
WhiteHaul-based Spectrum Aggregation in
Wi-Fi Bands

Ka Wing Li
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Computer Science and Mathematics

School of Informatics
University of Edinburgh

2023

Abstract
In this paper, we examine an existing solution, WhiteHaul, about its effectiveness
in aggregation multiple Wi-Fi channels in 5GHz spectrum. Our main focus is the
performance of WhiteHaul in the presence of interference. In this report, we go through
trials and errors to find areas of improvement and verify our hypothesis.

We begin by treating WhiteHaul as a black box and perform a baseline measurement of
the aggregation throughput achieved by WhiteHaul with and without interference. We
find that there is a significant decrease in total throughput when there is interference.
Then we unbox WhiteHaul and hypothesise that the scheduler is causing the degradation
in performance, but a subsequent experiment disproved our blief.

We move on to another component of WhiteHaul, congestion control, and conduct an
experiment showing that congestion control impacts WhiteHaul’s effectiveness. Then
we get into the microscopic view of the congestion control and trace its state over
transmission time. From the trace log, we discover an implementation problem for
WhiteHaul inside the Linux kernel.

To sum up our findings, we derive an upper bound of throughput for any aggregation
system and show that WhiteHaul performance is close to this upperbound. Based on
the WhiteHaul source code, we proposed a new variant TCP Eindburgh and evaluated
its performance against the original WhiteHaul. We also propose a list of potential
alternative improvements.

i

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Ka Wing Li)

ii

Acknowledgements
I would like to thank my supervisor Mahesh Marina for his feedback, guidance and
support. I also thank Dr. Mohamed Kassem and Dr. Tanya Shreedhar for their advice
throughout.

iii

Table of Contents

1 Introduction 1
1.1 Motivations . 1
1.2 Objectives . 2
1.3 Contributions . 2
1.4 Report structure . 2

2 Background 4
2.1 Wi-Fi . 4
2.2 UDP . 5
2.3 TCP . 5
2.4 MPTCP . 7
2.5 WhiteHaul . 8
2.6 Related Work . 9

3 Methodology 10
3.1 Project Management Strategies . 10
3.2 Experiment Setups . 11
3.3 Experiment Configuration . 12
3.4 Experiment Methodology . 13
3.5 Reliability of Wireless Experiments 14

4 Results and Discussion 15
4.1 Initial Experiment . 15
4.2 Is scheduler the culprit? . 17
4.3 Is congestion control the culprit? . 19
4.4 Microscopic view of congestion control 22

5 Proposed Improvements 26
5.1 Upper bound of the throughput of MPTCP 26
5.2 Raise the Upper Bound . 30
5.3 Improving the Congestion Control Algorithm 32

6 Conclusion 35
6.1 Summary . 35
6.2 Challenges and Lessons Learnt . 35
6.3 Future Work . 36

iv

A WhiteHaul Source Code 43

v

List of Figures

2.1 TCP Congestion Control using AIMD 6
2.2 MPTCP protocol stack . 8

3.1 Physical Setup . 11

4.1 WhiteHaul aggregation ratio with different combinations of channel
widths . 16

4.2 WhiteHaul aggregation benefit with different combinations of channel
widths . 16

4.3 Aggregation benefit with different schdulers 17
4.4 An overview of different schedulers for each channel width pair . . . 18
4.5 Detail of different schedulers for each channel width pair 19
4.6 Aggregation benefit with different congestion controls 20
4.7 An overview of different congestion controls for each channel width pair 21
4.8 Detail of different congestion controls for each channel width pair . . 22
4.9 CWND and SSTHRESH of each subflow for different congestion con-

trol algorithms. 23
4.10 sRTT of each subflow for different congestion control algorithms . . . 24
4.11 Time taken to transfer 300MB file using different congestion control . 25

5.1 Self-Interference for Nonoverlapping Channels 27
5.2 Overview of Different Congestion Control and Scheduler Combinations 28
5.3 An detailed graph of different congestion control and scheduler combi-

nations for each channel width pair 29
5.4 Feasible region for two subflows with normalised throughput 32
5.5 (80-80) Aggregation Benefit for WhiteHaul and Edinburgh 33
5.6 (80-80) Aggregation Ratio for WhiteHaul and Edinburgh 33

vi

List of Tables

4.1 (20-80) MPTCP WhiteHaul minRTT average throughput 15

5.1 (80-80) MPTCP WhiteHaul minRTT average throughput 26
5.2 (80-80) MPTCP CUBIC minRTT average throughput 28
5.3 Aggregation benefit for different transmission power 31

vii

Acronyms

ACI Adjacent Channel Interference.

AIMD Additive-Increase/Multiplicative-Decrease.

BDP Bandwidth-Delay Product.

CBR Constant Bit Rate.

CCI Co-Channel Interference.

CSMA/CA Carrier-Sense Multiple Access with Collision Avoidance.

CWND Congestion Window Size.

HoL Head-of-Line.

MCS Modulation and Coding Scheme.

MPTCP Multipath Transmission Control Protocol.

RTT Round-Trip Time.

RWND Receiver Window Size.

SINR Signal-to-Interference-plus-Noise Ratio.

sRTT Smoothed Round-Trip Time.

SSTHRESH Slow Start Threshold.

TCP Transmission Control Protocol.

TDMA Time Division Multiple Access.

UDP User Datagram Protocol.

viii

Chapter 1

Introduction

1.1 Motivations

Wireless technology has become an indispensable tool in modern communication
systems, with an ubiquitous presence in almost every aspect of daily life because of
its mobility. Multiple wireless interfaces have emerged as a standard feature in most
electronic devices, and the ability to access these interfaces has revolutionised the
way we communicate and access information. However, to fully utilize the benefits
of multiple wireless interfaces, it is necessary to explore the potential of wireless
aggregation. The seamless handover between LTE and Wi-Fi networks by Apple Siri,
using Multi-Path TCP (MPTCP), is an encouraging example of using multiple interfaces
for speed and reliability.

The increasing prevalence of dual-band and tri-band routers has prompted a significant
research question: Can we fully utilize the bandwidth of multiple Wi-Fi channels by
aggregating them? Instead of aggregating heterogeneous wireless technologies, we
want to explore the potential benefits of wireless aggregation of the same technology,
particularly in the context of utilising multiple Wi-Fi channels to achieve high through-
put. Consider the following scenario; we have a dual-band router at home connecting
to 1Gbps Ethernet, and our laptop has a built-in Wi-Fi card supporting Wi-Fi with a
maximum throughput of 250 Mbps. If we have a USB Wi-Fi dongle at hand, can we
plug it into my laptop and connect it to the second band of the router and achieve higher
throughput?

The benefits of Wi-Fi aggregation are significant, including faster download and upload
speeds, reduced latency, and improved reliability. However, the implementation of
Wi-Fi aggregation also presents numerous challenges. Ensuring that aggregated data
arrives at the destination in the correct order is one of the most significant challenges,
requiring sophisticated designs and algorithms that can manage the flow of data across
multiple paths. Additionally, the interference between different wireless channels is a
dire concern, as it can impact performance if not managed properly.

WhiteHaul[23] is an efficient spectrum aggregation system for backhaul traffic over TV
white space. It is promising to apply similar ideas to aggregate different Wi-Fi channels.

1

Chapter 1. Introduction 2

However, it has been reported that WhiteHaul experiences a significant degradation
in performance when the system is subjected to interference. It is a concern that does
WhiteHaul satisfy our need and requirements and prompt us to carry a research on the
performance of WhiteHaul in aggregating multiple Wi-Fi channels.

1.2 Objectives

The main objective of the research is to find a highly efficient, inexpensive, and readily
available multichannel Wi-Fi aggregation solution. We will examine an existing solution,
WhiteHaul, for wireless aggregation and identify areas for improvement. We will also
investigate the impact of interference between multiple Wi-Fi channels on WhiteHaul
performance and find the root cause of the decrease in performance. We will focus on
evaluating the effectiveness of different algorithms for managing the flow of data across
multiple channels in WhiteHaul. Last but not least, this research will seek to improve
WhiteHaul or suggest alternative solutions.

1.3 Contributions

The main contributions of the project can be summarised as follows:

1. Examine the performance of WhiteHaul under interference.

2. Examine whether changing the MPTCP scheduler has an effect on throughput.

3. Examine whether changing the MPTCP congestion control has an effect on
throughput.

4. Demonstrate MPTCP congestion control algorithms play an important role in
determining the maximum total aggregation throughput.

5. Demonstrate MPTCP schedulers play a vital role in goodput.

6. Discover the design flaw in WhiteHaul and provide adjustments.

7. Derive an upper bound for the aggregation throughput for any multipath aggrega-
tion system subject to wireless interference.

8. Describe a new variant of congestion control algorithm, TCP Edinburgh, which
performs better than WhiteHaul.

9. Propose a list of potential improvements and discuss their limitations.

1.4 Report structure

Chapter 2 introduces key terminology and concepts that are essential for the report.
WhiteHaul details are also included in this chapter.

Chapter 3 discribes the testbed we are carrying experiment on. The choice of different
parameters is described and explained. It also includes the methodology for carrying

Chapter 1. Introduction 3

out the experiments in later chapters.

Chapter 4 includes the experimental result and discuss the observations. In section 4.1,
we examine the performance of WhiteHaul as a baseline. We hypothesise the scheduler
degrades the performance of WhiteHaul and disprove it in Section 4.2. In Section 4.3
we discovered that changing the congestion control algorithm of WhiteHaul leads to an
improvement in the throughput. We explore the microscopic view of the congestion
control of WhiteHaul and discover the flaws in Section 4.4.

Chapter 5 provides a list of potential improvements and discusses their benefits and
limitations. Section 5.1 uses a mathematical relationship to derive an upper bound
of the performance of MPTCP. Based on the relationship, we provide three solutions
for increasing the upper bound in Section 5.2. Section 5.3 addresses the problems in
the WhiteHaul mentioned in Chapter 4 and proposes alternative congestion control
algorithms.

Chapter 2

Background

2.1 Wi-Fi

Wi-Fi is a wireless communication technology based on the IEEE 802.11 family of
standards which specifies the physical layer (PHY) and the medium access control
(MAC) layer for implementing wireless local area networks. The first IEEE 802.11
standard was published in 1997[19], and since then several other standards have been
developed. The most recent versions are IEEE 802.11ac (Wi-Fi 5) [18] in 2014 and
IEEE 802.11ax (Wi-Fi 6E) [20] in 2020. Each standard offers different levels of speed,
range, and performance.

Wi-Fi technology uses short-range radios to transmit signals in the unlicensed spectrum
at 2.4, 5 and 6 GHz. Wi-Fi channel width is the range of frequencies that a Wi-Fi
signal occupies. The wider the channel width, the more data can be transmitted at
once. There are only 3 nonoverlapping channels of 20MHz in 2.4GHz whereas there
are over 24 nonoverlapping 20MHz channels and up to 12 40MHz in 5GHz. Moreover,
there are many competitors for the 2.4GHz band such as Bluetooth, amateur radio,
and microwave ovens, while 5GHz suffers less interference. Hence, there are more
opportunities to exploit the 5GHz Wi-Fi band, so in this paper, we will focus on Wi-Fi
aggregation on the 5GHz band using Wi-Fi 5.

All 802.11 standards implemented Carrier-Sense Multiple Access with Collision Avoid-
ance (CSMA/CA)[19] where a node will detect whether the channel is clean by carrier
sense before transmission. If a channel is detected as busy, the node will wait for the
transmission to finish; otherwise, it will wait a short time and then start transmitting
Wi-Fi frames. Each time a Wi-Fi device transmits a data frame, it must receive an
acknowledgement from the receiver side. If the sender does not receive an acknowl-
edgement for the data frame, it will retransmit the data a few times before giving up
and allowing the upper-layer protocols to handle the lost event.

An important factor affecting radio link quality is Signal-to-Interference-plus-Noise
Ratio (SINR), which is given by

SINR =
P

I +N
(2.1)

4

Chapter 2. Background 5

where P is the power of the incoming signal of interest, I is the interference power of
the other signals in the network and N is some noise term. The higher the SINR, the
better the channel quality is. The Shannon-Hartley theorem states that the maximum
channel capacity of a specified bandwidth in the presence of additive Gaussian white
noise is governed by the following formula[44, 43]:

C = B log2

(
1+

S
N

)
(2.2)

where C is the maximum data transimission rate, B is the channel width of Wi-Fi and S
N

is the signal-to-noise ratio that we use SINR here.

There are mainly two kinds of interference, namely Adjacent Channel Interference
(ACI) and Co-Channel Interference (CCI). ACI arises when extraneous power from a
signal in a nearby channel disrupts transmission. This can happen when two channels
are adjacent or partially overlapped. This will add interference and noise to SINR and
degrade channel quality. CCI occurs when two different radio transmitters use the
same channel simultaneously. As every wireless channel has a fixed capacity given
by (2.2), the available capacity must be shared between two senders. Transmitting
simultaneously will lead to retransmission and further reduce the data transfer rate.

Due to the instability nature of the wireless medium, rate adaption algorithms are
essential to exploit the scarce wireless resources under unstable channel conditions.
Modulation and Coding Scheme (MCS) is used in IEEE 802.11 networks to define the
data rate and modulation scheme used to transmit data over the wireless channel. MCS
index is a metric based on several parameters that affect the transmission data rate and
reliability, including channel widths, number of antennas, coding rate and modulation
scheme. The higher MCS will have a higher data transfer rate, but requires higher SINR
for proper functioning.

2.2 UDP

The User Datagram Protocol (UDP) is a widely-used transportation layer protocol in
computer networking. As a connectionless protocol, UDP provides a fast and efficient
means of transmitting data over the network without the need to establish and maintain
a connection. It is an unreliable protocol which does not guarantee in-order packet
delivery and does not retransmit upon loss of packets. In our paper, UDP is used to
generate Constant Bit Rate (CBR) traffic for interference.

2.3 TCP

Transmission Control Protocol (TCP) is a connection-orientated protocol that establishes
a logical connection between two hosts and provides a reliable and ordered delivery
of a stream of bytes over a network[10]. TCP works by fragmenting data into small
packets and attaching a sequence number to each packet that allows the receiver to
reassemble the packets in the correct order. To prevent the sender from overflowing
the receiver buffer by sending too much data, TCP provides flow control by having the

Chapter 2. Background 6

sender maintain Receiver Window Size (RWND), the size of the free buffer space on
the receiver side.

Congestion control

An important feature of TCP is the congestion control algorithms [4], which aim to
prevent the network from being congested. TCP will maintain a Congestion Window
Size (CWND) whose size is the number of bytes the sender can send in the network at
any time. Ideally, CWND is equal to the Bandwidth-Delay Product (BDP), the product
of a data link’s capacity (in bits per second) and its round-trip delay time (in seconds).
The data transmission rate is governed by min(CWND,RWND).

Figure 2.1: TCP Congestion Control using AIMD

A well-implemented congestion control algorithm consists of three components: slow
start, congestion avoidance and fast recovery. Figure 2.1 shows how the congestion
window changes during each transmission round. TCP uses the state variable Slow Start
Threshold (SSTHRESH) to determine whether the slow start (CWND < SSTHRESH)
or congestion avoidance (CWND >= SSTHRESH) algorithm should be used.

Slow Start At the initilisation of TCP connection or after a long idle period, TCP will
enter slow start state. The value of CWND begins at 1 and increases by 1 every
time a transmitted segment is first acknowledged. This process results in a double
of the sending rate every RTT. Thus, the TCP send rate starts slow but grows
exponentially during the slow start phase.

Congestion Avoidance The Additive-Increase/Multiplicative-Decrease (AIMD) algo-
rithm is used by combing the linear growth of the congestion window when there
is no congestion with an exponential reduction when congestion is detected. A

Chapter 2. Background 7

common implementation is to increase CWND by 1/CWND for every newly
acknowledged packet. Until a lost event is observed, TCP will set SSTHRESH to
CWND/2 and reset CWND to 1.

Fast Recovery When the sender receives three duplicated acks, loss of packet(s) is
detected and TCP will enter the fast recovery state. The sender will quickly
retransmit the missing packets and increase CWND by 1 for every acknowledge-
ment of the missing packets until no duplicated acknowledgements are received.

TCP CUBIC is one of the variations of TCP congestion control algorithms which uses a
cubic curve to increase CWND instead of a linear increase[16]. It is the current default
congestion control algorithm in the Linux kernel[27]. TCP Illinois is another variant
designed for long-fat networks[29].

2.4 MPTCP

Multipath Transmission Control Protocol (MPTCP) is an extension to tradition TCP
that allows multiple paths between two endpoints to be used simultaneously[14].

In traditional TCP, a single path is used between a source and a destination, which can
lead to suboptimal performance in certain network scenarios, such as when the path is
congested or has high latency. MPTCP allows TCP to use multiple paths simultaneously
to improve performance, resilience, and resource use. This is accomplished by splitting
data into multiple subflows, each with a unique sequence number, and sending them
over different paths. The subflows are then recombined at the receiving end to form the
original data stream.

MPTCP operates in a transparent manner, which means that it does not require any
changes to the underlying network infrastructure or the applications that use TCP.
MPTCP is designed to fail back to traditional TCP when the network does not support
MPTCP[21].

From Figure 2.2, we can see that MPTCP composes of three main components

• Path Management: This component is responsible for detecting and selecting
multiple paths between the endpoints and managing the data transfer over these
paths. It includes path discovery, path establishment, path selection, and path
monitoring.

• Schedulers: This component is responsible for dividing the data stream into
segments and deciding how to distribute these segments over the available paths,
taking into account the characteristics of each path and the level of congestion[34].
It includes segment size selection, segment scheduling, and retransmission strate-
gies. Head-of-Line (HoL) block is a phenonmmenon that can occur in MPTCP
when a data segment is lost or delayed on one path, causing subsequent segments
to be blocked in the receiver buffer until the missing packet is received. The key
responsibility of schedulers is to reduce HoL[32].

• Congestion Control: This component is responsible for managing the sending
rate over the available paths to avoid congestion and optimise the utilisation

Chapter 2. Background 8

Application Layer

Transport Layer

Network Layer

Multipath TCP

Send Queue
1 2 3 4 5 6

Multipath Scheduler

Socket API

TCP
subflow

Send Queue
1 2 3

TCP
subflow

Send Queue
4 5 6

Figure 2.2: MPTCP protocol stack

of network resources. Each TCP subflow has its own CWND and there is an
MPTCP-level CWND.

These three components work together to ensure that MPTCP can efficiently use
available network resources, avoid congestion collapse, and maintain the stability and
fairness of the network.

A practical multipath congestion control algorithm must have the following three
desirable properties[38]:

Goal 1 Improve Throughput: A multipath flow should perform at least as well as the best
available single-path flow.

Goal 2 Do no harm: A multipath flow should not take more than would be obtained by a
single path TCP in shared resources.

Goal 3 Balance Congestion: A multipath flow should move as much traffic as possible
away from its most congested paths without violating the first two goals.

2.5 WhiteHaul

Taking advantage of the white space in unlicensed television, WhiteHaul aggregates
multiple chunks of TV white space with MPTCP as a link-level tunnel abstraction and
cross-layer congestion control to manage network traffic[23]. It can achieve 1Gbps
throughput of a distance of more than 10km with 99.99% availability[17].

Chapter 2. Background 9

For the hardware layer, WhiteHaul consists of a TV white space conversion substrate
to convert the Wi-Fi signal generated by each radio card to the TV band, and a power
splitter to combine the converted singals into one for transmitting over TV white space.
It also has a LoRa[30] interface for coordination between two WhiteHaul nodes.

For the software layer, WhiteHaul consists of three modules.

1. (Coordination Module) This module is responsible for sending control messages
between two WhiteHaul nodes using LoRa.

2. (Interface Configuration Module) This module is responsible for sensing the
channel quality to deduce which frequency ranges are available for use. It will also
obtain a list of approved frequency ranges and maximum allowed transmission
power from a geolocational database.

3. (Traffic Management Module) This module is responsible for fairly allocating
time slots for forward and reverse traffic, as well as efficiently scheduling the
traffic among available subflows using MPTCP.

WhiteHaul’s congestion control algorithm is an uncoupled MPTCP congestion control
algorithm based on TCP Illinois, with customised modifications to achieve highthrough-
put for long-range wireless network.

In our research, we will use a stripped-down version of WhiteHaul as described in 3.

2.6 Related Work

Since the emergence of MPTCP, many research studies have explored the possibilities
of using MPTCP under different network conditions. Most of the work is done on Wi-Fi
and LTE[7, 1, 12, 31, 8] or on the entire ethernet scenario in data centers[40, 41, 9].
Some work is done on handover between heterogeneous networks[35]. However, very
few articles have explored the subject of MPTCP in simple Wi-Fi scenarios[36, 47],
especially investigating the behaviour of MPTCP under Wi-Fi interference[48].

Chapter 3

Methodology

To investigate the performance of MPTCP in Wi-Fi settings with and without inter-
ference, we performed a series of experiments to measure its behaviour in various
wireless environments and configurations. This section describes how the experiment is
organised and performed.

Section 3.1 explains how the project and experiments are managed. The hardware and
software aspects of the experimental setup are described in Section 3.2. Section 3.3 lists
out the important configurations and gives a brief reason for the considerations. Section
3.4 shows how each experiment is carried out and what performance metrics are used.
Section 3.5 concludes our necessary precautions to increase the reliability of the result.

3.1 Project Management Strategies

We begin by measuring the throughput of WhiteHaul in the clean channel case and
examine its behaviour in the presence of interference, aiming at reproducing the field
findings that the performance of WhiteHaul degrades significantly when there is near-by
interference. The baseline result will motivate us to investigate how other MPTCP
configurations such as different congestion control algorithms and schedulers perform
compared to WhiteHaul.

Due to the limited time available to complete the project, we decided to conduct a small
set of preliminary experiments that can represent a wide range of test cases and provide
insights into areas that were most interesting to explore. These initial tests were helpful
in gaining a better understanding of the data collected; then, we can fine-tune the test
setups and measurement metrics.

Given the nature of the experiments, most of our time was utilised in conducting
tests, debugging and fixing the flaws in both hardware and software. Additionally, we
have regular meetings with our supervisor in order to review our progress, discuss our
interpretation of the results, and determine the path forward for future experiments.

10

Chapter 3. Methodology 11

3.2 Experiment Setups

To stay in line with our research’s objective, we use a simplified version of WhiteHaul.
We remove the use of the TV conversion substrate and directly use Wi-Fi for the
experiment. We also remove the power splitter and use a separate Wi-Fi antenna for
each Wi-Fi frequency used. We do not have LoRa for the control channel as we want
all the communication to be carried out in the 5GHz Wi-Fi band.

Hardware and Software

Our experimental setup consists of two Intel® NUC 11 Essential Kit - NUC11ATKC4
(Intel(R) Celeron(R) N4505 @ 2.00GHz, 8GB of RAM) that run the software layer of
two WhiteHaul nodes. Ubuntu Focal 20.04 Server is installed on both machines with the
modified MPTCPv0.96 Linux Kernel 5.4 implementation, which has the full support of
MPTCPv1[14]. Each machine is connected to two radio cards through Gigabit Ethernet
(GbE) interfaces. The radio cards are Mikrotik RouterBoard - RB922UAGS-5HPacD,
running RouterOS 6.48.6 Long-term. As the NUC have only one GbE interface, an
additional USB 3.0 to Gigabit Ethernet Adapter NIC is used.

We use another two machines with another two sets of radio cards to generate a
controlled interference source. The UDP client is placed close to the WH-2 of the server
side, in order to generate sufficient interference to the receiver. We use RF Explorer 6G
Combo handheld digital spectrum analyzer to check the quality of the channel.

Physical Environment

NUC
Client

NUC
Server

WH-1
CAP

WH-1
CPE

WH-2
CAP

WH-2
CPE

802.11ac
5370MHz

192.168.1.1 192.168.1.2

802.11ac
5910MHz

192.168.2.1 192.168.2.2

PCI Ethernet

192.168.1.3

PCI Ethernet

192.168.1.4

USB Ethernet

192.168.2.3

USB Ethernet

192.168.2.4

UDP
Client

802.11ac
5810MHz

UDP
Server

Figure 3.1: Physical Setup

Furthermore, although all devices run at different frequencies, to avoid possible inter-
ference between these electronic devices, we use Ethernet cables to extend radio cards.

Chapter 3. Methodology 12

The two WhiteHaul nodes that make up the end points of the link under test are placed
in the same laboratory two to three metres apart.

Using the spectrum analyser, we discover that the Wi-Fi network suffers from sig-
nificant nearby interference caused mainly by many IEEE802.11abgn access points
point operating in the common non-overlapping channels in the 5GHz band. Most of
them are university networks or experiments done by other groups in the network lab.
Therefore, we searched the white space in the 5GHz spectrum and found that U-NII-2B
5350-5470 MHz, U-NII-4 5850-5950 MHz and U-NII-5 5925-6425 MHz are clean, as
they are not for standard Wi-Fi usage. We put the first link WH-1 at the frequency range
5910-5990MHz as a clean link as there is little or no usage in this particular frequency.
The second link WH-2 is put at the frequency range 5370-5450MHz and the controlled
UDP traffic will use the frequency range 5260-5340MHz, which is chosen to stay close
to WH-2 but far away from WH-1.

3.3 Experiment Configuration

Connection Parameters

Linux uses a default initial SSTHRESH of infinity (TCP INFINITE SSTHRESH) when
initialising TCP sockets and caches parameters for the per-destination TCP connec-
tion[42]. It would be undesirable to make a fair comparison between tests, so we disable
“TCP metrics save” to prevent SSTHRESH from being reused.

We keep Linux’s default initial window size of 10 packets, enable TCP timestamps for
better RTT measurement [5], and TCP Selective Acknowledgement (SACK) to reduce
the number of retransmissions[37].

Memory Allocation

As MPTCP uses multiple subflows, a larger buffer size is required to handle more
packets, probably out of order, from different paths. Related work shows a decrease in
performance if the allocated buffer is too small[39, 49]. Therefore, we set the maximum
sent buffer size (wmem) and the received buffer size (rmem) of the kernel to 16 MiB for
queues in all protocols.

Wi-Fi configuration

As the Mikrotik RouterBoard support Wi-Fi 5 IEEE 802.11ac and we are only interested
in the 5GHz band, we set it to “5ghz-onlyac” to prevent it from dynamically switching
to other modes. For each RouterBoard, it is configured to bridge the Ethernet port and
WLAN port so that the NUC devices can connect to the radio card using Ethernet and
yet send data through the Wi-Fi spectrum. For each pair of RouterBoards on the client
and server (two pairs in total), they are configured to form a link as a Point-to-Point
(PTP) wireless bridge with names “WH-1” and “WH-2” respectively.

“WH-1” and “WH-2” use the subnet “192.168.1.0/24” and “192.168.2.0/24” respectively.

Chapter 3. Methodology 13

Each NUC uses “fullmesh” as the MPTCP path manager, and configures routing tables
by “iproute2” to prevent packets from being sent to the wrong subnet.

3.4 Experiment Methodology

Unless stated otherwise, all experiments for ordinary TCP measurement use Linux’s
default congestion control CUBIC as a baseline. All the traffic directions originate from
the NUC Client (sender) to the NUC server (receiver).

The Mikrotik RouterBoard supports 20MHz, 40MHz, and 80MHz, and thus different
bandwidths. We will change the channel width of each wireless link to investigate the
MPTCP behaviour for different bandwidth combinations. We will use the compact
notation (a-b) to indicate the channel width configuration for a particular experiment.
(20-80) means WH-1 set to 20MHz whilst WH-2 set to 80MHz.

Three important pieces of software are used in the experiments. iPerf is used to generate
traffic and measure the throughput of the network. tcpdump is used to capture traffic at
a specified interface in pcap for further analysis. tcptrace is used for calculating the
throughput of MPTCP contributed by each subflow.

In the report, we have three types of tests:

1. (Individual) WH-1 running iPerf while WH-2 idle and vice versa. Concurrent
transmissions are not made and ordinary tcp is used.

2. (Simultaneous) Both WH-1 and WH-2 run iPerf with ordinary TCP. Both sub-
flows are benchmarked concurrently.

3. (MPTCP) MPTCP will use both WH-1 and WH-2.

When studying the interference cases, the UDP client will use iPerf to generate CBR
traffic of 20 Mbps. As the UDP client is placed close to the NUC server, it will increase
the interference power on the receiver side and thus reduce SINR.

The following performance metrics are used for comparing the result.

Throughput Throughput is the direct feedback of an aggregation solution. To have a
fair comparison, we need to normalise the result. Defining a multipath aggregation
scenario S as a set of capacities Ci > 0(i ∈ 1, ...,n), representing the average
performance of n individual transmission paths, and a measured throughput x
(with 0 ⩽ x ⩽ ∑iCi) achieved by a solution. An intuitive way of normalisation is
the aggregation ratio, which is calculated by

Ar =
x

∑iCi
(3.1)

However, one goal of multipath aggregation is that the performance should be
better than using a single path, and we need a better metric to reflect this goal.
We decide to take 0 as the solution performs the same as the best single path
performance, -1 as 0 Mbps and 1 as perfect aggregation[22]. The metric should be

Chapter 3. Methodology 14

monotonic, preserve a partial order relationship, and preferably linear for easier
comparison. The aggregate benefit is defined as follows.

Ab =

{
x−maxi Ci

(∑i Ci)−(maxi Ci)
x ⩾ maxiCi

x−maxi Ci
(maxi Ci)

x < maxiCi
(3.2)

The interpretation of Ab is how much more the solution can aggregate apart from
the best single path. Notice that we cannot directly compare Ab of different signs
due to the non-linearity at 0. Both the aggregation ratio Ar and the ggregation
benefit Ab will be used for the comparison of the results in Sections 4.1 and 4.2.

TCP status To gain an in-depth understanding of how MPTCP reacts upon incoming
events, it is necessary to access the kernel’s internal status, specifically the
TCP sockets for each MPTCP subflow. Traditionally, two methods are used:
capturing pcap files to estimate values or modifying the kernel source code
to print debug information. However, the former can yield inaccurate or even
misleading results as the kernel may drop network packets before they can be
captured by software. The latter method adds significant overead to the kernel
and is prone to kernel panic. Instead, state-of-the-art eBPF technology is used,
allowing custom code to be safely and efficiently executed without modifying
the kernel itself. A C program is written to hook the tcp rcv established kernel
function and extract useful information from struct sock, such as snd ssthresh
(SSTHRESH), snd cwnd (CWND), snd wnd, srtt us (sRTT). This information
will be used for the analysis described in Section 4.4.

3.5 Reliability of Wireless Experiments

Because Wi-Fi is highly sensitive to timing and the surrounding environment, we have
to perform repeated trials of particular combinations to ensure consistent results. We
will run five iterations for a given setting, with each run taking a minimum of 200
seconds for both Wi-Fi and TCP to stabilise. We allow a 10 second interval between
consecutive trials to ensure that the kernel garbage collect the socker buffer, preventing
the preceding experiment from influencing the next experiment.

Chapter 4

Results and Discussion

4.1 Initial Experiment

A wireless network is highly susceptible to the surrounding environment and nearby
interference. An aggregation system needs to be resilient to interference and achieve
sensible aggregation throughput.

To get an idea of how interference impact WhiteHaul’s performance, we carried out an
experiment with different combinations of channel widths and varying the interference.
We recorded the throughput for both the clean channel and the channel with interference
and compared the output to the individual TCP in the clean channel.

Channel Quality Type WH-1 (Mbps) WH-2 (Mbps)
Clean Individual 61.9 256.0
Clean MPTCP 58.6 234.4

Interference MPTCP 58.1 182.1

Table 4.1: (20-80) MPTCP WhiteHaul minRTT average throughput

Table 4.1 gives the result of (20-80) configuration. When the channel is clean, the
aggregation ratio of this combination is 58.6+234.4

61.9+256.0 = 0.92 and the aggregation benefit is
58.6+234.4−256.0
61.9+256.0−256.0 = 0.59. However, in the presence of interference, the aggregation ratio
of this combination is 58.1+182.1

61.9+256.0 = 0.75 and the aggregation benefit is 58.1+182.1−256.0
61.9+256.0−256.0 =

−0.06. A negative aggregation benefit indicates that the aggregation solution performs
worse than using a single path. This match with [23] field experience that the “efficiency”
of WhiteHaul under interference degrades significantly compared to the clean channel
situation. A summary of different channel width combinations is shown in Figure 4.1
and Figure 4.2.

15

Chapter 4. Results and Discussion 16

Figure 4.1: WhiteHaul aggregation ratio with different combinations of channel widths

Figure 4.2: WhiteHaul aggregation benefit with different combinations of channel widths

A clear observation is that when WH-2 (the link subject to controlled interference)
has a channel width wider than that of WH-1, the aggregation performance decreases.
The greater the difference between the channel width of the two links, the poorer the
performance. We hypothesise that it is the scheduler issue that the scheduler used in
WhiteHaul is unable to handle the heterogeneity in RTT and latency. Wi-Fi networks
under interference will have many retransmissions at the layer 2 protocol and very few
reported back to the high layer such as TCP as a loss event. It mainly increases the
RTT and results in larger latency, making the network exhibit heterogeneity. [12] shows
path heterogeneity can hinder the aggregation throughput by MPTCP, mostly due to
the HoL-blocking which causes higher receiver memory usage and subflow bandwidth
underutilisation. In the next section, we are going to test our hypothesis by reusing the
congestion control in WhiteHaul but with different schedulers.

Chapter 4. Results and Discussion 17

4.2 Is scheduler the culprit?

To verify our hypothesis made in the previous section, we investigate how the choice of
schedulers affects the performance of WhiteHaul. There are several MPTCP schedulers
designed, including BLEST[13], ECF[25] and QAware[46]. BLEST reduces HoL by
considering the size of the sender’s congestion window and trying to minimise out-of-
order packet delivery. On the other hand, ECF uses the number of remaining packets in
the sender’s buffer and estimates the completion time for the packet if it is sent on a
slower subflow. QAware addresses the problem by utilising lower-layer information, the
hardware queue occupancy, and is able to swiftly react to changes in network conditions.
BLEST and ECF are implemented in the Linux kernel and the source code of QAWARE
is available on GitHub. However, since radio cards act as an isolated device instead
of a network interface, there is no method for the Linux kernel to report the hardware
information of the radio cards to the QAware algorithm. We decided not to include
QAware for comparison and used BLEST and ECF instead.

Figure 4.3: Aggregation benefit with different schdulers

We re-run the experiment by replacing the scheduler (minRTT) in WhiteHaul with
BLEST and minRTT. We use aggregation benefit as a metric for a fair comparison.
From Figure 4.3, there is no observable significant difference in performance between
the schedulers. The slight difference in number can be regarded as random noises due
to the unstable nature of the wireless network. Looking at the aggregation benefit from
average total throughput may not be insightful about how the schedulers behave. A
more useful visualisation is a breakdown analysis of MPTCP throughput and observing
how much bandwidth a scheduler allocates to each subflow. We use tcpdump to capture

Chapter 4. Results and Discussion 18

the TCP traffic for each interface into pcap files and use tcptrace to calculate the actual
throughput.

Figure 4.4: An overview of different schedulers for each channel width pair

To make the visualisation more readable, we use different colours (red, green, and
blue) to represent different schedulers (minRTT, BLEST, and ECF, respectively). The
capacity of each individual subflow is coloured black. We use solid markers to represent
the clean channel case and hollow markers to indicate the presence of interference.
Each orange cluster belongs to the same channel width pairs, as there are nine different
channel width combinations for two subflows. We have included slanted grey lines with
slope -1 for easier comparison. Any two points laying on the same grey line aggregate
to the same total throughput. The total throughput for any two adjacent grey lines differs
by 10Mbps. The closer the point is to the top right corner, the higher the aggregated
throughput. The closer the point is to the bottom left corner, the more bandwidth is
allocated to subflow WH-1, and vice versa, top right corner for subflow WH-2.

Figure 4.4 gives an overview of the result. When there is interference, we can see a
small variation in the throughput of WH-1 which is free from interference. Conversely,
there is a large variation in the throughput of WH-2 which is affected by the controlled
UDP interference. The larger the channel width of WH-2, the greater the variation in
the experiment result. This can be attributed to the fact that the wider channel width is
more susceptible to interference. Greater interference will result in transmission failure

Chapter 4. Results and Discussion 19

and more retransmissions in the layer 2 Wi-Fi protocol, and thus variable latency. It
makes schedulers’ job hard to adapt to rapid changes in latency.

Figure 4.5: Detail of different schedulers for each channel width pair

Figure 4.5 provides more detail within the same channel width configuration. We
can observe that in a clean channel case, all schedulers perform similarly. For the
interference case, the result of the three schedulers scatters uniformly, making no
significant difference.

Hence, we safely conclude that schedulers are not the main culprit of the poor perfor-
mance of the aggregation throughput by WhiteHaul.

4.3 Is congestion control the culprit?

In the previous section, we rejected the hypothesis that schedulers degrade the perfor-
mance of WhiteHaul under interference. We turn our focus on the other component of

Chapter 4. Results and Discussion 20

WhiteHaul - the congestion control algorithm. WhiteHaul is designed with a customised
congestion control algorithm to target backhaul traffic with a stable link. There could
be a chance that the congestion control algorithm in WhiteHaul acts poorly in the
wireless network, causing the schedulers unable to fully utilise the available capacity of
the subflow. Since the schedulers take the sender’s congestion windows into account
when scheduling the packets, if the congestion control algorithms shrink the windows
aggressively upon the change in network conditions, the total throughput is indeed
mainly affected by the reduced window size. This reasoning prompts us to investigate
whether using other congestion control algorithms could lead to a better result.

There are many available congestion control algorithms. Linux default congestion
control algorithm CUBIC can be used as an uncoupled congestion algorithm for MPTCP
while LIA is a standardised coupled congestion algorithm[38]. Similarly to what we
have done in Section 4.2, keeping the scheduler as minRTT, we replace the congestion
algorithms in WhiteHaul with CUBIC and LIA, and evaluate the aggregation benefit
for different combinations of channel widths.

Figure 4.6: Aggregation benefit with different congestion controls

In Figure 4.6, all congestion controls show similar patterns when we add interference,
as we discovered in Section 4.2. (20-80) still performs the worst regardless of the
congestion control algorithms used, and the aggregation benefit is low when the channel
width of WH-2 is greater than that of WH-1. However, we can see a significant
difference in the performance of different congestion control.

1. LIA performs poorly compared to WhiteHaul and CUBIC. This can be explained
by the fact that LIA as a coupled congestion control algorithm uses the same

Chapter 4. Results and Discussion 21

congestion control algorithm for all subflows. When increasing the congestion
window of one subflow, it will take other subflows’ characteristics into account.
It ensures that each path receives a fair share of the available bandwidth and acts
with friendlyness on the network bottleneck. Conversely, WhiteHaul and CUBIC
are both uncoupled congestion control algorithms where a flow could decide
its CWND without considering other flows CWND. It results in aggressively
utilising the available bandwidth in each individual subflow, and hence in larger
overall throughput.

2. For most of the time, CUBIC performs better than WhiteHaul, in both clean
channel cases and the presence of interference. There is no trivial explanation
based on the numbers displayed and the working principle of the congestion
control algorithms. This finding leads us to plot the performance graph in Figure
4.7 to explore more properties of each congestion control algorithm.

Figure 4.7: An overview of different congestion controls for each channel width pair

Figure 4.7 and 4.8 summarise the performance of different congestion control algo-
rithms. Although there are no notable differences among congestion control algorithms,
WhiteHaul has a large standard deviation in throughput when there is interference.
When the channel width of WH-2 is 20MHz, we can see that the throughput of WH-2
is consistently lower than other congestion control algorithms with a wide variation
in WH-1 throughput. When the channel width of WH2- is 40MHz or 80MHz, the

Chapter 4. Results and Discussion 22

variation in WH-1 throughput is small but large in WH-2 throughput. This means that
WhiteHaul’s behaviour is unstable in case of interference where there are non-negligible
fluctuations in RTT and delays. We declare that the congestion control algorithm is
one of the important factors that affect the aggregation ability of MPTCP What is
causing this behaviour requires a more detailed analysis of CWND and other variables
affected over time. With this question in mind, we will have a microscopic view of the
congestion control algorithm in the next chapter.

Figure 4.8: Detail of different congestion controls for each channel width pair

4.4 Microscopic view of congestion control

To track the status of WhiteHual over time, we need to know the details of every TCP
socket sent and received. More important we need to track the SSTHRESH, CWND
and sRTT to have an idea of how the congestion control algorithm responds to a change
in network events. We use eBPF to hook the kernel function tcp rcv established and

Chapter 4. Results and Discussion 23

retrieved relevant information for each incoming TCP packet from each subflow. We
keep tracing the sender’s SSTHRESH, CWND and sRTT over time and summarise the
data into plots. We repeat the experiment with different congestion control algorithms.
The results are summarised in Figure 4.9 and Figure 4.10.

Figure 4.9: CWND and SSTHRESH of each subflow for different congestion control
algorithms.

First of all, we discover the slow convergence of WHiteHaul when a TCP connection
is initiated. While CUBIC and LIA take less than 1 second to reach the expected
CWND, WhiteHaul takes 4 seconds for a clean channel and 7 seconds in the presence
of interference. The slow start of WhiteHaul ended too soon, leading to a slower
increase to the expected congestion window size during the congestion avoidance state.
Secondly, we observed that when there is interference, the CWND and SSTHRESH
are clamped at 100 upon a packet’s sRTT exceeding 0.05 seconds. In Figure 4.10, we
see a peak of sRTT at 5 seconds followed by a drop of CWND and SSTHRESH to 100
in Figure 4.9. We need concrete implementation details of WhiteHaul to explain the
above phenomenon.

From the WhiteHaul source code, we discover that the initial SSTHRESH is set to
20 (line 111 A.1). This explains why slow start ends quickly since it only takes 5
RTT (25 = 32 > 20) for the TCP connection to exit the slow start state and enter
the slow increase state of the congestion avoidance state. In addition, a default and
fixed value of 100 is set for the advertised window size of each subflow (line 49
A.1), which means that the sender congestion window will always reduce to 100
when there is a loss event. Although it can be configured when the kernel module
is loaded, it is impractical to change the value during transmission. Also, due to the
instability nature of wireless networking, it is not sensible to set an arbitrary value for

Chapter 4. Results and Discussion 24

Figure 4.10: sRTT of each subflow for different congestion control algorithms

the advertised window size suitable for any interference cases and network conditions.
On the other hand, the queueing budget delay used in WhiteHaul is hard-cored at 50000
microseconds(qDelayBudget us at line 228 A.1), that is, 0.05 seconds, which coincides
with the observation in Figure 4.10. It suffers from the aforementioned problem of not
having flexibility to handle different network conditions.

After reviewing the logical flow of the implementation of the WhiteHaul congestion
control, we found that some variables are not properly reset after use (line 225 of the
function alpha A.1). Consequently, when there is a huge spike in RTT exceeding the
queueing budget delay, rtt above is set to true and the window clamping code will set
both CWND and SSTHRESH to the advertise window size of 100. However, when
RTT drops below qDelayBudget us, rtt above does not reset, the window clamping
condition always holds and therefore cannot increase CWND. It explains the trend of
CWND and SSTHRESH in Figures 4.9 and 4.10.

To confirm our argument that small SSTHRESH slightly worsens the performance of
WhiteHaul, we conducted an experiment with small file transfer that can be transferred
in around 10 seconds. We use the (80-80) channel width configuration, minRTT as the
scheduler with different congestion control algorithms, and repeat the test 20 times.
The result in Figure 4.11 shows that all congestion control algorithms perform similarly
clean channel cases, but WhiteHaul takes longer to download small files than CUBIC
when there is interference. It confirms our argument that the small SSTHRESH slightly
worsens the performance of WhiteHaul.

Chapter 4. Results and Discussion 25

Figure 4.11: Time taken to transfer 300MB file using different congestion control

Chapter 5

Proposed Improvements

5.1 Upper bound of the throughput of MPTCP

Simultaneous TCP

Channel Quality Type WH-1 (Mbps) WH-2 (Mbps)
Clean Individual 229 261
Clean Simultaneous 149 258
Clean MPTCP 148 248

Interference Individual 215 112
Interference Simultaneous 164 101
Interference MPTCP 177 71

Table 5.1: (80-80) MPTCP WhiteHaul minRTT average throughput

A natural question that pops into the mind is why throughput is low for both links
when using MPTCP, even in the case of clean channels? To find the answer, we made
additional measurements of Simultaneous TCP using WhiteHaul and summarise the
result in Table 5.1. From the result, there is a high suspicious internal self-interference
between the two links. Another experiment is carried out to confirm the suspicion, as
shown in Figure 5.1. We use the (80-80) configuration for the radio card. First, we run
iPerf on WH-1 and leave it to stabilise. WH-1 is considered an always-on interface.
Then we switched WH-2 between idle and active by running iPerf at 30 seconds and
then waited about 35 seconds. We repeated iPerf on WH-2 again at 110 seconds and
continue for another 35 seconds.

From Figure 5.1, we found that WH-1 throughput decreased when we run iPerf on
WH-2 even though WH-1 and WH-2 operate on channels that do not overlap and
separate 450 MHz apart. An interesting observation is that there is almost the same
number of packets transmitted when both links are active. Originally, we expected
that both links could transmit packets concurrently without interfering with each other
because they use non-overlapping channels. The experiment shows that carrier sense
is being used instead for both radio cards. Related work [11] shows that multiradio

26

Chapter 5. Proposed Improvements 27

Figure 5.1: Self-Interference for Nonoverlapping Channels

co-existence interference is bound to occur if two antennas are placed close to each
other. This founding leads us to derive a mathematical relationship between Individual
TCP, Simultaneous TCP, and MPTCP in the following subsection.

Relationship between Individual TCP, Simultaneous TCP and MPTCP

It is obvious that throughput obeys the following mathematical relationship.

Clean MPTCP ⩽ Clean Individual

⩽ ⩽

Interference MPTCP ⩽ Interference Individual

We can regard

Interference MPTCP ⩽ min(Interference Individual,Clean MPTCP) (5.1)

as a hard upper bound of throughput for MPTCP under interference.

Due to possible mutual interference between subflows, we take into account Simultane-
ous TCP, which obeys the following relationship.

Clean Simultaneous ⩽ Clean Individual

⩽ ⩽

Interference Simultaneous ⩽ Interference Individual

It turns out that with the same congestion control algorithm used, most of the time
MPTCP and Simultaneous TCP have the following relationship.

Clean MPTCP ⩽ Clean Simultaneous

⩽ ⩽

Interference MPTCP ⩽ Interference Simultaneous

We can regard

Interference MPTCP ⩽ min(Interference Simultaneous,Clean MPTCP) (5.2)

Chapter 5. Proposed Improvements 28

as a soft upper bound of throughput for MPTCP under interference.

Hence, we obtain the following relationship.

Clean MPTCP ⩽ Clean Simultaneous ⩽ Clean Individual

⩽ ⩽ ⩽

Interference MPTCP ⩽ Interference Simultaneous ⩽ Interference Individual
(5.3)

Note that the above inequalities do not hold for instantaneous throughput, as there may
be jitters and delays that affect throughput. However, the inequality holds for average
throughput for a sufficiently large period by the law of large numbers.

Channel Quality Type WH-1 (Mbps) WH-2 (Mbps)
Clean Individual 253 195
Clean Simultaneous 204 195
Clean MPTCP 198 193

Interference Individual 238 139
Interference Simultaneous 199 138
Interference MPTCP 195 139

Table 5.2: (80-80) MPTCP CUBIC minRTT average throughput

Figure 5.2: Overview of Different Congestion Control and Scheduler Combinations

Chapter 5. Proposed Improvements 29

To confirm our mathematical model, we repeat the experiment with CUBIC as the
congestion control algorithm for MPTCP, as it is the congestion control used in both
Individual TCP and Simultaneous TCP. The result in Table 5.2 shows that the throughput
of MPTCP with or without interference is approximately 98% of the throughput of
Simultaneous TCP using the same congestion control. We attribute the 2% difference to
the overhead of MPTCP in managing the subflows. The schedulers are responsible for
closing the gap between the throughput of MPTCP and the Simultaneous TCP, which
means that the good throughput, the amount of useful information sent, is close to the
maximum throughput available. Figures 5.2 and 5.3 show the throughput of different
congestion control and scheduler used for different channel width configurations. Most
of the points satisfy the mathematical relationship in (5.3), asserting the correctness
and reasonability of the derivation. In summary, we believe that MPTCP congestion
control algorithms govern the upper bound of the throughput, and MPTCP schedulers
determine the goodput.

Figure 5.3: An detailed graph of different congestion control and scheduler combinations
for each channel width pair

Chapter 5. Proposed Improvements 30

5.2 Raise the Upper Bound

By equation (5.3) if we want to improve the throughput of MPTCP, we need to improve
the throughput of Simultaneous TCP.

Increase separation of the antennas

The simplest solution is to reduce the mutual interference between the subflows. One
method of doing so is to place the two wireless links further apart as the signal strength
decreases along the distance. However, it is not always feasible in the case of White-
Haul. The original WhiteHaul uses a power splitter that combines multiple frequencies
together and communicates with the other side using a single antenna. Mutual interfer-
ence can still occur in power splitting when two frequencies are combined into one. It
is one of the hardware flaws that we discovered previously when doing the experiment
with a power splitter and a single antenna for transmitting in the Wi-Fi band. The
hardware flaw is much more serious as it turns out that when both links are active, only
one link can transmit successfully, but with reduced throughput, resulting in a negative
aggregation benefit. As we focus on the software aspect of WhiteHaul, we decided to
use separate antennas for different frequencies, and the mutual interference between
Wi-Fi interfaces is just a weak version of the mutual interference in the hardware. More-
over, as our project’s objective is a user-friendly and consumer-level Wi-Fi aggregation
system, we prefer a solution that can be easily set up and most wireless devices come
with collocated antennas. A solution that requires a large space or dedicated hardware
goes against our aim.

Reduce transmission power

Another method of reducing self-interference between two antennas is to reduce trans-
mission power. As the channel quality is determined by SINR, reducing the sender’s
transmission power will reduce the interference power on the receiver side. Therefore,
fewer Wi-Fi frames are lost and reduce the need for retransmission, successively reduc-
ing the latency experienced by TCP. However, reducing the transmission power will
decrease the incoming signal power at the receiver of the current channel. Recall the
Shannon-Hartley theorem[43, 44], notice that if the transmission power of the sender
on both subflows is reduced by the same amount, the resulting SINR is less than the
original SINR, resulting in lower throughput. For example, if signal power, interference
power, and noise are all 8 dbm, the original SINR is thus 8

8+8 = 1
2 . If the transmission

power is reduced by half, then the new SINR is 4
4+8 = 1

3 which is less than the original
SINR.

We conducted an experiment with a change in the transmission powers of radio cards.
We study two cases: define “High” for all transmission powers of radio cards set at 17
dbm, and “Low” for all transmission powers of radio cards set at 14 dbm. We carried
out the experiment using the (80-80) channel width configuration with WhiteHaul for
MPTCP. The result in Table 5.3 shows that reducing transmission power is not worth it.

Chapter 5. Proposed Improvements 31

High Low
Channel Quality

Clean 0.72 0.66
Interference 0.27 0.13

Table 5.3: Aggregation benefit for different transmission power

Better optimising objective

For any multipath aggregation solution, we have the same objective function to max-
imise: the sum of the throughput of all subflows. In a closed network environment
where all links are fully utilised, increasing the throughput of one link will inevitably
decrease the throughput of another link. Current Congestion Control algorithms have
the assumption that the overall throughput of the closed network environment remains
unchanged, i.e. conserved. However, it is not the case when there is mutual interference
between subflows where the maximum achievable throughput declines if both links are
used. For uncoupled congestion control algorithms, aggressively increasing the CWND
for one subflow may drastically decrease the overall maximum achievable throughput.

Let Wi be the send window of the subflow i and Ti be the resulting throughput of the
subflow (i). Assume that the interference between links is modelled by CSMA/CA
in IEEE 802.11 with exponential back-off, the feasible region is the dark blue area in
Figure 5.4a as formulated in [24]. It is shown that there is a bijective function that
maps the set of Wi to the set of Ti if it lies in the feasible region. If the set of Wi lies
outside the feasible region, then the network response of CSMA/CA will collapse to
an equilibrium position on the boundary of the feasible region. Similarly, if there is
absolutely no interference between links, such as two independent ethernet cables,
then all possible Wi in the square is a feasible configuration, as shown in 5.4b. In
fact, the maximum aggregated throughput is at the point P (1,1) which is the sum
of the individual throughput of two links. Our situation lies between CSMA/CA and
Ethernet. The former acts like co-channel interference between subflows while the latter
is isolated interference-free subflows. [24] shows the existence and uniqueness of the
optimal point O and provides a maximising sequence to rapidly converge to the point O
using a gradient algorithm for Figure 5.4a. The problem is as follows: Can we have an
efficient maximising sequence to reach the optimal equilibrium point and remain stable
subject to network jitters? This is indeed hard, and more investigation is required to
mathematically model the coexistence interference between two Wi-Fi antennas.

The work[24] also shows that the light blue region is achievable by TDMA. The gap
between the light grey and dark grey regions is the capacity toll paid due to the adoption
of distributed CSMA/CA coordination (dark grey region) instead of a centralised
scheduler using TDMA (light grey region). It gives us the idea that we can allocate time
for each subflow to send data so that no two subflows send data simultaneously[33].
However, the current 802.11 Wi-Fi standard uses CSMA/CA and requires a change in
hardware and protocol design to adopt TDMA. [50] gives the example using alternative
wireless medium access (AWMA) and packet traffic arbitration (PTA) to schedule
multiple radios in the time domain to ensure that they do not overlap. For now, we treat
it as infeasible because it is not readily accessible to customers.

Chapter 5. Proposed Improvements 32

(a) Wi-Fi CSMA (b) Ethernet

Figure 5.4: Feasible region for two subflows with normalised throughput

5.3 Improving the Congestion Control Algorithm

Addressing the Problems in WhiteHaul

We have developed a novel congestion control algorithm named TCP Edinburgh, which
is based on WhiteHaul with some adjustment. Firstly, we set the initial SSTHRESH
to TCP INFINITE SSTHRESH, which is consistent with other TCP variants. To avoid
overshooting an optimal send rate during slow start, we employ a modified slow start
algorithm called HyStart[15], which is already used by the Linux kernel in the CU-
BIC implementation[26]. However, we use an updated and enhanced version called
Hystart++[2] to address network jitter and reduce false positives. Meanwhile, we
reimplement the pseudocode in the WhiteHaul paper in a more concise way and allow
CWND to increase after experiencing a spike in RTT.

To compare the performance of our TCP Edinburgh and WhiteHaul, we conducted an
experiment using (80-80) channel width configuration and calculate the aggregation
benefit of both algorithms. In Figure 5.5, Edinburgh has a higher aggregation benefit
than WhiteHaul in both the clean channel and interference cases. This means that our
algorithm is more efficient in aggregating the available bandwidths than WhiteHaul.
Figure 5.6 shows that Edinburgh’s ultilisation is closer to the upper bound, Simultaneous
TCP throughput.

Use alternative congestion control algorithm

WhiteHaul is based on TCP Illinois [29] which is suitable for a long-fat network, but it
is not designed for wireless networks. [6] gives a behaviour analysis of TCP different
TCP variants and reveals that TCP Illinois gives the worst throughput in the wireless
network and the network that changes bandwidth. On the contrary, [6] shows TCP
CUBIC performs moderately in different networking scenarios. Considering the nature
of Wi-Fi networks, we suggest using a congestion control that can tackle variation in

Chapter 5. Proposed Improvements 33

Figure 5.5: (80-80) Aggregation Benefit for WhiteHaul and Edinburgh

Figure 5.6: (80-80) Aggregation Ratio for WhiteHaul and Edinburgh

Chapter 5. Proposed Improvements 34

network conditions, and CUBIC is a good candidate. It matches the observation in the
previous section 4.3 that CUBIC performs better than Illinois in clean channel cases.

Chapter 6

Conclusion

6.1 Summary

In this project, we conducted an in-depth investigation into the performance of White-
Haul in Wi-Fi networks, particularly in the presence of interference. We showed that
changing the MPTCP scheduler does not make a noticeable difference in the aggre-
gation throughput of WhiteHaul. In contrast, we showed that changing the MPTCP
congestion control may lead to an improvement in the aggregation throughput of White-
Haul. Combining the above two findings, we show that MPTCP congestion controls
play an important role in governing the maximum total aggregation throughput, while
MPTCP schedulers limit the application’s goodput. We derived an upper bound for the
aggregation throughput of MPTCP in the wireless network.

By looking at the internal workings of WhiteHaul, we discovered the design flaw
in WhiteHaul’s implementation inside the Linux kernel. We list the problems and
provide patches for each issue. In addition, we propose improvements to the White-
Haul algorithm. Apart from the Whitehaul aspect, we also provided several potential
improvements and discussed their limitations and feasibilities.

6.2 Challenges and Lessons Learnt

We encountered a myriad of difficulties in conducting the experiments. The primary
issues we faced were related to hardware, which consumed most of our time to debug.
Mentioned in 5.2, we originally used a power splitter to combine the signals of each
radio card in one and communicate with a single antenna. However, we observed
unexpected behaviour, leading to a considerable decrease in throughput. After much
effort, we discovered that the problem was due to the power splitter. Other problems,
such as loose cables and defective antennas, obstructed our efforts to obtain sensible
experimental results.

During the research, we were taught to copy with the uncertainties present in networks,
particularly with Wi-Fi, which is highly sensitive to the surrounding physical environ-
ment. Any background movement or adjacent channel activity will introduce a spike in

35

Chapter 6. Conclusion 36

the collected data and may take longer for the network to restore to its original state.
To minimise interference from human activities, we had to carry out the experiments
during the night and on weekends.

Throughout our work, we continued to expand our understanding of networking. Al-
though we had learnt TCP in undergraduate networking courses, our understanding was
rudimentary and we were not familiar with the details of the internal implementation at
the operating system level. When working on the MPTCP congestion controls in the
Linux kernel and writing eBPF programs to hook up the kernel functions, we learnt a
lot about the low-level aspects.

We encountered a major difficulty in the software component of the project, which
involved creating TCP Edinburgh. Our slow-start algorithm, HyStart++, is not yet
finalised, as it is still in the development stages. Although Cloudflare has a library called
quiche that supports HyStart++ on the QUIC protocol written in Rust, there are no
existing C/C++ implementations online. We have to thoroughly study the specifications
and write our own implementation of Hystart++ in the Linux kernel from strech.

6.3 Future Work

More experiments are needed to explore more uncoupled TCP congestion control
variants to determine which variant performs modestly under a wide variety of Wi-Fi
network conditions. We need a congestion control that is robust to rapid changes in the
network situation, as Wi-Fi is highly unstable.

It would be interesting to study how different levels of channel quality affect the aggre-
gation throughput. By gradually altering the signal power or adjusting the interference
power, or both, we can study how various levels of interference and transmission power
influence total throughput. It will also be helpful to develop a more realistic mathemati-
cal model for different types of interference[45], and to take these into account when
designing an aggregation system.

So far our paper has used only two Wi-FI interfaces, it would be insightful to verify that
three or more interfaces can achieve decent aggregation throughput and do not exhibit
chaotic behaviour or performance regression.

While we assume backhaul traffic in our settings, which is highly assymmetric and
almost unidirectional, real-life scenarios involve more symmetric traffic. We recommend
exploring bidirectional traffic in Wi-Fi settings, as Wi-Fi operates in half-duplex mode,
which may result in high collisions in data transmission between the sender and receiver.

Our paper has only explored IEEE 802.11ac Wi-Fi 5 channel aggregation in the 5GHz
band. Since 2020, the 6GHz band has been available for IEEE 802.11ax Wi-Fi 6E
with higher data transmission rates[3, 28]. There is significant opportunity to exploit
channels in both the 5GHz and 6GHz spectrum.

Bibliography

[1] Atef Abdrabou and Monika Prakash. “Experimental Performance Study of Mul-
tipath TCP over Heterogeneous Wireless Networks”. In: 2016 IEEE 41st Confer-
ence on Local Computer Networks (LCN). 2016 IEEE 41st Conference on Local
Computer Networks (LCN). Nov. 2016, pp. 172–175. DOI: 10.1109/LCN.2016.
35.

[2] Praveen Balasubramanian, Yi Huang, and Matt Olson. HyStart++: Modified
Slow Start for TCP. Internet Draft draft-ietf-tcpm-hystartplusplus-14. Num
Pages: 10. Internet Engineering Task Force, Feb. 27, 2023. URL: https://
datatracker.ietf.org/doc/draft-ietf-tcpm-hystartplusplus (vis-
ited on 04/10/2023).

[3] Dwaipayan Bandyopadhyay et al. “Network Throughput Improvement in Wi-Fi
6 over Wi-Fi 5: A Comparative Performance Analysis”. In: 2023 International
Conference on Computer, Electrical & Communication Engineering (ICCECE).
2023 International Conference on Computer, Electrical & Communication En-
gineering (ICCECE). ISSN: 2768-0576. Jan. 2023, pp. 1–6. DOI: 10.1109/
ICCECE51049.2023.10085684.

[4] Ethan Blanton, Vern Paxson, and Mark Allman. TCP Congestion Control. Re-
quest for Comments RFC 5681. Num Pages: 18. Internet Engineering Task Force,
Sept. 2009. DOI: 10.17487/RFC5681. URL: https://datatracker.ietf.
org/doc/rfc5681 (visited on 03/26/2023).

[5] David Borman et al. TCP Extensions for High Performance. Request for Com-
ments RFC 7323. Num Pages: 49. Internet Engineering Task Force, Sept. 2014.
DOI: 10.17487/RFC7323. URL: https://datatracker.ietf.org/doc/
rfc7323 (visited on 04/01/2023).

[6] C. Callegari et al. “Behavior analysis of TCP Linux variants”. In: Computer
Networks 56.1 (Jan. 12, 2012), pp. 462–476. ISSN: 1389-1286. DOI: 10.1016/j.
comnet.2011.10.002. URL: https://www.sciencedirect.com/science/
article/pii/S1389128611003677 (visited on 04/10/2023).

[7] Yung-Chih Chen et al. “A measurement-based study of MultiPath TCP per-
formance over wireless networks”. In: Proceedings of the 2013 conference on
Internet measurement conference. IMC ’13. New York, NY, USA: Association
for Computing Machinery, Oct. 23, 2013, pp. 455–468. ISBN: 978-1-4503-1953-
9. DOI: 10.1145/2504730.2504751. URL: https://dl.acm.org/doi/10.
1145/2504730.2504751 (visited on 03/26/2023).

[8] Shuo Deng et al. “WiFi, LTE, or Both? Measuring Multi-Homed Wireless In-
ternet Performance”. In: Proceedings of the 2014 Conference on Internet Mea-

37

https://doi.org/10.1109/LCN.2016.35
https://doi.org/10.1109/LCN.2016.35
https://datatracker.ietf.org/doc/draft-ietf-tcpm-hystartplusplus
https://datatracker.ietf.org/doc/draft-ietf-tcpm-hystartplusplus
https://doi.org/10.1109/ICCECE51049.2023.10085684
https://doi.org/10.1109/ICCECE51049.2023.10085684
https://doi.org/10.17487/RFC5681
https://datatracker.ietf.org/doc/rfc5681
https://datatracker.ietf.org/doc/rfc5681
https://doi.org/10.17487/RFC7323
https://datatracker.ietf.org/doc/rfc7323
https://datatracker.ietf.org/doc/rfc7323
https://doi.org/10.1016/j.comnet.2011.10.002
https://doi.org/10.1016/j.comnet.2011.10.002
https://www.sciencedirect.com/science/article/pii/S1389128611003677
https://www.sciencedirect.com/science/article/pii/S1389128611003677
https://doi.org/10.1145/2504730.2504751
https://dl.acm.org/doi/10.1145/2504730.2504751
https://dl.acm.org/doi/10.1145/2504730.2504751

BIBLIOGRAPHY 38

surement Conference. IMC ’14. New York, NY, USA: Association for Com-
puting Machinery, Nov. 5, 2014, pp. 181–194. ISBN: 978-1-4503-3213-2. DOI:
10.1145/2663716.2663727. URL: https://dl.acm.org/doi/10.1145/
2663716.2663727 (visited on 04/11/2023).

[9] Jingpu Duan, Zhi Wang, and Chuan Wu. “Responsive multipath TCP in SDN-
based datacenters”. In: 2015 IEEE International Conference on Communications
(ICC). 2015 IEEE International Conference on Communications (ICC). ISSN:
1938-1883. June 2015, pp. 5296–5301. DOI: 10.1109/ICC.2015.7249165.

[10] Wesley Eddy. Transmission Control Protocol (TCP). Request for Comments
RFC 9293. Num Pages: 98. Internet Engineering Task Force, Aug. 2022. DOI:
10.17487/RFC9293. URL: https://datatracker.ietf.org/doc/rfc9293
(visited on 03/23/2023).

[11] Arsham Farshad, Mahesh K. Marina, and Francisco Garcia. “Experimental inves-
tigation of coexistence interference on multi-radio 802.11 platforms”. In: 2012
10th International Symposium on Modeling and Optimization in Mobile, Ad
Hoc and Wireless Networks (WiOpt). 2012 10th International Symposium on
Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt).
May 2012, pp. 293–298.

[12] Simone Ferlin, Thomas Dreibholz, and Özgü Alay. “Multi-path transport over
heterogeneous wireless networks: Does it really pay off?” In: 2014 IEEE Global
Communications Conference. 2014 IEEE Global Communications Conference.
ISSN: 1930-529X. Dec. 2014, pp. 4807–4813. DOI: 10.1109/GLOCOM.2014.
7037567.

[13] Simone Ferlin et al. “BLEST: Blocking estimation-based MPTCP scheduler for
heterogeneous networks”. In: 2016 IFIP Networking Conference (IFIP Network-
ing) and Workshops. 2016 IFIP Networking Conference (IFIP Networking) and
Workshops. May 2016, pp. 431–439. DOI: 10.1109/IFIPNetworking.2016.
7497206.

[14] Alan Ford et al. TCP Extensions for Multipath Operation with Multiple Addresses.
Request for Comments RFC 8684. Num Pages: 68. Internet Engineering Task
Force, Mar. 2020. DOI: 10.17487/RFC8684. URL: https://datatracker.
ietf.org/doc/rfc8684 (visited on 03/23/2023).

[15] Sangtae Ha and Injong Rhee. “Taming the elephants: New TCP slow start”. In:
Computer Networks 55.9 (June 23, 2011), pp. 2092–2110. ISSN: 1389-1286. DOI:
10.1016/j.comnet.2011.01.014. URL: https://www.sciencedirect.
com/science/article/pii/S1389128611000363 (visited on 04/10/2023).

[16] Sangtae Ha, Injong Rhee, and Lisong Xu. “CUBIC: a new TCP-friendly high-
speed TCP variant”. In: ACM SIGOPS Operating Systems Review 42.5 (July 1,
2008), pp. 64–74. ISSN: 0163-5980. DOI: 10.1145/1400097.1400105. URL:
https : / / dl . acm . org / doi / 10 . 1145 / 1400097 . 1400105 (visited on
03/26/2023).

[17] Home — Whitehaul. URL: https://www.whitehaul.com/ (visited on 03/20/2023).
[18] “IEEE Standard for Information technology– Telecommunications and informa-

tion exchange between systemsLocal and metropolitan area networks– Specific
requirements–Part 11: Wireless LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications–Amendment 4: Enhancements for Very High

https://doi.org/10.1145/2663716.2663727
https://dl.acm.org/doi/10.1145/2663716.2663727
https://dl.acm.org/doi/10.1145/2663716.2663727
https://doi.org/10.1109/ICC.2015.7249165
https://doi.org/10.17487/RFC9293
https://datatracker.ietf.org/doc/rfc9293
https://doi.org/10.1109/GLOCOM.2014.7037567
https://doi.org/10.1109/GLOCOM.2014.7037567
https://doi.org/10.1109/IFIPNetworking.2016.7497206
https://doi.org/10.1109/IFIPNetworking.2016.7497206
https://doi.org/10.17487/RFC8684
https://datatracker.ietf.org/doc/rfc8684
https://datatracker.ietf.org/doc/rfc8684
https://doi.org/10.1016/j.comnet.2011.01.014
https://www.sciencedirect.com/science/article/pii/S1389128611000363
https://www.sciencedirect.com/science/article/pii/S1389128611000363
https://doi.org/10.1145/1400097.1400105
https://dl.acm.org/doi/10.1145/1400097.1400105
https://www.whitehaul.com/

BIBLIOGRAPHY 39

Throughput for Operation in Bands below 6 GHz.” In: IEEE Std 802.11ac-2013
(Amendment to IEEE Std 802.11-2012, as amended by IEEE Std 802.11ae-2012,
IEEE Std 802.11aa-2012, and IEEE Std 802.11ad-2012) (Dec. 2013). Confer-
ence Name: IEEE Std 802.11ac-2013 (Amendment to IEEE Std 802.11-2012, as
amended by IEEE Std 802.11ae-2012, IEEE Std 802.11aa-2012, and IEEE Std
802.11ad-2012), pp. 1–425. DOI: 10.1109/IEEESTD.2013.6687187.

[19] “IEEE Standard for Information Technology–Telecommunications and Informa-
tion Exchange between Systems - Local and Metropolitan Area Networks–Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications”. In: IEEE Std 802.11-2020 (Revision of IEEE
Std 802.11-2016) (Feb. 2021). Conference Name: IEEE Std 802.11-2020 (Re-
vision of IEEE Std 802.11-2016), pp. 1–4379. DOI: 10.1109/IEEESTD.2021.
9363693.

[20] “IEEE Standard for Information Technology–Telecommunications and Informa-
tion Exchange between Systems Local and Metropolitan Area Networks–Specific
Requirements Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications Amendment 1: Enhancements for High-
Efficiency WLAN”. In: IEEE Std 802.11ax-2021 (Amendment to IEEE Std
802.11-2020) (May 2021). Conference Name: IEEE Std 802.11ax-2021 (Amend-
ment to IEEE Std 802.11-2020), pp. 1–767. DOI: 10.1109/IEEESTD.2021.
9442429.

[21] Jana Iyengar et al. Architectural Guidelines for Multipath TCP Development.
Request for Comments RFC 6182. Num Pages: 28. Internet Engineering Task
Force, Mar. 2011. DOI: 10.17487/RFC6182. URL: https://datatracker.
ietf.org/doc/rfc6182 (visited on 04/11/2023).

[22] Dominik Kaspar. “Multipath Aggregation of Heterogeneous Access Networks”.
Accepted: 2013-03-12T08:05:47Z. Doctoral thesis. 2011. URL: https://www.
duo.uio.no/handle/10852/9034 (visited on 03/25/2023).

[23] Mohamed M. Kassem et al. “WhiteHaul: an efficient spectrum aggregation sys-
tem for low-cost and high capacity backhaul over white spaces”. In: Proceedings
of the 18th International Conference on Mobile Systems, Applications, and Ser-
vices. MobiSys ’20. New York, NY, USA: Association for Computing Machinery,
June 15, 2020, pp. 338–351. ISBN: 978-1-4503-7954-0. DOI: 10.1145/3386901.
3388950. URL: https://dl.acm.org/doi/10.1145/3386901.3388950
(visited on 03/20/2023).

[24] Rafael Laufer and Leonard Kleinrock. “The Capacity of Wireless CSMA/CA
Networks”. In: IEEE/ACM Transactions on Networking 24.3 (June 2016). Con-
ference Name: IEEE/ACM Transactions on Networking, pp. 1518–1532. ISSN:
1558-2566. DOI: 10.1109/TNET.2015.2415465.

[25] Yeon-sup Lim et al. “ECF: An MPTCP Path Scheduler to Manage Heteroge-
neous Paths”. In: Proceedings of the 13th International Conference on emerging
Networking EXperiments and Technologies. CoNEXT ’17. New York, NY, USA:
Association for Computing Machinery, Nov. 28, 2017, pp. 147–159. ISBN: 978-1-
4503-5422-6. DOI: 10.1145/3143361.3143376. URL: https://dl.acm.org/
doi/10.1145/3143361.3143376 (visited on 04/08/2023).

https://doi.org/10.1109/IEEESTD.2013.6687187
https://doi.org/10.1109/IEEESTD.2021.9363693
https://doi.org/10.1109/IEEESTD.2021.9363693
https://doi.org/10.1109/IEEESTD.2021.9442429
https://doi.org/10.1109/IEEESTD.2021.9442429
https://doi.org/10.17487/RFC6182
https://datatracker.ietf.org/doc/rfc6182
https://datatracker.ietf.org/doc/rfc6182
https://www.duo.uio.no/handle/10852/9034
https://www.duo.uio.no/handle/10852/9034
https://doi.org/10.1145/3386901.3388950
https://doi.org/10.1145/3386901.3388950
https://dl.acm.org/doi/10.1145/3386901.3388950
https://doi.org/10.1109/TNET.2015.2415465
https://doi.org/10.1145/3143361.3143376
https://dl.acm.org/doi/10.1145/3143361.3143376
https://dl.acm.org/doi/10.1145/3143361.3143376

BIBLIOGRAPHY 40

[26] Torvalds Linus. Linux Kernel: [TCP] CUBIC v2.3. URL: https://git.kernel.
org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
ae27e98a51526595837ab7498b23d6478a198960 (visited on 04/12/2023).

[27] Torvalds Linus. Linux Kernel: [TCP]: make cubic the default. URL: https:
//git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=597811ec167fa01c926a0957a91d9e39baa30e64 (visited
on 04/09/2023).

[28] Ruofeng Liu and Nakjung Choi. “A First Look at Wi-Fi 6 in Action: Throughput,
Latency, Energy Efficiency, and Security”. In: Proceedings of the ACM on Mea-
surement and Analysis of Computing Systems 7.1 (Mar. 2, 2023), 25:1–25:25.
DOI: 10.1145/3579451. URL: https://dl.acm.org/doi/10.1145/3579451
(visited on 04/12/2023).

[29] Shao Liu, Tamer Başar, and R. Srikant. “TCP-Illinois: a loss and delay-based
congestion control algorithm for high-speed networks”. In: Proceedings of the
1st international conference on Performance evaluation methodolgies and tools.
valuetools ’06. New York, NY, USA: Association for Computing Machinery,
Oct. 11, 2006, 55–es. ISBN: 978-1-59593-504-5. DOI: 10 . 1145 / 1190095 .
1190166. URL: https://dl.acm.org/doi/10.1145/1190095.1190166
(visited on 04/06/2023).

[30] LoRa PHY — Semtech. URL: https://www.semtech.com/lora/what-is-
lora (visited on 04/12/2023).

[31] Rajesh Mahindra et al. “A practical traffic management system for integrated LTE-
WiFi networks”. In: Proceedings of the 20th annual international conference
on Mobile computing and networking. MobiCom ’14. New York, NY, USA:
Association for Computing Machinery, Sept. 7, 2014, pp. 189–200. ISBN: 978-1-
4503-2783-1. DOI: 10.1145/2639108.2639120. URL: https://dl.acm.org/
doi/10.1145/2639108.2639120 (visited on 04/11/2023).

[32] Imtiaz Mahmud, Tabassum Lubna, and You-Ze Cho. “Performance Evaluation
of MPTCP on Simultaneous Use of 5G and 4G Networks”. In: Sensors 22.19
(Jan. 2022). Number: 19 Publisher: Multidisciplinary Digital Publishing Institute,
p. 7509. ISSN: 1424-8220. DOI: 10.3390/s22197509. URL: https://www.
mdpi.com/1424-8220/22/19/7509 (visited on 03/28/2023).

[33] Guowang Miao et al. Fundamentals of Mobile Data Networks. Cambridge:
Cambridge University Press, 2016. ISBN: 978-1-107-14321-0. DOI: 10.1017/
CBO9781316534298. URL: https://www.cambridge.org/core/books/
fundamentals-of-mobile-data-networks/D46688899BDC64F4421967A916548433
(visited on 04/12/2023).

[34] Christoph Paasch et al. “Experimental evaluation of multipath TCP schedulers”.
In: Proceedings of the 2014 ACM SIGCOMM workshop on Capacity sharing
workshop. CSWS ’14. New York, NY, USA: Association for Computing Ma-
chinery, Aug. 18, 2014, pp. 27–32. ISBN: 978-1-4503-2991-0. DOI: 10.1145/
2630088.2631977. URL: https://dl.acm.org/doi/10.1145/2630088.
2631977 (visited on 03/26/2023).

[35] Christoph Paasch et al. “Exploring mobile/WiFi handover with multipath TCP”.
In: Proceedings of the 2012 ACM SIGCOMM workshop on Cellular networks:
operations, challenges, and future design. CellNet ’12. New York, NY, USA:

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ae27e98a51526595837ab7498b23d6478a198960
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ae27e98a51526595837ab7498b23d6478a198960
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ae27e98a51526595837ab7498b23d6478a198960
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=597811ec167fa01c926a0957a91d9e39baa30e64
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=597811ec167fa01c926a0957a91d9e39baa30e64
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=597811ec167fa01c926a0957a91d9e39baa30e64
https://doi.org/10.1145/3579451
https://dl.acm.org/doi/10.1145/3579451
https://doi.org/10.1145/1190095.1190166
https://doi.org/10.1145/1190095.1190166
https://dl.acm.org/doi/10.1145/1190095.1190166
https://www.semtech.com/lora/what-is-lora
https://www.semtech.com/lora/what-is-lora
https://doi.org/10.1145/2639108.2639120
https://dl.acm.org/doi/10.1145/2639108.2639120
https://dl.acm.org/doi/10.1145/2639108.2639120
https://doi.org/10.3390/s22197509
https://www.mdpi.com/1424-8220/22/19/7509
https://www.mdpi.com/1424-8220/22/19/7509
https://doi.org/10.1017/CBO9781316534298
https://doi.org/10.1017/CBO9781316534298
https://www.cambridge.org/core/books/fundamentals-of-mobile-data-networks/D46688899BDC64F4421967A916548433
https://www.cambridge.org/core/books/fundamentals-of-mobile-data-networks/D46688899BDC64F4421967A916548433
https://doi.org/10.1145/2630088.2631977
https://doi.org/10.1145/2630088.2631977
https://dl.acm.org/doi/10.1145/2630088.2631977
https://dl.acm.org/doi/10.1145/2630088.2631977

BIBLIOGRAPHY 41

Association for Computing Machinery, Aug. 13, 2012, pp. 31–36. ISBN: 978-1-
4503-1475-6. DOI: 10.1145/2342468.2342476. URL: https://dl.acm.org/
doi/10.1145/2342468.2342476 (visited on 04/11/2023).

[36] Mijanur Rahaman Palash and Kang Chen. “MPWiFi: Synergizing MPTCP Based
Simultaneous Multipath Access and WiFi Network Performance”. In: IEEE
Transactions on Mobile Computing 19.1 (Jan. 2020). Conference Name: IEEE
Transactions on Mobile Computing, pp. 142–158. ISSN: 1558-0660. DOI: 10.
1109/TMC.2018.2889059.

[37] Matthew Podolsky et al. An Extension to the Selective Acknowledgement (SACK)
Option for TCP. Request for Comments RFC 2883. Num Pages: 17. Internet
Engineering Task Force, July 2000. DOI: 10.17487/RFC2883. URL: https:
//datatracker.ietf.org/doc/rfc2883 (visited on 04/01/2023).

[38] Costin Raiciu, Mark J. Handley, and Damon Wischik. Coupled Congestion
Control for Multipath Transport Protocols. Request for Comments RFC 6356.
Num Pages: 12. Internet Engineering Task Force, Oct. 2011. DOI: 10.17487/
RFC6356. URL: https://datatracker.ietf.org/doc/rfc6356 (visited on
04/07/2023).

[39] Costin Raiciu et al. “How Hard Can It Be? Designing and Implementing a De-
ployable Multipath {TCP}”. In: 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 12). 2012, pp. 399–412. URL: https://www.
usenix.org/conference/nsdi12/technical-sessions/presentation/
raiciu (visited on 04/01/2023).

[40] Costin Raiciu et al. “Data center networking with multipath TCP”. In: Proceed-
ings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks. Hotnets-
IX. New York, NY, USA: Association for Computing Machinery, Oct. 20,
2010, pp. 1–6. ISBN: 978-1-4503-0409-2. DOI: 10.1145/1868447.1868457.
URL: https://dl.acm.org/doi/10.1145/1868447.1868457 (visited on
04/11/2023).

[41] Costin Raiciu et al. “Improving datacenter performance and robustness with multi-
path TCP”. In: Proceedings of the ACM SIGCOMM 2011 conference. SIGCOMM
’11. New York, NY, USA: Association for Computing Machinery, Aug. 15, 2011,
pp. 266–277. ISBN: 978-1-4503-0797-0. DOI: 10.1145/2018436.2018467.
URL: https://dl.acm.org/doi/10.1145/2018436.2018467 (visited on
04/11/2023).

[42] Pasi Sarolahti and Alexey Kuznetsov. “Congestion Control in Linux {TCP}”.
In: 2002 USENIX Annual Technical Conference (USENIX ATC 02). 2002.
URL: https://www.usenix.org/conference/2002- usenix- annual-
technical - conference / congestion - control - linux - tcp (visited on
03/28/2023).

[43] C. E. Shannon. “A mathematical theory of communication”. In: The Bell Sys-
tem Technical Journal 27.3 (July 1948). Conference Name: The Bell System
Technical Journal, pp. 379–423. ISSN: 0005-8580. DOI: 10.1002/j.1538-
7305.1948.tb01338.x.

[44] C.E. Shannon. “Communication in the Presence of Noise”. In: Proceedings of
the IRE 37.1 (Jan. 1949). Conference Name: Proceedings of the IRE, pp. 10–21.
ISSN: 2162-6634. DOI: 10.1109/JRPROC.1949.232969.

https://doi.org/10.1145/2342468.2342476
https://dl.acm.org/doi/10.1145/2342468.2342476
https://dl.acm.org/doi/10.1145/2342468.2342476
https://doi.org/10.1109/TMC.2018.2889059
https://doi.org/10.1109/TMC.2018.2889059
https://doi.org/10.17487/RFC2883
https://datatracker.ietf.org/doc/rfc2883
https://datatracker.ietf.org/doc/rfc2883
https://doi.org/10.17487/RFC6356
https://doi.org/10.17487/RFC6356
https://datatracker.ietf.org/doc/rfc6356
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/raiciu
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/raiciu
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/raiciu
https://doi.org/10.1145/1868447.1868457
https://dl.acm.org/doi/10.1145/1868447.1868457
https://doi.org/10.1145/2018436.2018467
https://dl.acm.org/doi/10.1145/2018436.2018467
https://www.usenix.org/conference/2002-usenix-annual-technical-conference/congestion-control-linux-tcp
https://www.usenix.org/conference/2002-usenix-annual-technical-conference/congestion-control-linux-tcp
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/JRPROC.1949.232969

BIBLIOGRAPHY 42

[45] Gaotao Shi and Keqiu Li. “Interference Model and Measurement”. In: Signal
Interference in WiFi and ZigBee Networks. Ed. by Gaotao Shi and Keqiu Li.
Wireless Networks. Cham: Springer International Publishing, 2017, pp. 29–44.
ISBN: 978-3-319-47806-7. DOI: 10.1007/978- 3- 319- 47806- 7_3. URL:
https://doi.org/10.1007/978-3-319-47806-7_3 (visited on 04/12/2023).

[46] Tanya Shreedhar et al. “QAware: A Cross-Layer Approach to MPTCP Schedul-
ing”. In: 2018 IFIP Networking Conference (IFIP Networking) and Workshops.
2018 IFIP Networking Conference (IFIP Networking) and Workshops. May
2018, pp. 1–9. DOI: 10.23919/IFIPNetworking.2018.8696843.

[47] Zhenyu Song, Longfei Shangguan, and Kyle Jamieson. “Wi-Fi Goes to Town:
Rapid Picocell Switching for Wireless Transit Networks”. In: Proceedings of
the Conference of the ACM Special Interest Group on Data Communication.
SIGCOMM ’17. New York, NY, USA: Association for Computing Machinery,
Aug. 7, 2017, pp. 322–334. ISBN: 978-1-4503-4653-5. DOI: 10.1145/3098822.
3098846. URL: https://dl.acm.org/doi/10.1145/3098822.3098846
(visited on 04/11/2023).

[48] Wireless Interference and Multipath TCP. URL: https://jon.tsp.io/mscncs/
(visited on 03/20/2023).

[49] Damon Wischik et al. “Design, Implementation and Evaluation of Congestion
Control for Multipath {TCP}”. In: 8th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 11). 2011. URL: https://www.usenix.
org/conference/nsdi11/design- implementation- and- evaluation-
congestion-control-multipath-tcp (visited on 04/01/2023).

[50] Jing Zhu et al. “Multi-Radio Coexistence: Challenges and Opportunities”. In:
2007 16th International Conference on Computer Communications and Networks.
2007 16th International Conference on Computer Communications and Networks.
ISSN: 1095-2055. Aug. 2007, pp. 358–364. DOI: 10 . 1109 / ICCCN . 2007 .
4317845.

https://doi.org/10.1007/978-3-319-47806-7_3
https://doi.org/10.1007/978-3-319-47806-7_3
https://doi.org/10.23919/IFIPNetworking.2018.8696843
https://doi.org/10.1145/3098822.3098846
https://doi.org/10.1145/3098822.3098846
https://dl.acm.org/doi/10.1145/3098822.3098846
https://jon.tsp.io/mscncs/
https://www.usenix.org/conference/nsdi11/design-implementation-and-evaluation-congestion-control-multipath-tcp
https://www.usenix.org/conference/nsdi11/design-implementation-and-evaluation-congestion-control-multipath-tcp
https://www.usenix.org/conference/nsdi11/design-implementation-and-evaluation-congestion-control-multipath-tcp
https://doi.org/10.1109/ICCCN.2007.4317845
https://doi.org/10.1109/ICCCN.2007.4317845

Appendix A

WhiteHaul Source Code

1 / *
2 * TCP I l l i n o i s c o n g e s t i o n c o n t r o l .
3 * Home page :
4 *

h t t p : / / www. ews . u i u c . edu / ˜ s h a o l i u / t c p i l l i n o i s / i n d e x . h tm l
5 *
6 * The a l g o r i t h m i s d e s c r i b e d i n :
7 * ”TCP− I l l i n o i s : A Loss and Delay −Based C o n g e s t i o n

C o n t r o l A l g o r i t h m
8 * f o r High−Speed Networks ”
9 *

h t t p : / / t a m e r b a s a r . c s l . i l l i n o i s . edu / L i u B a s a r S r i k a n t P e r f E v a l A r t J u n 2 0 0 8 . p d f
10 *
11 * Implemen ted from d e s c r i p t i o n i n paper and ns −2

s i m u l a t i o n .
12 * C o p y r i g h t (C) 2007 S t e p h e n Hemminger

<shemminger@linux −f o u n d a t i o n . org>
13 * /
14
15 # i n c l u d e < l i n u x / module . h>
16 # i n c l u d e < l i n u x / s k b u f f . h>
17 # i n c l u d e < l i n u x / i n e t d i a g . h>
18 # i n c l u d e <asm / d iv64 . h>
19 # i n c l u d e <n e t / t c p . h>
20 # i n c l u d e < l i n u x / k t ime . h>
21 # i n c l u d e < l i n u x / t ime . h>
22
23 / / # d e f i n e ADVERTISED CWND 10 / / MKS: need t o be

r e p l a c e w i t h a c a l l b a c k
24 # d e f i n e RTT BASE CLAMP 100 / / RTT can ’ t be l e s s than

t h i s v a l u e (us)
25 # d e f i n e ALPHA SHIFT 7

43

Appendix A. WhiteHaul Source Code 44

26 # d e f i n e ALPHA SCALE (1 u<<ALPHA SHIFT)
27 # d e f i n e ALPHA MIN ((3 * ALPHA SCALE) / 1 0) / * ˜ 0 . 3 * /
28 # d e f i n e ALPHA MAX (50*ALPHA SCALE) / * 1 0 . 0 * /
29 # d e f i n e ALPHA BASE ALPHA SCALE / * 1 . 0 * /
30 # d e f i n e RTT MAX (U32 MAX / ALPHA MAX) / * 3 . 3 s e c s * /
31
32 / / We are n o t u s i n g any o f t h e s e a t t h e moments
33 # d e f i n e BETA SHIFT 6
34 # d e f i n e BETA SCALE (1 u<<BETA SHIFT)
35 # d e f i n e BETA MIN (BETA SCALE / 1 0) / * 0 .125 * /
36 # d e f i n e BETA MAX (BETA SCALE / 1 0) / * 0 . 5 * /
37 # d e f i n e BETA BASE BETA MAX
38
39 / / s t a t i c i n t w i n t h r e s h r e a d m o s t l y = 15;
40 s t a t i c i n t w i n t h r e s h r e a d m o s t l y = 1 0 ; / * MKS * /
41 module param (w i n t h r e s h , i n t , 0) ;
42 MODULE PARM DESC(w i n t h r e s h , ”Window t h r e s h o l d f o r

s t a r t i n g a d a p t i v e s i z i n g ”) ;
43
44 / / s t a t i c i n t t h e t a r e a d m o s t l y = 5;
45 s t a t i c i n t t h e t a r e a d m o s t l y = 2 ; / * MKS * /
46 module param (t h e t a , i n t , 0) ;
47 MODULE PARM DESC(t h e t a , ” # o f f a s t RTT ’ s b e f o r e f u l l

growth ”) ;
48
49 s t a t i c i n t ADVERTISED CWND 1 = 100 ; / * These are t h e two

a d v e r t i s e d windows * /
50 module param (ADVERTISED CWND 1 , i n t , 0644) ;
51 MODULE PARM DESC(ADVERTISED CWND 1 , ” A d v e r t i s e d window

f o r sub f low #1 ”) ;
52
53 s t a t i c i n t ADVERTISED CWND 2 = 100 ; / * These are t h e two

a d v e r t i s e d windows * /
54 module param (ADVERTISED CWND 2 , i n t , 0644) ;
55 MODULE PARM DESC(ADVERTISED CWND 2 , ” A d v e r t i s e d window

f o r sub f low #2 ”) ;
56
57 s t a t i c i n t ADVERTISED CWND 3 = 100 ; / * These are t h e two

a d v e r t i s e d windows * /
58 module param (ADVERTISED CWND 3 , i n t , 0644) ;
59 MODULE PARM DESC(ADVERTISED CWND 3 , ” A d v e r t i s e d window

f o r sub f low #3 ”) ;
60
61
62 / * TCP I l l i n o i s Parame ter s * /
63 s t r u c t i l l i n o i s {

Appendix A. WhiteHaul Source Code 45

64 u64 s u m r t t ; / * sum o f r t t ’ s measured w i t h i n l a s t r t t
* /

65 u16 c n t r t t ; / * # o f r t t s measured w i t h i n l a s t r t t * /
66 u32 b a s e r t t ; / * min o f a l l r t t i n usec * /
67 u32 m a x r t t ; / * max o f a l l r t t i n usec * /
68 u32 e n d s e q ; / * r i g h t edge o f c u r r e n t RTT * /
69 u32 a l p h a ; / * A d d i t i v e i n c r e a s e * /
70 u32 b e t a ; / * M u l i p l i c a t i v e d e c r e a s e * /
71 u16 acked ; / * # p a c k e t s acked by c u r r e n t ACK * /
72 u8 r t t a b o v e ; / * average r t t has gone above

t h r e s h o l d * /
73 u8 r t t l o w ; / * # o f r t t s measurements below

t h r e s h o l d * /
74 u8 c n t r o u n d ; / * # o f round t h a t whole f l i g h t

p a c k e t s g e t acked * /
75 u8 c u r r s t a t e ; / * c u r r e t t c p c o n g e s t i o n c o n t r o l

s t a t e * /
76 / / u32 a v g d e l a y ; / * Average queu ing d e l a y * /
77 / / u32 max de lay ; / * Maximum queu ing d e l a y * /
78 } ;
79
80 / / s t a t i c v o i d r t t b a s e r e s e t (s t r u c t sock * sk , u32 da) {
81 / / s t r u c t i l l i n o i s * ca = i n e t c s k c a (sk) ;
82 / / ca−>b a s e r t t = 0 x 7 f f f f f f f ; / * MKS: we can

use da i n s t e a d * /
83 / / ca−>c n t r o u n d = 0;
84 / / }
85
86 s t a t i c vo id r t t r e s e t (s t r u c t sock * sk)
87 {
88 s t r u c t t c p s o c k * t p = t c p s k (sk) ;
89 s t r u c t i l l i n o i s * ca = i n e t c s k c a (sk) ;
90
91 ca−>e n d s e q = tp −>s n d n x t ;
92 ca−> c n t r t t = 0 ;
93 ca−> s u m r t t = 0 ;
94
95 / * TODO: age m a x r t t ? * /
96 }
97
98 s t a t i c vo id t c p i l l i n o i s i n i t (s t r u c t sock * sk)
99 {

100 s t r u c t i l l i n o i s * ca = i n e t c s k c a (sk) ;
101
102 ca−>a l p h a = ALPHA MAX;
103 ca−>b e t a = BETA BASE ;

Appendix A. WhiteHaul Source Code 46

104 ca−> b a s e r t t = 0 x 7 f f f f f f f ;
105 ca−>m a x r t t = 0 ;
106
107 ca−>acked = 0 ;
108 ca−> r t t l o w = 0 ;
109 ca−> r t t a b o v e = 0 ;
110 ca−> c u r r s t a t e = TCP CA Open ; / / MKS
111 t c p s k (sk)−> s n d s s t h r e s h = 2 0 ;
112 r t t r e s e t (sk) ;
113 }
114
115 / * Measure RTT f o r each ack . * /
116 s t a t i c vo id t c p i l l i n o i s a c k e d (s t r u c t sock * sk , c o n s t

s t r u c t a c k s a m p l e * sample)
117 {
118 s t r u c t i l l i n o i s * ca = i n e t c s k c a (sk) ;
119 s32 r t t u s = sample −> r t t u s ;
120 s t r u c t t i m e v a l t s ;
121 d o g e t t i m e o f d a y (& t s) ;
122 s64 t imes t amp = (t s . t v s e c) * 1000000 +

(t s . t v u s e c) ;
123
124 / / p r i n t k (KERN INFO ”%s : %pI4 :%d −> %pI4 :%d , t i m e s t a m p

%l l d and r t t %u \n ” , f u n c , & ((s t r u c t i n e t s o c k
*) sk)−> i n e t s a d d r , n t o h s (((s t r u c t i n e t s o c k *)
sk)−> i n e t s p o r t) , &((s t r u c t i n e t s o c k *)
sk)−> i n e t d a d d r , n t o h s (((s t r u c t i n e t s o c k *)
sk)−> i n e t d p o r t) , t imes tamp , r t t u s) ;

125 / / p r i n t k (KERN INFO ” At t i m e %l l d : RTT = %u\n ” ,
t imes tamp , r t t u s) ;

126
127 ca−>acked = sample −>p k t s a c k e d ;
128
129 / * dup ack , no r t t sample * /
130 i f (r t t u s < 0)
131 re turn ;
132
133 / * i g n o r e bogus v a l u e s , t h i s p r e v e n t s wraparound i n

a lpha math * /
134 i f (r t t u s > RTT MAX)
135 r t t u s = RTT MAX;
136
137 / * keep t r a c k o f minimum RTT seen so f a r * /
138 i f (ca−> b a s e r t t > r t t u s)
139 { / / MKS: r t t u s s h o u l d be b i g g e r than

RTT BASE CLAMP

Appendix A. WhiteHaul Source Code 47

140 i f (r t t u s > RTT BASE CLAMP)
141 ca−> b a s e r t t = r t t u s ;
142 }
143
144 / * and max * /
145 i f (ca−>m a x r t t < r t t u s)
146 ca−>m a x r t t = r t t u s ;
147
148 ++ca−> c n t r t t ;
149 ca−> s u m r t t += r t t u s ;
150 }
151
152 / * Maximum queu ing d e l a y * /
153 s t a t i c i n l i n e u32 max de lay (c o n s t s t r u c t i l l i n o i s * ca)
154 {
155 re turn ca−>m a x r t t − ca−> b a s e r t t ;
156 }
157
158 / * Average queu ing d e l a y * /
159 s t a t i c i n l i n e u32 a v g d e l a y (c o n s t s t r u c t i l l i n o i s * ca)
160 {
161 u64 t = ca−> s u m r t t ;
162
163 d o d i v (t , ca−> c n t r t t) ;
164 re turn t − ca−> b a s e r t t ;
165 }
166
167 / *
168 * Compute v a l u e o f a lpha used f o r a d d i t i v e i n c r e a s e .
169 * I f s m a l l window t h e n use 1 . 0 , e q u i v a l e n t t o Reno .
170 *
171 * For l a r g e r windows , a d j u s t based on average d e l a y .
172 * A . I f average d e l a y i s a t minimum (we are

u n c o n g e s t e d) ,
173 * t h e n use l a r g e a lpha (1 0 . 0) t o i n c r e a s e f a s t e r .
174 * B . I f average d e l a y i s a t maximum (g e t t i n g c o n g e s t e d)
175 * t h e n use s m a l l a lpha (0 . 3)
176 *
177 * The r e s u l t i s a convex window growth c u r v e .
178 * /
179 / / s t a t i c u32 a lpha (s t r u c t i l l i n o i s *ca , u32 da , u32 dm)
180 / / {
181 / / u32 d1 = dm / 100; / * Low t h r e s h o l d * /
182
183 / / i f (da <= d1) {
184 / / / * I f n e v e r g o t o u t o f low d e l a y zone , t h e n use

Appendix A. WhiteHaul Source Code 48

max * /
185 / / i f (! ca−>r t t a b o v e)
186 / / r e t u r n ALPHA MAX;
187
188 / / / * Wait f o r 5 good RTT ’ s b e f o r e a l l o w i n g a lpha t o

go a lpha max .
189 / / * T h i s p r e v e n t s one good RTT from c a u s i n g sudden

window i n c r e a s e .
190 / / * /
191 / / i f (++ca−> r t t l o w < t h e t a)
192 / / r e t u r n ca−>a lpha ;
193
194 / / ca−> r t t l o w = 0;
195 / / ca−>r t t a b o v e = 0;
196 / / r e t u r n ALPHA MAX;
197 / / }
198
199 / / ca−>r t t a b o v e = 1;
200
201 / / / *
202 / / * Based on :
203 / / *
204 / / * (dm − d1) amin amax
205 / / * k1 = −−−−−−−−−−−−−−−−−−−
206 / / * amax − amin
207 / / *
208 / / * (dm − d1) amin
209 / / * k2 = −−−−−−−−−−−−−−−− − d1
210 / / * amax − amin
211 / / *
212 / / * k1
213 / / * a lpha = −−−−−−−−−−
214 / / * k2 + da
215 / / * /
216
217 / / dm −= d1 ;
218 / / da −= d1 ;
219 / / r e t u r n (dm * ALPHA MAX) /
220 / / (dm + (da * (ALPHA MAX − ALPHA MIN)) / ALPHA MIN) ;
221 / / }
222
223 / * We j u s t added a n o t h e r p a r a m t e r s t o t h i s f u n c t i o n t o

d i f f e r e n t i a t e be tween two sub −f l o w s * /
224
225 s t a t i c u32 a l p h a (s t r u c t i l l i n o i s * ca , u32 da , u32 dm ,

s t r u c t sock * sk , u32 adv window)

Appendix A. WhiteHaul Source Code 49

226 {
227 s t r u c t t c p s o c k * t p = t c p s k (sk) ;
228 u32 qDe layBudge t us = 50000 ; / / u sec
229
230 / * q u e u e i n g d e l a y average (da) i s s m a l l e r than

our q u e u e i n g d e l a y bu dg e t * /
231 i f (da <= qDe layBudge t us) {
232 i f (tp −>snd cwnd >= adv window) {
233 / / cwnd i s b i g g e r than a d v e r t i s e d cwnd ,

i n c r e a s e s l o w l y
234 re turn ALPHA BASE ;
235 }
236 e l s e {
237 / * I f n e v e r g o t o u t o f low d e l a y zone , t h e n

use max * /
238 i f (! ca−> r t t a b o v e)
239 re turn ALPHA MAX;
240
241 / * Wait f o r 5 good RTT ’ s b e f o r e a l l o w i n g

a lpha t o go a lpha max .
242 * T h i s p r e v e n t s one good RTT from c a u s i n g

sudden window i n c r e a s e .
243 * Maybe we s h o u l d remove t h i s par t , so we

can i n c r e a s e i m m i d i a t e l y
244 * need f u r t h e r e x p l o r a t i o n
245 * /
246 i f (++ ca−> r t t l o w < t h e t a)
247 re turn ca−>a l p h a ;
248
249 ca−> r t t l o w = 0 ;
250 ca−> r t t a b o v e = 0 ;
251 re turn ALPHA MAX;
252 }
253 }
254 e l s e {
255 / * mean d e l a y b i g g e r than our d e l a y bu dge t * /
256 ca−> r t t a b o v e = 1 ; / / move t o h igh r t t zone
257 re turn ALPHA BASE ; / / send a g g r e s i v e as we

are below t a r g e t r a t e
258 }
259 }
260
261 / *
262 * Beta used f o r m u l t i p l i c a t i v e d e c r e a s e .
263 * For s m a l l window s i z e s r e t u r n s same v a l u e as Reno

(0 . 5)

Appendix A. WhiteHaul Source Code 50

264 *
265 * I f d e l a y i s s m a l l (10% o f max) t h e n b e t a = 1 / 8
266 * I f d e l a y i s up t o 80% o f max t h e n b e t a = 1 / 2
267 * In be tween i s a l i n e a r f u n c t i o n
268 * /
269 s t a t i c u32 b e t a (u32 da , u32 dm)
270 {
271 u32 d2 , d3 ;
272
273 d2 = dm / 1 0 ;
274 i f (da <= d2)
275 re turn BETA MIN ;
276
277 d3 = (8 * dm) / 1 0 ;
278 i f (da >= d3 | | d3 <= d2)
279 re turn BETA MAX;
280
281 / *
282 * Based on :
283 *
284 * bmin d3 − bmax d2
285 * k3 = −−−−−−−−−−−−−−−−−−−
286 * d3 − d2
287 *
288 * bmax − bmin
289 * k4 = −−−−−−−−−−−−−
290 * d3 − d2
291 *
292 * b = k3 + k4 da
293 * /
294 re turn (BETA MIN * d3 − BETA MAX * d2 + (BETA MAX −

BETA MIN) * da)
295 / (d3 − d2) ;
296 }
297
298 / * Update a lpha and b e t a v a l u e s once per RTT * /
299 / * here aga in we added a n o t h e r paramter * /
300 s t a t i c vo id u p d a t e p a r a m s (s t r u c t sock * sk , u32 adv wnd)
301 {
302 s t r u c t t c p s o c k * t p = t c p s k (sk) ;
303 s t r u c t i l l i n o i s * ca = i n e t c s k c a (sk) ;
304
305 i f (tp −>snd cwnd < w i n t h r e s h) {
306 ca−>a l p h a = ALPHA BASE ;
307 ca−>b e t a = BETA BASE ;
308 } e l s e i f (ca−> c n t r t t > 0) {

Appendix A. WhiteHaul Source Code 51

309 u32 dm = max de lay (ca) ;
310 u32 da = a v g d e l a y (ca) ;
311 ca−>a l p h a = a l p h a (ca , da , dm , sk , adv wnd) ; / / MKS
312 ca−>b e t a = b e t a (da , dm) ;
313 / / s t r u c t t i m e v a l t s ;
314 / / d o g e t t i m e o f d a y (& t s) ;
315 / / s64 t i m e s t a m p = (t s . t v s e c) * 1000000 +

(t s . t v u s e c) ;
316
317 / / p r i n t k (KERN INFO ” At t i m e %l l d : ADV = %u | CWND =

%u | s s t h r e s h = %u | MAX−RTT = %u | Min−RTT = %u
| Sum−RTT = %l l d | a lpha = %u | Avg−d e l a y = %u |
Max−d e l a y = %u\n ” , t imes tamp , adv wnd ,
tp −>snd cwnd , tp −>s n d s s t h r e s h , ca−>m a x r t t ,
ca−>b a s e r t t , ca−>s u m r t t , ca−>alpha , da , dm) ;

318
319
320 / * MKS: i n c r e a s e t h e r o u n t e r c o u n t e r * /
321 / / ++ca−>c n t r o u n d ;
322
323 / * MKS: r e s e t t h e b a s e r t t a f t e r 100

rounds * /
324 / / i f (ca−>c n t r o u n d > 100) {
325 / / r t t b a s e r e s e t (sk , da) ;
326 / / }
327 }
328
329 r t t r e s e t (sk) ;
330 }
331 s t a t i c vo id p r i n t V a l u e s (s t r u c t sock * sk , u32 adv window) {
332 s t r u c t t c p s o c k * t p = t c p s k (sk) ;
333 s t r u c t i l l i n o i s * ca = i n e t c s k c a (sk) ;
334 s t r u c t t i m e v a l t s ;
335
336 / / u32 dm = max de lay (ca) ;
337 / / u32 da = a v g d e l a y (ca) ;
338
339 d o g e t t i m e o f d a y (& t s) ;
340 s64 t imes t amp = (t s . t v s e c) * 1000000 +

(t s . t v u s e c) ;
341
342 / / p r i n t k (KERN INFO ” At t i m e %l l d : ADV = %u | CWND = %u

| s s t h r e s h = %u | MAX−RTT = %u | Min−RTT = %u |
Sum−RTT = %l l d | a lpha = %u | Avg−d e l a y = |
Max−d e l a y = \n ” , t imes tamp , adv window ,
tp −>snd cwnd , tp −>s n d s s t h r e s h , ca−>m a x r t t ,

Appendix A. WhiteHaul Source Code 52

ca−>b a s e r t t , ca−>s u m r t t , ca−>a lpha) ;
343 }
344
345 / *
346 * In case o f l o s s , r e s e t t o d e f a u l t v a l u e s
347 * /
348 s t a t i c vo id t c p i l l i n o i s s t a t e (s t r u c t sock * sk , u8

n e w s t a t e)
349 {
350 s t r u c t i l l i n o i s * ca = i n e t c s k c a (sk) ;
351
352 ca−> c u r r s t a t e = n e w s t a t e ; / / Keep t r a c k o f TCP

CA s t a t e
353
354 i f (n e w s t a t e == TCP CA Loss) {
355 ca−>a l p h a = ALPHA BASE ;
356 ca−>b e t a = BETA BASE ;
357 ca−> r t t l o w = 0 ;
358 ca−> r t t a b o v e = 0 ;
359 r t t r e s e t (sk) ;
360 }
361 }
362 / * We send t h e adv window as a parame te r t o

d i f f e r e n t i a t e be tween t h e two sub −f l o w s * /
363 s t a t i c vo id prob cwnd (s t r u c t sock * sk , u32 adv wnd) {
364 s t r u c t t c p s o c k * t p = t c p s k (sk) ;
365 s t r u c t i l l i n o i s * ca = i n e t c s k c a (sk) ;
366 u32 adv cwnd = adv wnd ; / / t h i s needs t o r
367
368 / / We s h o u l d o n l y r ed uc e window when TCP i s n o t

i n l o s s r e c o v e r y mode
369 i f (ca−> c u r r s t a t e != TCP CA Open)
370 re turn ;
371
372 / *
373 When cwnd i s b i g g e r than t h e a d v e r t i s e d cwnd

and we are
374 a l s o o p e r a t i n g above t h e t a r g e t d e l a y we

s h o u l d s e t t h e cwnd t o
375 t h e ADVERTISED cwnd .
376 * /
377 i f (tp −>snd cwnd >= tp −> s n d s s t h r e s h &&
378 tp −>snd cwnd >= adv cwnd &&
379 ca−> r t t a b o v e >= 1) {
380 tp −>snd cwnd = adv cwnd ;
381 tp −> s n d s s t h r e s h = tp −>snd cwnd ;

Appendix A. WhiteHaul Source Code 53

382 }
383 }
384
385 / *
386 * I n c r e a s e window i n r e s p o n s e t o s u c c e s s f u l

acknowledgment .
387 * /
388 s t a t i c vo id t c p i l l i n o i s c o n g a v o i d (s t r u c t sock * sk , u32

ack , u32 acked)
389 {
390 s t r u c t t c p s o c k * t p = t c p s k (sk) ;
391 s t r u c t i l l i n o i s * ca = i n e t c s k c a (sk) ;
392
393 / *
394 MKS: a window worth o f da ta has been

comple ted , t i m e t o
395 up da t e params . The prob cwnd f u n c t i o n s h o u l d

be i n v o k e d
396 here t o c o n t r o l q u e u e i n g d e l a y . I t r e g u l a r l y

c u t s t h e
397 snd cwnd t o t h e a d v e r t i s e d t h r e s h o l d .
398 * /
399 / / u32 ad window = 0;
400 / *
401 * These i f − c o n d i t i o n s examine what are t h e

s u b f l o w s .
402 * s u b f l o w w i t h IP o f 1 9 2 . 1 6 8 . 1 0 . 0 / 2 4 w i l l t a k e

Adv CWND 1
403 * s u b f l o w w i t h IP o f 1 9 2 . 1 6 8 . 2 0 . 0 / 2 4 w i l l t a k e

Adv CWND 2
404 * /
405 / / i f (((u n s i g n e d char *) &((s t r u c t i n e t s o c k *)

sk)−> i n e t s a d d r) [0] == 0 xc0 &&
406 / / ((u n s i g n e d char *) &((s t r u c t i n e t s o c k *)

sk)−> i n e t s a d d r) [1] == 0 xa8 &&
407 / / ((u n s i g n e d char *) &((s t r u c t i n e t s o c k *)

sk)−> i n e t s a d d r) [2] == 0 x0a) {
408 / / ad window = ADVERTISED CWND 1 ;
409 / / } e l s e i f (((u n s i g n e d char *) &((s t r u c t i n e t s o c k

*) sk)−> i n e t s a d d r) [0] == 0 xc0 &&
410 / / ((u n s i g n e d char *) &((s t r u c t i n e t s o c k

*) sk)−> i n e t s a d d r) [1] == 0 xa8 &&
411 / / ((u n s i g n e d char *) &((s t r u c t i n e t s o c k

*) sk)−> i n e t s a d d r) [2] == 0 x14) {
412 / / ad window = ADVERTISED CWND 2 ;
413 / / } e l s e {

Appendix A. WhiteHaul Source Code 54

414 / / ad window = ADVERTISED CWND 1 ;
415 / / }
416 i f (a f t e r (ack , ca−>e n d s e q)) {
417 u32 ad window = 0 ;
418 / *
419 * These i f − c o n d i t i o n s examine what are t h e

s u b f l o w s .
420 * s u b f l o w w i t h IP o f 1 9 2 . 1 6 8 . 1 0 . 0 / 2 4 w i l l

t a k e Adv CWND 1
421 * s u b f l o w w i t h IP o f 1 9 2 . 1 6 8 . 2 0 . 0 / 2 4 w i l l t a k e

Adv CWND 2
422 * /
423 i f (((unsigned char *) &((s t r u c t i n e t s o c k *)

sk)−> i n e t s a d d r) [0] == 0 xc0 &&
424 ((unsigned char *) &((s t r u c t i n e t s o c k *)

sk)−> i n e t s a d d r) [1] == 0 xa8 &&
425 ((unsigned char *) &((s t r u c t i n e t s o c k *)

sk)−> i n e t s a d d r) [2] == 0x28) {
426 ad window = ADVERTISED CWND 1 ;
427 } e l s e i f (((unsigned char *) &((s t r u c t i n e t s o c k

*) sk)−> i n e t s a d d r) [0] == 0 xc0 &&
428 ((unsigned char *) &((s t r u c t i n e t s o c k

*) sk)−> i n e t s a d d r) [1] == 0 xa8 &&
429 ((unsigned char *) &((s t r u c t i n e t s o c k

*) sk)−> i n e t s a d d r) [2] == 0 x3c) {
430 ad window = ADVERTISED CWND 2 ;
431 } e l s e i f (((unsigned char *) &((s t r u c t i n e t s o c k

*) sk)−> i n e t s a d d r) [0] == 0 xc0 &&
432 ((unsigned char *) &((s t r u c t

i n e t s o c k *)
sk)−> i n e t s a d d r) [1] == 0 xa8 &&

433 ((unsigned char *) &((s t r u c t
i n e t s o c k *)
sk)−> i n e t s a d d r) [2] == 0x14) {

434 ad window = ADVERTISED CWND 3 ;
435 }
436 e l s e {
437 ad window = ADVERTISED CWND 1 ;
438 }
439
440 u p d a t e p a r a m s (sk , ad window) ;
441 prob cwnd (sk , ad window) ; / / MKS
442 }
443 / * RFC2861 o n l y i n c r e a s e cwnd i f f u l l y u t i l i z e d * /
444 i f (! t c p i s c w n d l i m i t e d (sk))
445 re turn ;

Appendix A. WhiteHaul Source Code 55

446
447 / * In s low s t a r t * /
448 i f (t c p i n s l o w s t a r t (t p))
449 t c p s l o w s t a r t (tp , acked) ;
450
451 e l s e {
452 u32 d e l t a ;
453
454 / * s n d c w n d c n t i s # o f p a c k e t s s i n c e l a s t cwnd

i n c r e m e n t * /
455 tp −>s n d c w n d c n t += ca−>acked ;
456 ca−>acked = 1 ;
457
458 / * T h i s i s c l o s e a p p r o x i m a t i o n o f :
459 * tp −>snd cwnd += alpha / tp −>snd cwnd
460 * /
461 d e l t a = (tp −>s n d c w n d c n t * ca−>a l p h a) >>

ALPHA SHIFT ;
462 / / p r i n t k (” d e l t a %u and c n t %u and clamp %u\n ” ,

d e l t a , tp −>s nd c wn d c n t , tp −>snd cwnd c lamp) ;
463 i f (d e l t a >= tp −>snd cwnd) {
464 tp −>snd cwnd = min (tp −>snd cwnd + d e l t a /

tp −>snd cwnd ,
465 (u32) tp −>snd cwnd clamp) ;
466 tp −>s n d c w n d c n t = 0 ;
467 }
468 }
469 / / p r i n t V a l u e s (sk , ad window) ;
470 }
471
472 / / L e t ’ s use reno l o s s r e c o v e r y i n s t e a d o f t h i s one
473 s t a t i c u32 t c p i l l i n o i s s s t h r e s h (s t r u c t sock * sk)
474 {
475 s t r u c t t c p s o c k * t p = t c p s k (sk) ;
476 s t r u c t i l l i n o i s * ca = i n e t c s k c a (sk) ;
477
478
479 / / p r i n t k (”−− window %u and b e t a a %u and −−−−− %u

−−−−−−−−−−−−−−−−−− %u \n ” , tp −>snd cwnd , ca−>be ta ,
((tp −>snd cwnd * ca−>b e t a) >> BETA SHIFT) ,
max (tp −>snd cwnd − ((tp −>snd cwnd * ca−>b e t a) >>
BETA SHIFT) , 2U)) ;

480 / * M u l t i p l i c a t i v e d e c r e a s e * /
481 re turn max (tp −>snd cwnd − ((tp −>snd cwnd * ca−>b e t a)

>> BETA SHIFT) , 2U) ;
482 }

Appendix A. WhiteHaul Source Code 56

483
484 / * E x t r a c t i n f o f o r Tcp s o c k e t i n f o p r o v i d e d v i a

n e t l i n k . * /
485 s t a t i c s i z e t t c p i l l i n o i s i n f o (s t r u c t sock * sk , u32

ex t , i n t * a t t r ,
486 union t c p c c i n f o * i n f o)
487 {
488 c o n s t s t r u c t i l l i n o i s * ca = i n e t c s k c a (sk) ;
489
490 i f (e x t & (1 << (INET DIAG VEGASINFO − 1))) {
491 i n f o −>vegas . t c p v e n a b l e d = 1 ;
492 i n f o −>vegas . t c p v r t t c n t = ca−> c n t r t t ;
493 i n f o −>vegas . t c p v m i n r t t = ca−> b a s e r t t ;
494 i n f o −>vegas . t c p v r t t = 0 ;
495
496 i f (i n f o −>vegas . t c p v r t t c n t > 0) {
497 u64 t = ca−> s u m r t t ;
498
499 d o d i v (t , i n f o −>vegas . t c p v r t t c n t) ;
500 i n f o −>vegas . t c p v r t t = t ;
501 }
502 * a t t r = INET DIAG VEGASINFO ;
503 re turn s i z e o f (s t r u c t t c p v e g a s i n f o) ;
504 }
505 re turn 0 ;
506 }
507
508 s t a t i c s t r u c t t c p c o n g e s t i o n o p s t c p i l l i n o i s

r e a d m o s t l y = {
509 . i n i t = t c p i l l i n o i s i n i t ,
510 . s s t h r e s h = t c p i l l i n o i s s s t h r e s h ,
511 / / . s s t h r e s h = t c p r e n o s s t h r e s h ,
512 . undo cwnd = t c p r e n o u n d o c w n d ,
513 . c o n g a v o i d = t c p i l l i n o i s c o n g a v o i d ,
514 . s e t s t a t e = t c p i l l i n o i s s t a t e ,
515 . g e t i n f o = t c p i l l i n o i s i n f o ,
516 . p k t s a c k e d = t c p i l l i n o i s a c k e d ,
517
518 . owner = THIS MODULE ,
519 . name = ” i l l i n o i s ” ,
520 } ;
521
522 s t a t i c i n t i n i t t c p i l l i n o i s r e g i s t e r (void)
523 {
524 BUILD BUG ON(s i z e o f (s t r u c t i l l i n o i s) >

ICSK CA PRIV SIZE) ;

Appendix A. WhiteHaul Source Code 57

525 re turn t c p r e g i s t e r c o n g e s t i o n c o n t r o l (& t c p i l l i n o i s) ;
526 }
527
528 s t a t i c vo id e x i t t c p i l l i n o i s u n r e g i s t e r (void)
529 {
530 t c p u n r e g i s t e r c o n g e s t i o n c o n t r o l (& t c p i l l i n o i s) ;
531 }
532
533 m o d u l e i n i t (t c p i l l i n o i s r e g i s t e r) ;
534 m o d u l e e x i t (t c p i l l i n o i s u n r e g i s t e r) ;
535
536 MODULE AUTHOR(” S tephen Hemminger , Shao Liu ”) ;
537 MODULE LICENSE(”GPL”) ;
538 MODULE DESCRIPTION(”TCP I l l i n o i s ”) ;
539 MODULE VERSION(” 1 . 0 ”) ;

Listing A.1: WhiteHaul Implementation in Linux Kernel

	Introduction
	Motivations
	Objectives
	Contributions
	Report structure

	Background
	Wi-Fi
	UDP
	TCP
	MPTCP
	WhiteHaul
	Related Work

	Methodology
	Project Management Strategies
	Experiment Setups
	Experiment Configuration
	Experiment Methodology
	Reliability of Wireless Experiments

	Results and Discussion
	Initial Experiment
	Is scheduler the culprit?
	Is congestion control the culprit?
	Microscopic view of congestion control

	Proposed Improvements
	Upper bound of the throughput of MPTCP
	Raise the Upper Bound
	Improving the Congestion Control Algorithm

	Conclusion
	Summary
	Challenges and Lessons Learnt
	Future Work

	WhiteHaul Source Code

