q)[x,y], ∀ j = 1,2, . . . ,n′ (3.18)

We use a convolutional network to recognize m′( j) and µ′r( j) for each object proposal
j. The input to the network is the masked image sequence of the proposal and the
corresponding forward sequence of optical flow, with all images concatenated along
the first dimension, and the output is a discrete label l′( j) corresponding to a

[
m′ µ′r

]T

vector for the given object proposal:

V(i) = Ω(G(i) = Ω(G(i),G(i+1)) (Forward optical flow image)

MI( j, i)[x,y] =

{
I(i)[x,y], [x,y] ∈ ε′( j)
0⃗, otherwise

(masked I(i))

MV( j, i)[x,y] =

{
V(i)[x,y], [x,y] ∈ ε′( j)
0⃗, otherwise

(masked V(i))

B( j) = Concat(MI(t +1), . . . ,MI(t +q),MV(t +1), . . . ,MV(t +q−1))

α = 3q (RGB dim.) β = 2(q−1) (Optical flow dim.)

φ : R(α+β)×h×w → N, (CNN)

φ(B( j)) = l′( j)

fm(l′( j)) = m′( j)
fµr(l

′( j)) = µ′r( j)

CNN implementation and training is described Section 4.4. We now have an approach
for estimating all components of θe(t +q) and θi.

3.3 Physics Engine

The physics engine, λ, allows us to simulate a given scenario w time steps into the
future using the output from ψ:

λ : Rn′×(κ+τ)×Z+ → Rn′×τ (3.19)
ψ(x) = y (3.20)

λ(y,w) = θ
′
e(t +q+w) (3.21)

There exists non-differentiable and differentiable physics engines.
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Non-differentiable

These represent the standard class of physics engines, which implement explicit me-
chanical equations to predict object dynamics. This provides them with a robust and
mature foundation. We choose to utilize PyBullet, a standard rigid-body simulation
engine, primarily intended for robotics research [9]. This was primarily due to it being
open-source and used in the original VDA paper [49].

Differentiable

Another approach is with neural, differentiable physics engines. These are trained on a
scenario-basis, fed with intrinsic and extrinsic parameters for all objects in a scene, then
aim to predict the future extrinsic parameters for each object in the scene. This is similar
to the dynamic predictor in a VIN model [46]. A neural physics engine was specifically
developed for colliding balls by Chang et al. 2016, and used in the original VDA paper,
simulating scene dynamics by taking ball mass, position, and velocity [8]. We did not
have time to train this model for our data, so we focus on solely non-differentiable
physics engines.

3.4 Graphics Engine

The graphics engine, γ, allows us to render an image I(i) of a scenario given intrinsic
parameters and extrinsic parameters at a given time step i:

γ : Rn′×(κ+τ) → [0,1]3×h×w (3.22)
γ(θi,θe(i)) = I(i) (3.23)

Given that we are using PyBullet as the physics engine, we use the in-built OpenGL
graphics engine to render scenes [48]. This allows for quick performance with GPU
integration.

A summary of the model is shown in Figure 3.2.
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Optical Flow

CNN

Backpropagation

Graphics Engine (III)

Perceptual Module (I)

Intrinsic Parameters

Extrinsic Parameters

Physics Engine (II) 

Figure 3.2: Our Visual De-Animation (VDA) model is composed of three key elements: a
Perception module (I), a physics engine (II), and a graphics engine (III). The Perception
module plays a crucial role in inverting the graphics engine, by inferring the physical
object state for each segment proposal in the input. These inferred states are then
combined to obtain a physical world representation, denoted as θi and θe(t +q). Subse-
quently, the generative physics and graphics engines are engaged to progress forward
and reconstruct the visual data as I′(t +q+w).
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Methodology

4.1 Data set

To train and evaluate the VDA model, we created a data generation package using
PyBullet. This is provided in our open-source repository with usage intstructions:
https://github.com/J0HNN7G/intuitive_physics

4.1.1 Content

The package allows you to generate simulations of spheres as specified in Section 2.1.
For any given simulation, you can randomize or specify the number of spheres and all
intrinsic, extrinsic parameters that are to be inferred by the VDA model. Further, you
can specify the resolution, duration and frame rate per second (FPS) of a simulation.
For the intrinsic parameters, the following options are available (ordered sets):

r ∈ R = (0.04,0.07,0.09) (4.1)
m ∈ M = (0.2,0.4,0.6) (4.2)

µr ∈ F = (10−4,10−2) (4.3)

These values were selected to be similar to balls on a pool table [1]. As well as a palette
of colour-blind friendly RGB values for c⃗, as shown in Table 4.1 [35]. We denote the
ordered set as C.

Table 4.1: Range of RGB values which c⃗ can take in data generation package.

RGB Colour
0.729, 0.298, 0.251
0.271, 0.753, 0.592
0.341, 0.204, 0.522
0.659, 0.682, 0.243
0.533, 0.455, 0.851
0.412, 0.627, 0.314
0.745, 0.392, 0.698
0.737, 0.490, 0.212

19
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data

sample 0

ball 1.csv

info.json

time step 1.png

time step 2.png

...

...

Figure 4.1: Directory structure for generated simulation data.

When generating a simulation, we store all data in a predefined structure (Figure 4.1).
The actual intrinsic parameters for all spheres are stored in info.json (Figure 4.2), the
actual extrinsic parameters for the i-th sphere are stored in ball <i>.csv (Table 4.2),
and the image associated with time step j is stored in time step <j>.png.

{
"fps": 30,
"num_balls": 3,
"0": {

"label": 1,
"color": [0.729, 0.298, 0.251],
"radius": 0.07,
"mass": 0.2,
"friction": 0.01

}
}

Figure 4.2: Contents of info.csv from a generated simulation.

Table 4.2: Contents of a ball CSV from a generated simulation (not all columns included).

time step pose-x pose-y lin-vel-x lin-vel-y
1 0.4705 0.7279 0.3474 0.3372
2 0.4821 0.7392 0.3474 0.3372
...

...
...

...
...

60 0.5183 0.7742 0.0000 0.0000
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4.1.2 Collection

For all the simulations generated for our experiments, we have a resolution of 256×256
pixels, duration of 2 seconds and 30 FPS. We use n = 3 as this provided a significant
number of interactions between spheres without cluttering environment. As mentioned
in Section 2.1, µl,µs,b are fixed. For every experiment, we use a training set of 1000
simulations, validation set of 200 simulations, and a test set of 200 simulations. We
deemed this a sufficiently large training set to avoid over-fitting for the CNN we employ.

4.2 Experiments

To evaluate our model, we apply it in four different settings:

1. Predict Mass, r → m, (Figure 4.3a):

∀ j = 1,2, . . . ,n, we sample index i ∼U{1,2,3} (4.4)
m( j) = M(i), r( j) = R(i) (4.5)

Model should learn to associate higher mass m with higher radius r. This configu-
ration tests the feasibility of training the model to differentiate objects of various
sizes.

2. Predict Friction, v⃗ → µr, (Figure 4.3b):

∀ j = 1,2, . . . ,n, we sample index i ∼U{1,2}, (4.6)
µr( j) = F(i) (4.7)

Model should learn to associate change in position between images and magnitude
of optical flow with µr. This configuration tests the feasibility of training the
model to differentiate objects by motion.

3. Predict Material, c⃗ → m,µr, (Figure 4.3c):

∀ j = 1,2, . . . ,n, we sample index i ∼U{1,2,3}, k ∼U{1,2}, (4.8)
m( j) = M(i), µr( j) = F(k), (4.9)
c⃗( j) =C(3(k−1)+(i−1)) (4.10)

Model should learn to associate visual appearance with m and µr. This configura-
tion tests the feasibility of training the model to differentiate objects by material
(represented by colour).

4. Predict Mass and Friction, (r, v⃗)→ (m,µr), (Figure 4.3d):

∀ j = 1,2, . . . ,n, we sample index i ∼U{1,2,3}, k ∼U{1,2}, (4.11)
m( j) = M(i), r( j) = R(i) (4.12)
µr( j) = F(k) (4.13)

Model should learn to associate both higher m with higher r and change in
position between images and magnitude of optical flow with µr independently.
This configuration tests the feasibility of the model to differentiate objects by
several uncorrelated factors.
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c

a

c

b

c

c

c

d

Figure 4.3: The four simulation settings used in our experiments: (a) the spheres vary
in mass and radius, which are related to each other, and the system learns about their
physics from their appearance; (b) the spheres differ in friction, and the system learns
about their physics by observing their motion; (c) the spheres have different mass, radius,
and friction correlated with colour, which are interrelated, and the system learns to
associate appearance cues with underlying object states; (d) combine settings (a) and
(b), where spheres vary in mass, radius, and friction, and the system learns about their
physics by analyzing both their appearance and motion.

We use q = 3, as this is the minimum number of images required to see the velocity
change for objects. Any less, and the model would not be able to detect physical
properties from solely motion.

4.3 Evaluation Metrics

Our evaluation metrics are informed by our optimization problems Fp and FI.

We get a good approximation for how well the model will perform on Fp by using the
Mean (x,y) Manhattan Distance between p⃗∗ and p⃗′ as time steps are increased. We
exclude the z component as this remains the same for all time steps, and only reflects
how well the model can estimate the r parameter. We choose to use L1 norm (Manhattan
distance) instead of L2 norm (Euclidean distance), as is used in our objective function,
as this is used in the original VDA paper, making it easier for us to compare results.
We also do this pixel-wise instead of in metres, to make for easier comparison. We
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calculate this for a given time step as follows:

p∗ =
[
p⃗∗(1) p⃗∗(2) . . . p⃗∗(n)

]T (4.14)

p′ =
[
p⃗′(1) p⃗′(2) . . . p⃗′(n)

]T (4.15)

Mean Position Prediction Error(p∗, p′) =
1
n

n

∑
j=1

(|p⃗∗x( j)− p⃗′x( j)|+ |p⃗∗y( j)− p⃗′y( j)|)

(4.16)

To better understand the model, we use this for the velocity as well,

v∗ =
[⃗
v∗(1) v⃗∗(2) . . . v⃗∗(n)

]T (4.17)

v′ =
[⃗
v′(1) v⃗′(2) . . . v⃗′(n)

]T (4.18)

Mean Velocity Prediction Error(v∗,v′) =
1
n

n

∑
j=1

(|⃗v∗x( j)− v⃗′x( j)|+ |⃗v∗y( j)− v⃗′y( j)|)

(4.19)

For both the position and velocity, we also compute the standard deviation, to understand
how the model becomes less stable as it makes prediction farther into the future.

Although we are primarily interested in Fp, its in our interest to see how well our model
can reconstruct the image corresponding to our scene, as is the objective of FI. To do
this we look at the pixel mean squared error (MSE) between the original image and
reconstructed image at time step t +q:

Reconstruction Pixel MSE(I∗,I′) =
1

h ·w

h

∑
x=1

w

∑
y=1

∥∥I∗[x,y]− I′[x,y]
∥∥2 (4.20)

The model performance is directly related to how well the CNN component of the
perceptual model can predict the labels corresponding to the intrinsic parameters of the
spheres. We quantify this with the label accuracy,

l⃗∗ =
[
l∗(1) l∗(2) . . . l∗(n)

]T (4.21)

l⃗′ =
[
l′(1) l′(2) . . . l′(n)

]T (4.22)

[l∗(i) = l′(i)] =

{
1 if l∗(i) = l′(i)
0 otherwise

(4.23)

Label accuracy(⃗l∗,⃗ l′) =
∑

n
i=1[l

∗(i) = l′(i)]
n

(4.24)

Further, to understand how well object proposal generation component performs, we
compute its accuracy, recall, precision and F1 score.

Intersection over union (IoU) is a common metric in object detection for determining
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how well two object proposals match,

Area of Intersection(A,B) = |A∩B| (4.25)
Area of Union(A,B) = |A∪B| (4.26)

IoU(A,B) =
|A∩B|
|A∪B|

(4.27)

Our object proposals are circular. Given two circles C1(x1,y1,r1),C2(x2,y2,r2), the
area of intersection and union are calculated as follows, ignoring the trivial cases were
the circles do not overlap at all, or fully overlap [47]:

d =
√

(x2 − x1)2 +(y2 − y1)2 (4.28)

g =
√

(−d + r1 + r2)(d + r1 − r2)(d − r1 + r2)(d + r1 + r2) (4.29)

|C1 ∩C2|= r2
1 arccos

(
d2 + r2

1 − r2
2

2dr1

)
+ r2

2 arccos
(

d2 + r2
2 − r2

1
2dr2

)
− 1

2
g (4.30)

|C1 ∪C2|= π(r2
1 + r2

2)− I (4.31)

We will not discuss the proof for this here as it is relevant to the VDA model.

Accuracy, recall, precision, F1 score are calculated as follows:

Accuracy =
True Positives

True Positives+False Positives+False Negatives
(4.32)

Recall =
True Positives

True Positives+False Negatives
(4.33)

Precision =
True Positives

True Positives+False Positives
(4.34)

F1 Score =
2× (Precision×Recall)

Precision+Recall
(4.35)

We determine a true positive as when the highest IoU for a ground truth proposal is
above 0.8, where that highest IoU is from a proposal that has not already been selected
as a true positive for a different ground truth proposal. We use this to match the index
of object proposals with the ground truth for the other metrics mentioned above. Mean
IoU is calculated for IoU values selected as true positives.

Finally, its is desirable for the model to be quick, hence we measure the mean inference
time to make a prediction for a given future time step (without visualization).

4.4 Implementation Details

For our perceptual module,
φ = ResNet18 (4.36)

We use a ResNet18 architecture as it is lightweight and used in the original VDA paper
[49, 16]. The input is modified from the standard configuration for ImageNet to the
number of input channels in our experiments and ablation study, as is the output shape.
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A standard training regime for φ is employed with cross-entropy loss and stochastic
gradient descent (SGD) optimizer using a learning rate of 0.1, and momentum of 0.9
[5, 38]. For all experiments, we train a newly-initialized model for 5 epochs, where
each epoch is 1000 iterations, involving a batch size of 8, i.e., each epoch involves
8000 samples. 10−4 weight decay is employed for regularization such that after each
iteration, learning rate is updated as follows:

scale =
(

1− current iteration
max epochs× iterations

)
×10−4 (4.37)

learning rate = learning rate× scale (4.38)

For the optical flow,
Ω = {Farnebäck,SpyNet} (4.39)

Farnebäck method is a classical computer vision approach to dense optical flow, imple-
mented in OpenCV [6, 12]. We use the standard parameters provided with the OpenCV
implementation. SpyNet is a deep learning optical flow model used in the original VDA
paper [36, 49]. We utilize a SpyNet model pre-trained on the MPI Sintel data set [7, 31].

All neural networks are implemented with PyTorch and benchmarking is done with a
single Nvidia GTX 1060 (6GB GPU Memory) [33, 32].



Chapter 5

Results

5.1 Experimental Results

5.1.1 Object Proposal Generation

Table 5.1: Accuracy, Recall, Precision, F1, mean IoU (mIoU) for object proposal genera-
tion in each setting.

Setting Accuracy Recall Precision F1 mIoU
r → m 0.8346 0.8450 0.9692 0.8877 0.9947
v⃗ → µr 0.9083 0.9083 0.9950 0.9360 0.9942

c⃗ → m,µr 0.8112 0.8217 0.9625 0.8705 0.9850
(r, v⃗)→ (m,µr) 0.8542 0.8633 0.9633 0.8948 0.9846

In the predict friction setting, object proposal generation demonstrates the highest
performance in accuracy, recall, precision, and F1 scores. This is likely due to the
constant radius of all spheres in this setting, as opposed to the other settings where
the radius may be smaller, making sphere detection more challenging. In contrast, the
predict mass setting exhibits the highest mean intersection over union (mIoU), albeit
only slightly (with a difference of 0.0005 from the next highest mIoU value). The
negligible range of mIoU values (0.0101) suggests that the blob detection method can
effectively match a sphere despite variations in radius and colour. This can be attributed
to the fact that object proposal generation relies on circularity as the primary criterion
for object detection, which remains unaffected by changes in these parameters.

Overall, the object proposal generation approach demonstrates high performance across
all tasks, as indicated in Table 5.1.

26
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5.1.2 Scene Reconstruction

Table 5.2: Pixel MSE between final buffer image and reconstruction by model (Pixel
MSE) in each setting.

Setting Pixel MSE
r → m 0.0025
v⃗ → µr 0.0015

c⃗ → m,µr 0.0023
(r, v⃗)→ (m,µr) 0.0015

Table 5.2 shows that the Pixel MSE between the final buffer image and reconstruction is
consistently low across all settings. This indicates that the model successfully extracts
the world representation and accurately reconstructs it in each scenario. Notably, the
lowest error is observed in the predict friction and predict mass and friction settings.
However, since the difference in Pixel MSE across all settings is negligible (0.01 range),
we choose not to highlight any specific values as having superior performance.

5.1.3 Convolutional Neural Network (CNN)

Table 5.3: Inference time mean and standard deviation (µ±σ) in seconds (Inf. Time)
and mean label accuracy (Label Acc.) for each setting using Ω ∈ {Farnebäck,SpyNet}.

Setting Ω Inf. Time (s) Mean Label Acc.

r → m
Farnebäck 0.2430±0.0742 0.9998

SpyNet 0.2295±0.0794 0.9999

v⃗ → µr
Farnebäck 0.2199±0.0654 0.8656

SpyNet 0.2347 ± 0.0695 0.8869

c⃗ → m,µr
Farnebäck 0.2033±0.0693 0.9989

SpyNet 0.2161±0.0751 0.9986

(r, v⃗)→ (m,µr)
Farnebäck 0.2095±0.0692 0.8670

SpyNet 0.2239±0.0742 0.8631

Table 5.3 displays the low and stable inference time for the perceptual module using ei-
ther the Farnebäck method or SpyNet. Excluding the predict mass setting, the Farnebäck
method appears to be marginally faster and more consistent than using SpyNet, with a
mean inference time difference of approximately 0.01 seconds and a standard deviation
difference of around 0.005 seconds. With regard to label accuracy, it is unclear which
model, trained on either the Farnebäck method or SpyNet optical flow, achieves the
highest performance, as this varies across settings. However, when excluding the predict
friction setting, the perceptual module utilizing Farnebäck optical flow exhibits slightly
better label accuracy. Notably, for the predict friction setting, we observe the most
significant difference in label accuracies between the perceptual modules trained on
Farnebäck and SpyNet optical flow, with the SpyNet model achieving a 0.0213 higher
accuracy. In other settings, the difference in label accuracy is less pronounced.
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5.1.4 Future Prediction

The performance of the model can be analyzed based on the mean prediction errors and
standard deviations for position and velocity at different future time steps and settings,
as shown in Figure 5.1 and Figure 5.2.
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Farnebäck
SpyNet

Figure 5.1: Mean pixel position prediction error over time with standard deviation bars
for each setting using Ω ∈ {Farnebäck,SpyNet}: (a) r → m; (b) v⃗ → µr; (c) c⃗ → m,µr;
(d) (r, v⃗)→ (m,µr).

For mean pixel position prediction error, the Farnebäck algorithm consistently out-
performs the SpyNet algorithm, achieving lower values across all settings and time
steps. This trend indicates that the Farnebäck algorithm is more accurate in predicting
position than SpyNet. The model’s performance in position prediction tends to degrade
as the future time steps increase, which is expected due to the inherent uncertainty in
predicting further into the future.
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Figure 5.2: Mean pixel velocity prediction error over time with standard deviation bars for
each setting using Ω ∈ {Farnebäck,SpyNet}: (a) r → m; (b) v⃗ → µr; (c) c⃗ → m,µr; (d)
(r, v⃗)→ (m,µr).

When examining the mean pixel velocity prediction error, the Farnebäck algorithm still
demonstrates superior performance compared to SpyNet. It consistently achieves lower
mean velocity prediction errors across all settings and time steps. Similar to the position
prediction, the model’s performance in velocity prediction also declines as the future
time steps increase, which is a natural consequence of predicting further into the future.
Overall, these results suggest that the Farnebäck algorithm is a more reliable choice for
both position and velocity prediction tasks compared to SpyNet. Given the lower range
for velocity, we see that the standard deviation is much lower than for the position error.

We see that the model is able to effectively infer the position and velocity of all spheres
in a given scene. Position and velocity prediction error results are also displayed in
tables (see Table 5.4, Table 5.5)
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Table 5.4: Mean pixel position prediction error (Pos. Pred. Error) and mean pixel velocity
prediction error (Vel. Pred. Error) at each future time step t ∈ [1,5,10,20] for each
setting using Ω ∈ {Farnebäck,SpyNet}.

Setting Ω
Mean Pos. Pred. Error Mean Vel. Pred. Error
1st 5th 10th 20th 1st 5th 10th 20th

r → m
Farnebäck 1.97 3.46 5.93 11.40 0.50 0.70 0.79 0.99

SpyNet 2.07 4.61 8.10 15.19 0.80 1.03 1.07 1.29

v⃗ → µr
Farnebäck 1.28 2.95 6.12 16.02 0.66 0.75 0.99 1.21

SpyNet 1.45 4.69 9.61 21.90 1.04 1.16 1.44 1.64

c⃗ → m,µr
Farnebäck 2.02 3.61 7.06 16.61 0.69 0.88 1.17 1.21

SpyNet 2.07 4.01 7.55 16.65 0.85 0.97 1.18 1.21

(r, v⃗)→ (m,µr)
Farnebäck 1.97 3.40 7.74 19.74 0.64 0.92 1.37 1.45

SpyNet 2.04 4.63 9.79 22.47 0.94 1.23 1.54 1.66

Table 5.5: Standard deviation of pixel position prediction [Pos. Pred. (SD)] and standard
deviation of pixel velocity prediction [Vel. Pred. (SD)] at each future time step t ∈
[1,5,10,20] for each setting using Ω ∈ {Farnebäck,SpyNet}.

Setting Ω
Pos. Pred. (SD) Vel. Pred. (SD)

1st 5th 10th 20th 1st 5th 10th 20th

r → m
Farnebäck 0.66 1.77 4.10 8.91 0.41 0.96 0.78 1.04

SpyNet 0.69 2.75 5.94 11.84 0.60 1.09 0.90 1.12

v⃗ → µr
Farnebäck 0.35 1.78 3.76 8.92 0.39 0.7 0.54 0.80

SpyNet 0.42 3.06 6.85 14.93 0.63 0.98 0.96 1.50

c⃗ → m,µr
Farnebäck 0.68 1.83 3.97 8.93 0.41 0.68 0.79 0.72

SpyNet 0.68 2.32 4.88 9.87 0.49 0.83 0.85 0.72

(r, v⃗)→ (m,µr)
Farnebäck 0.65 1.38 4.00 11.71 0.46 0.56 0.86 0.97

SpyNet 0.64 2.29 5.99 13.93 0.58 0.99 0.98 1.13

5.2 Ablation Study

Table 5.6: Inference time mean and standard deviation (µ±σ) in seconds (Inf. Time)
and mean label accuracy (Label Acc.) for predict friction, v⃗ → µr, setting for φ trained
with different inputs.

Setting φ Input Inf. Time (s) Mean Label Acc.

v⃗ → µr

Buffer + Optical Flow (SpyNet) 0.2347±0.0695 0.8869
Optical Flow (SpyNet) 0.2288±0.0687 0.8858

Optical Flow (Farnebäck) 0.2111±0.0630 0.8686
Buffer + Optical Flow (Farnebäck) 0.2199±0.0654 0.8656

Buffer Only 0.2167±0.0651 0.8560

The results presented in Table 5.6 shed light on how the choice of input affects both the
inference time and label accuracy of the model, revealing the significance of optical
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flow for training the CNN. We specifically examine the outcomes for the predict friction
setting, which relies solely on the motion of the spheres to determine object state.

The highest label accuracy (0.8869) is achieved when the model is trained with buffer
images combined with SpyNet optical flow. A close accuracy (0.8858) is obtained when
using SpyNet optical flow alone, indicating that the model heavily relies on optical
flow for inference in this setting. The lowest label accuracy (0.8560) corresponds to the
model trained with buffer images only, further supporting this observation.

The quickest inference time is achieved using only Farnebäck optical flow as input. How-
ever, the improvement is marginal compared to other models and is largely negligible
when considering the standard deviation.

Interestingly, the combination of buffer images and Farnebäck optical flow results in a
lower label accuracy (0.8656) than using Farnebäck optical flow alone (0.8686). This
implies that the additional information provided by the buffer may not significantly
contribute to enhancing label accuracy in this specific setting.

The results suggest that optical flow is vital for attaining higher label accuracy, and
its influence on inference time is minimal. Hence, it is clearly beneficial to the model
architecture.

5.3 Qualitative Results

20
c

20
a

20
b

20
d

Figure 5.3: Comparison of actual Image and reconstruction at each future time steps
t ∈ [1,5,10,20] for each setting with model using Farnebäck Optical Flow and n = 7: (a)
r → m; (b) v⃗ → µr; (c) c⃗ → m,µr; (d) (r, v⃗)→ (m,µr).

In Figure 5.3, we display predictions for random samples (with n = 7) in each setting
using model with Farnebäck optical flow. In all cases, the model’s predictions closely
mirror the ground truth images up to t +20, which is consistent with our experimental
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findings. These results show high object proposal generation accuracy and mIoU, along
with low position prediction errors as time progresses in a cluttered environment.



Chapter 6

Conclusion

6.1 Summary

In this project, we introduce a new visual de-animation model for spheres on planar
surfaces, which exhibits high performance in object detection, object parameter estima-
tion, scene prediction, and reconstruction. Our model builds upon the original visual
de-animation model by employing circularity for object proposal generation and optical
flow for extrinsic parameter estimation, as opposed to colour filters and a neural network
for both intrinsic and extrinsic parameters. This modification increases the robustness
and precision of our model, since circularity is a more direct detection method for
spheres compared to colour filters, and extracting velocity directly from the optical flow
reduces the risk of velocity estimation corruption during feed-forward processing in the
CNN.

We provide open-source utilities for easy training, evaluation, and testing of our model,
available at https://github.com/J0HNN7G/intuitive_physics. This repository
includes scripts for reproducing the training and evaluations described in this disserta-
tion.

Additionally, we offer a new data set generator for spheres on planar surfaces using
PyBullet, facilitating structured experimentation with an easy generation process.

6.2 Discussion

6.2.1 Performance

Our VDA model demonstrates high performance and speed (approximately 5 FPS)
on all settings, including those with traditional and neural network optical flow. The
model achieves impressive accuracy, precision, recall, F1 score, and mIoU for object
proposal generation. It also performs well in scene reconstruction pixel MSE and future
prediction position and velocity error. This suggests that our model is effective in
handling scenes involving spheres on planar surfaces and can accurately extract the
underlying object states from both appearance and motion.

33
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6.2.2 Object Proposal Generation

The blob detection method used for object proposal generation has shown high per-
formance across various settings with different appearances of spheres. It effectively
identifies spheres regardless of their size and colour, indicating that circularity is a
potent criterion for detecting objects like spheres on planar surfaces. This success
highlights the generalizability of our model to different appearances and scenarios
involving spherical objects.

6.2.3 Optical Flow Estimation

The optical flow estimation for initial position and velocity of spheres demonstrates
low error and good stability in future predictions. While we do not have access to
the original VDA model or their data set, a comparison with the results in their paper
suggests that our model achieves lower or at least comparable error [49].

The choice between the Farnebäck method and SpyNet for dense optical flow estimation
remains inconclusive based on our results. The Farnebäck method seems to be slightly
faster and more consistent than SpyNet. Farnebäck and SpyNet yields similar label
accuracy for all settings, except for the predict friction setting, where it achieves a more
significant improvement. Overall, our results indicate that a neural optical flow network
is not necessary for high model performance, a point not clarified in the original VDA
paper.

6.3 Future Work

Below we provide a list of potential avenues that could be explored to validate and
extend our VDA model:

• Model comparison: A direct comparison between our VDA model and the
original VDA model, as well as other intuitive physics models, will provide more
insight into the performance and significance of our model. Unfortunately, we
did not have time for this during the project.

• Real-life data set: Evaluating our model on real-life data would reveal how well
it generalizes to real-world scenarios. Unfortunately, we did not have time to
pursue this during the project.

• Extend VDA model: Investigating the applicability of our VDA model to handle
other tasks or scenarios, such as non-spherical objects, non-planar surfaces, or
more complex environments, will help expand its potential use cases.

• Experiment with physics engines: Testing the VDA model with different physics
engines can help determine the impact of various underlying physics simulations
on the model’s performance and predictions. More specifically, we did not have
time to test our model with a differentiable physics engine during the project.

• Experiment with graphics engines: Exploring different graphics engines can
reveal how different rendering methods and image representations affect the
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model’s performance in scene reconstruction. We did not have time to experiment
with a differentiable neural renderer.

• Experiment with convolutional neural networks: Evaluating the VDA model
with different convolutional neural networks can provide insights into the most
effective network architectures for processing and extracting useful features from
the input data. More specifically, it would be interesting to explore whether a
more lightweight architecture, such as LeNet, would be sufficient for extracting
the underlying state representation. This could potentially reduce memory usage
and increase inference speed for the model [26].

• Improve optical flow: Our model largely relies on the high accuracy of the
optical flow method for its performance. Developing and testing new optical flow
methods or enhancing existing ones could lead to better performance in velocity
estimation, allowing the model to handle more complex scenarios.

6.4 MInf Part 2

The primary goal of this report has been the comprehension and implementation of
visual de-animation for spheres on planar surfaces. In the next phase, it would be
desirable to compare the developed model with the original VDA model and the
VIN model, using both synthetic and real-life data. Furthermore, extend the model’s
capabilities to tackle 3D intuitive physics problems, such as a block-stacking task where
the model predicts how blocks will fall. The current model’s high performance is
largely attributed to its reliance on optical flow, so integrating 3D scene flow would be a
promising adaptation of the model to handle scenarios in 3D [45].

Owing to the novelty of visual de-animation and intuitive physics models, there are
numerous unexplored avenues for improvement that have not been addressed in this
dissertation. Consequently, the ideas presented here should not be considered as absolute
goals for Part 2 of the project.
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