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Abstract
The clearing problem, highlighted by Eisenberg and Noe in [9], aims to calculate the
clearing payment for all financial institutions in the event of cascading default. Solving
the clearing problem is complex due to the intricate nature of real-world financial
systems. However, Eisenberg and Noe proposed a general financial model with only
debt contracts, and provided the Fictitious Default Algorithm to solve the clearing
problem in this financial system, assuming that cascading default occurs round by
round.

In this project, three different algorithms inspired by [9] were implemented in Python to
compute the optimum clearing payment. These algorithms included one based on linear
programming, one based on value iteration, and one utilizing the Fictitious Default
Algorithm. Due to the scarcity of existing data sets, reasonable random data was
generated based on the features of the financial network to conduct experiments and
compare the algorithms’ performance.

The results showed that all three algorithms had their strengths and weaknesses, and
each was more suitable under certain conditions. Linear programming gave the optimum
solution for most of the time, value iteration provided the fastest speed, and the Fictitious
Default Algorithm allowed us to trace the path of contagion while maintaining similar
speed with value iteration.

In addition, this project introduced an extended model that incorporated equity contracts
and bankruptcy costs, based on [14]. We also implemented the algorithm provided by
the authors to determine the equilibrium banks’ value, which can be used to easily find
the clearing payment vector after establishing this equilibrium value. We then analyzed
the extended model by conducting experiments using randomly generated data and
assessed its computing time as well. The results show that the computational efficiency
becomes significantly slower when the number of banks increases, particularly when
reaching about 300.
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Chapter 1

Introduction

1.1 Initiative

The financial market has always been a hotspot in the world economy. Its vigorous
development allows financial institutions, such as firms and banks, to engage in various
financial contracts with each other, leading to complex financial networks with exten-
sive interconnections. Although these contracts may help firms mitigate idiosyncratic
liquidity variations or achieve superior investments, it is a fact that ”financial interde-
pendencies generate systemic risks” [16]. Indeed, Jackson et al. discuss two types of
systemic risks in their survey: contagion through network interdependencies, and a
canonical form characterized by a cascade of insolvencies (defaults).

Firms are interconnected by obligations, and if one such firm defaults unexpectedly, it
can reduce the inflows of the firms that are its creditors, triggering them into default
as well, consequently affecting even more firms. This kind of cascading failure could
result in an economic downturn, as seen in the worldwide financial crisis of 2008, which
was triggered by the collapse of the investment bank Lehman Brothers and affected
the global financial system, leading to the worst recession since the Great Depression.
Recently, the insolvency of Silicon Valley Bank and the subsequent failure of another
US lender, Signature Bank, has sparked global fears of a systemic crisis and domino
effects like those seen in the 2008 financial crisis.

Therefore, it is necessary to predict and measure this type of systemic risk in financial
networks, as well as to compute the clearing payment (i.e., the payments needed to
settle all debts between financial institutions in a network) in the event of cascading
defaults. The latter is called the clearing problem, which was first highlighted in 2001
by Eisenberg and Noe [9]. The clearing problem is a computational challenge due to
the complexity of financial systems. However, Eisenberg and Noe provided a general
financial model of a clearing system that satisfies the standard conditions of bankruptcy
law and presented an algorithm to compute the clearing payment vector (i.e., the solution
of the clearing problem, which is a vector of clearing payments from firms to other
firms in a financial system) for a financial system with only debt contracts in polynomial
time. Building upon the model and algorithm given by Eisenberg and Noe, many other
researchers have introduced additional financial contracts for clearing problems, such

1



Chapter 1. Introduction 2

as credit default swaps, which have been derived and proven to be a PPAD-complete
problem [18].

These algorithms are crucial for actors in global finance to facilitate the analysis of
systemic risk, rescue a financial system in crisis and prevent cascading defaults from
happening again by scrutinizing financial institutions and analysing the stability of the
financial system. For instance, in the case of bailing out banks to prevent contagion
defaults, around three-quarters of the 104 bank failures studied by [11] involved a
bailout in some form or another. However, real-life financial systems are too intricate,
making the problem of systemic risk challenging. Therefore, the initiative of this project
is to start with the financial model established by Eisenberg and Noe, investigate the
algorithms for finding the clearing payment, and consider more complicated financial
models thereafter.

1.2 Objectives

Although the theoretical frameworks for computing clearing vectors using the algorithms
proposed by Eisenberg and Noe exist, to our knowledge, no one has yet implemented
them. In this project, we will begin by implementing the three algorithms proposed and
inspired by Eisenberg and Noe in [9], including one explicitly outlined in the paper and
two inspired by the definitions provided. We will use a financial model that assumes
only debt contracts exist in the financial system and no bankruptcy costs. As more
recent papers have pointed out, bankruptcy costs are non-negligible and occur when
firms default due to activities like a fire sale. Therefore, we will use another model
provided by Jackson et al., which adds equity contracts and bankruptcy costs to the
model, and implement their algorithm as well [14]. Finally, using Python, we will
experiment with all four algorithms, generating data according to the restrictions of the
model and empirical knowledge of real financial networks, and analyse and compare
the results of these algorithms.

1.3 Report Outline

In the upcoming chapter, we will introduce the mathematical definitions that serve
as the basis of the further work. To improve the flow, we will present two financial
systems and their corresponding algorithms in separate chapters. Chapter 3 will start
by formalizing the financial system mentioned by Eisenberg and Noe and provide a
detailed explanation of the implemented algorithms, including a thorough analysis of
their complexity and accompanying pseudocode [9]. We will then delve into the specific
implementation details of these algorithms, including the technologies employed. The
last section of the chapter will cover the experiments carried out, including methods for
data initialization and result analysis. In Chapter 4, we will apply the same approach
to the financial system and algorithm mentioned by Jackson et al. [14]. Finally, the
project will conclude with a summary of key findings and proposed open problems for
future research and development.



Chapter 2

Mathematical Definitions

The algorithms utilized in this project rely on certain mathematical definitions and
theorems. To better understand these algorithms and their analysis, we introduce some
definitions related to lattices.

2.1 Complete Lattice Theory

A complete lattice (L,≤) is a partially ordered set (or poset in short) in which every
subset of L has both a least upper bound (or supremum) and a greatest lower bound (or
infrimum) [4].

2.2 Lattice Operations

Three lattice operations need to clarified at the beginning to avoid ambiguities:

x∧ y := (min[x1,y1], min[x2,y2]...min[xn,yn]),

x∨ y := (max[x1,y1], max[x2,y2]...max[xn,yn]),

x+ := (max[x1,0], max[x2,0]...max[xn,0]).

2.3 Tarski’s Fixed Point Theorem

Consider a complete lattice (L, ≤). Suppose there is a monotonic (increasing) function
f : L→ L (i.e., for all x,y ∈ L, x≤ y implies f (x)≤ f (y)). Then, the set P, which is the
set of all fixed points of f , is non-empty and is a complete lattice with respect to ≤ (i.e.
(P, ≤)).
Consequently, f has a greatest fixed point and a least fixed point [19].

3



Chapter 3

Financial Model with Debt Contracts
Only

In this chapter, we will focus on the financial model and the algorithms introduced in
[9].

3.1 The Financial Model of Eisenberg and Noe

Cyclical interdependence is an important feature in financial system architectures, which
was termed by Eisenberg and Noe in their paper ’Systemic Risk in Financial Systems’
in 2001 [9]. This interdependence arises from the fact that the values of many firms are
contingent on payments received from other firms. If one firm, say firm A, defaults,
it may lead to firm B defaulting, as firm B will not receive the expected payoffs from
firm A. This, in turn, could lead to firm C defaulting for the same reason. Consequently,
firm C may be unable to complete its obligations to firm A. This paper pays attention
to this linkage and develops a financial system model with this type of linkage that
satisfies the standard conditions of bankruptcy law, including three important criteria.
The first criterion is limited liability, which means that a firm should never pay more
than it has in cash flow. The second criterion is that a firm should not pay any of its
stockholders until it has paid off all its outstanding liabilities to the other firms, that is,
the debt has absolute priority over equity. The third criterion is proportionality. When a
firm defaults, it may not be able to fulfil all of its obligations to other firms, so it should
pay the claimant firms according to the proportion of the firms’ nominal claim to the
sum of the claim, so that no firm feels unfairly treated during the clearing. Following
these conditions, this project provides a simple and tractable model for computing
clearing vectors, which is the output vector that the clearing mechanism tries to compute
- payments from firms to other firms in the financial system.

To formalize the model, better illustrate the algorithm, and avoid any ambiguities, it is
necessary to introduce some key definitions and notations used in [9] to construct the
financial system model.

4



Chapter 3. Financial Model with Debt Contracts Only 5

Consider a financial network with n nodes, each of which represents a distinct economic
entity or financial node, and has nominal liabilities(i.e. promised payments) to other
nodes in the system, then:

• Each node (a bank, a firm etc.) is represented by a node n.

• Li j is the promised payment value from node i to node j, referred to as nominal
liability.

• L is a nominal payments matrix, which is an n*n matrix, it includes the nominal
liabilities between all nodes, where the value at the ith row and jth column
represents Li j. One restriction is that ∀i,Lii = 0, the values on the diagonal of the
matrix are also 0 since a firm would never owe itself a liability. Additionally, all
other values in the matrix are non-negative, that is, ∀i, j ∈ N, Li j ≥ 0.

• e is an operating cash flow vector that includes the operating cash flow for each
of the n nodes in the system, where each element ei represents the total cash flow
received by node i. While it is assumed that ei ≥ 0 in this model, this condition
is actually not restrictive since negative cash flow can occur due to operating
costs. It is important to note that operating costs should not be categorized as
negative cash inflows, but rather represent all other liabilities to external factors
of production (e.g., workers and suppliers). Therefore, the costs that exceed the
revenues are not counted as negative cash balance, but instead as the liabilities to
the workers. To address this, a ”sink node” can be added to the financial system
as node 0, which captures this concept. The sink node is assumed to have no
operating cash flow (i.e., e0 = 0) or obligations to other nodes (i.e., L0 j = 0 for all
j). Moreover, the operating cost of each node i is treated as the liabilities of node
i to the sink node 0 (i.e., Li0). In this model, we allow such a sink node to exist,
so that we can assume ei ≥ 0 without a loss of generality.

• p = (p1, p2, ..., pn) is the total payment vector, where pi represents the total
payment made to all other nodes by node i.

• p̄ = (p̄1, p̄2, ..., p̄n) is the total obligation vector, where p̄i represents the total
nominal obligation of node i to all other nodes, as given by [9]:

p̄ =
n

∑
j=1

Li j. (3.1)

• Π is the relative liability matrix, where each element Πi j represents the proportion
of node i’s liability to node j in the total liabilities of node i, as given by [9]:

Π j ≡

{
Li j
p̄i

if p̄i > 0

0 otherwise
(3.2)

In the present model, all debt claims are assumed to have equal priority, which
means the payment made by node i to node j should be denoted as πi j, while the
total payments received by node i should be ∑

n
j=1 ΠT

i j p j. Moreover, as all the
debtors and creditors are represented by individual nodes in this financial system,
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it is expected that for any node i, its liability proportion to other nodes should
sum to 1, as stipulated in [9]:

∀i,
n

∑
j=1

Πi j = 1, (3.3)

and in matrix form, as in [9]:
Π1 = 1. (3.4)

• Finally, the clearing payment vector p∗ is the output computed by the algorithms,
which is the optimum clearing payment vector when each node pays most under
three criteria. The element p∗i represents the clearing payment of node i, in other
words, the most total payment that node i should pay to all other nodes.

With all the definitions and notations mentioned above, the financial system can now be
described by the triple (p, p̄, e). Additionally, since the total cash flow received by a
node i consists of both the payments received from other nodes and its operating cash
flow (i.e., ei), we can express the total cash flow to node i as follows:

n

∑
j=1

Π
T
i j p j + ei. (3.5)

Furthermore, the determination of payment vector P should reflect the payments made
by each node n in the financial system. These payments must adhere to the legal
regulations mentioned earlier, i.e., limited liability, the priority of debt claims, and
proportionality. Keeping these conditions in mind, and with all the notations that have
been defined, the following definition can be made for the clearing payment vector P
[9]:

Definition 3.1.1. The clearing payment vector for the financial system(Π, p̄, e) is a
vector p∗ ∈ [0, p̄] that satisfies the following conditions:

a. Limited Liability. ∀i ∈ N,

p∗i ≤
n

∑
j=1

Π
T
i j p
∗
j + ei. (3.6)

b. Absolute Priority. ∀i ∈ N, either obligations are paid in full, that is, p∗i = p̄i, or
all values are paid to creditors, that is,

p∗i =
n

∑
j=1

Π
T
i j p
∗
j + ei. (3.7)

3.2 Algorithms in Theory

In this section, we will introduce and explain the theories and details of all three
algorithms that will be implemented and experimented with in the following sections
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using the financial model and notations defined previously. All three algorithms are
used to compute the clearing payment vector in the financial system with only debt
contracts. The first two algorithms are inspired by Eisenberg and Noe and the third
algorithm, named the ”Fictitious Default Algorithm,” is explicitly introduced in [9].

Before delving into the algorithms, it is essential to determine whether clearing payment
vectors exist in this system. In other words, it needs to be determined whether there is
always a solution to the clearing problem algorithms. Fortunately, this has been proven
by Eisenberg and Noe, and below is a summary of their proof [9].

3.2.1 Proof of the existence of clearing payment vectors

The following theorem, denoted as Theorem 1, is used to prove the existence of clearing
payment vectors:

Theorem 1. For every financial system (Π, p̄, e), there exists a greatest and least
clearing payment vector, p+ and p−, respectively.

Before presenting the proof, a fixed-point characterization pi of clearing vectors is
introduced. As previously mentioned, clearing vectors must adhere to the principles of
limited liability and absolute priority. Therefore, p∗ ∈ [0, p̄] is a clearing vector if and
only if the following condition holds: ∀i ∈N :

p∗i = min[ei + ∑
j=1

Π
T
i j p
∗
j , p̄i], (3.8)

where ei +∑ j=1 ΠT
i j p
∗
j represents ”what the node i has” (i.e., the total value of node I,

which is computed by the total cash flow of node i added to the total amount of money
node i could receive from all other nodes under clearing vector p∗) and p̄i represents
”what the node i owns” (i.e., the total nominal liabilities of node i). Then, we can see
that p∗ is a fixed point of a map Φ(.;Π, p̄,e) : [0, p̄]→ [0, p̄] such that:

Φ(p;Π, p̄,e)≡ (ΠT p+ e)∧ p̄. (3.9)

The map can be easily understood as the nodes’ value∧nominal obligation of nodes. We
utilize the map Φ to complete the proof, where the set of fixed points of Φ is denoted as
FIX(Φ). As discussed previously, Φ is composed of an affine map q→ΠT q+ e and a
positive, increasing, and concave map q→ q∧ p̄. Therefore, we know that Φ is also
positive, increasing, and concave, and that Φ(0)≥ 0 and Φ(p̄)≤ p̄.

According to Tarski’s fixed-point theorem [19], as introduced in Section 2.3, FIX(Φ) is
shown to be non-empty and forms a complete lattice, thereby establishing the existence
of a greatest element p+ and a least element p−. Thus, the above theorem is proven,
and the algorithms aim to find the greatest fixed point.

3.2.2 Algorithm - linear programming

The first algorithm employs the concept of linear programming. Linear programming,
also known as linear optimization, is a mathematical method used to find a vector
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x∗ ∈ Rn that maximize or minimize the value of a linear objective function subject
to certain constraints. In other words, it aims to find an optimal solution to a given
problem. More specifically, a linear programming problem instance can be described in
matrix and vector form as follows [17]:

maximize cT x subject to Ax≤ b.

Here, the three components of a linear programming problem are:

• A linear objective function: cT x = c1x1 + ... +cnxn, where c∈Rn is a given vector
and ci are rational numbers.

• Linear Constraints: Ax < b represents a set of linear inequalities, where A is a
given m*n real matrix and b ∈ Rn is a given vector.

• An Optimization Criterion: Here, the criterion is maximization, but it could also
be minimization. These can be freely converted since min f(x) = -max -f(x).

A feasible solution for a given linear program is any vector x ∈ Rn that satisfies all of
its constraints, while an optimal solution (optimum in short), is any x∗ ∈ Rn that yields
the maximum possible value of cT among all feasible x.

According to [17], ”[What] one should remember forever is this: A linear program is
efficiently solvable, both in theory and in practice.” The algorithms can solve each linear
programming problem in polynomial time that is bounded by the input size. Therefore,
with the definition of linear programming and the confidence of solving it efficiently,
we can define our clearing payment problem as [9]:

p(Π, p̄,e, f ) Max f (p) where p ∈ [0, p̄]

s.t. p≤Π
T p+ e.

Here, we have a financial system (Π, p̄,e), and function f: [0, p̄]→ R, where each p is
constrained between 0 and p̄. The objective is to find the clearing vector that maximizes
payments made by all nodes while adhering to the condition of limited liability, which
is expressed by the constraint p≤ΠT p+ e. With this constraint and the optimization
criterion, the remaining problem is to find the objective function f that ensures our
solution to the linear programming problem is also the optimized solution to the clearing
problem. To address this, Eisenberg and Noe prove the following lemma [9]:

Lemma 1. If f is increasing, then any solution to P(Π, p̄,e, f ) is a clearing vector for
the financial system.

Therefore, Lemma1 implies that the clearing vector p∗ can be found if we formalize f as
a monotonic increasing function, that is, if p≤ p′, then f (p)≤ f (p′). To establish such
a function is straight forward as we can simply write it as maximizing ∑

n
i=1 pi, so that

when p increases, ∑
n
i=1 pi also increases. We only need to ensure that the coefficients

before each pi are positive. Therefore, the simplest objective function is f (p) = ∑
n
i=1 pi.
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3.2.3 Algorithm - Value Iteration

The second algorithm is fairly straightforward; it employs function iteration until
convergence and utilizes the idea from the proof in Section 3.2.1, where we confirmed
the existence of the maximum fixed point when using the map Φ. Since our aim is to
maximize each value in p∗, and we know that Φ(p̄) ≤ p̄, the upper range can never
exceed p̄. If we start from the top and consistently apply the map Φ to the previous
result, each value would gradually decrease as the mapping always takes the minimum
between the value and the nominal obligation of the node. Eventually, the values will
converge to the fixed point p∗, which is the optimal clearing payment vector. This idea
can be illustrated as follows:

p0 = p̄; p∗ = lim
i→∞

Φ
i(p0), (3.10)

where Φ is the map introduced in Equation 3.9, and mapping is repeatedly applied until
every value in vector p converges to a value.

The pseudocode for this algorithm is presented below in Algorithm 1. The input
parameters are the matrix Π containing the fractions of the relative liabilities, the
nominal liability vector p̄, and the cash flow vector e. The output is the clearing vector,
which is the optimum solution we characterized as p∗ above.

Algorithm 1 The pseudocode for the algorithm in Section 3.2.3, inspired by [9].
Input: Π, p̄,e
Output: p

1: p← p̄
2: pold ← random list of length n
3: while p ̸= pold do
4: pold ← p
5: p← (ΠT p+ e)∧ p̄
6: end while
7: return p

3.2.4 Algorithm - Fictitious Default Algorithm

The third algorithm, known as the “Fictitious Default Algorithm,” simulates the default
process of the nodes on a rolling basis instead of computing them all at once. It considers
cascading defaults round by round. To provide a detailed illustration, in the first round,
the algorithm assumes that all other nodes would be able to complete their obligations
and calculates the total value of each node by summing up all the inflows each node
should receive. If, despite this assumption, there are nodes that cannot complete their
obligations (i.e., the total value of the node is less than the total liabilities of the node),
those nodes are said to be in default. Otherwise, if all nodes can repay their liabilities,
the algorithm terminates. In the second round, the algorithm again computes the values
with the assumption that only a first-order default occurs and checks for any further
defaults. Recall that a node is said to be in default once its total inflows cannot cover its
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Figure 3.1: The workflow of the Fictitious Default Algorithm.

total liabilities. The algorithm continues to bring defaulting nodes to the third round
and so on until no more nodes are in default, at which point the algorithm terminates.
The workflow of the algorithm is illustrated in Figure 3.1.

As the algorithm eliminates at least one defaulting node per round, and there are n nodes
in the financial system, the algorithm will stop after at most n rounds. An important
economic advantage of this algorithm is its ability to track the order in which nodes
default, providing a measure of each node’s susceptibility to systemic risk in the clearing
system. This order is partitioned into numbered rounds, ranging from 1 to n-1. For
example, if node A defaults in the third round, we can infer that the financial health
of node A is worse than node B, which defaulted in the fifth round. This information
can be used to determine which nodes are at a higher risk of default and need to be
closely monitored. However, the nodes that default in the first round are fundamentally
insolvent, as they would default even without any exposure to systemic risk. These
financial institutions need to take immediate measures.

With a high-level understanding of the algorithm, we will now delve into the details,
including further explanations and analysis. However, before proceeding, it is necessary
to introduce some additional notations and concepts.

• S̄ is the set of supersolutions of the fixed-point operator Φ. In this context,
supersolutions are the payment vectors in which some nodes pay more than their
total inflow, according to the rules defined in Definition 3.1.1, i.e.,

S̄ = {p ∈ [0, p̄] : Φ(p)≤ p}. (3.11)

• p′ is one of the supersolutions in S̄, i.e., a fixed point p′ ∈ S̄.
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• D(p) is the set of default nodes under the specific clearing vector p ∈ S̄, such that
Φ(p)i < p̄i.

• Λ is a diagonal n*n matrix under the specific clearing vector p, in which the
diagonals equal 1 when the rows representing the nodes are in default, and equal
0 otherwise, that is:

Λ(p)i j =

{
1 i = j and i ∈ D(p)
0 otherwise.

(3.12)

Therefore, when multiplied with other matrices or vectors, this matrix only retains
entries corresponding to defaulting nodes and sets the rest to zero. On the other
hand, the complementary matrix I−Λ(p′) would retain entries corresponding to
non-defaulting nodes and sets the rest to zero.

Then, we can define a map p→ FFp′(p) for fixed p′:

FFp′(p)≡ Λ(p′)(ΠT (Λ(p′)p+((I−Λ(p′))p̄))+ e)+(I−Λ(p′))(p̄), (3.13)

where Λ(p′) is determined by the default nodes under p′. As discussed earlier, to
maximize the clearing payment vector while adhering to the rules, we should assume
that defaulting nodes pay all they have (i.e., the node’s value), and non-defaulting nodes
pay off all their nominal obligations. The map does this by using Λ(p′) to separate the
defaulting and non-defaulting nodes and assigning them to the node’s value or p̄node.
Furthermore, Eisenberg and Noe proved that the map Λ(p′) has a unique fixed point,
denoted as f (p′) [9]. Then, the sequence of payment vectors can be defined inductively
as follows:

p0− p̄; p j = f (p j−1). (3.14)

Here, the sequence of vectors computed is referred to as the fictitious default sequence,
while the process is called the Fictitious Default Algorithm. If the set of defaulting nodes
remains unchanged at p j+1 and p, then p j is the fixed point of Φ, and the sequence
will remain constant after p j+1. As mentioned earlier, the sequence will decrease
to the clearing vector, which can be found in at most n iterations of the algorithm.
This was proven by Eisenberg and Noe using induction [9]. Hence, this algorithm is
computationally efficient and solvable in polynomial time.

The details of this algorithm are presented in pseudocode in Algorithm 2. The inputs
and outputs are the same as in the previous algorithm. Note that the De f ault set is
the set D, which keeps a record of the defaulting nodes, and isDe f ault is a Boolean
value used to check if there are still nodes defaulting. The Λ(p′) matrix is always under
clearing payment p, which means it updates in each round with the updates of the
De f ault set. Vnodes represents the vector of the total value of all nodes. Notice that
between lines 7 and 10, the while loop is attempting to find a fixed point of f (p′), but
the fixed point can also be computed in other ways, which will be further discussed in
the experiments section.
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Algorithm 2 The pseudocode for the Fictitious Default Algorithm [9].
Input: Π, p̄,e
Output: p

1: p← p̄
2: pold ← p̄
3: De f ault set← [ ]
4: isDe f ault← True
5: while isDe f ault do
6: Update Λ(p′)← a n*n diagonal matrix, where the diagonal equals 1 when the

node is in Default set, and equals 0 otherwise.
7: while not pold =p do
8: pold ← p
9: p← Λ(p′)(ΠT (Λ(p′)p+((I−Λ(p′))p̄))+ e)+(I−Λ(p′))(p̄)

10: end while
11: isDe f ault← False
12: Vnodes←ΠT p+ e
13: for idx, value in enumerate(Vnodes) do
14: if idx not in Default set and (value ≤ p[idx]) then
15: isDe f ault← True
16: add idx to Default set
17: end if
18: end for
19: end while
20: return p
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3.3 Implementation Details

In this section, we will discuss the implementation details of the algorithms introduced
in the previous section, which is also the main contribution of this project. We will
cover the functions and packages used to implement the algorithms and provide code
snippets where it may be difficult to describe in words.

For the financial system with debt contracts only, all three algorithms have been imple-
mented using Python version 3.8.3 on Jupyter Notebook version 6.0.3, which offers
several benefits. Firstly, Python is easy to understand, with more intuitive syntax
and fewer complicated class structures. Secondly, Python provides numerous well-
documented packages and libraries, such as NumPy [12] and Pandas [23], that enable
us to leverage existing code and functionality. This feature makes tasks such as matrix
manipulation easier and more efficient, which is valuable since matrices and vectors
play a crucial role in this project. In addition, Jupyter Notebook was used to write and
test our algorithms in code blocks and to create markdowns for recording our progress
and thoughts during implementation. This feature not only facilitated the amendment
of our work but also enhanced the reproducibility of the results.

3.3.1 Implementing algorithm - linear programming

The first algorithm utilizes the idea of linear programming. As introduced in the theory
section, we want to maximize ∑

n
i=1 pi for each p ∈ [0, p̄] subject to the definition of

limited liability. Therefore, the problem can be formalized as follows:

maximize
n

∑
i=1

pi

s.t. p≤Π
T p+ e

p≤ p̄

p≥ 0

There are various Python libraries available for solving linear programming problems,
and one commonly-used open-source library is SciPy [22]. It offers many fundamental
algorithms for scientific computing, including those for solving linear programming. In
this project, we utilized SciPy version 1.10.1 , and we specifically used the function
scipy.optimize.linprog.

This function enables the user to choose a solver from a set of available solvers by
specifying the ’method’ parameter. The available solvers include HiGHS simplex [13]
and interior-point method solvers, both of which have the same accuracy. However, the
speed of the solver may depend on the specific problem, and this will be investigated
further in the experiments.

The objective function of this function takes the form minxcT x, where x is the vector of
decision variables. To convert it to the required form, we modify the objective function
to minx−1T p, where 1 is the vector of ones with length n since multiplying the vector
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of ones by p gives the sum of the values in p. Since we are maximizing the result, we
add a negative sign here.

The constraints need to be converted to the form Aubx≤ bub, where Aub is a matrix and
bub is a vector. Therefore, we convert our constraint to (I−ΠT )p≤ e, where I is the
identity matrix. Additionally, the function allows us to have constraints of the form
l ≤ x ≤ u, where l and u are vectors that bound each x. In our implementation, this
would be represented as 0≤ p̄.

3.3.2 Implementing algorithm - Value Iteration

The implementation of the Value Iteration Algorithm is straightforward. Here, for all
the vectors and matrices, we use NumPy version 1.24.2 as it provides flexibility for
manipulating arrays and offers numerous powerful mathematical functions. Addition-
ally, arrays consume much less memory than data structures like lists. To begin, we
initialize the clearing vector as p̄, and for comparison purposes, also initialize a vector
pold with random values. The vectors then enter a while loop that continues until p
is equal to pold . At each iteration, p is updated as (ΠT p+ e)∧ p̄ and pold is set to
be equal to the previous value of p. The only part that could affect the speed of the
entire iteration process is the implementation of the map Φ. During implementation,
we utilized the function numpy.minimum, which performs element-wise comparisons
between two arrays and returns a new array containing the minimum values from the
input arrays.

3.3.3 Implementing algorithm - Fictitious Default Algorithm

To implement the Fictitious Default algorithm, we follow the pseudocode presented
in Algorithm 2. The key idea of this algorithm is to simulate the nodes going into
default round by round. To keep track of the defaulting nodes, we update a set called
De f ault set and use a Boolean variable called isDe f ault to check if any nodes are
still defaulting, which determines whether the algorithm should stop. It is important
to update the diagonal matrix Λ according to De f ault set for further mapping, that is,
set the diagonal elements to 1 when the corresponding node is in the De f ault set. For
example, if node 2 is in the De f ault set, then we should also set Λ[1][1] to 1. To do
this, we first create a vector of length n that has a value of 1 when its index corresponds
to the index stored in the De f ault set. Then, we use the function numpy.diag with the
vector as input to construct a diagonal array with vector[i] on the ith diagonal. The code
snippet for this part is shown below:

1 D_diag = np.zeros(N)
2 for i in Default_set:
3 D_diag[i] = 1
4 lambda_diag = np.diag(D_diag)

Listing 3.1: Code snippet for updating the diagonal matrix λ at each round according to
the Default set for N nodes.

Next, the algorithm proceeds to the mapping step using the FF map introduced in
Equation 3.13. All multiplications between matrices and vectors should be performed
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using numpy.dot, as they involve either matrix-matrix multiplication or vector-matrix
multiplication. One challenge in this algorithm is finding the fixed point p′ at each
round. Several approaches can be employed to find the fixed point. As demonstrated
in the pseudocode, we can continuously apply the FF map until the value of p is
unchanged. Alternatively, other techniques such as repeatedly applying the Φ map can
also be applied to find the fixed point. We will explore and compare the most effective
techniques in next section.

Lastly, before moving to the next iteration, we update the default set by calculating
the nodes’ values and comparing them with their total nominal liabilities. If there are
nodes that cannot cover their liabilities and are not yet in the default set, their indices
are added, and the Boolean value is updated to continue iterating. The nodes’ values
are calculated using ΠT p+ e, where p is the fixed point p′ that was just determined.

3.4 Experiment

In this section, we will conduct experiments with different versions of algorithm
implementations to identify the optimal approach. Furthermore, we will simulate a
real financial network by initializing with reasonable data and testing the algorithms
implemented so far to evaluate their performance. We will compare all three algorithms
using the same data to assess their effectiveness in terms of speed and accuracy. Through
the designed experimentation, we gain insights into the strengths and weaknesses of
each algorithm, as well as their usefulness in real-world applications.

3.4.1 Data initialization

Initializing the data to resemble a real financial network is crucial when assessing
systemic risk in financial systems. In our experiments, we assume that all financial
institutions are banks, and their liabilities are interbank loans. In the financial model by
Eisenberg and Noe, to perform experiments and find the clearing vector, the structure
of bilateral nominal liability must be provided. As previously defined, we represent this
as an n*n nominal liability matrix L. Thus, the structure of L with initialized data that
follows the rules specified in Section 3.1 should be:

L =


0 ℓ12 . . . ℓ1n
ℓ21 0 . . . ℓ2n
...

... . . . ...
ℓn1 ℓn2 . . . 0


Finding appropriate data to fill the matrix L is no easy task. While several studies
have conducted simulations to assess the risk of contagion arising from exposures
in the interbank loan market, bilateral loan data is often scarce and of limited qual-
ity since banks are not required to disclose their counterparties [21]. Consequently,
this information is unobservable to anyone except the involved parties, and access
to electronic trading platforms is available only in a limited number of jurisdictions
[20]. Alternatively, some literature estimates data from balance sheets or payment
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data, such as [8], which simulates using data from a confidential database that includes
banks’ balance sheet statements and other key financial figures. Inference techniques,
such as Maximum Entropy [21] and the RAS algorithm [5], are used to estimate the
incomplete parts. However, it has been argued that the entropy method is unable to
replicate certain stylized characteristics of interbank markets, including the sparseness
of the interbank liability relationship matrix or the presence of tiering [20]. For example,
[6] demonstrated that banks only engage in transactions with a limited subset of other
banks, while [21] provided evidence supporting the existence of tiering.

Some studies, such as [7], use data from a comprehensive set of banking statistics on
large loans and concentrated exposures compiled by the Deutsche Bundesbank without
employing any entropy methods to maintain the network structure. However, accessing
data from Deutsche Bundesbank [1] requires feasibility checks. Since our project
focuses more on the effectiveness of the algorithms, generating experimental ourselves
that aligns with the features of the financial network is preferred. This approach also
provides greater flexibility to adjust parameters, such as the number of banks in the
network, to better test the algorithm. The key consideration is to carefully account for
the characteristics of the financial network and strive to generate more realistic data.

To capture the characteristics of the financial network, such as the tiering mentioned
earlier, various studies have identified that financial networks for interbank loans exhibit
a core-periphery structure. In [7], for instance, the market is not illustrated as a
centralized exchange, but rather a sparse network centred around a group of core banks
that act as intermediaries (i.e., a bank acting both as lender and borrower) between
numerous smaller banks in the periphery. The banks are partitioned according to their
bilateral relations, as listed below [7]:

(1) Top-tier banks lend to each other

(2) Lower-tier banks do not lend to each other

(3) Top-tier banks lend to lower-tier banks

(4) Top-tier banks borrow from lower-tier banks

Here, the top-tier banks are called the core, which are explained as special intermediaries
that are important in holding together the interbank market, and the lower-tier banks are
called the periphery. A simple example of an interbank market with a core-periphery
model structure is presented in Figure 3.2.

We implement the core-periphery structure during matrix initialization to simulate the
real characteristics of the financial network. To create an n×n empty matrix, we use the
function numpy.zeros. Next, we populate the matrix according to the following rules:
If both nodes are in the core, a connection is made with probability 1 (as per Relation
1); if one node is in the core and the other is in the periphery, a connection is made with
a specified probability (as per Relations 2 and 3); if both nodes are in the periphery, a
connection is not made (as per Relation 4). It is important to note that the core nodes
are ordered first in the matrix. An example code snippet for generating random values
when one node is in the core and the other is in the periphery is shown below. During
the current iteration, row and col represent the row and column numbers, respectively.
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Figure 3.2: A simple example of an interbank market with a core-periphery structure.
The arrows indicate the direction of payment flow, for instance, node 5 has a promised
payment to node 3 (i.e., L53 has a value). In this example, node 0 is characterized as
the sink node as mentioned in Section 3.1, so only Li0 exists. Nodes 1, 2, and 3 are part
of the core, while the other nodes belong to the periphery.

We use the function numpy.random.rand to generate a random probability and the
function numpy.random.randint to generate a random liability value to fill in the
matrix. In this case, the core_connection_prob is set to 1.

1 if row < num_core and col < num_core: # Both nodes are the core
2 if np.random.rand() < core_connection_prob:
3 matrix[row, col] = np.random.randint(1,100)

Listing 3.2: Code snippet for populating the core-periphery matrix with random values
when both nodes are in the core.

Afterward, to capture the characteristic of the sink node in this financial network, we set
L0i = 0 for all i and randomly set a proportion of the Li0 to 0. To ensure reproducibility,
we use the function numpy.random.seed to control the randomness of the generated
data. An example of a generated matrix with 6 nodes is shown below, where we have a
sink node, 3 core nodes, and 2 periphery nodes. The probability of having a relation
between a core node and a periphery node is set to be 0.6, the proportion of dropping
the Li0 values is 0.2, and the random seed 4 is used.

L =


0 0 0 0 0 0

37 0 39 53 0 22
0 31 0 67 33 0

34 29 80 0 0 0
0 90 49 95 0 0

76 71 0 74 0 0


Finally, vector e can be easily generated using the function numpy.random.randint
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according to the definition given in Section 3.1.

3.4.2 Comparison between different solvers in Algorithm using
linear programming

Motivation: As mentioned in Section 3.3.1, we conduct experiments on the different
solvers available in the scipy.optimize.linprog function, including the HiGHS
simplex solver and the interior-point method solver. Since the speed of a solver depends
on the specific problem [22], we aim to investigate which solver is best for solving this
clearing problem.

Experiment settings: The liability matrix L and cash flow vector e are initialized with
a number of nodes of 500, 1000, and 2000, respectively. The parameter method in
the function scipy.optimize.linprog is changed, where highs-ds represents the
HiGHS simplex solver and highs-ipm represents the interior-point method solver. To
obtain the computation time, we used the module time in Python to record the start
time and end time and calculate the elapsed time.(Same for the following experiments).

Results: The findings indicate that the elapsed time for the HiGHS simplex solver is
consistently slightly shorter than the interior-point method solver, while maintaining
the same level of accuracy. For comparison purposes, the sum of the values in the
clearing payment vector is presented, since the vector itself is too long to be included
in the report. However, the clearing vectors were also compared through observation.
Nevertheless, since the results were very close, summing up the values in the clearing
payment vectors provided a more accurate and intuitive way to compare. Therefore,
the following experiments will also compare the summation of the clearing payment
vectors. Here, we can see that the sum is exactly the same using two solvers, but the
difference in elapsed time is approximately 4 seconds when the number of nodes reaches
2000. Based on these results, we will use the HiGHS simplex solver for subsequent
experiments, as it gives a higher speed for solving the clearing problem. The results are
summarized in Table 3.1 below:

No. of Nodes (n) Solver Elapsed time(s) ∑
n
i=1 p∗i

500 HiGHS simplex 0.6752 5994568.830941179
500 interior-point method 0.8653 5994568.830941179

1000 HiGHS simplex 5.9766 24977078.073851094
1000 interior-point method 7.4894 24977078.073851094
2000 HiGHS simplex 58.0354 101647450.1118128
2000 interior-point method 62.3459 101647450.1118128

Table 3.1: Comparison between two solvers as the linear programming algorithm.

3.4.3 Fictitious Default Algorithm as the most effective way to find
the fixed point

Motivation: As mentioned in Section 3.3.3, we aim to identify the most effective way
to find the fixed point in the Fictitious Default Algorithm and analyse it in terms of the
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speed and accuracy.

Experiment settings: We propose two ways to implement this part to find the fixed
point. One is to use the Φ map in the second algorithm, while the other is to iterate
the FF map until it converges. To highlight the differences, we initialize the number of
nodes n to be 2000.

Results: It is clear that using the map Φ results in a significantly lower elapsed time
while maintaining the same level of accuracy. Consequently, further experiments will
also use the implementation version that employs the map Φ to find the fixed point. The
results of the sum of the values in clearing vectors and elapsed time are summarized in
Table 3.2 below:

Φ map FF map
Elapsed Time(s) 1.4020 80.8759

∑
n
i=1 p∗i 101647450.1118128 101647450.1118128

Table 3.2: Comparison between the two ways to implement the Fictitious Default Algo-
rithm.

3.4.4 Comparison of the three algorithms

Motivation: Since all three algorithms are used to find the clearing vector, this experi-
ment aims to compare their performance and determine their respective strengths and
weaknesses in different scenarios. Specifically, we aim to identify which algorithm is
preferable under certain conditions.

Experiment settings: In this experiment, we will test the three algorithms by finding
the clearing vector with varying numbers of nodes n. Specifically, we test with 100,
500, 1000, and 2000 nodes, with half of the nodes designated as core nodes. We use a
random seed of 40 for vector e and 4 for the liability matrix L to generate the data.

Results: Figure 3.3 compares the elapsed time in finding the clearing vector as the
number of nodes increases for the three algorithms. The elapsed time for Algorithm 2
(Value Iteration) and Algorithm 3 (Fictitious Default Algorithm) are quite similar for all
numbers of nodes, with Algorithm 2 being slightly faster than Algorithm 3. However,
the elapsed time of Algorithm 1 with a small number of nodes does not differ much from
the other two algorithms. As the number of nodes increases, the elapsed time appears to
increase non-linearly and is significantly steeper than Algorithms 2 and 3. For example,
when the number of nodes is 1000, it takes Algorithm 1 less than 8 seconds to compute,
while it takes nearly 60 seconds when the number of nodes increases to 2000.

Next, we compare the accuracy of the three algorithms. Recall that algorithms such
as the Simplex method (which is the algorithm used in our implementation) in linear
programming problems can always find the optimum solution. Comparing the results,
we can see that the outcomes for Algorithm 2 and Algorithm 3 are always the same,
while Algorithm 1 consistently provides a slightly better result, except when the number
of nodes is 1000.
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Indeed, each of the algorithms has its own advantages. Based on the results and the
trade-off between speed and accuracy, Algorithm 1 can be used to obtain the optimum
result when the number of nodes is small, taking advantage of its higher accuracy in
those scenarios. However, when the number of nodes is significantly large, Algorithm
2 (Value Iteration) would be a better choice as it provides a good balance between
computational efficiency and accuracy.

On the other hand, Algorithm 3 (the Fictitious Default Algorithm) takes slightly longer
due to the additional computations it requires. Nevertheless, it has the advantage of
outputting the round of defaulting nodes, which can be valuable when analysing the
risk associated with individual nodes in the financial network. Thus, Algorithm 3 can
be used when the focus is on risk analysis.

The results are also summarized below in Table 3.3:

Number of Nodes (n) Algorithm Elapsed time (s) ∑
n
i=1 p∗i

100 1 0.0451 227696.01731738096
100 2 0.0052 227696.0173173804
100 3 0.0066 227696.0173173804
200 1 0.0559 942638.7075650934
200 2 0.0095 942638.7075650926
200 3 0.0102 942638.7075650926
500 1 0.8712 5994568.830941179
500 2 0.0567 5994568.830941178
500 3 0.0495 5994568.830941178

1000 1 7.8546 24977078.073851094
1000 2 0.2199 24977078.073851097
1000 3 0.3325 24977078.073851097
2000 1 59.8180 101647450.1118128
2000 2 1.2963 101647450.11181268
2000 3 1.4134 101647450.11181268

Table 3.3: Comparison between the three algorithms used to determine the clearing pay-
ment vector with varying number of nodes. Algorithm 1 refers to the linear programming
method, Algorithm 2 refers to Value Iteration using the map Φ, and Algorithm 3 refers to
the Fictitious Default Algorithm. The sum of the values of the clearing vector solutions is
presented to show the comparison between the algorithms.
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Figure 3.3: Comparison of elapsed time in seconds for different algorithms with varying
number of nodes (n). Algorithm 1 refers to the linear programming method, Algorithm 2
refers to Value Iteration using the map Φ, and Algorithm 3 refers to the Fictitious Default
Algorithm.



Chapter 4

Financial model with both debt and
equity contracts

For further development, we aim to include additional contracts in the financial network
and investigate the algorithm on this more complicated financial system. Jackson et
al. extended previous models used to assess systemic risk, which were based solely on
debt dependencies [9] or equity-like dependencies [10], to include both debt and equity
contracts, as well as bankruptcies and discontinuous costs due to defaults, as these
factors are crucial in causing inefficiencies and externalities in financial networks. In
this chapter, we introduce this financial model as well as the algorithm they introduced
to find the equilibrium banks’ value, which can be used to calculate the clearing vector.
Afterwards, the implementation details and a simple experiment are discussed.

4.1 The Financial Model of Jackson et al.

A variety of notations are used to formalize the financial system. It is worth emphasizing
that, to maintain consistency with the original literature [14], some notations in this
section use the same letter to represent different entities in the previous model.

Consider a financial network with n nodes, each representing a distinct economic entity
or financial node. These nodes could have not only nominal liabilities but also equity
contracts with other nodes in the system:

• N = {0, 1, ... , n} is a set of financial organizations, such as banks (for brevity, we
will refer to these organizations as ’banks’ in the following). Node 0 represents
all other actors who have contracts with these organizations but are not part of
any organization. That is, node 0 could be private investors that hold equity in
these organizations, or private companies that borrow money from organizations
like banks. Node 0 is a crucial component in this financial network as it enables
the modelling of interactions between financial organizations and external actors.

• K = {1, ..., K} is the set of primitive assets, where pk represents the present value
(i.e., market price) of asset k ∈ K, so that p = (p1,...pk) is the vector of present
values for k primitive assets. The organizations, banks for instance, construct

22
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their portfolios by investing in these primitive assets externally, in addition to
participating in financial contracts within the network. The primitive assets could
be stocks or bonds and are therefore essential to present in the network.

• Matrix q then represents the quantities invested by each bank in each asset, where
q[i][k] corresponds to the amount invested by bank i in asset k, denoted as qik. It
is required that qik ≥ 0. Therefore, the total value of primitive assets of a node i
is ∑k qik pk.

• Di j represents the face value (promised payment) of j’s liability towards i, that is,
node j is the debtor (the one who received money) and node i is the creditor. Note
that as a bank cannot have debt claim on itself, Dii = 0.

• D is the matrix of debt claims, which compromises all the values of debt contracts
in between the nodes, so that D[i][j] represents Di j. Then, the total nominal debt
assets of a node i is denoted by DA

i ≡ ∑ j Di j, and the total nominal liabilities of a
node i is denoted by DL

i ≡ ∑ j D ji.

• Si j represents the equity claim of node i on node j’s value, meaning that node
i owns an equity share in node j. Therefore, Si j is a fraction between 0 and
1 (Si j ∈ [0,1]), representing the percentage of node j’s value that is owned by
node i. In our model, we assume that fully privately held banks have an external
investor who owns an equity share of 1. This assumption does not affect the
results, but it allows us to track the accumulation of values more easily. As a
consequence, a bank cannot have an equity claim on itself, which means that
Sii = 0. Additionally, equity shares should sum to one (i.e., ∑i Si j = 1), indicating
that any share not owned by other banks is attributed to an external investor. Thus,
we have S0 j = 1−∑i̸=0 Si j. Then, no shares are held by outside investors so that
∀i,Si0 = 0, shares held by banks in private enterprises are modelled via the pi
vectors. For a well-structured economy, we need to eliminate unreasonable cycles
in which banks solely own one another (e.g., S23 = 1 should not exist), without
any private investor holding partial ownership. We do this by assuming a directed
equity path that connects every bank to a private investor, that is, S0i always has a
value except for when i = 0.

• S is the matrix of equity claims, which compromises all the proportions of equity
contracts in between the nodes such that S[i][j] represents Si j.

We have defined the primitive asset, liability matrix, and equity matrix, however, Jackson
et al. also considers the existence of the bankruptcy cost [14]. These costs represent
the real-world costs incurred in financial systems when a bank defaults. The actual
cost depends on the value of the bank or, more specifically, on the bank’s equilibrium
value, which is denoted by Vi. As these concepts are highly interrelated, they will
be introduced together in this section with references made to one another to aid in
understanding.

• First, the equilibrium banks’ value vector is V = (V0,V1...,Vn). The equilibrium
value refers to the fixed point of the banks’ value, and each value Vi follows the
Equation 4.1. The terms dA

j (V) and bi(V,p) are introduced later in Equations 4.6
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and 4.3, respectively.

Vi = ∑
k

qik pk +∑
j

Si jV+
j +dA

j (V)−DL
i −bi(V,p) (4.1)

• β(V,p) is then the bankruptcy cost that a bank incurs when it is in default given
the banks’ value vector V. The bankruptcy cost is computed by Equation 4.2 [14]:

βi(V,p) = b+a

[
∑
k

qik pk +∑
j

Si jV+
j +dA

i (V)

]
with a ∈ [0,1], b ≥ 0. (4.2)

In this context, b represents an additional fixed cost, while a is a fraction used to
discount the bank’s total assets during a default. Moreover, apart from ∑k qik pk,
which signifies the total value of primitive investments, it is important to recognize
that the default cost is also influenced by dA

i (V), representing the total value node
i could receive under the bank value V, which is interrelated to the bankruptcy cost
and therefore is introduced below. ∑ j Si jV+

j , denoting the total value of equity
shares owned by the bank under the bank values V. Recall that V+

j ≡ max{Vj,0},
since the equity should always be positive. As a result, the equation suggests that
the default cost is affected by both the financial well-being of other banks and the
value of the bank’s primitive assets.

• Then, for
dA(V) = {dA

1 (V),dA
2 (V)...,dA

N(V)} (4.3)

we define dA
i (V)≡ ∑ j di j(V), where di j(V) is given by:

– If j is solvent, it must pay all of its debts:

di j(V) = Di j (4.4)

– If j is insolvent, it should pay out all of its assets to its creditors, according
to the proportion to their claim on j:

di j(V) =
Di j

∑h Dh j
max(∑

k
q jk pk +dA

j (V)+∑
h

S jhV+
h −β j(V,p),0) (4.5)

where the V+
h ≡max{Vh,0}, the first term represents the fraction of i’s claim

to the total claim on j.

• Finally, bi(V, p) represents the bankruptcy costs node i would incur, that is,

bi(V,p) =

{
0 if ∑k qik pk +∑ j Si jV+

j +dA
i (V)≥ DL

i

βi(V,p) if ∑k qik pk +∑ j Si jV+
j +dA

i (V)< DL
i .

(4.6)

Since the bankruptcy cost reduces the bank’s value, as demonstrated in Equation
4.1, Vi can become negative when the bankruptcy cost exceeds the total assets
owned by the bank.

All the definitions and notations used to formalize this financial network have been
introduced. To better illustrate these concepts, we present an example of a simple rela-
tionship graph in Figure 4.1, consisting of only 3 banks. To determine the equilibrium
banks’ values, we calculate V0, V1, and V2 separately, and then combine them to form
the equilibrium banks’ vector V .
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Figure 4.1: A simple financial network example with both debt and equity contracts, using
the notation defined in Section 4.1. Here, we have Bank 0, Bank 1, and Bank 2. The
arrows indicate the directions of payment flow. Therefore, Bank 0 borrowed from Bank
1 a value of 500, Bank 1 borrowed from Bank 2 a value of 200, Bank 2 borrowed from
Bank 0 a value of 200; Bank 0 owns 50% of the shares of Bank 1, while the remaining
50% is owned by Bank 2. Bank 0 also owns 20% of the shares of Bank 2, while the
remaining 80% is owned by Bank 1.

4.2 Algorithms in Theory

The theories, proofs, and pseudocode of the algorithm introduced in [14] will be clearly
presented in this section.

Although Jackson et al. did not explicitly attempt to determine the clearing vector, they
introduced the concept of a ”bank’s equilibrium value,” which refers to the fixed point
of Equation 4.7. By solving the following equation, we can determine the equilibrium
value of each bank, which in turn makes finding the clearing vector a simple task.

V = (I−S(V))−1([qp+dA(V)−DL]−b(V,p)) (4.7)

Here, V = {V1,V2...,VN} represents the vector of all Vi where each Vi is presented in
Equation 4.1. I is the n*n identity matrix and S(V) denotes the equity relationship
matrix under equilibrium vector V. The superscript ′()−1′ here means the inverse of a
matrix, consequently multiplying (I−S(V))−1 would add the equity value under V to
every bank. qp is the vector that consists of the total value of owned primitive assets
of each bank. dA is the vector that consists of the total value that each bank would
receive from other banks under V. DL is the vector of total obligations and b(V,p) is
the default cost for all banks under V. Therefore, the above equation can be seen as the
sum of the primitive asset and the inflow due to debt contracts, which is then subtracted
from the total obligations and the bankruptcy cost. Finally, the equity value that the
bank should receive under V is added to the equation.
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Certain terms require a more detailed explanation and need more careful consideration.
For S(V), we need to update Si j(V) = 0 whenever node j defaults, and Si j otherwise,
to reflect the fact that a bank should always repay its debt before equity. In other words,
if a bank is insolvent, the equity holders of the bank should receive nothing from it.

The last term represents the bankruptcy cost that the bank incurs as given by Equation
4.6. This cost also changes with the value of the bank’s assets.

4.2.1 Proof of the existence of the equilibrium value

At first, a bank’s value depends monotonically on each other in the financial network,
which means that as the values of other banks increase, the value of a bank in the system
also weakly increases [14].

This can be shown by analysing the terms in Equation 4.1, excluding the constants
∑k qik pk and DL

i . The term ∑ j Si jV+
j is non-decreasing as the equity value that bank i

could receive increases when the values of other banks increase. The non-decreasing
term of dA

j (V)−bi(V,p) with respect to V can also be established. If bank i is solvent,
an increase in dA

j (V) due to the increase in other banks’ values would result in an
increase in that term since the bankruptcy cost bi(V,p) would be zero. If bank i is
insolvent, the increased value of bankruptcy cost would be compensated since, according
to Equation 4.2, the bankruptcy cost is a fixed cost plus a fraction of the total asset
value in which the term ∑k qik pk is deterministic. Thus, only the term ∑ j Si jV+

j +dA
j (V)

would change, but since a is always smaller than 1, the increased value is always a
fraction of the term dA

j (V) according to Equation 4.5.

Next, it is shown that the banks’ values are bounded by the maximum values of
the banks’ assets, denoted by V̄ = (I− S(V))−1[qp+DA]. The minimum value is
V = qp−DL−b(V,p), where b(V,p) is the bankruptcy cost incurred by each bank.

Therefore, according to Tarski’s fixed point theorem, it is shown that the set of fixed
points of V is non-empty and forms a complete lattice, indicating that there always
exists a maximum equilibrium value and a minimum. Therefore, the existence of the
equilibrium value is proven.

4.2.2 Algorithm for equilibrium banks’ value

Although multiple equilibrium values V exist in the system, our aim is to find the
optimal one that maximizes the value of each bank. However, recalling Equation 4.7,
we can see that this problem is different from the clearing vector problem solved before,
as nonlinearities exist in the equation and therefore linear programming methods do
not work here. For example, dA(V) (mentioned in Equation 4.3) includes two parts of a
calculation. As stated in Equation 4.4 and Equation 4.5, the value bank i can receive
from j depends on the situation of bank j, and when bank j is insolvent, computation
of a maximum (max{Vh,0}) is necessary to ensure that only a positive value is paid to
bank i.

Inspired by Section 3.1 in [15], which gives a simple example of computing the bank
values, we separate the solvent and insolvent banks and solve the equilibrium value by
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computing the best equilibrium value starting from the upper bound, that is:

V0 = (I−S(V))−1[qp+DA] (4.8)

Subsequently, we update and compute the banks’ values. For example, in the next
round, we would compute:

V1 = (I−S(V0))−1([qp+dA(V0)−DL]−b(V0,p)). (4.9)

Continuously computing the equilibrium value in this way will eventually yield the
best equilibrium value. However, when computing each round, a problem arises in
updating the matrix S so that Si j(V) = 0 when j defaults, since it affects every term
in the equation. To address this issue, the Fictitious Default Algorithm [9] can be
employed. This algorithm keeps track of the default banks, allowing us to update the
matrix S accordingly. Moreover, this approach simplifies the calculation of di j(V) and
bi(V, p) when we need to consider their computation in two different situations, i.e., if
bank j is solvent or insolvent.

The details of this algorithm are formalized as pseudocode in Algorithm 3. Here,
De f ault set keeps track of the default banks, and isDe f ault is a Boolean value used to
check if there are still banks defaulting. The input of the algorithm includes the liability
matrix D, the equity matrix S, and the vectors p and q for the primitive assets of banks.
The output is the vector V, which represents the equilibrium banks’ value.

Algorithm 3 Algorithm for finding the banks’ equilibrium value.
Input: S,D,p,q
Output: V

1: V0← (I−S0)−1(qp+DA) {DA is a vector of DA
i , where DA

i ≡ ∑ j Di j}
2: De f ault set← [ ]
3: isDe f ault← True
4: while isDe f ault do
5: isDe f ault← False
6: V← (I−S(V))−1([qp+dA(V)−DL]−b(V,p))
7: all de f ault index← index where (I−S(V))−1[qp+DA]< DL

8: if 0 < len(all de f ault index)< n-1 then
9: Si j← 0 for j in all de f ault index

10: for index in all de f ault index do
11: if index not in De f ault set then
12: Add index to De f ault set
13: isDe f ault← True
14: end if
15: end for
16: end if
17: end while
18: return V

Finally, once the best equilibrium bank values are computed, we can easily compute the
clearing vector by calculating ∑

N
i=0 di j(V) for each bank j, which represents the total

amount of money that bank j pays out.
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4.3 Implementation Details

We turn our attention to the implementation details of the algorithm. We have imple-
mented only one algorithm for financial systems with both equity and debt contracts,
which uses the same environment as the algorithms presented in Section 3.3.

However, the implementation of this algorithm is more complex than the others due
to the close interconnections between the terms. Therefore, it is essential to carefully
follow the flow of the algorithm as presented in the pseudocode of Algorithm 3. Firstly,
we draw inspiration from the Fictitious Default Algorithm and initialize the De f ault set
to track the indices of defaulting banks and monitor the Boolean variable isDe f ault
to check if any banks are still defaulting, which serves as a termination condition for
the algorithm. Then, we initialize the starting point as the upper bound for V, denoted
as V0, which combines all of the nodes’ primitive assets, all the money they should
receive, and their equity values, all of which are constant and can be easily calculated.

Next, we enter the while loop with the upper bound V0 and continue iterating to update
V according to Equation 4.7 until no more banks are defaulting. Although we update V
based on the value of V from the last iteration, the terms are all closely interrelated and
dependent on the value of V and the De f ault set. These terms include S(V), dA(V),
and b(V,p), while I is the identity matrix and the product of qp and the DL are all
constant throughout the process.

For the term S(V), the matrix S changes depending on the banks that are in default
under V. We will discuss the updating process for matrix S later. Once we have
the updated matrix S, we calculate the inverse of the square matrix I−S using the
numpy.linalg.inv function.

The computation of the terms dA(V) and b(v,p) can be quite complicated, as both
are dependent on V, the de f ault set, and each other. To handle these dependencies
effectively within the algorithm, we define several helper functions.

The first helper function, which we name j_pay_i, calculates the money that bank
j needs to pay to bank i (i.e., di j(V)), given the input V and the de f ault set. The
equations for calculating this value are presented in Equation 4.4 and Equation 4.5. Two
situations are considered here, and we differentiate between them by checking if bank j
is in the de f ault set:

• If bank j is not in default, it should pay bank i the nominal liability, which is
initialized in matrix D.

• However, if bank j is in default, the payment value is calculated by multiplying
a relative percentage by the total assets of bank j minus the bankruptcy costs it
incurs. Upon closer observation, the complex expression of the first term inside
the maximization in Equation 4.4 can be simplified in our implementation as
follows:

∑
k

q jk pk +dA
j (V)+∑

h
S jhV+

h −β j(V,p)

→ V j +DL
j
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The second helper function, which we name bank_total_received, calculates the
total value that a bank i could receive under the given V. This function takes the index
of the bank V and De f ault set as inputs and outputs the total value that bank i would
receive from all other banks. To achieve this, we make use of the previously defined
j_pay_i function to determine the value that bank i could obtain from each other bank,
and then return the sum of all these received values.

The third helper function, which we name compute_total_received_vector, takes
the inputs V and De f ault set and outputs the vector representing dA(V), where each
value in the vector is computed using the bank_total_received function for each
bank. By utilizing the first three helper functions, we can now effectively compute the
term dA(V) in Equation 4.7.

The fourth helper function, named bank_equity_received, calculates the total equity
value that a node could receive depending on the inputs V and De f ault set. For bank i,
it iterates through all other banks to add up their respective values. For each bank j, two
separate situations need to be considered:

• If bank j is not in De f ault set, the value that bank i could receive is equal to Si j *
max(Vj, 0).

• Otherwise, if bank j is in default, bank i receives nothing from bank j. The
function then returns the sum of all received equity values for bank i.

The fifth helper function, named bank_bankruptcy_cost, takes the same inputs as
in the function bank_total_received, i.e., the index i, V, and De f ault set. The
function outputs the bankruptcy cost incurred by bank i under V using the equations
for the bankruptcy cost presented in Equation 4.6. Therefore, we also implement this
function differently in two situations:

• If bank i is not in the De f ault set, we simply return 0 as there is no bankruptcy
cost.

• Otherwise, if bank i is in default, we calculate the bankruptcy cost it incurs
according to Equation 4.2. The term b is a fixed cost that was initialized. The
second part is a percentage a multiplied by the sum of the assets, where the sum of
the assets is calculated by adding together the primitive asset that bank i owns, the
equity value of bank i that could be received under the current V (obtained using
the helper function bank_equity_received, and the total debt value that bank i
could receive (calculated using the helper function bank_total_received).

Finally, the sixth helper function is named compute_bankruptcy_costs_vector,
calculates the bankruptcy cost for all banks given the current V and the De f ault set.
To do this, we iterate through all indices of the banks, and pass the inputs to the
helper function bank_bankruptcy_cost to calculate the bankruptcy cost for each bank
individually. We then assemble these values into a vector. As a result, the function
outputs a vector of bankruptcy costs, b(V,p).

With these helper functions, we can now easily update the terms dA(V) and b(V,p)
using the functions compute_total_received_vector and
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compute_bankruptcy_costs_vector, respectively. To do this, we simply provide
the functions with V and De f ault set as inputs.

After updating V for this round, we now proceed to update the De f ault set by adding the
indices of the defaulting nodes into the set. The criterion here should be the comparison
in Equation 4.6, which compares the total asset of the bank under V and its total nominal
liability, and it is said to be in default as long as the total asset is smaller than its liability.
In implementation, since we are comparing ∑k qik pk +∑ j Si jV+

j +dA
i (V) and DL

i , we
can also simplify it as:

∑
k

qik pk +∑
j

Si jV+
j +dA

i (V)−DL
i

→ V j−bi(V,p).

If the result of Vi−bi(V,p) is positive, this indicates that the assets are sufficient to
cover its total liabilities. Therefore, the bank is not in default and should not be added
to the De f ault set. On the other hand, if the result is negative, the bank is in default
and should be added to the set. It is important to note that not all banks can be in default
at the same time. Therefore, we need to monitor the number of defaulting banks. If
only one bank is left that is not in default, the algorithm should terminate.

Lastly, once the equilibrium value is found, determining the clearing payment vector
becomes straightforward. Each value in the vector now simply equals to ∑i di j. This can
be effortlessly computed by iteratively applying the function j_pay_i for each bank.

4.4 Experiment

As we have only implemented the algorithm in one way, we are unable to compare
its performance with alternative implementations as we did in the previous financial
model. Nevertheless, we can conduct an initial experiment by applying the algorithm to
a network with only three banks and see the results. Subsequently, we plan to investigate
the algorithm’s computational efficiency by measuring the time it takes to compute for
different numbers of banks in the financial network.

4.4.1 A simple example

Motivation: Here, we would conduct a simple example with 3 banks in the financial
network so that we could compute the result by ourselves, and compare with the result
computed by the implemented algorithm.

Experiment settings: The necessary data for initialization includes the liability matrix
D, the equity matrix S, the fixed cost vector b, the discount fraction vector a for the
bankruptcy cost, and the value of primitive asset vector which equals to qp. We could
initialize this product directly since it is constant throughout the algorithm. Here, we
initialize a financial network of three banks, and the matrix D is:
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D =

0 376 38
0 0 0
0 186 0


the matrix S is:

S =

0 0.99 0.56
0 0 0.44
0 0.01 0


the vector b is [0, 7, 9], the vector a is [0, 0,82, 0,07] and the primitive asset vector is
[0, 602, 567].

Results: The initialized data is input into the Algorithm 3 in Section 4.2.2, and it outputs
V = [1169, 356.1671354, 718.56167135] after one round since no banks defaulted. To
verify if this is correct, we calculate V step-by-step. Here, using Equation 4.1, the bank
value of Bank 0, Bank 1, and Bank 2 should be:

• V [0] = p[0]+S[0][1]V [1]+S[0][2]V [2]+D[0][1]+D[0][2]

• V [1] = p[1]+S[1][2]V [2]−D[0][1]−D[2][1]

• V [2] = p[2]+S[2][1]V [1]−D[0][2]+D[2][1]

Computing these elements by hand also gives V = [1169, 356.1671354, 718.56167135].

4.4.2 Elapsed time for different number of banks

Motivation: To see the time efficiency of the algorithm, we plan to conduct experiments
on varying the number of banks in the financial network and analyzing the corresponding
computational performance.

Experiment settings: For the data initialization, the same functions and methods are
used as in Section 3.4.1. In more details, random seed of 45 is used here, the matrices
we initialized include the liability matrix D (it also follows the core-periphery structure
here), the equity matrix S, the fixed cost vector b and the discount fraction vector a for
the bankruptcy cost, and the value of primitive asset vector. The number of banks n is
set to 50, 100, 150, 200, 250, 300, 350 and 400 respectively.

Results: From the result, we could see a significant increase in elapsed time as the
number of banks in the network grows larger, with a sharp increase observed after
250 banks, the elapsed time for 300 banks exceeds 1000 seconds, and the curve of the
relationship between elapsed time and number of banks appears to follow a potentially
exponential trend. The results of our experiments are summarized in Table 4.1 below.
The elapsed time is reported in seconds and rounded to four decimal places for clarity.
The visualization for the results is presented in Figure 4.2.



Chapter 4. Financial model with both debt and equity contracts 32

No. of Banks (n) Elapsed time(s)
50 0.2862

100 1.8272
150 5.9764
200 13.52977
250 27.3672
300 1005.6980
350 1341.5660
400 2959.2157

Table 4.1: Comparison of the elapsed time for varying numbers of banks.
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Figure 4.2: Comparison of Elapsed Time in seconds with varying number of banks (n).
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Conclusions

5.1 Conclusion

In this project, we summarized the financial model developed by Eisenberg and Noe
and provided proof of their algorithm’s efficacy [9]. We then implemented three
algorithms in Python for finding the clearing payment vector in a financial network
with debt contracts only, which, to the best of our knowledge, has not been done
before. Moreover, we developed a method to generate reasonable data in the absence
of an available data set, and conducted experiments to compare the performance of
the algorithms in terms of speed and accuracy under different conditions. Our results
showed that the algorithm based on the concept of linear programming provided the
optimum solution, but its computational time increased significantly as the number of
nodes increased. On the other hand, the algorithm based on pure Value Iteration was
the fastest, while the Fictitious Default Algorithm provided valuable information for
evaluating the risk. Then, we extended the model to include equity contracts, which was
based on the model developed by Jackson et al.. Finally, we implemented the algorithm
to determine the equilibrium banks’ values in Python for the first time.

5.2 Limitations

First and foremost, the limited availability of real-world financial network datasets
greatly restricts the exploration of both algorithms. Although we have learned about
the characteristics of financial network structures from other literature and attempted
to simulate real financial networks, the structure in each region or country varies
significantly due to differences in financial systems and policies. These differences may
also impact our analysis of the algorithms.

Next, the algorithm for finding the equilibrium banks’ value, which we used, is based
on relatively new literature published in 2020 [14], with limited prior research on it.
Furthermore, since the terms are all interrelated and the interconnectedness is extremely
close, updating each term during each round of the algorithm proved more challenging
than anticipated. As a result, only one implementation was carried out, thereby limiting

33



Chapter 5. Conclusions 34

our ability to explore its potential and conduct further related experiments.

5.3 Future Work

Therefore, a potential future direction of this work is to implement alternative versions
of the algorithm for determining the equilibrium banks’ value and conduct experiments
to compare the performance and results between the algorithms. In addition, as demon-
strated in our experiments in Section 4.4.2, the elapsed time of the algorithm greatly
increases when the number of banks increases, therefore another direction is to advance
the algorithm to increase the computational efficiency.

Eisenberg and Noe’s financial model has been extended to various cases, such as the
continuous-time model presented by Banerjee et al. [2], and under the assumption that
firms may not make partial payments, as discussed by Bardoscia et al. [3]. As a future
direction, algorithms for these extensions could be implemented and tested using the
current implementation as a foundation.
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