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Abstract
This paper presents a novel approach to investigating the onset of dementia using
interpretable machine learning techniques. Dementia is a debilitating syndrome that
imposes significant challenges to the elderly population, ranking as a leading cause of
death in the UK. While dementia remains a disease with no known cure or prevention,
early detection and intervention can effectively mitigate the risk of its development.
For this study, we use a portion of the longitudinal ELSA dataset, utilising 10 years of
follow-up data from 2002-2012, with 7379 participants.

The study aims to identify the most influential covariates associated with the onset
of dementia utilising survival analysis and machine learning models, including Cox
Proportional Hazards model and Random Survival Forest, to predict the risk of adverse
outcomes. Notably, this study’s distinctive contribution lies in its meticulous considera-
tion of the temporal aspect of the disease and competing risks, which is a crucial aspect
often overlooked in other studies.

Moreover, the study employs several sophisticated interpretability techniques, such
as Permutation Feature Importance, Cox Score Ranking, Local Interpretable Model-
agnostic Explanations (LIME), and Counterfactual Explanations (DICE), to gain valu-
able insights into the primary variables contributing to the onset of dementia. This
methodology has the potential to uncover new insights and perspectives on the complex
etiology of dementia and provide valuable insights for future research.

We propose a Random Survival Forest model that exhibits superior performance com-
pared to prior work in dementia research conducted on the ELSA dataset, as cited in
[101]. Furthermore, we employ interpretable machine learning methods to examine
the model’s decision-making process and deduce the top 5 modifiable features that
contribute the most to its predictions. We also investigate local explanations at patient
level, and propose that these explanations may be more meaningful for individuals,
rather than looking holistically at the top 5 global feature we identified.
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Chapter 1

Introduction

1.1 Motivation

Predicting the risk of adverse outcomes at patient level is crucial in healthcare; more
often than not the earlier a patient can be diagnosed, the higher the likelihood of
success for treatment [5], as it reduces the time to treatment initiation. The need for
computationally determining risk of adverse outcomes is emphasised by the increasing
life expectancy globally; notably, a projected 19% of female newborns in the UK in 2020
are anticipated to attain the age of 100 or beyond, a figure expected to increase to 27% by
2045 [7]. The increasing life expectancy amplifies the obligation of healthcare providers
to diagnose patients in a cost-effective manner [29]. However, this phenomenon also
intensifies the occurrence of diagnostic errors in primary care, which are relatively
frequent and harmful [100]. With the passage of time, it is becoming progressively
more feasible to employ computational methods for patient risk prediction, thereby
yielding risk assessments that are more cost-effective, consistent, and accurate.

Dementia is widely acknowledged to have a strong correlation with old age, with the
latter being commonly regarded as a primary etiological factor of the condition [8].
The leading cause of death in the UK in 2018 was dementia, accounting for 13% of
all deaths registered [88], a condition that remains neither preventable nor curable at
present [8]. The majority of dementia costs per year are due to social care, costing
£12.5bn (50%) per year, with the total cost nearing £25bn [4].

The present study aims to take a novel approach to investigating the factors contributing
to dementia by interpreting machine learning models. This methodology differs from
traditional studies and has the potential to uncover new insights and perspectives on
the complex etiology of the condition. Furthermore, the study seeks to explore both
individual and societal measures that could be taken to reduce the prevalence and impact
of dementia. An insight into the types of modifiable risk factors for dementia are shown
in figure A.4, which is a study on the ELSI-Brazil cohort.

To derive value from risk prediction models, it is imperative to prioritize the inter-
pretability of the model. This refers to the extent to which a human can comprehend
the rationale behind a decision rendered by the model [84]. Presently, a plethora of
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Chapter 1. Introduction 2

sophisticated machine learning models, such as Deep Neural Networks, exist that can
outperform traditional models (Cox PH, section 2.1.1) in healthcare scenarios [102].
However, the lack of transparency in the hidden layers of these models renders them
difficult to interpret. The European General Data Protection Regulation (GDPR) policy
mandates that researchers must be capable of elucidating algorithmic decisions made
by a machine learning model [102]. Thus, the present study aims to surmount this
challenge by leveraging methods that are interpretable while simultaneously aiming to
deliver the high performance of a complex model.

1.2 Literature Review

In the field of healthcare, existing risk prediction models are typically linear in nature
owing to their high level of interpretability and ease of use in practical settings [102],
considering only select informative variables to predict risk. Over time, researchers have
adopted two primary strategies to enhance the performance of healthcare risk prediction
models. The first approach involves utilizing a highly accurate, albeit less interpretable,
complex model [119]. The second approach involves emphasizing interpretability
through the use of a simple linear model [118]. In the present study, we pursue a
blended approach that seeks to capitalize on the benefits of interpretability that are
inherent in simpler models while avoiding the assumptions made by a linear model
[116].

There exists a substantial amount of research conducted in disease-specific scenarios
using machine learning techniques, such as [30, 118], however they generally fail to
address the question in a time to event model context, whereby the models are explored
with the use of survival analysis (section 2.1), allowing us to estimate a timescale of
the likelihood of event occurrence. According to research in the field of healthcare
risk prediction, the ability to monitor changes in risk potential over time provides an
opportunity to forecast the stage at which a patient is most susceptible to experiencing
an adverse outcome [42]. This, in turn, enables proactive measures to be implemented
in a timely manner to mitigate such outcomes.

Recent studies have also endeavored to investigate the interpretability aspect of such
models. For instance, in the paper by Jansen et al. [58], a multitude of machine learning
models were trained to classify the survivalability of breast cancer patients; model
explanations were generated utilizing techniques similar to those employed in our own
work, such as LIME (section 2.2.3). However, the study only explored the associated
risks of six covariates, the selection of which was determined by unspecified feature
selection techniques. Furthermore, the classification models employed in the study did
not account for the temporal dimension, as opposed to survival models.

Similarly, the authors in [73] propose an explanation-driven HCI model using machine
learning algorithms to segregate patients into demented and non-demented groups, and
evaluate the accuracy of their model compared to state-of-the-art approaches. They also
use SHAP and LIME explanation algorithms to provide more interpretability for their
learning models. The study presents a rudimentary explanation of the interpretability
aspect, with only a cursory reference to the outcomes of SHAP and LIME. It is notable
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that the study does not explain the extent of alignment or divergence of their findings
with existing literature, nor does it offer a complete evaluation of all models used. It is
important to note that, once again, the study pertains to a classification model that does
not factor in time-to-event considerations.

Research studies that have followed the classification-based methodology have ap-
proached the temporal aspect by including time as a predictor in the model, defined as
discrete time intervals from the start of the study, rather than incorporating time as the
outcome of interest [86]. Nevertheless, this methodology diminishes its significance by
not permitting the prognostic capability of the temporal dimension, a crucial component
in the diagnosis of medical conditions in healthcare environments.

In the context of dementia, recent research has investigated innovative strategies for
risk prediction. For example, [101] reports preliminary findings suggesting that time-
to-event models utilizing nonlinear models, such as decision trees, can be applied to
the same dataset (ELSA) used in our study. In particular, [101] shows how the use
of nonlinear time to event models outperforms traditional models used in healthcare
research today, such as the Cox proportional hazards model (2.1.1). However, their
experiments have limitations. Firstly, they do not account for competing risks (2.1.3),
which, if not correctly accounted for, can result in overestimation of the probability
of the occurrence of the event, and also mis-estimation of the magnitude of relative
effects of the covariates on the incidence of the outcome [17]. Secondly, they do not
emphasize the interpretability of the model, which is a crucial factor in healthcare
decision-making. For instance, the authors could have elucidated the reasoning behind
the model’s decisions, such as discussing the decision tree generated by the model. The
main objective of this paper was to achieve improved metric performance with the use
of machine learning in a survival analysis context; the paper claims to be the first to
propose such a model for dementia using the ELSA dataset. The current literature on
this topic suggests a noticeable gap in the exploration of the mechanisms behind the
superior performance of the model, the potential inferences that can be drawn about
the individual under consideration, and the significant covariate differences between
the top-performing models. Addressing these issues could significantly enhance the
practical relevance of this research in a clinical setting.

Other research that exists exploring dementia within the ELSA dataset typically con-
centrate on specific variables and their contributions to the onset or progression of
dementia, for example paper [115] explores the impact of air pollution on the incidence
of dementia, [16] explores the relationship between personality and dementia, and [62]
explores how a social network could reduce the risk of developing dementia. Interest-
ingly, all three of these studies use the same approach in their analyses, that is, to use as
single model, that being Cox Proportional Hazards model, without any of these studies
attempting to adjust for competing risks, nor mentioning the lack of competing risks.
Moreover, none of these papers aim to explore more complex time-to-event models,
such as Random Survival Forest (2.1.2), which has previously shown to provide greater
confidence toward relative importance of model covariates [32].
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1.3 Objectives

The novelty of this research paper stems from its distinctive approach to investigating
the onset of dementia in a time to event perspective. Specifically, the study aims to
identify the most influential covariates from a well-established set of variables associated
with the onset of dementia. To our knowledge, there has been no prior exploration
of interpretability techniques in survival machine learning using the ELSA dataset.
Therefore, in this research paper, we will investigate interpretability techniques in
survival machine learning (section 2.2), and compare this approach with the more
conventional methods employed in healthcare research, which involves the use of
univariate and regression survival models (section 2.1.1).

The aim of this research is to provide insight into the primary variables that contribute
to the onset of dementia. It is hoped that the outcome of this study can shed further
light on this issue, and subsequent research can be conducted on a case-by-case basis to
investigate precisely why these variables might be contributing to the onset of dementia,
and what can be done to mitigate their impact.

To make explicit the contributions of this project (also reflected in figure 4.1):

1. Extensive research for academic literature pertaining to casual relationships with
dementia; the purpose of which was to determine the most significant variables to
be examined in this study (section 3.1).

2. The process of extracting pertinent information from the raw data involved exten-
sive data wrangling, including imputation procedures to replace missing values;
this adds to the novelty of the paper, as no such pre-processed data is publicly
available (sections 3.2 and 3.3).

3. Training and running several survival models as described in (1), investigating
the onset of dementia (chapter 4), including models that account for temporality
(time-varying covariates) and competing risk, which are frequently overlooked in
studies. Both of these were omitted from our baseline paper [101].

4. Analyse the model outputs, comparing performance between the different models,
in addition to the results obtained from existing literature (chapter 5).

5. Interpreting the reasoning of the models using techniques described in section 2.2,
to better understand the decisions that lead to the regression predictions made by
the model, in order to extract actionable insights (chapter 6). This adds novelty to
the paper, as to our knowledge, no such interpretation techniques have been used
for survival models for dementia.



Chapter 2

Background

2.1 Survival Analysis

Survival analysis is a statistical method used to analyze data for which the binary
outcome variable of interest is time until an event occurs [64], where the event of
interest is typically the occurrence of a certain outcome, in our case, dementia or death.
The goal of survival analysis is to estimate the probability of the event occurring over
time and to identify the factors that influence this probability.

Survival analysis is characterized by its ability to consider the possibility that not all
individuals may encounter the event of interest during the study period (censoring);
a key feature which distinguishes it from other statistical methods. This is a crucial
consideration for our research, given that we are utilizing a longitudinal study design
(3), where participants may join or leave the study at any point in its duration. In
this context, it is important to note that even if a participant is censored and does not
experience the event of interest, their contribution to the study duration is still relevant
and considered.

The hazard function 2.1 gives us the instantaneous potential for failing (event occurring)
at time t per unit time, given survival up to time t. Notably, the hazard function is an
unbounded whole number, and the survival model is usually written in terms of the
hazard functions.

h(t) = lim
∆t→0

P(t ≤ T < t +∆t|T ≥ t)
∆t

(2.1)

The hazard function can be estimated using a variety of methods, including non-
parametric approaches such as the Kaplan-Meier estimator or parametric approaches
such as the Cox proportional hazards model.

The survivor function 2.2 gives the probability that a person survives (does not encounter
the event of interest) longer than some specified time t. It can be expressed as a function
of the hazard function in 2.1.

S(t) = exp(−
∫ 1

0
h(u)du) (2.2)

5
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2.1.1 Cox Proportional Hazards Model

2.1.1.1 Standard

In order to assess the relationship of explanatory variables to survival time, mathematical
modelling is required. The Cox model is the most general and widely used regression
model, as it is not based on any underlying assumptions of the survival distribution. We
can express the Cox model as such 2.3 [64].

h(t,XXX) = h0(t)exp(
p

∑
i=1

βiXi) (2.3)

where XXX = (X1, X2, ..., Xp), represents a feature vector of the model covariates, and
∑

p
i=1 βi represents the effect parameters. Note that the baseline hazard h0(t) is left

unspecified, making the Cox PH a semiparametric model.

The hazard ratio 2.4 can be defined as the ratio of the hazard functions for two groups or
levels of a covariate at any given time, it quantifies the relative risk of an event occurring
between two groups [64]. The hazard ratio has a similar interpretation to the odds ratio;
a hazard ratio of 2 is interpreted as the exposed group (i.e group with dementia) as
having twice the hazard of the unexposed group (i.e group without dementia) [64].

ĤR =
ĥ0(t)exp(∑p

i=1 β̂iX∗i )

ĥ0(t)exp(∑p
i=1 β̂iXi)

= exp(
p

∑
i=1

β̂i(X∗i −Xi)) (2.4)

The Cox model cannot be optimised using the standard likelihood function (2.5), since
the baseline hazard function is unspecified. Therefore, the Cox model uses a partial
likelihood function, allowing it to depend only on the parameter of interest [67].

L(β) =
K

∏
i=1

exp(βxi)

∑ j∈R(ti) exp(βx j)
(2.5)

where K is the set of chronologically ordered event times, R(t j) is the set of individuals
at risk at time t j.

A key assumption made with the Cox Proportional Hazards (PH) Model is that the
features are time-independent, meaning that the features are assumed not to change
once they are measured for each individual [67]. This has the implication that we are
unable to account for change, for example, an individual might reduce their BMI over
time, but the model will fail to notice this. A solution to this problem is proposed,
using time-dependent Cox model. Another key assumption is that any 2 covariates have
hazard functions whose ratio is a constant proportion over time - the hazard ratio is
constant. This assumption may not hold true for complex relationships between several
covariates and the risk of an event occurring over time, where the effect of a covariate
on the hazard may vary over time.

2.1.1.2 Penalized

The standard Cox proportional hazard’s model fails to provide valuable insight in the
presence of a large number of covariates, because it internally tries to invert a matrix that
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becomes non-singular due to correlations present amongst the covariates [6]. When the
number of predictor variables is large, the model can become overfit and less accurate
in predicting the event of interest on new data, occurring when the model captures noise
and spurious relationships in the data, which leads to poor generalization performance.

Regularization techniques [47], such as L1 regularization (Lasso) and L2 regularization
(Ridge), can be applied to the Cox model to address the issue of overfitting. These
regularization techniques introduce a penalty term to the loss function, which encourages
the model to select a subset of the most important predictors and to reduce the magnitude
of the coefficients of the remaining predictors. Unlike other regularization techniques
that shrink coefficients towards zero, L1 regularization uses a form of continuous subset
selection, where a subset of coefficients is set to zero and effectively excluded. This
leads to a reduction in the number of features required for prediction, making the model
more parsimonious and interpretable [6].

The equation below shows how the standard loss function (2.5) would be modified to
accommodate for the regularization term (2.6), where β1, . . . ,β2 are the coefficients
for p features, λ ≥ 0 is a hyperparameter controlling the shrinkage, α controls the
weighting to L1 and L2 penalties (elastic net penalty) [99].

L(β) = log

(
N

∏
i=1

exp(βT xi)

∑ j∈R(ti) exp(βT x j)

)
−λ

(
α

p

∑
j=1
|β j|+(1−α)

p

∑
j=1

β
2
j

)
(2.6)

2.1.1.3 Time-varying

The time-varying Cox model permits the covariate effects to exhibit temporal variability,
thus capturing the dynamic nature of the association between the predictor variables
and the outcome. This implies that the model assumes the impact of a specific covariate
on the hazard function may change over time, and therefore it has the capacity to
accommodate fluctuations in the hazard ratio as a function of time [20].

The equation 2.7 provides a modification to the original equation 2.3 to consider time
varying covariates Xi(t).

h(t,XXX) = h0(t)exp(
p

∑
i=1

βi(Xi(t)− X̄i)) (2.7)

2.1.2 Random Survival Forest

Survival analysis alone provides us a means to perform statistical inference holistically
on the data that we have [2]; however, the aim of our research is to be able to generalise
this to make predictions about future data, whilst also maintaining a balance between
interpretability and predictive power. Typically, the application of machine learning
algorithms prioritizes the absence of interpretability as a trade-off for enhanced clarity
regarding the relationships present within the data [2]. However, despite the fact that
random forest models are not inherently interpretable, it is conceivable to relinquish
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some performance to scrutinize the underlying decision trees that constitute the random
forest model, thereby enabling greater interpretability [120].

There are a variety of survival tree approaches [25] that could be used, most notably, a
bagging approach could have been alternatively used, such as [78], which focuses on
dataset with the presence of nonsusceptible patients. The key difference between the
two approaches is that bagging aims to retain all features from the input dataset, whereas
random forest considers a subset of features [13]; for the purpose of our investigation,
we aim to find only the top contributing features, and so we use random survival forest.

Algorithm 1 shows a high level overview of the procedure used for creating the random
survival forest, based on the original paper [56].

Algorithm 1 Random Survival Forest
Require: p: features of original dataset, B: the number of trees to grow, m: the number

of predictors to consider at each split.
f orest← /0

for b = 1 to B do
Draw a bootstrap sample from original data (on average, 37% out-of-bag data)
Grow a survival tree for the bootstrap sample:

At each node, randomly select p variables
Split the node using the candidate variable that maximizes survival difference

between daughter nodes
Grow the tree to full size under the constraint that a terminal node should have

no less than d0 unique deaths
Calculate a cumulative hazard function (CHF) for the survival tree
Save the survival tree in the forest

end for
Calculate the ensemble CHF by averaging the CHFs of all trees in the forest
Calculate the prediction error for the ensemble CHF using the out-of-bag data

return The RSF, consisting of B survival trees and the ensemble CHF

2.1.3 Competing Risk Models

Competing risks analysis in our context enables the distinction between various path-
ways of failure, such as different causes of death that a person may experience. Our
research focuses on identifying factors that are associated with the specific mode of
failure, whether a person dies due to dementia or some other cause. Theoretically, the
use of competing risks should provide more accurate estimates when analysing the
marginal probability for cause-specific events [3], allowing us to accommodate for the
competing nature of multiple causes for the same event of interest.

In the context of our research, a competing risk is defined as an event that obstructs the
occurrence of the event of interest and simultaneously alters the likelihood of the event
of interest. There are two main approaches to competing risk [43], the cause-specific
hazard function [52], and the sub-distribution hazard function [41].
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Figure 2.1: Illustration of cause-specific competing risk [45]

In order to understand the former, let us revisit equation 2.1 showing the hazard function,
the new cause-specific hazard function would then be as shown in equation 2.8, meaning
the probability of the death event occurring at time t for event type c, given that the
death event has not occurred yet from event type c [17].

The cause-specific model can be better explicated by reference to Figure 2.1, which
delineates the two conceivable states of transition from an individual free of the event.
The diagram explicitly illustrates that such an individual can either transition into the
outcome of interest (depicted in red, as cause k), or transition into an outcome that does
not pertain to our interest (i.e., other causes). Specifically, λk(t) denotes the transition
rate to cause k (equivalent to c in eq 2.8), where λk(t) = P(t ≤ Tk < t +∆t|Tk ≥ t) [45].
This in turn means that λother(t) = P(t ≤ Tk′ < t +∆t|Tk′ ≥ t|k ̸= k′).

hc(t) = lim
∆t→0

P(t ≤ Tc < t +∆t|Tc ≥ t)
∆t

(2.8)

One key difference between the two models is how they handle individuals who have
experienced a competing event. In the sub-distribution hazard model, individuals who
have experienced a competing event continue to be included in the risk set for the event
in question [41]. In contrast, in the cause-specific hazards model, individuals who
have experienced a competing event are treated as censored observations [15]. The
sub-distribution hazard model is shown in equation 2.9.

hc,subdist(t) = lim
∆t→0

P(t ≤ Tc < t +∆t|Tc > t or Tc′ ≤ t,c′ ̸= c)
∆t

(2.9)

Specifically, we intend to use the cause-specific model in this paper, as it is better
suited for studying etiological questions [69]. One important assumption with the
cause-specific model is that the competing risks are independent, this is because the
model assumes that all other events, apart from the event of interest, are censored, and
censoring has the underlying assumption of being independent.
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2.2 Interpretable Machine Learning

2.2.1 Permutation Feature Importance

Permutation feature importance is a method that measures the impact of a feature
on a model’s score by randomly shuffling the values of the feature and calculating
the decrease in the model’s performance [26]. The random shuffling disrupts the
relationship between the feature and the target, and the drop in model performance
indicates the level of dependence on the feature. This approach is model agnostic and
allows for repeated calculations using different permutations of the feature [1].

An overview of the algorithm (2) is provided based on the implementation we use in
this paper [1]. The greater the decrease in performance, the more important that feature
is to the model.

Algorithm 2 Permutation Feature Importance
Compute the baseline score s of the model on the dataset D
for each feature f ∈ F do

for each repetition k in 1,. . . ,K do
Randomly shuffle f to get corrupted dataset D̂k, f
Compute the score sk, f of the model on the permuted data D̂k, f

end for
Compute the importance score i f = s− 1

K ∑
K
k=1 sk, f

end for
return Importance scores ∀ f ∈ F

2.2.2 Cox Score Ranking

This is a novel technique that allows us to individually analyse each of the features
from our model in a case-by-case manner [38]. This involves fitting a Cox Proportional
Hazards model (2.3) to each variable separately and recording the c-index (2.3.1) on
the training set [6], allowing us to determine the best risk predictor among the features.
Algorithm 3 below shows the general procedure. Note however, that this ranking is
based on a univariate Cox model.

Algorithm 3 Individual Cox Ranking
Require: s f to denote the score for a feature

for each feature f ∈ F do
Fit a Cox Proportional Hazards model using only values of f
Compute the score s f of the model

end for
return Importance scores ∀ f ∈ F
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2.2.3 Local Interpretable Model-agnostic Explanations (LIME)

LIME [95] works by approximating the predictions of any classifier or regressor locally
with an interpretable model [35]. It generates a new dataset consisting of perturbed
samples and the corresponding predictions of the black box model. Then, it trains
an interpretable model, such as a linear model on this data; this model is trained to
approximate the behavior of the black-box model in the local region around the instance
of interest. Lastly, use the trained interpretable model to compute the importance of each
feature for the prediction of the black box model. Equation 2.10 shows how explanations
produced by LIME are obtained [95]; the goal being to find the best interpretable model
g that minimizes this loss function while being as simple as possible, as measured by
the regularization term Ω(g).

Llime(x) = argmin
g∈G

L( f ,g,πx)+Ω(g) (2.10)

Where f is the black-box classifier being explained, g is the interpretable model being
trained to explain f , x is the instance to be explained, G is the set of interpretable
models, πx is a weighting function that assigns weights to the perturbed instances based
on their similarity to x, and Ω(g) is a regularization term that penalizes complex models.

There are many similar methods of feature selection, such as mean decrease in accuracy
(MDA) [48], and SHAP [74]; however, a recent study [76] suggests that LIME is more
stable than both MDA and SHAP on features with high importance scores, and is better
suited for human interpretability.

2.2.4 Counterfactual Explanations (DICE)

A significant challenge of utilizing LIME (2.2.3) or SHAP is that due to their reliance on
simpler substitutes of the model to derive explanations, there is no assurance that these
explanations accurately represent the original model [85]. Counterfactual explanations,
on the other hand, provide factual insights into the model and extend beyond the confines
of the training dataset. This makes counterfactual explanations a promising alternative
for explaining machine learning models.

Counterfactual explanations represent another form of model-agnostic interpretability
method that elucidates local interpretations, focusing on explainability of individual
instances, as opposed to the overall model decisions. A counterfactual explanation
characterizes the smallest alteration to the feature values that would result in a change
in the prediction to a predefined output [84]. This enables us to describe situations in
the form of a causal relationship, e.g ”If an individual decreases their body mass index
to 25, the prediction of developing dementia would reduce by 20%”. This adds more
depth as to how we are able to interpret the model, as it allows us to not only see one
of the most prominent causal features in a specific case, but to also show the smallest
change to that feature that would help mitigate the risk of dementia. This practical
and applicable approach provides insights for preventative measures by identifying the
”easiest” change that could be made to an individual to help them specifically reduce
the risk of developing dementia.
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Various approaches are available to generate counterfactual explanations, such as the
naive approach of randomly altering feature values of the instance of interest and
stopping when the desired output is predicted. Other methods follow a white-box
approach, such as the foil trees approach [108], which relies on the knowledge of the
model. Alternatively, black-box approaches, such as DiCE [85], are model-agnostic.

In this paper, we will be using DiCE [85], which is a method that generates sets
of diverse counterfactual examples for any differentiable machine learning classifier
using determinantal point processes - probabilistic models of configurations that favour
diversity [66]. Diversity in this manner relates to being able to give a wide range of
suggested counterfactual examples, whilst also being close in proximity to the original
input (ease of the change suggested). This method allows us to generate any number
of counterfactual examples for a given input, and the implementation allows us to
implement domain specific constraints on the counterfactual examples, such as weights
and constraints; for example, in our case, we would wish to constraint counterfactual
explanations relating to uncontrollable variables, such as age.

A loss function is defined 2.13, that takes as input the counterfactual and the desired
outcome. This measures how far the predicted outcome of the counterfactual is from the
predefined outcome; we also measure how far the counterfactual is from the instance of
interest 2.12. Finally, we find counterfactual explanations by minimising this loss using
an optimisation algorithm, as defined in 2.11.

C(xxx) = argmin
ccc1,...,ccck

1
k

k

∑
i=1

yloss( f (ccci) ,y)+
λ1

k

k

∑
i=1

dist(ccci,xxx) −λ2dpp− diversity(ccc1, . . . ,ccck)

(2.11)

where ccci is a counterfactual example, k is the total number of counterfactual examples
to be generated, f is the blackbox ML model, yloss is a metric that minimizes the
distance between f ’s prediction for cis and the desired outcome y (usually 1), d is the
total number of input features, x is the original input, and dpp− diversity is the diversity
metric [85]. λ1 and λ2 are hyperparameters that balance the three parts of the loss
function.

dist(ccc,xxx) =


1
d ∑

d
p=1

|cccp−xxxp|
MADp

i f continuous

1
d ∑

d
p=1 I (cccp ̸= xxxp) i f discrete

(2.12)

where, in each case, d denotes the number of continuous or discrete variables accord-
ingly. For continuous variables, the total distance function is defined as the sum of the
Manhattan distance weighted with the inverse median absolute deviation MADp. For
discrete variables, we assign a distance of 1 if the counterfactual example’s value for
any discrete variable differs from the original input, otherwise it assigns zero.

yloss = max(0,1− z∗ logit( f (ccc))) (2.13)
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Hinge loss function, where z is −1 when y = 0 and 1 when y = 1, and logit( f (c)) is the
unscaled output from the ML model.

2.3 Evaluation Metrics

Given that survival analysis accounts for censoring, standard regression evaluation
metrics such as root mean squared error are not appropriate for measuring performance
in survival analysis, and so we use specialised evaluation metrics [109].

2.3.1 Concordance Index (C-index)

The C-index is a measure of how well a model ranks individuals in terms of their risk of
experiencing the event of interest, measured by comparing predicted outcomes to actual
outcomes for pairs of individuals; two individuals are concordant if the observation with
the higher predicted survival time also has a higher observed survival time. The C-index
is the number of concordant pairs of observations divided by the number of comparable
pairs; a value of 0.5 indicates that the model performs no better than random chance,
while a value of 1.0 indicates perfect predictive accuracy. The higher the C-index, the
better the model’s predictive performance [49].

Equation 2.14 below shows how the concordance index is calculated, where the numer-
ator counts the number of concordant pairs, and the denominator counts the number
of comparable pairs, where a pair is considered comparable if the observation with the
smaller observed survival time is not censored [97].

C =
∑i, j I(T̃i > T̃ j) · I(η j > ηi) ·δ j

∑ i, jI(T̃i > T̃j) ·δ j
(2.14)

where i and j refer to pairs of observations in the sample, T̃i and T̃j represent the
observed survival times respectively, ηi and η j represent the predicted survival times. I
is an indicator function takes on the value 1 if the condition inside the parentheses is
true and 0 otherwise, δ j is an indicator variable that takes on the value 1 if observation
j is not censored (i.e., the event of interest has occurred), and 0 otherwise [97].

It is worth noting that the C-index is a measure of discrimination [31], which is the
ability of a model to distinguish between individuals who experience the event of
interest and those who do not. However, discrimination alone may not be sufficient to
evaluate the overall performance of a survival model, as it does not take into account
the calibration of the model (how closely the predicted probabilities match the observed
probabilities). Therefore, it is often recommended to use multiple performance metrics
when evaluating survival models [104].

2.3.2 Brier Score

In the context of survival analysis, the Brier score is used to evaluate the accuracy of a
predicted survival function at a given time. It measures the mean squared difference
between predicted and observed event times, with lower scores indicating better model
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performance [105]. While the C-index measures how well a model discriminates
between individuals with different survival times, the Brier score measures how well a
model is calibrated (how close the predicted probabilities are to the actual outcomes).
Using both measures together can provide a more comprehensive evaluation of a survival
model’s performance [50].

The general form of the Brier score is shown in equation 2.15, showing the mean
squared difference between predictions ft and observations ot .

BS =
1
N

N

∑
t=1

( ft−ot)
2 (2.15)

A more tailored equation for our purposes in the context of survival analysis is shown in
2.16, which shows the average squared distances between the observed survival status
and the predicted survival probability.

BS(t) =
1
N

N

∑
i=1

(1Ti>t− Ŝ(t,xi))
2 (2.16)

where 1Ti>t is the true status of a new test subject, and Ŝ(t,xi) is the predicted survival
probability for all t ∈ R+.

2.3.3 Brier Skill Score (BSS)

The Brier Score is an inadequate metric in situations of class imbalance, such as the
scenario at hand where only a small proportion of patients are expected to develop
dementia. The Brier Score can be modified using a reference score, as demonstrated
in previous research [111]. In our specific case, the reference score BSre f (t) will be
derived from a model that predicts the absence of dementia in all individuals, resulting
in a notably low Brier Score due to the imbalanced class distribution; this serves .

BSS(t) = 1− BS(t)
BSre f (t)

(2.17)

2.4 MICE Imputation

Multiple Imputation by Chained Equations (MICE) is often used instead of other
methods of imputation because it can reduce bias in subsequent analyses on datasets
[81]; it has been shown to have a positive impact on feature selection compared to
datasets imputed by basic techniques or non-imputed incomplete datasets [81].

The algorithm for MICE is presented in Algorithm 4, which is based on the approach
detailed in the literature [18]. MICE runs a series of regression models, where each
variable with missing data is modeled conditional upon the other variables in the data.
MICE is a flexible approach, allowing for modeling of different types of variables, and
has been used in datasets with thousands of observations and variables [51, 103].
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Regarding the imputation model, we adopt the methodology depicted in Figure 2 of
[117], in which the authors argue that the complexity of the relationships present in the
data makes it challenging to specify an appropriate imputation model, and instead a
random forest imputation model should be used. Therefore, we employ MICE with
random forest imputation as a means of addressing this issue, utilizing a random forest
as our imputation model.

Algorithm 4 Multiple Imputation by Chained Equations (MICE)
Require: Dataset with missing values: D, variables with missing data V
Ensure: Imputed dataset: D̂

Perform simple imputation (e.g. mean imputation) for every missing value
Set maximum number of iterations and convergence threshold
while converged← False do

for each variable v ∈V do
Remove the mean imputations for that variable
Construct imputation model f using other variables as predictors, v′ ∈V,v′ ̸= v
Estimate missing values for that variable using imputation model f
Update D̂ with new imputed values

end for
Check for convergence by comparing parameter estimates from current and

previous iterations
end while
return D̂
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Dataset

This paper draws data from the English Longitudinal Study of Ageing (ELSA) [37],
which is a longitudinal study designed to track the health and well-being of a repre-
sentative sample of the English population aged 50 years and older. It is a nationally
representative study, meaning that participants are chosen randomly from the population
and their characteristics reflect the population as a whole.

ELSA was first conducted in 2002 and has since been repeated every two years (1 wave).
The study collects data on a wide range of variables related to health, economic status,
social participation, and well-being; the exact number of variables tracked in ELSA can
vary slightly from wave to wave of data collection, but typically the study measures
thousands of variables for each participant [37].

This paper specifically utilises 10 years of follow-up data, dating from 2002-2012; the
reasoning behind this relates to the lack of ease of availability for mortality data beyond
this time-frame, which forms a key part of our analysis. Overall, after all pre-processing
steps, we consider 7379 participants, 46.33% of whom are male, with each participant
having 226 features. It should be noted that the dataset was not readily available, and a
significant portion of time was dedicated to pre-processing the data; the process for
which are described in this chapter.

3.1 Feature Selection

Due to the large size of the dataset and the diversity of its features, it was deemed
impractical to run the models with all covariates, since high-dimensional data presents
statistical challenges for machine learning models [59, 22], thus it is empirical to
reduce this dimensionality before exploring the effects of the covariates on the outcome
variable. This however requires domain expertise of the topic at hand, therefore, we
take inspiration from similar work relating to dementia conducted on the ELSA dataset
by domain experts in order to extract the key topics for the features that we will select.
Table 3.1 shows the general topics of the features, along with the associated research
study that shows a relationship between those features and dementia.

A common theme among the existing studies is the exploration of a causal link between

16
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Variable Reasoning
Level of education
Leisure activities
Complexity of occupation
Cognitive abilities

Markers of cognitive reserve and
dementia incidence, study on the ELSA
dataset [12]

Income, Debt, Net wealth
Housing tenure
Property value
Other financial assets and wealth metrics

Inequalities in health at older ages,
onset of ilness and survival effects,
study on the ELSA dataset [80]

Age, BMI
Hours of sleep / sleep measures
Presence of APOE4 gene
Measure of memory / Processing speed
Social isolation
Diet / fruit consumption

Predicting risk of dementia with
survival machine learning -
top features from feature importance
analysis [101]

Dementia diagnosis Dementia metrics
Intensity/frequency of physical activity
Occupational physical work

Physical activity attenuates the risk
of dementia, study on ELSA [40]

Sex
Ethnicity

Dementia diagnosis rates in the UK
ethnic groups [90]

Diagnosis of heart diseases
Diagnosis of diabetes
Diagnosis of cancer

Associations between dementia and
other disease, comorbidities [21, 44, 28]

Smoking
Alcohol consumption

Associations between dementia and
behavioural traits [89, 94]

Table 3.1: Table showing the variables of interest needing to be extracted from the ELSA
dataset, the reasoning column links relevant paper(s). The variables highlighted are
those that were only available on special request, with a cost associated with them [37] -
therefore these variables are omitted from this study.

specific aspects of an individual’s life and the outcome variable of dementia onset. For
instance, [89] examines the specific association of smoking and dementia, revealing
an increased risk of Alzheimer’s disease with smoking. Such studies can inform
the selection of relevant features for our analysis, assuming that they have sufficient
explanatory power. Table 3.1 illustrates the diverse variable categories that we select,
covering behavioural traits and financial measures among others.

3.2 Data Wrangling

The dataset poses several challenges for data wrangling; firstly, variables may vary
across waves, which necessitates careful attention to ensure that the appropriate variables
are chosen for analysis, and that their corresponding values are matched accordingly.
Secondly, variables are not always readily accessible, which can make it time-consuming
when trying to ascertain their definitions, especially because these definitions can change
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between waves. Table C.1 depicts the substantial number of variables involved, which
further complicates the process of variable selection and definition.

One of the goals of data wrangling was to establish both time-independent and time-
dependent variables for analysis; this in turn enables us to analyse models such as
the time varying cox proportional hazards model (section 2.1.1), which facilitates the
investigation of models that take into account the changing variables over time for an
individual, such as the time-varying Cox proportional hazards model (section 2.1.1).
This, in turn, allows for the derivation of a concrete baseline when comparing our
machine learning model to simpler, more traditional models, such as the cox model,
as we account for the different forms of the baseline model, as well as providing an
opportunity to compare the results of the variations. To obtain these two distinct datasets
(as depicted in 4.1), specific preprocessing steps were undertaken separately for each
dataset, including the creation of binary columns for each categorical variable and
conversion to time-series.

3.3 Handling Missing Data

Handling missing data is an essential component of any statistical analysis, incomplete
data can lead to biased estimates, reduced statistical power, and decreased precision of
results [71]. Some variables and some individuals had a large number of missing values,
which would need to be accounted for in order to perform our analysis. There are several
techniques to deal with missing data, which can be categorised into either deletion
or imputation [96]. There are a handful of missingness mechanisms which describe
the nature of the data, and attempt to explain why the data might be missing; we are
specifically interested in MCAR (Missing Completely at Random) [53], which refers to
data which was collected randomly, and is missing at random, where missingness is
not related to any other variables in the dataset [96]. Under this assumption, we can
use the technique of ’case deletion’, in which we can selectively delete missing data
column-wise, or row-wise [96].

To handle incomplete data more effectively, we can combine the technique of deletion
and imputation, like the authors do here [113]. This first involves selectively deleting
missing data, and then performing an imputation technique to handle the remaining
portion of missing data. Therefore, we first perform deletion based on two criterion:
participants who have more than 40% missing features, and features which have more
than 60% missing values. The percentages are chosen somewhat arbitrarily based on
visual inspection of the data, shown in Figure 3.1, which shows the the distribution
of the data based on the two criteria before and after deletion. A lower threshold was
chosen for participants with missing features, since it is more difficult to impute for
specific individuals of the study accurately, especially since our models rely on the
features from individuals, rather than the feature values more holistically.

The deletion of data prior to imputation is a crucial step in ensuring that an excessive
amount of data is not imputed, as this can have negative consequences, such as de-
creased reliability of the resulting data, as highlighted by Jakobsen [57]. There are
several imputation methods available to handle missing data, and they can be broadly



Chapter 3. Dataset 19

Figure 3.1: Figure showing the deletion criteria for missingness of data. The left side
shows the percentage of missing values for each feature before (top) and after (bottom)
cut-off; likewise the right side shows percentage of missing features for participants.

categorized into two types: single imputation methods, and multiple imputation meth-
ods. In our study, we adopted a strategy of harmonization through multiple imputation,
owing to its potential advantages when implemented correctly. As noted by Siddique
[98], these advantages include the preservation of variables on their original scale, the
elimination of the need for specialized analytical methods after the imputation process,
the retention of relationships among variables, and the accommodation of between-trial
variability. The choice of imputation method depends on various factors such as the
type of missing data, the sample size, the distribution of the data, and the analysis goals
[107]. MICE (Multiple Imputation by Chained Equations) imputation is often preferred
because it provides a flexible, robust, and efficient approach to handle missing data,
particularly when the missingness is non-ignorable and related to other variables in the
dataset.

Figure 3.2 shows the effect on the distribution of a selection of variables before and
after applying imputation. We can observe that the general distribution of the variables
post imputation remains similar to pre imputation, with the exception of the ’loneliness’
feature; a reason for this could be that the missing data mechanism is not missing
completely at random (MCAR), meaning that the missingness is related to the values of
the variable itself or to other variables in the dataset.

3.4 Exploratory Data Analysis

The objective of this section is to provide a comprehensive understanding of the data,
along with providing a notion of the quality of the data after performing the various
preprocessing techniques described in the previous subsections.

Figure 3.3 shows the distribution of the study participants according to the number of
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Figure 3.2: Figure showing the effect of imputation on the distribution of a sample of
covariates (time independent).

months that they participated in the study. From this figure, it is clear that a large portion
of participants were only in the study for a single recorded period (0 months), which
hinders the time-to-event modelling capability that we strive to achieve. Nonetheless, we
have a good distribution of participants that remain in the study for different durations
of time, with the frequency spiking at around the time of each wave (2 year period).
Although not visible in the log frequency graph in Figure 3.3, the frequency graph below
makes clear the difference between participants with the event of interest of dementia,
compared to the total observations. This class imbalance is something however that
is to be expected when dealing with healthcare data [60], and the evaluation metrics
(section 2.3) that we use must account for this imbalance.

Figure 3.4 explores the univariate Kaplan-Meier model, stratified across different feature
values. The Kaplan-Meier plot displays the probability of survival (being dementia
free) on the y-axis and time on the x-axis; the curve starts at 1.0, which represents
the probability of survival at the beginning of the study. As time passes, the curve
drops to reflect the proportion of individuals who have experienced the event of interest,
dementia. The results that we obtain generally match with other literature, for example
Figure 2 in [68], which shows a similar graph for the probability of being dementia-free
over time, stratified by age, where the older age groups have a magnitude of rate of
change of the probability of being dementia-free over time greater than younger groups.
The same observation can be made with our results in Figure 3.4, where the older age
groups are increasingly more at risk of dementia over time. Moreover, Figure 2 in
[68] shows another example stratified by gender, showing females having a greater
magnitude of rate of change, matching that of our results in Figure 3.4.
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Figure 3.3: Figure showing the survival time distribution of our data (time independent).

Figure 3.4: Figure showing the univariate Kaplan-Meier distribution, stratified amongst
different covariate values (time independent).



Chapter 4

Experiments

We aim to investigate the following core questions in our investigation:

1. Question: Is it possible to improve upon existing research on predictive models
for anticipating the likelihood of dementia onset over time for this dataset?
The event of interest is dementia. The competing risk is death.

2. Question: Can these predictions be explained on an individual level - identifying
the factors that contribute to an increased or decreased risk of dementia onset for
a particular person?
Such that can help individuals make informed decisions to take preventative
measures.

3. Question: Can these explanations be generalised to the broader population -
identifying the factors that contribute most commonly to dementia onset?
Such that can aid in influencing health policies.

This chapter aims to explore Question 1, discussing the design choices, experimental
details, and the results obtained by our models.

4.1 Experimental Setup

The objective of this section is to consolidate all the various methodologies that were
previously discussed in chapter 2, with the intention of demonstrating their collective
integration and providing justification for their selection, prior to delving into the
outcomes produced by these methodologies (section 4.2).

Figure 4.1 shows a pipeline of the project’s investigation, illustrating the sequential
steps involved in the analyses. The first step begins with performing preprocessing
on the raw ELSA dataset, which is described further in chapter 3, the result of which
provides us with two cleaned datasets: time dependent data, and time independent data.

22
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Figure 4.1: An abstract overview of the pipeline of the project.

4.1.1 Temporal Aspect

Investigating time-varying effects is imperative to the conduct of Cox survival analyses
[20]. The identification and consideration of time-varying effects provides critical
information on specific temporal patterns that may not be apparent through alternative
methods. For instance, the conventional Cox model may not display a statistically
significant effect of a particular variable; however, tests on the same variable may
reveal compelling evidence that its effect is non-constant over time. This change in the
variable’s effect may explicate the non-significant hazard ratios reported in previous
Cox analyses, such as that of [101]. Therefore, an examination of time-varying effects
is crucial in preventing erroneous deductions and obtaining crucial insights that would
have otherwise been overlooked [20].

To incorporate the temporal aspect of the data in the different models utilized, modified
versions were employed, as described in chapter 2. The initial pre-processing steps
were undertaken in Python, and it was the intention to continue using Python for the
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remaining project; however, some specialised models, such as time varying random
survival forest models were only available in R [34], in fact, the referenced paper
was only released 2 months prior to the writing of our paper. Therefore, in order to
accommodate for this cross-linguality, the processed datasets were stored in forms that
could be used by both R and Python, as shown in Figure 4.1.

4.1.2 Competing Risks

In populations with elderly subjects, such as the ELSA dataset, other causes of failure
may occur prior to the event of interest (onset of dementia). Competing risk events
prevent the occurrence of the event of interest, as well as the potential benefits of an
intervention, thus it is imperative that prognostic models incorporate the consideration
of competing risk events [114].

We can estimate cause-specific hazard models by censoring patients who experience the
corresponding competing event, and subsequently fit standard Cox regression models,
as detailed in the tutorial by Putter et al. [92].

4.2 Univariate Models

Whilst univariate models allow for stratification of the population based on covariates,
as shown in the right Figure 4.2, these models do not account for multiple covariates,
and only provide an insight into how the risk of onset of dementia changes over time.

The paper [36] highlights issues that may arise when using simplified analytic solutions
to handle competing events, such as censoring the competing events. The way of
handling competing risks can influence how study results are understood and can
significantly impact absolute and relative risk estimates, especially if competing events
are frequent. The Aalen-Johansen estimator [24] is presented as a way to avoid these
issues and obtain more accurate estimates of risk in the presence of competing events.
The left plot in Figure 4.2 shows the cumulative density between the two models for
the whole population, where the KM model consistently has higher incidence values;
a similar evaluation is shown in [87], in which the presence of competing risks, the
Kaplan-Meier model is known for overestimating the cumulative incidence.

We can use univariate models to help determine single variable relationships between
the onset of dementia and the variable of interest. For the purpose of this section, we
focus on gender, widely accepted as disproportionately leading to increased risk of
dementia onset for women [19, 112]. The log-rank test (chapter 2) provides a statistical
comparison of two groups, which we can use to quantify whether there is a significant
difference of the survival curves between the groups. We can test for example, with the
null hypothesis H0: there is no difference between genders in terms of the distribution
curve, and H1 being: the genders have different distribution curves. We can use the
chi-squared statistic with one degree of freedom, giving a p value < 0.005, which means
we can reject the null hypothesis, and therefore we can show that there is a significant
difference between the genders, also shown in 4.2. We can support this claim with other
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Figure 4.2: Comparison of univariate estimators with competing risk

literature, which states that women have a greater risk of developing dementia during
their lifetime [82].

4.3 Cox Proportional Hazards Model

In order to account for the multivariate nature of our data, we can use the Cox model.
Given the prevalence of this model in similar literature, and our focus on interpretable
machine learning, we use this model as a baseline in our experiments. As denoted in
section 2.1.1, there are different variations of the Cox model, and in order to evaluate
the best of these, we run experiments on all of these variations, shown in table 4.1,
evaluating the performance of the models based on the concordance index, brier score,
and brier skill score (section 2.3). The penalised model utilises regularisation with
hyperparameter values λ = 0.2, α = 0.9 (from equation 2.6), this value was chosen by
performing grid search, defining a grid of hyperparameter values to test, and evaluating
the model with each combination of values.

The results in Figure 4.3 illustrate the impact of temporality and competing risks on
hazard ratios, specifically for a subset of covariates utilized in the penalized Cox model.
The primary objective of this visualization is to provide a rationale for the necessity of
accounting for these factors (temporality, and competing risk) in the model, which can
ultimately enhance the accuracy and reliability of the model’s output. Interestingly, the
inclusion of competing risks (4.3b) reveals a similar pattern to the univariate model,
whereby the hazard is overestimated before accounting for the competing risk. Moreover,
certain variables are more affected by competing risks than others; for instance, the
variable ’headlma’ exhibits a noticeable reduction in its hazard ratio. On the other hand,
the temporal aspect modifies the results to a greater extent than the competing risk
alone, as depicted in Figure 4.3c. This modification reduces the range of the confidence
interval for all features and skews most features to a hazard ratio of 1. Certain variables,
such as ’headlmo,’ appear to have a substantial non-constant effect over time, with a
hazard ratio increase of 0.2, similar outcomes were observed in [20] when considering
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the temporal aspect.

Table 4.1 presents the outcomes of the analyses, with the best model being the penalized
Cox model that accounts for both the temporal aspect and the competing risk of death;
these results are consistent with those presented in [101]. Notably, our (non-temporal,
penalised) model slightly surpasses the performance of the model in [101] in terms of
the C-Index metric, unfortunately however it is not possible to compare a discrimination
measure (i.e BS), as [101] does not provide such a measure.

Model Time
dependent

Competing
Risk C-Index Brier Score BSS

✓ N/A 0.0408 0.150
✓

✗ N/A 0.0411 0.144
✓ 0.748 0.0431 0.102

Cox
Proportional
Hazard ✗

✗ 0.788 0.0438 0.088
✓ N/A 0.0405 0.156

✓
✗ N/A 0.0407 0.152
✓ 0.779 0.0410 0.146

Penalized
Cox
Proportional
Hazard

✗
✗ 0.801 0.0415 0.135

Table 4.1: The model results for the different variations of Cox Proportional Hazard. Note
that the C-Index is not applicable for the time varying models, given the definition of the
C-Index (chapter 2). 0.0480 is the reference Brier Score used for the calculation of BSS.
Values in bold indicate the best performing model for each metric. The time used for
calculating all Brier Scores was t = 100.

Even when using penalized cox proportional hazard, it is difficult to use this model to
accurately predict the effect of covariates on the event of interest, this is because of
the underlying proportionality assumption (section 2.1.1). The Cox model operates on
the premise that all estimated survivor curves possess a consistent underlying structure
(proportional hazards), which may not be an accurate depiction of actual outcomes,
in fact, we see this assumption break down in the right Figure 4.2, where the male to
female risk ratio changes over time. Conversely, the Random Survival Forests method
does not make assumptions regarding the proportionality of hazards and is capable of
accommodating a wide range of survivor curve shapes that may differ significantly
among various subject groups [110].

4.4 Random Survival Forest

Random Survival Forests (RSF) methodology is an attractive alternative approach to
Cox model, as it is well-suited for handling high-dimensional covariate data and is
adaptable to complex associations between predictors and outcomes, such as nonlinear
effects or high-order interactions [72]. Moreover, it allows us to investigate techniques
in interpretable machine learning to explore the decisions made by our model, which
we do in chapter 5.

Similar to the previous section on Cox proportional hazards, we conducted four experi-
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(a) Time invariant; without competing risk. (b) Time invariant; with competing risk of death.

(c) Time variant; without competing risk. (d) Time variant; with competing risk of death.

Figure 4.3: The hazard ratios for specific covariates using the penalized cox proportional
model. The colours indicate the different types of variables, as discussed in section 3.1,
where: red⇒ cognitive reserve, green⇒ financial factors, blue⇒ social isolation and
perception, gray⇒ physical activity, black⇒ demographic variables, and dark-red⇒
smoking. The exact definitions of the variables can be found in table C.1.
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ments using RSF, considering the combination of competing risk and temporality. In
order to maximise the model’s performance, we first perform hyperparameter tuning
on each of the four different RSF models that we run. Specifically, we optimized the
number of decision trees in the forest β and the minimum number of samples required
to split an internal node m, as in section 2.1.2; one example of this process is shown
in Figure 4.4. While tuning the exact number of trees is unnecessary in RSF, a larger
number of trees generally leads to better performance. Therefore, we needed to iden-
tify the point at which performance plateaus to ensure computational feasibility and
optimality. In order to choose these values, we used 5-fold cross validation using Grid
Search. Whilst there are potentially other hyperparameters that we can also optimise,
such as: the criteria with which to split on (i.e MSE or MAE), the maximum depth of
individual trees, and the size of the bootstrapped dataset to train each decision tree with,
it was infeasible to account for all of these hyperparameters due to the long training
time cost associated with the process.

Figure 4.4: Hyperparameter tuning of Random Survival Forest with no competing risk
and no temporality; tuning number of trees in relation to the Brier Score metric.

Table 4.2 shows the results obtained from these models. Notably, much like with the
Cox model, the best performing model that we obtained is that which considers both
the temporal aspect, and competing risk, as it achieves the highest Brier Skill Score. In
comparison to existing literature, we achieve comparable results to the models presented
in [101] that do not account for the temporal aspect, our models demonstrate improved
C-Index scores, which may be attributed to our hyperparameter optimization or the use
of different feature selection methods. Similar to [101], we see notable improvements
in the performance of our RSF models, as compared to the Cox models, with a 230%
increase in the BSS and a 9.5% increase in the C-index when comparing the best models
from both approaches. This improvement is expected for the aforementioned reasons,
with the lack of underlying statistical assumptions needed for RSF models [121], and
the ability for RSF to handle high dimensionality data. We provide a detailed discussion
of the results in Section 5, where we also explore the explanations for the decisions
made by the model.

We also discuss in chapter 5 the use of a single decision tree for increased interpretability,
as it allows us to directly view the decision process made by the model. Decision
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trees are however known for overfitting to the training data [83], a common practise
to mitigate this is to apply pruning, which is a technique used to reduce its size and
complexity by removing certain branches or sub-trees that do not significantly contribute
to its accuracy. The pruning process starts by growing the tree to its maximum size,
evaluating accuracy, and iteratively removing branches or sub-trees from the leaves
if they do not improve accuracy, until no further improvement is possible [83]. After
applying this step, our decision tree achieves a C-Index of 0.629 and a BSS of 0.105,
although these metrics are significantly lower than those of both RSF and Cox, they still
demonstrate predictive ability, as they outperform a simple majority-class allocation of
no dementia onset.

Model Time
dependent

Competing
Risk C-Index Brier Score BSS

✓ N/A 0.0311 0.353
✓

✗ N/A 0.0313 0.349
✓ 0.877 0.0321 0.332

Random
Survival
Forest ✗

✗ 0.870 0.0320 0.333

Table 4.2: The model results for the different variations of Random Survival Forest.
0.0480 is the reference Brier Score used for the calculation of BSS. The time used for
calculating all Brier Scores was t = 100.

Table 4.3 presents a comparison of our model with other related works in the field. It is
noteworthy that the two Random Survival Forest (RSF) methods outperform the Deep
Neural Network (DNN) approach. This is likely due to the feature selection process,
where the DNN method selected only 91 covariates [10], while our model utilized 226
covariates (as shown in Table C.1). The study also mentions that the DNN approach
achieves comparable results to a Cox model that uses the same features. The Cox model,
as presented in the table, achieves a high C-Index score by utilizing genetic information,
as demonstrated in Table 3 of [91]. However, the Brier Score of the Cox model is
relatively high, and it is twice that of our model, indicating lower accuracy (similar to
Mean Squared Error). Nonetheless, without a baseline score to calculate the Brier Skill
Score, it is difficult to ascertain the effectiveness of the model relative to ours.

Model Underlying
Model C-Index Brier Score BSS

Ours RSF 0.877 0.0321 0.332
[101] RSF 0.866 - -
[10] DNN 0.757 - -
[91] Cox* 0.917 0.0640 -

Table 4.3: Results obtained by similar research conducted on longitudinal studies
investigating dementia or related diseases. * indicates that the model was exposed to
genetic data, blood biomarkers, and therefore cannot directly be used for comparison
with the other models that do not use such information.



Chapter 5

Evaluating Explanations

This chapter aims to explore Question 2 and Question 3, using the best model we
obtained (RSF) from our investigation in chapter 4, aiming to explore insights that we
can obtain from these models at an individual and broader level.

To facilitate the evaluation of local explanations, particularly those pertaining to
individual-level explanations, we will conduct two case studies of persons. Specifi-
cally, Person ID 6545 will represent an individual with consistently low probability
of developing dementia over the duration of the study. On the other hand, Person ID
1692 will represent an individual with progressively increasing likelihood of dementia
onset during the study period. Figure 5.1 depicts the survival probabilities of both
individuals throughout the study. The use of such divergent case studies will enable us
to examine explanations that identify the factors that can heighten or lessen the risk of
dementia onset. Additionally, this approach will enable us to investigate the variables
that individuals with high and low risk of dementia can modify to decrease their risk,
recognizing that these variables may differ between the two groups.

Figure 5.1: Survival curve of chosen individuals. A lower survival probability denotes a
higher probability of dementia onset.

30
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5.1 Local Explanations

5.1.1 Interpretations using LIME

LIME produces a list of explanations that shows how much each feature contributes
to the prediction of a specific data sample (section 2.2.3). This affords a means of
explicability within a restricted context, while also permitting the identification of those
attributes whose modification will have the most pronounced effect on the prediction.

The results generated by LIME for our two case studies are presented in Figure 5.2. Each
figure displays the feature values that either prevent or lead to the onset of dementia,
with the negative side representing the former and the positive side representing the
latter; the top features that contribute most to the final outcome are shown. From Figure
5.2a, we can observe the top contributing features that prevented the onset of dementia.
It is noteworthy that none of the top contributing features were located on the positive
side, which is reflected in Figure 5.1, where the risk of dementia for this particular
individual is shown to be particularly low. In contrast, Figure 5.2b illustrates that all
top contributing features are located on the positive side. Additionally, not all of the
feature explanations are the opposite of those in Figure 5.2a. For instance, we observe
the introduction of new feature contributions, such as scchdh and scqolj. This variation
is due to the consideration of two different individuals, and their respective risk factors
are influenced by different covariates.

(a) Person ID 6545. (b) Person ID 1692.

Figure 5.2: LIME local explanations. See Table C.1 for variable definitions.

5.1.2 Counterfactual Explanations

Counterfactual explanations allow us to see the minimal changes required to the features
to alter the outcome (section 2.2.4). This is an especially powerful tool in a healthcare
context like ours, as it provides a clear interpretation of which factors an individual can
change to reduce their risk of dementia. Importantly, we can adjust the counterfactual
explanation model to disregard unmodifiable factors such as age and BMI, which assures
us of obtaining explanations that are genuinely viable, as we have done.
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Person
ID Feature Values to Change Dementia

Outcome
Original nright = 0.93 findiff 4.0 = 0.0 scqoli = 2.47 1

1692
Proposed nright = 3.1 findiff 4.0 = 0.1 scqoli = 0 0
Original scqold = 2.0 marstat 5.0 = 0.5 0

6545
Proposed scqold = 0.6 marstat 5.0 = 0.7 1
Original scqolr = 2.0 scfami 1m = 0.98 0

6545
Proposed scqolr = 0.2 scfami 1m = 0.2 1

Table 5.1: Counterfactual explanations on our two case studies, displaying the minimum
adjustments necessary to the features to modify the outcome.

Table 5.1 illustrates a subset of possible examples from our two case studies. The table
demonstrates, for instance, that if Person 1692 were to enhance their numeracy index
(nright) by 2.17, and possibly manage their wealth more efficiently (scqoli, findiff-4),
the RSF model would likely classify them as not having dementia. Likewise, if Person
6545 were to perceive life as less full of opportunities (scqolr), and correspond less
frequently with relatives (scfami), our RSF model would predict a higher likelihood
of them developing dementia. However, these explanations should not be accepted
without scrutiny, as the underlying change in outcome relies on our RSF model, which
although accurate, is not infallible. Additionally, we have only selected a subset of
possible explanations. We provide another example of a counterfactual explanation for
individual 6545, to highlight that multiple counterfactual explanations are feasible, and
choosing the most appropriate explanation for a particular individual can be challenging
[84].

By taking advantage of this observation, we can execute several explanations for an
individual and identify the features that appear most frequently, while considering the
distance metric (section 2.2.4). Figure 5.4c displays these features for Person 6545,
which, if modified (likely in conjunction with other variables), would lead to the onset
of dementia. It is noteworthy that the top features presented in the figure differ entirely
from those in Table 5.1, as the table only encompasses a small fraction of the feasible
explanations. Interestingly, the variables depicted in the figure incorporate financial
aspects, including expenses related to leisure activities (referred to as leisureu), which
were not identified by the LIME algorithm.

5.2 Global Explanations

5.2.1 Permutation Feature Importance

Permutation importance is a statistical technique for assessing the importance of pre-
dictor variables in our RSF [27]. It involves randomly shuffling feature values and
observing the impact on model accuracy; by comparing the accuracy before and after
permutation of a single predictor variable, the feature’s importance can be determined
(section 2.2.1).

Figure 5.4a shows the result of this process, which shows that the key indicator of
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dementia onset was whether the participant was able to answer correctly the current
year (cfdaty). This makes sense, since dementia is a condition that leads to memory
loss, and an individual not being able to correctly answer this question likely relates
to dementia. In fact, almost all of the observations could be said as being related
to cognitive abilities, which one would expect, with the exception of scchdh, scqolq,
scqolj.

5.2.2 Global Feature Importance (Counterfactual)

Much like in 5.4c in which we gathered several counterfactual explanations for a single
individual in order to determine the most likely features that contribute to dementia,
we can generalise this idea in order to generate global feature importance. We do this
by observing several counterfactual explanations for several individuals in the study
population and taking the features that occur most frequently, while considering the
distance metric (section 2.2.4).

Figure 5.4d shows the global counterfactual explanations produced. Surprisingly, the
model shows us that the top 4 important features are related to socioeconomic variables,
such as money spent on leisure and total income; by contrast, permutation feature
importance did not include any financial variables in its top features. We observed a
similar behaviour for section 5.1.2.

5.2.3 Small Decision Tree Nodes

As mentioned in section 4.4, we also trained a small, pruned decision tree in order
to have a highly interpretable model. The structure of this model is shown in Figure
A.5, which shows the exact decisions made by the model to come to a prediction for
dementia onset. Importantly, we can observe that many of the features that the tree
considers are similar to our global counterfactual explanations in 5.4d. This may be
because both of these models consider covariates in conjunction with one another, they
are multivariate explanations of the key model features, whereas cox score ranking
(section 5.2.5) provides univariate explanations.

5.2.4 Submodular Pick (LIME)

To provide a global understanding of the model, [95] propose explaining a set of indi-
vidual instances, called Submodular pick, an extension of LIME. This method selects a
few representative instances by identifying diverse and non-redundant explanations. It
computes feature importance and defines a coverage function, which measures the total
importance of features appearing in at least one instance. The objective is to maximize
coverage within a budget constraint, solved through a greedy algorithm adding instances
with the highest marginal coverage gain until the budget is met [95]. This results in
using a small number of examples that are carefully chosen to provide a comprehensive
understanding of the model’s behavior.

Figure 5.3 shows these global explanations. We provide three different explanations
based on different risk sets, this is to allow diversity in our explanations in order to see
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why people with low risk of dementia have low risk, and why people with high risk of
dementia have high risk, as these factors are not always the same, as shown in 5.3a and
5.3c. For example, we see cognitive factors (cfdaty) in all of the explanations, which
we would expect. However, 5.3b and 5.3c both show that speaking to their children
less often (scchdh) is a significant factor leading to higher risk of dementia. This is
something that does not necessarily translate the other way round, for example, we do
not see this variable occurring in 5.3a, meaning that it does not mean that speaking to
children more frequently than (2, which means at least once or twice a week) leads
to lower dementia risk. Interestingly, we also see that difficulty making phone calls
(headlph) plays an important role in each of the three explanations, which is likely
strongly correlated with speaking to children. We explore this further in chapter 6.

(a) Very low risk of dementia. (b) Low risk of dementia. (c) Very high risk of dementia.

Figure 5.3: LIME global explanations for different risk sets.

5.2.5 Cox Score Ranking

The Cox score ranking is a univariate approach to assess the association between
predictor variables and survival outcomes in a Cox proportional hazards model. For
each predictor variable, a separate univariate Cox model is fitted, and the resulting
concordance index is used as a ranking criterion (section 2.2.2). This method is used to
identify the most important predictors of the outcome and to estimate the magnitude
and direction of their effect on the hazard function. Note that unlike all of the other
interpretability methods that we used, this method does not investigate our black-box
RSF model, but instead simply investigates each feature’s individual predictive ability.

The application of the method to the dataset is depicted in Figure 5.4b. The results
demonstrate that age is the most significant univariate predictor of dementia, consistent
with prior research [101, 8]. Additionally, several cognitive variables that have previ-
ously been identified as important factors for predicting dementia are observed. Notably,
the present investigation reveals which covariates, when considered in isolation, are
reliable indicators of dementia onset.
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(a) Permutation feature importance. (b) Cox model applied individually to each variable.

(c) Local counterfactual explanation, conducted on
Person 6545 using 50 counterfactual explanations.

(d) Global counterfactual explanations, based on 50
different individuals.

Figure 5.4: Feature ranking based on different explanation techniques.



Chapter 6

Discussion

This chapter aims to discuss the key observations that were found in the analyses
conducted in chapter 5, relating these findings to the three research questions posited in
chapter 4, while also drawing comparisons to prior research in the field.

6.1 Observations

Observation 1: The most crucial determinants are cognitive and social factors

Upon reviewing Figure 5.4 and Figure 5.3, it becomes evident that the global explana-
tion techniques predominantly emphasize cognitive or social factors. To validate this
hypothesis, a simple approach involves summing the occurrences of each covariate
across the global model explanations to identify the most frequently featured ones.
The following table exhibits the top 5 covariates from the global explanations, wherein
social variables are denoted in gray and cognitive variables are represented in red.

Variable Occurrence
scchdh 6
headlph 5
cfdaty 5
headlmo 5
headlma 4

Observation 2: Interpretation methodology greatly influences explanations

Observing the three global explanation techniques in Figure 5.4, it is apparent that
each method yields distinct explanations. Notably, none of the models concur on their
top 3 feature contributions, with each model showcasing a unique set of top 3 features.
Such discrepancies are likely attributable to underlying dissimilarities in the models.
For instance, global counterfactual explanations were executed on a relatively small
subset of the population, comprising only 50 individuals, a decision motivated by time
constraints; this limited sample size may account for the considerable differences in
the covariates chosen by this model compared to the other global models. Furthermore,
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Cox Score Ranking operates as a univariate estimator, analyzing variables individually,
which diverges from the other explanation methods, which explains its choice of a
distinctive subset of covariates. Nevertheless, it is noteworthy that permutation feature
importance and global LIME explanations share nearly all of the same covariates.

Observation 3: Interpretations should be conducted at a local level

Upon closely examining the local counterfactual explanations that were investigated in
section 5.1.2, it becomes evident that they offer a robust mechanism for determining
the factors that an individual can alter to influence their dementia outcome. Notably,
the explanations exhibit variations between individuals, as demonstrated by LIME in
section 5.1.1, and cannot be adequately captured by a global model, as the feature
importance tends to differ between local and global explanations (Fig 5.3). As a result,
we suggest that local explanations be employed whenever feasible and that health-
care models employed in practice integrate such explanations, as they are presently
underutilized [46].

Our findings align with prior research in the field. For instance, Age UK’s report [9]
highlights that individuals diagnosed with amnestic mild cognitive impairment (MCI)
have an elevated likelihood of developing dementia. Similarly, other studies, including
Mayo Clinic [77], Alzheimer’s Society [14], and Dementia Australia [33], have arrived
at comparable results. Furthermore, there exists a correlation between social isolation
and dementia, as demonstrated by studies such as Rafnsson et al. [93] utilizing the
ELSA dataset, in addition to other studies [39, 106]. While it is widely recognized
that age and gender are significant risk factors for the onset of dementia [79, 9], we
specifically concentrate on examining modifiable factors rather than non-modifiable
ones such as age.

Figure 6.1: Spearman rank correlation of top 5 selected covariates.

Figure 6.1 indicates that the variable scchdh does not demonstrate a significant correla-
tion with the other top covariates. This fact may account for its high rank in the Cox
Score Ranking (section 5.2.5), given that it does not fluctuate with other covariates but
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serves as an effective standalone predictor. Additionally, we observe that the cognitive
variables exhibit low levels of correlation among themselves, contrary to what we
might have expected, though is a good indicator that the tests assess distinct cognitive
functions.

Finally, we undertook an examination to determine the performance of a non-temporal
RSF model trained solely on the five identified covariates, with no consideration given
to competing risks. This model resulted in a C-Index of 0.773 and a BSS of 0.143,
which is nearly comparable to the original Cox model we trained (section 4.3), the
hazard ratios for which are shown in Figure A.3, also see Figure A.2.

6.2 Conclusion

In this study we addressed three core research questions (section 4.1) related to predic-
tive modeling and interpretation of the risk of dementia. First, we proposed a machine
learning-based approach for predicting the onset of dementia over time, building upon
prior research, demonstrating that our approach outperforms existing methods in the
ELSA dataset, which can be attributed to the inclusion of temporality and competing risk
(Question 1). Second, we proposed several model-agnostic interpretation techniques
that allow us to explain the predictions made by our model on an individual level. Our
results showed that the identified factors contributing to an individual’s risk of develop-
ing dementia are heterogeneous and can differ significantly from those that contribute
to the risk at the population level (Question 2). Finally, we presented our findings
on the factors that are most commonly associated with dementia onset, globally. We
found that cognitive and social factors, such as memory and social participation, are the
most crucial determinants of dementia onset (Question 3) when ignoring confounding
variables that are non-modifiable, such as age.

To conclude, we propose one of the first machine learning based approaches for survival
analysis in a dementia context on the ELSA dataset, building upon prior research in
[101]. We demonstrate the effectiveness of our proposed model, while also conducting
a thorough analysis and comparison of various models that can account for temporality
and competing risk, and present a concrete baseline Cox model along with it. We built a
model that achieves state-of-the-art performance for the dataset and task, beating that of
prior research, and propose a much simpler model that achieves notable performance on
the same task. Moreover, we presented, to our knowledge, the first interpretable machine
learning techniques to ELSA in a dementia context, in which we discuss both local and
global explanation techniques to facilitate informed individual decision-making and
healthcare policy-making.



Chapter 7

Limitations & Future Work

7.1 Limitations

Care needs to be taken when making causal inferences using our results, as altering
the method used to account for competing risks may have a significant impact on the
interpretation of study findings and can substantially influence both absolute and relative
risk estimates [36].

We also use survival analysis under the censoring assumption, which assumes that
participants did not drop out of the study due to reasons related to the study, which in
practise is unlikely. Despite the presence of measures within the dataset to prevent this,
such as conducting follow-ups with relatives and documenting reasons for dropout, there
may still be instances where a participant withdrew from the study due to factors such
as a deteriorating financial situation, yet provided different reasons for their departure;
this could potentially impact the results of our study. Moreover, the ELSA dataset
specifically is limited to the UK elderly population, and may not generalise well to
other countries or age groups. Further, the ascertainment of dementia and AD involved
a combined algorithm based on a physician-made diagnosis and a higher score on the
informant reports (IQCODE). Nonetheless, it should be noted that the diagnosis was
reliant on self-reporting by the participants or their caregivers, which means that it is
likely that only noticable and severe cases of dementia were reported, whereas milder
cases were omitted from being reported [101].

7.2 Future Work (MInf Part 2)

Whilst it is true that random forest algorithms exhibit immunity to statistical assumptions
[121], they are not optimally suited for handling unbalanced data, and are sensitive
to hyperparameter choices, which can significantly affect model performance [121].
Moreover, other methods such as Support Vector Machines (SVM) have been shown to
outperform random forests in clinical settings [63]; for the purpose of part 2 of the MInf
project, it would be interesting to compare how the model performance of an SVM
compares to the models discussed in this paper.
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The present study had a central focus on interpretability for feature selection, with the
potential application for healthcare policies. However, Part 2 of the MInf project aims
to shift the focus to the model itself and enhancing its performance. One reason for
not utilizing dimensionality reduction techniques in the current study was to maintain
interpretability, as it is not possible to directly interpret the representations of the princi-
pal components for example. However, in Part 2 of the project, we intend to employ
state-of-the-art latent space representation methods, such as autoencoders, similar to the
approach described in a recent study [75], that employs a novel technique using a hybrid
autoencoder approach. This approach will allow us to perform dimensionality reduction
by representing features in a latent space, prior to feeding this data into our model;
using such a technique is likely to give improved model performance, as compared
to manually selecting a subset of features like we did in chapter 3, even though our
selection criteria was informed based on prior research.

Our goal is to incorporate the latent space representation into a deep neural network, such
as the end-to-end deep learning pipeline, DeepHit, proposed by Yoon [70]. DeepHit is
a type of deep neural network that learns the survival time distribution directly, thereby
avoiding the need to make assumptions about any underlying stochastic processes. As
a result, the parameters and structure of the stochastic process utilized by the model
are contingent upon the covariates present within the dataset under examination for
survival analysis [70]. Moreover, this framework allows us to account for cause-specific
competing risks, much like we did throughout this paper, thereby allowing us to make
direct comparisons of model performance between this proposed framework and that of
standard non-deep-learning based approaches.

Since we have shown in this paper that machine learning (ML) techniques, such as RSFs
deliver improved predictive performance as compared to standard methods such as Cox
proportional hazards model on our dataset and task, much like [101] shows; we will use
ML techniques (RSF, SVM) as our baseline. Our study question involves using a more
complex, deep learning based approach with the hypothesis that it will yield improved
performance due to the aforementioned reasons. To further our research, we intend
to employ similar interpretation techniques such as LIME, SHAP, and counterfactual
explanations to comprehend the model’s underlying decisions. However, a potential
challenge could arise in interpreting these explanations, given that we will potentially be
using a latent space representation of our covariates; a simple solution may be to simply
feed an individual’s raw data through this autoencoder to have it represented in the same
latent space, and then evaluate the explanations. Moreover, we aim to use a recently
proposed methodology, SurvSHAP which modifies SHAP interpretations, aiming to
provide explanations for survival models specifically [11], there exists modifications of
this technique to focus on time-dependent effects as well [65]. The use of this will allow
for clearer interpretations, as it is specifically designed for survival models, whereas
SHAP is designed for point predictions [11].

To the best of our knowledge, there has been no exploration of deep neural networks
exploring time-to-event analysis in the context of dementia on the ELSA dataset.
Moreover, deep time-to-event models such as that of DeepHit [70] have not explored
using interpretability techniques as of yet; incorporating these novel aspects into our
MInf Part 2 approach will bring originality to our research.
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Appendix A

Supplementary Figures

(a) Without competing risk. (b) Accounting for competing risk of death.

Figure A.1: The partial effects on outcome plot, showing a comparison of the model’s
baseline curve with variations in covariate(s), allowing for variable comparison while
keeping other variables constant. The exact definitions of the variables can be found in
table C.1.
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Figure A.2: Univariate Kaplan Miere plot stratified based on the 5 key covariates identi-
fied.
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Figure A.3: The hazard ratios attributed to the basic penalized Cox PH model trained
solely on the 5 covariates identified.

Figure A.4: The Population Attributable Fraction for potentially modifiable risk factors of
dementia in Brazil [23].
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Figure A.5: Pruned decision tree visualised. Terminal nodes indicate the ’estimated rate’
- the higher the value, the higher the risk of dementia onset.



Appendix B

Model Replication

Owing to the nature of the data, which requires academic use agreements through UK
Data Service, it is not possible to make it publicly accessible. Nevertheless, there exists
a possibility of coming to an agreement to share the dataset, subject to further discussion
with my supervisor.

Kindly take note that certain modifications were implemented on the underlying pack-
ages to enable the acquisition of the figures and data presented. The environment files
containing these modifications are available upon request and can be shared accordingly.
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Appendix C

Variable Definitions

Variable Variable label
edend Age Finished Cont. Full Time Education, Merged From

Current And Previous Waves
edqual Educational Qualification - Info Merged From Current And

Previous Waves
schleave Type Of School Leaver - Info Merged From Current And

Previous Waves
nonwhite Ethic Origin (White/Non-White)
sex Male, Female
died p Respondent Had A Spouse Who Died Since Last Nterview
couple Is In A Couple (Not Including If Partner In An Institution)
ngrandch Number Of Grandchildren Or Great-Grandchildren Inside

Or Outside The Household
ngrandchinhh Number Of Grandchildren Living In The Household
nsibs Number Of Living Siblings
age Age: Copy Of Indage/Dhager
hhgriddhwork Whether Was In Paid Employment Last Week - Taken From

Hhgrid
hhgriddhwork p Whether Partner Was In Paid Employment Last Week -

Taken From Hhgrid
wpactive Current Working Status
hours Hours Of Work Main Job (Employed Or Self Employed)
everwork Ever Worked
pp mem Currently A Member Of Private Pension Scheme

(Cont/Rec/Ret Rights)
pp rec Currently Receiving Income From A Private Pension
pp nrec Number Of Private Pensions From Which Receiving Income
inhergt100 Chances Of Inheritance Greater Than £100K (Inhergt10 +

Exinhe)
expliveb Chances Of Living To Age X (Banded Version)
explive75b Chances Of Living To Age 75 (Banded Version)
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srh3 hse Self-Reported Health, Hse Form, 3-Way
llsill Has (Limiting) Long-Standing Illness (Heill/Helim)
hlimwrk Has Health Problem That Limits Kind Or Amount Of Work

(Helwk/Hetemp)
hemobwa Mobility: Difficulty Walking 100 Yards
hemobsi Mobility: Difficulty Sitting 2 Hours
hemobst Mobility: Difficulty Stooping, Kneeling Or Crouching
hemobre Mobility: Difficulty Reaching Or Extending Arms Above

Shoulder Level
hemobli Mobility: Difficulty Lifting Or Carrying Weights Over 10

Pounds
headlea Adl: Difficulty Eating, Such As Cutting Up Food
headlma Iadl: Difficulty Using Map To Figure Out How To Get

Around Strange Place
headlsh Iadl: Difficulty Shopping For Groceries
headlph Iadl: Difficulty Making Telephone Calls
headlme Iadl: Difficulty Taking Medications
headlmo Iadl: Difficulty Managing Money, Eg Paying Bills,Keeping

Track Expenses
smoker Whether Current Smoker
nright Number Of Numeracy Questions Correct
numtype2 Numeracy Index - 2 Way Split
execnn Index Of Executive (Non-Numeracy) Function (0-20)
nrooms Number Of Rooms In House - Merged Information From

Current And Previous Waves
hopaym How Much Paid For This Property? Info Merged From

Current And Previous Waves
leisureu Money Spent On Leisure Wkly Upper Bound

(Holeis/Holeisb)
foodinu Money Spent On Food In Wkly Upper Bound (Ho-

food/Hofoofb)
casp 19 Self-Derived
cesd Self-Derived
cfani Number Of Animals Mentioned
cfaniq Refers To Cfani (1 If Cfani = 1, 0.75 If Cfani = 2, 0.5 If

Cfani = 3, 0.25 If Cfani = 4, 0 If Cfani = 5)
cfdatd Whether Correct Day Of Month Given
cfdatm Whether Correct Month Given
cfdaty Whether Correct Year Given
cfday Whether Correct Day Given
cflisd Number Of Words Recalled After Delay
cflisdq Refers To Cflisd (1 If Cflisd = 1, 0.75 If Cflisd = 2, 0.5 If

Cflisd = 3, 0.25 If Cflisd = 4, 0 If Cflisd = 5)
cflisen Number Of Words Recalled Immediately
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cflisenq Refers To Cflisen (1 If Cflisen = 1, 0.66 If Cflisen = 2, 0.33
If Cflisen = 3, 0 If Cflisen = 4)

cfmem Whether Prompt Given For Prospective Memory Test (Re-
membering To Write Initials)

depression Self-Derived
eqtotinc bu f Bu Equivalised Total Income - Validation Flag
eqtotinc bu s Bu Equivalised Total Income - Summary Var
eqtotinc bu t Bu Equivalised Total Income - Imputation Flag
headlba Difficulty Bathing Or Showering
headlbe Difficulty Getting In And Out Of Bed
headldr Difficulty Dressing, Including Putting On Shoes And Socks
headlhg Difficulty Doing Work Around The House Or Garden
headlpr Difficulty Preparing A Hot Meal
headlwa Difficulty Walking Across A Room
headlwc Difficulty Using The Toilet Including Getting Up Or Down
hedibar Arthritis Dx
hedibas Asthma Dx
hedibca Cancer Dx
hediblu Lung Disease Dx
hedibos Osteoporosis
hedibpd Parkinson’S Dx
hedibps Psychiatric Condition
hediman Angina Dx
hedimar Abnormal Heart Rhythm
hedimbp High Bp Dx
hedimdi Diabetes Or High Blood Sugar
hedimhf Congestive Heart Failure
hedimmi Heart Attack
hedimst Stroke Dx
heeye Self-Reported Eyesight (While Using Lenses If Appropriate)
hefla Whether Fallen Down Since Last Interniew
hefrac Whether Has Fractured Hip
hehear Self-Reported Hearing (While Using Hearing Aid If Appro-

priate)
hehelf Self-Reported General Health
heji Whether Had Joint Replacement
hemobch Difficulty Getting Up From Chair After Sitting Long Periods
hemobcl Difficulty Climbing One Flight Of Stairs Without Resting
hemobcs Difficulty Climbing Several Flights Of Stairs Without Rest-

ing
hemobpi Difficulty Picking Up A 5P Coin From A Table
hemobpu Difficulty Pulling Or Pushing Large Objects
indager Definitive Age Variable Collapsed At 90 Plus.
indobyr Year Of Birth Collapsed At 90 Plus
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loneliness Self-Derived
mmpain Timed Walk: Whether Had Pain Whilst Walking
nethw bu f Bu Total Net Primary Housing Wealth - Validation Flag
nethw bu s Bu Total Net Primary Housing Wealth - Summary Var
nethw bu t Bu Total Net Primary Housing Wealth - Imputation Flag
nettotnhw bu f Bu Total Net Non-Housing Wealth - Validation Flag
nettotnhw bu s Bu Total Net Non-Housing Wealth - Summary Var
nettotnhw bu t Bu Total Net Non-Housing Wealth - Imputation Flag
nettotw bu f Bu Total Net (Non-Pension) Wealth - Validation Flag
nettotw bu s Bu Total Net (Non-Pension) Wealth - Summary Var
nettotw bu t Bu Total Net (Non-Pension) Wealth - Imputation Flag
no contact in 1m chd Self-Derived
no contact in 1m fam Self-Derived
no contact in 1m frd Self-Derived
no partner Self-Derived
psceda Whether Felt Depressed Much Of The Time During The Past

Week
pscedb Whether Felt Everything They Did During The Past Week

Was An Effort
pscedc Whether Felt Their Sleep Was Restless During The Past

Week
pscedd Whether Was Happy Much Of The Time During The Past

Week /R
pscede Whether Felt Lonely Much Of The Time During The Past

Week
pscedf Whether Enjoyed Life Much Of The Time During The Past

Week /R
pscedg Whether Felt Sad Much Of The Time Duing The Past Week
pscedh Whether Could Not Get Going Much Of The Time During

The Past Week
rockwood frailty Self-Derived
scchdg How Often The Respondent Meets Up With Their Children

On Average
scchdg 1m Self-Derived
scchdh How Often The Respondent Speaks On The Phone To Their

Children
scchdh 1m Self-Derived
scchdi How Often The Respondent Writes To Or Emails Their

Children
scchdi 1m Self-Derived
scfamg How Often The Respondent Meets Up With Other Relatives
scfamg 1m Self-Derived
scfamh How Often The Respondent Speaks With Other Relatives

On The Phone
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scfamh 1m Self-Derived
scfami How Often The Respondent Writes To Or Emails Other

Relatives
scfami 1m Self-Derived
scfeela How Often Respondent Feels They Lack Companionship
scfeelb How Often Respondent Feels Left Out
scfeelc How Often Respondent Feels Isolated From Others
scfrdg How Often The Respondent Meets Up With Their Friends
scfrdg 1m Self-Derived
scfrdh How Often The Respondent Speaks With Their Friends On

The Phone
scfrdh 1m Self-Derived
scfrdi How Often The Respondent Writes To Or Emails Their

Friends
scfrdi 1m Self-Derived
scorg1 Organisational Membership: Political Party, Trade Union Or

Environmental Group
scorg2 Organisational Membership: Tenants Or Resident Group Or

Neighbourhoold Watch
scorg3 Organisational Membership: Member Of A Church Or Other

Religious Group
scorg4 Organisational Membership: Member Of A Charitable As-

sociation
scorg5 Organisational Membership: An Education, Arts Or Music

Group Or Evening Class
scorg6 Organisational Membership: Member Of A Social Club
scorg7 Organisational Membership: Member Of A Sports Clubs,

Gym, Or Exercise Class
scorg8 Organisational Membership: Member Of Any Other Organi-

sations, Clubs Or Societies
scorg9 Organisational Membership: Not A Member Of Any Organ-

isation, Club Or Society
scqola Casp19 Scale: How Often Feels Age Prevents Them From

Doing Things They Like
scqolb Casp19 Scale: How Often Feels What Happens To Them Is

Out Of Their Control
scqolc Casp19 Scale: How Often Feels Free To Plan For The Future
scqold Casp19 Scale: How Often Feels Left Out Of Things
scqole Casp19 Scale: How Often Can Do The Things They Want

To Do
scqolf Casp19 Scale: How Often Family Responsibilities Prevents

Them From Doing Things
scqolg Casp19 Scale: How Often Feels They Can Please Them-

selves What They Do



Appendix C. Variable Definitions 61

scqolh Casp19 Scale: How Often Feels Their Health Stops Them
Doing What They Want To Do

scqoli Casp19 Scale: How Often Shortage Of Money Stops Them
Doing Things

scqolj Casp19 Scale: How Often Look Forward To Each Day
scqolk Casp19 Scale: How Often Feels That Their Life Has Mean-

ing
scqoll Casp19 Scale: How Often Enjoys The Things They Do
scqolm Casp19 Scale: How Often Enjoys Being In The Company

Of Others
scqoln Casp19 Scale: How Often Looks Back On Their Life With

A Sense Of Happiness
scqolo Casp19 Scale: How Often Feels Full Of Energy These Days
scqolp Casp19 Scale: How Often Chooses To Do Things They Have

Never Done Before
scqolq Casp19 Scale: How Often Feels Satisfied With The Way

Their Life Has Turned Out
scqolr Casp19 Scale: How Often Feels That Life Is Full Of Oppor-

tunities
scqols Casp19 Scale: How Often Feels The Future Looks Good To

Them
totinc bu f Bu Total Net Income - Validation Flag
totinc bu s Bu Total Net Income - Summary Var
totinc bu t Bu Total Net Income - Imputation Flag
wxwgt Cross-Sectional Weight
bmivg6 Bmi
famtype 1.0 Household Type (Single)
famtype 2.0 Household Type (Lone Plus Dependent Children)
famtype 3.0 Household Type (Lone Plus Non-Dep Children Aged<30)
famtype 4.0 Household Type (Lone Plus Non-Dep Children Aged>=30)
famtype 5.0 Household Type (Lone Plus Both)
famtype 6.0 Household Type (Couple)
famtype 7.0 Household Type (Couple Plus Dependent Children)
famtype 8.0 Household Type (Couple Plus Non-Dep Children Aged <30)
famtype 9.0 Household Type (Couple Plus Non-Dep Children Aged

>=30)
famtype 10.0 Household Type (Couple Plus Both)
famtype 11.0 Household Type (Extended Family)
famtype 12.0 Household Type (Extended Family Plus Children)
famtype 13.0 Household Type (Other Multiple Tax Unit)
famtype 14.0 Household Type (Other Multiple Tax Unit Plus Children)
tenure -7.0 Tenure (Institution)
tenure -1.0 Tenure (Not Applicable)
tenure 1.0 Tenure (Own It Outright)
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tenure 2.0 Tenure (Buying It With The Help Of A Mortgage Or Loan)
tenure 3.0 Tenure (Pay Part Rent And Part Mortgage (Shared Owner-

ship)
tenure 4.0 Tenure (Rent It)
tenure 5.0 Tenure (Live Here Rent Free (Including Rent Free In Rela-

tive/Friends))
socrent -1.0 Social Renter (Not Applicable)
socrent 0.0 Social Renter (Private Renter)
socrent 1.0 Social Renter (Social Renter)
marstat 1.0 Marital Status (Married)
marstat 2.0 Marital Status (Cohabiting)
marstat 3.0 Marital Status (Single, Never Married)
marstat 4.0 Marital Status (Widowed)
marstat 5.0 Marital Status (Divorced)
marstat 6.0 Marital Status (Separated)
ecpos 2.0 Economic Activity (Employee)
ecpos 3.0 Economic Activity (Self-Employed)
ecpos 4.0 Economic Activity (Seeking Work)
ecpos 6.0 Economic Activity (Sick And Not Seeking)
ecpos 7.0 Economic Activity (Retired)
ecpos 8.0 Economic Activity (Unoccupied)
findiff -1.0 Financial Stability (Inapplicable)
findiff 1.0 Financial Stability (Manage Very Well)
findiff 2.0 Financial Stability (Manage Quite Well)
findiff 3.0 Financial Stability (Get By Alright)
findiff 4.0 Financial Stability (Don’T Manage Very Well)
findiff 5.0 Financial Stability (Have Some Financial Difficulties)
findiff 6.0 Financial Stability (Have Severe Financial Difficulties)
smokerstat -1.0 Smoker Status (Refused/Not Asked/Don’T Know)
smokerstat 0.0 Smoker Status (Never Smoked)
smokerstat 1.0 Smoker Status (Ex Smoker - Occasional)
smokerstat 2.0 Smoker Status (Ex Smoker - Regular)
smokerstat 3.0 Smoker Status (Ex Smoker - Dk Freq)
smokerstat 4.0 Smoker Status (Current Smoker)
finstat C1CM Final Status Of Respondent (C1Cm)
finstat C3CM Final Status Of Respondent (C3Cm)
finstat C4CM Final Status Of Respondent (C4Cm)

Table C.1: Table showing the list of variables/features used in the models. This should
serve the purpose of being able to cross-reference the interpretations of features men-
tioned in the paper. There are 226 features listed in the table above, excluding the model
outputs (survival-months, dementia), which are not shown in the table above.
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