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Abstract
Double descent is a phenomenon observed in machine learning models where validation
loss initially decreases, then increases, and eventually decreases again as effective
model complexity is increased. This can be used to overtrain sequence-to-expression
models that take DNA sequences as input and try to predict protein expression in silico.
Overtraining these models by increasing training epochs increases the effective model
complexity, which pushes the model into the over-parameterised regime where double
decent takes place. In this project, sequence-to-expression models were overtrained to
observe double descent across a wide range of datasets, training, and validation sample
sizes, and architectures. We also observed that, under certain model and training set
criteria, double descent improves the performance of low-N sequence-to-expression
models.
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Chapter 1

Introduction

1.1 Motivation

Sequence-to-expression models have become a growing interest in the biotechnology
community. The ability to predict protein expression from DNA sequences in silico
gives researchers a measurable understanding between sequence and expression, which
enables effective strain optimisation.

These machine learning models aim to predict gene expression levels based on in-
put DNA sequences. The models take advantage of the fact that the sequence of a gene
can provide insight into its function and the level of expression in a cell. Sequence-to-
expression models allow us to further our understanding of which genes are expressed
in certain cell types, which can help identify the underlying molecular mechanisms that
drive cell differentiation and disease progression. Developing a sequence-to-expression
landscape using machine learning models drastically reduces the cost of strain devel-
opment as it eliminates costly rounds of prototyping and characterisation needed to
identify high production DNA sequences.

Although sequence-to-expression models have been shown to generalise well on unseen
data (Vaishnav et al., 2022), they require enormous amounts of data to do so. DNA
sequence to expression data, at a scale of >20,000,000 samples, which is required for
these large models, can incur a large cost for research groups who want to train these
models on their own proprietary data.

The paper by Nikolados et al. (2022) addresses this issue by training sequence-to-
expression models that generalise with low amounts of training sequences. These
predictors are trained on ∼4,000 sequences and, in some cases, develop state-of-the-art
accuracy. Although these models generalise well, they may not be extracting as much
information from the data as possible.
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Chapter 1. Introduction 2

A recent paper by OpenAI (Nakkiran et al., 2019) popularised a phenomenon named
double descent, which proposed that as effective model complexity increases, validation
loss initially decreases, then increases, and eventually decreases again. To induce this
double descent phenomenon, we need to ensure that the effective model complexity is
sufficiently larger than the number of training samples.

Given that sequence-to-expression models are more economically viable when we
train on a low number of sequences, and double descent occurs only when the number
of samples is sufficiently smaller than the model size, this makes ”low-N” sequence-
to-expression models a strong candidate for double descent, which can improve the
performance of deep learning models.

1.2 Project Objective

Low-N sequence-to-expression models operate in the over-parameterised regime where
the number of training samples is much less than the effective model complexity. To
induce double descent, we must overtrain the model to increase it’s effective model
complexity and, in turn, push the model deeper into the over-parameterised regime.

Although it has been hypothesised, deep double descent has not been documented
in the literature to exist for a deep regression task such as sequence-to-expression
models. We must first prove its existence across sequence-to-expression models, then
observe under what conditions it improves model performance.

To increase the effective model complexity, there are two main ways shown by Nakkiran
et al. (2019) which is altering the architecture by increasing the number of parameters
to induce double descent (model-wise double descent) and training the model for more
epochs (epoch-Wise double descent). Given that Model-Wise double descent involves
us increasing the parameters of models that have already been fine-tuned for sequence-
to-expression tasks, the simplest method to prove the existence of double descent would
be through epoch-wise double descent.

The research question of this project is:

• Does epoch-wise double descent exist in sequence-to-expression models, and can
it be used to improve overall model performance?

Therefore, the main objectives of this project are:

• Show epoch-wise double descent occurs empirically across different datasets and
training sample sizes.

• Show epoch-wise double descent occurs empirically across different sequence-to-
expression architectures, both low-N and not.

• Show epoch-wise double descent can improve model performance by evaluating
R2 both before and after it occurs.
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Epoch-wise double descent will be shown by plotting validation loss as a function of
training epochs. Traditionally, this plot is used to determine after how many epochs we
should stop training the model. The lower the validation loss is, the better the model
generalises to unseen data, which can be translated into better model performance. The
model has produced double descent when the validation loss, relative to the number of
training epochs, initially decreases, then begins to increase, and finally decreases again.
In the case where the second descent minima are lower than the first descent, we will
evaluate a held-out test set both before and after double descent has occurred to show
how model accuracy has improved.

The main accomplishment of this project is that we show empirically that double
descent does occur in sequence-to-expression models across datasets, training set sizes,
and architectures. Epoch-wise double descent also, under certain model and training set
criteria, improves the performance of a low-N sequence-to-expression model.



Chapter 2

Background

This chapter provides a literature review of machine learning methods for sequence-
to-expression modelling as well as the origination of the double descent phenomenon.
First, we discuss how protein expression is predicted from DNA sequences using current
deep and non-deep machine learning techniques. Then, we introduce the double descent
phenomenon by discussing the classical bias-variance trade-off and how double descent
contradicts conventional wisdom. Finally, double descent is discussed in a deep learning
context and how it is achieved.

2.1 Sequence-to-Expression Models

Traditionally, strain engineering required large libraries of sequence variants where
researchers would select a subset of the top producing sequences for scale-up or iterative-
design. Recently, a model-guided approach has emerged that makes use of sequence-to-
expression regressors that learn the shape of the phenotype landscape, allowing iterative
querying of the model to produce high-yield sequences.

When compared to other methods of sequence-to-expression modelling (LaFleur et al.,
2022), machine learning has become a favourite amongst researchers for its ability to
produce highly accurate regressors. These machine learning models take a set of inputs
and try to predict a continuous output variable. In the case of sequence-to-expression
models, the set of inputs is a DNA sequence with a numerical encoding, and the contin-
uous output variable is the protein expression. The process by which the expression
is predicted from the DNA sequence can be done using deep or non-deep machine
learning methods.

2.1.1 DNA Encoding Strategies

Sequence encoding is required to transform the given DNA string into a numerical
encoding that can be interpreted by a machine learning model. Methods of sequence
encoding have been shown to impact the accuracy of regressors, with some encoding
methods increasing the performance by 80% when evaluated on the same regressor with
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an inferior encoding method (Nikolados et al., 2022). Encodings can be considered
at three resolutions: global, subsequence, and single base. These resolutions describe
what part of the sequence each individual encoding represents (Table 2.1).

Encoding Strategy Resolution Dimension
biophysical properties global 8

k-mer ordinal subsequence 4k

k-mer counts subsequence L− k+1
one-hot binary single base 4L
one-hot ordinal single base L

Table 2.1: DNA encoding methods used for sequence-to-expression models. Each
encoding method is shown with its corresponding resolution, i.e., what part of the
sequence each encoding represents, as well as the dimension of the resulted encoding.
The dimension of the encoding is also the input dimension of our models.

Global resolution encoding is where each sequence is described by its biophysical
properties. Each sequence has eight biophysical properties: AT content (%AT), codon
adaptation index (CAI), ramp bottleneck position (Btl-p) and strength (Btl-s), mean
hydropathy index (MHI), and minimum free energy (MFE-1, MFE-2, MFE-3). These
properties provide a comprehensive description of sequence features, encompassing
four distinct levels of granularity: nucleotide sequence (which relates to %AT), codon
sequence (which relates to CAI, Btl-p, Btl-s), amino acid sequence (which relates to
MHI), and secondary mRNA structure (which relates to MFE-1, MFE-2, MFE-3). Each
of these properties can be encoded numerically and fed into a machine learning model.

At subsequence resolution, we consider overlapping k-mers encodings. A k-mer is
a nucleotide sequence of certain length, where each k-mer is given a unique integer
value between 1 and 4k (k-mer ordinal), or the number of occurrences of each k-mer is
recorded (k-mer counts).

Finally, at single base resolution, we consider two versions of one-hot encoding, binary
and ordinal. Binary one-hot encoding is where each base of the sequence is allocated
a column in a matrix, with a one at the position corresponding to the base and a zero
everywhere else. The resulting matrix is of size 4×L where L is the length of the
sequence. Ordinal one-hot encodes each base with a unique integer value i.e. A = 1, C
= 2, G = 3, and T = 4. The resulting encoding has length L. Figure 2.1 gives a graphical
representation of the possible DNA sequence encodings.

Nikolados et al. (2022) investigates each of these encodings across combinations of non-
deep machine learning models and training sample sizes. It was observed that binary
one-hot encoding consistently yielded better model performance when compared to the
other encoding methods evaluated on the same model. For a Random Forest model
trained on 2,865 sequences using biophysical properties encoding, the resulting model
performance was R2 = 0.44 but when the encoding method was changed to binary
one-hot, the performance increased to R2 = 0.79. A similar increase in performance
was shown across all other models and training sample sizes.
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Figure 2.1: DNA encoding strategies for the sequence ”AGTCAGT”. Each encoding
method is shown with the corresponding values that would be produced. Binary one-hot
encodes a 4×7 matrix, ordinal one-hot encodes a 7-feature array, biophysical properties
encodes a 8-feature array, k-mers ordinal using 2-mers encodes a 6-feature array, and
k -mers counts using 2-mers encodes a 16-feature array.

2.1.2 Non-deep Machine Learning Methods

Non-deep machine learning methods such as multilayer perceptrons (Rumelhart et al.,
1985), support vector machines (Drucker et al., 1996), random forest regressors (Breiman,
2001) and ridge regressors (Hastie et al., 2009) have found applications in finance (Khai-
dem et al., 2016; Kim, 2003), logistics (Yang et al., 2020) and energy (Liu et al., 2021)
and biotechnology is no exception.

Nikolados et al. (2022) showed that mildly accurate models with R2 ≥ 0.5 can be
obtained when training random forest regressors or support vector machines on ap-
proximately 1,000 sequences with binary one-hot encoding. It was also shown that,
compared to all other non-deep models, random forest performed best when trained on
greater than 1,000 sequences (Figure 2.2). Furthermore, the same model can achieve an
accuracy of R2 ≥ 0.75 for different mutational series and encoding strategies.

Comparable results were observed by Höllerer et al. (2020) who trained ridge regressors,
random forests, and k-nearest neighbours (Altman, 1992) on a varied number of DNA
sequences. For all training sizes, from 2,500 to ∼248,000 sequences, random forest
with binary one-hot encoding outperformed all other models, achieving an accuracy of
R2 = 0.835 in some cases.
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Figure 2.2: Impact of encoding strategy and model choice across different training
sample sizes and mutational series. The choice of non-deep regressor as well as the
encoding strategy are shown to be the key contributors to the overall model R2. This
was shown across various training sizes and mutational series. Random forest paired
with binary one-hot encoding outperforms all other combinations. Figure from Nikolados
et al. (2022).

2.1.3 Deep Machine Learning Methods

Although non-deep machine learning methods achieve reasonable accuracy, the biggest
leaps in performance come from the use of deep machine learning models (Cuperus
et al., 2017) such as residual neural networks (ResNet) (He et al., 2016; Xie et al.,
2017b) and convolutional neural networks (CNN) (Xie et al., 2017a). The ability to
consume a large corpus of sequence-to-expression data and detect highly nonlinear
correlations between sequence and expression gives deep models the power to be highly
accurate regressors that can be incorporated into optimisation algorithms that search for
high expression sequences (Gupta and Zou, 2019).

Deep sequence-to-expression models such as DeepSEA (Zhou and Troyanskaya, 2015),
DeepAtt (Li et al., 2020) and DanQ (Quang and Xie, 2016) have been proposed in recent
literature and can achieve extremely high accuracy with many sequences. However,
a more generalised CNN model proposed by Vaishnav et al. (2022), outperforms the
previous models (Figure 2.3), and achieves state-of-the-art accuracy (Pearson’s r =
0.960, P < 5×10−324, n = 61,150) when trained on the same number of sequences.
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Figure 2.3: Comparison of performance across deep sequence-to-expression
model architectures. Deep sequence-to-expression models can achieve state-of-the-
art Pearson correlation coefficients when trained on tens of millions of sequences. The
CNN proposed by Vaishnav et al. (2022) has shown to outperform other models in the
literature by a considerable amount. Although a transformer model was also constructed,
this will not be considered. Figure from Vaishnav et al. (2022).

Whilst laboratory automation (Carbonell et al., 2019) and reduction in DNA sequencing
cost have made acquisition of large datasets more feasible, most laboratories cannot
afford to sequence tens of millions of DNA samples to train large regressors, which
develops the need for ”low-N” predictors. These predictors are capable of producing
highly accurate results while being trained on only a few thousand sequences, which is
more achievable for most research labs.

Nikolados et al. (2022) showed that deep learning improves accuracy without more data.
They proposed a CNN, designed with Bayesian optimisation, that, regardless of training
sample size, was consistently more accurate than all non-deep machine learning models.
The model achieved accuracy of R2 ≥ 0.6 consistently when trained on as few as 1,000
sequences and even achieved state-of-the-art accuracy of R2 = 0.87 for some sequence
sub-spaces. Although this model focuses on operating in the low-N sequence space, it
can achieve high accuracies of R2 = 0.82 when trained on 160,000 sequences.
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2.2 Double Descent

2.2.1 Bias-Variance Trade-Off

When discussing supervised machine learning models, specifically for predictive mod-
elling, the prediction error can be broken down into two components: the error due to
bias and the error due to variance. The bias-variance trade-off is the conflict in trying to
minimise both bias and variance error.

Bias error is the difference between the model’s expected predictions and the cor-
rect value of what we are trying to predict. A model with high bias can fail to capture
underlying patterns and relations, i.e., underfitting.

Variance error is the statistical disparity between the model’s predictions and a given
value. This highlights how sensitive the model is to slight changes in the training set. A
model with high variance may focus on random noise in the training data rather than
generalising the dataset, i.e., overfitting.

Traditionally, to build a good predictive model, we must balance overfitting and under-
fitting such that the total error is minimised. (Geman et al., 1992; Hastie et al., 2009).
As we increase the complexity of the model, the total variance will increase, and the
model will begin to overfit. On the other hand, if the model isn’t complex enough, the
bias is high, and the model will underfit. Conventional wisdom in machine learning
suggests there is an optimum model complexity where the increase in bias is equivalent
to the decrease in variance and model performance is maximised (Figure 2.4).

Figure 2.4: The classical U-shaped bias-variance trade-off curve. This curve repre-
sents the conventional wisdom of a machine learning training schedule. The x-axis is
the capacity of a given machine learning model H i.e., the complexity of that model. The
y-axis is the risk metric used to evaluate model performance; for regressors, its usually
Mean Squared Error or Mean Absolute Error. Figure from Belkin et al. (2019).
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2.2.2 The Double Descent Phenomenon

Recent research in machine learning has revealed a surprising phenomenon called
double descent, which challenges the conventional wisdom that increasing model
complexity always leads to worse performance due to overfitting. Unlike traditional
models, modern deep learning models exhibit a double descent curve where performance
initially decreases as model complexity increases, but then improves again beyond a
certain point (Figure 2.5).

Figure 2.5: A generalisation of the double descent curve. The double descent curve
incorporates the classical U-shaped curve in the ”classical” regime while also showing
the second descent that occurs in the ”modern” interpolating regime. The point at which
the first ascent stops, and the second descent starts is called the interpolation threshold,
which occurs when training error is approximately zero. Figure from Belkin et al. (2019)

When model complexity is insignificant compared to the number of training samples,
it is said to be under-parameterised and exhibits traditional bias-variance trade-off
behaviour, i.e., we operate in the ”classical” regime (Figure 2.5). As we approach
the model complexity being equal to the number of training samples, we arrive at the
interpolation threshold, where the training error is effectively zero and the test error
reaches a peak. At this point, a double descent can occur if we continue to increase the
model complexity so that it is greater than the number of training samples. The second
descent occurs when the model is over-parameterised and begins to reduce the test error
of the model while the train error remains at zero, i.e., we operate now in the ”modern”
interpolating regime (Figure 2.5).

The phenomenon has been previously observed in non-deep machine learning models
(Opper, 1995; Advani and Saxe, 2017; Spigler et al., 2019) but the notion of ”double
descent” was first put forward by Belkin et al. (2019) where it was shown to exist
for non-deep machine learning methods such as 2-layer neural networks and decision
trees. Since then, there have been attempts to mathematically explain double descent
for simple linear regressors (Nakkiran, 2019; Belkin et al., 2020) by isolating and
understanding the phenomenon in a simple setting.
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Figure 2.6: Observation of model-wise double descent for ResNet18 models. Model-
wise double descent was observed by training 64 ResNet-18 models with varying
width parameters to increase the EMC of the model. Each model was trained on the
CIFAR-10 dataset with 15% label noise for 4,000 epochs. We observe that the critically
parameterised regime occurs at a width parameter of 11, where the test loss peaks. The
test loss at width parameter 64 is lower than the previous low in the under-parameterised
regime, meaning model-wise double descent produced a more accurate model. Figure
from Nakkiran et al. (2019).

Deep double descent was first introduced by Nakkiran et al. (2019) which showed that
double descent was a robust phenomenon that can be observed on a varied number
of datasets and architectures and proposed a general double descent that is more than
simply increasing the number of model parameters to increase model complexity. An
effective model complexity (EMC) of training procedure was defined as the maximum
number of samples needed to achieve close to zero training error, i.e., at what point we
reach the interpolation threshold. The definition of EMC as well as the General Double
Descent Hypothesis is:

Effective Model Complexity: The Effective Model Complexity (EMC) of a train-
ing procedure T , with respect to distribution D , and parameter ε > 0 is defined as:

EMCD,ε := max{n |ES∼Dn [ErrorS(T (S))] ≤ ε} (2.1)

Generalised Double Descent hypothesis: For any natural data distribution D , neural-
network-based training procedure T , and small ε > 0, if we consider the task of
predicting labels based on n samples from D then:

Under-parameterized regime: If EMCD,ε is sufficiently smaller than n, any per-
turbation of T that increases its effective complexity will decrease the test error.
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Over-parameterized regime: If EMCD,ε is sufficiently larger than n, any pertur-
bation of T that increases its effective complexity will decrease the test error.

Critically-parameterized regime: If EMCD,ε ≈ n, then a perturbation of T that
increases effective complexity will decrease or increase the test error.

Nakkiran et al. (2019) continues by showing that double descent can be observed
as a function of EMC rather than strictly model complexity. They observe an ”epoch-
wise double descent”, where the architecture of the model is fixed but the EMC is
increased by increasing the number of training epochs. They also observe a ”model-
wise double descent” for CNNs and ResNets in which the model architecture is altered
to increase the EMC, which produces a double descent curve (Figure 2.6).

Nakkiran et al. (2019) concludes that the perception of ”more data is better” pro-
posed in Belkin et al. (2019) may be false and that more data may lead to worse test
accuracy, if we are currently operating in the over-parameterized regime, as increasing
the number of training samples will decrease the gap between EMC and the number of
samples (n). This gap is what allows double descent to improve model performance.
Double descent occurs only when we do not employ an early stopping technique and
allow the model to overfit by removing all regularisation.

2.2.3 Epoch-wise Double Descent

As previously mentioned, epoch-wise double descent is observed when we keep the
model size fixed and increase the number of training epochs. A training epoch is the
number of times the training data is passed through a machine learning model. For the
first few training epochs, the model operates in the under-parameterised regime where
the EMC is less than the number of training samples present. As we increase EMC,
by letting the model train for more epochs, we hit the critically parameterised regime
where the EMC is equal to the number of training samples and test loss reaches a peak.
Finally, as we continue to let the model train for longer, the EMC increases further,
pushing us into the over-parameterised regime where the test loss has again decreased
while the train error remains close to zero.

In most cases of model training, an early stopping technique is used, which watches
out for test loss increasing as we increase the number of training epochs and reverts
the model back to a point where test loss is lower. This technique is only useful for
models whose EMC is in the critically parameterised regime, i.e., the EMC is equal to
the number of training samples, as once the model is fully trained, it will have a peak
test loss. For this reason, early stopping is removed during epoch-wise double descent,
as we do not want the model to stop training once the critically parameterised regime is
reached; rather, we want to push it further into the over-parameterised regime where we
can exhibit double descent.
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Nakkiran et al. (2019) observed the effect of epoch-wise double descent across varied
model sizes (Figure 2.7). They show that for models that have a low EMC, double
descent does not occur when we increase the number of training epochs because the
number of training samples is never less than the EMC. For intermediate sized models,
i.e., when EMC ≈ n, double descent does occur, but the second descent is higher
than the first, meaning we are better off stopping model training. Epoch-wise double
descent is only useful when we have large models where EMC > n as the test loss after
the second descent is lower than the first, which translates into better overall model
performance.

Figure 2.7: Observation of epoch-wise double descent for ResNet18 models. Epoch-
wise double descent was observed by training three different ResNet18 models, all with
varying EMC trained, on the CIFAR-10 dataset with 20% label noise. Models with a lower
width parameter have a lower EMC meaning double descent does not occur. Larger
models exhibit epoch-wise double descent as their EMC is sufficiently larger than the
training data size. Figure from Nakkiran et al. (2019).

Although epoch-wise double descent can occur on calibrated datasets such as CIFAR-10
and CIFAR-100 (Krizhevsky, 2009), artificial label noise must be applied (Nakkiran
et al., 2019). Label noise of 10-20% on these datasets allows double descent to occur,
and the second descent is more prominent than the first. Whilst epoch-wise double
descent does not occur on datasets with zero noise, this gives precedence for datasets
with a natural noise component to use epoch-wise double descent to improve model
performance.

2.3 Project Timeline

The Project Timeline can be detailed as follows:

1. Investigate epoch-wise double descent across different sequence-to-expression
datasets. Previous papers that observe the epoch-wise deep double descent phe-
nomenon use models trained on CIFAR-10 and CIFAR-100 datasets for classifi-
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cation tasks. I propose to use deep regression models trained on sequence data
to predict protein expression and determine if epoch-wise double descent occurs
across different sequence-to-expression datasets.

2. Investigate if training sample size can affect double descent for sequence-to-
expression models. When operating in the over-parameterised regime, we must
have sufficiently fewer training samples than EMC to achieve epoch-wise double
descent. I propose to investigate if epoch-wise double descent occurs for a varied
training sample size that can be used for low-N models.

3. Investigate the effect model architecture has on epoch-wise double descent
for sequence-to-expression models. As shown by Nakkiran et al. (2019), model
size can play a role in epoch-wise double descent as EMC needs to be sufficiently
larger than the number of training samples. I propose to investigate if epoch-wise
double descent is architecture-specific or occurs across all sequence-to-expression
architectures.

4. Show under what conditions epoch-wise double descent can improve model
performance. Previous work has been done to predict protein expression using
sequence data in deep models. I propose to employ epoch-wise double descent to
overtrain the model such that overall test accuracy is improved when compared
to test accuracy before double descent occurs.



Chapter 3

Data

To investigate double descent in sequence-to-expression models, we needed a dataset
consisting of DNA sequences and their corresponding protein expressions. We used
multiple datasets, including complex media, defined media, and mutational series, to
overtrain, validate, and test our models. To ensure our models could process the data
and make predictions on the continuous output variable, we encoded the datasets into
a numerical format suitable for our regressors. This chapter covers the details of our
training and validation datasets, as well as the held-out test set, the preprocessing steps,
and the candidature for double descent.

3.1 Sequence-To-Expression Datasets

Sequence-to-expression datasets consist of millions of DNA sequences and their corre-
sponding yellow fluorescent protein (YFP) expressions. These sequences are promoter
DNA, which defines where transcription of a gene by RNA polymerase begins, and
corresponding YFP expression is then measured (de Boer et al., 2020). All sequences
in our datasets are 110 bp long, meaning there are 110 bases (A,C,G, and T) that make
up our sequence, and the corresponding expression is represented by a floating-point
value. (Table 3.1).

DNA Sequence (110bp) Protein Expression
TGCATTTTTT...TACGGCTGTT 15.15532

ATGATGGCAG...ACACTGCACA 12.34555
AGCTCTGTTA...TCAGCACCGT 7.361053
GTTTACATAA...AAGGTGAATA 10.25913
AGTCAAGGCG...GAGTCATGAT 0.113132

Table 3.1: Example sequences and their corresponding expression values are used
for training, validating, and testing our models. Each sequence used for training is
110 base pairs, initially represented as strings but encoded numerically before being
input into the model. Our expression values remain as they are and represent the
continuous output variable our regressors are trying to predict.

15
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3.1.1 Training & Validation Data

To ensure comparability of results, we used the dataset from Vaishnav et al. (2022), as
this gave us the freedom to change the model architecture whilst ensuring meaningful
results would be returned, as this dataset has been used to train various sequence-to-
expression models in the past. This dataset consists of sequences from a defined and
complex media.

During the measurement of protein expression, the promoter sequences are cloned
into an episomal low-copy-number YFP expression vector, which is then transformed
into yeast. The resulting yeast is then cultured in a desired medium for later measure-
ment of YFP expression. The term defined or complex medium refers to the chemical
composition of the media given to the yeast during the culturing process. A defined
medium is one whose chemical composition is exactly known, whereas a complex
medium has an unknown chemical composition.

The defined medium dataset consists of more than 20,000,000 sequences and their
corresponding YFP expressions. These sequences were randomly generated from a
defined medium lacking uracil (SD-Ura). The complex medium consists of more
than 30,000,000 sequences and their protein expression, which have been randomly
generated from Y8205 S. cerevisiae measured in complex (YPD).

Figure 3.1: The complex medium sequence space. The UMAP of the complex medium
sequence space (left) was generated by randomly sampling 1,000,000 sequences from
the dataset and encoding them as overlapping 4-mers. The UMAP demonstrates that
the sequence space is characterised by a single continuous cluster of sequences. The
distribution of expression values (right) is characterised by a multi-modal, left-skewed
distribution. Specifically, the distribution indicates that sequences with higher expression
values are more prevalent in the dataset, but there are still a substantial number of
sequences with lower expression values present in the data.
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In this study, we utilised Uniform Manifold Approximation and Projection (UMAP)
(McInnes et al., 2018) to visualise the complex and defined medium sequence spaces,
as depicted in Figures 3.1 and 3.2. To reduce the dimensions of each sequence, we
encoded them as overlapping 4-mers, which was chosen to align with Nikolados et al.
(2022) who employed a similar strategy to visualise the mutational series dataset. To
obtain an overview of the sequence space while minimising computational time, we
randomly sampled 1,000,000 sequences for each medium. The resulting UMAP visual-
isations showed a single, continuous cluster for both defined and complex mediums.
Additionally, we plotted the distribution of expression values, which revealed a multi-
modal left-skewed distribution for complex medium and a slight bi-modal left-skewed
distribution for defined medium. This indicates that a greater number of sequences have
expression values around 15.

Figure 3.2: The defined medium sequence space. Much like Figure 3.1, the UMAP
(left) was generated by randomly sampling 1,000,000 sequences from the defined
medium dataset and encoding them as overlapping 4-mers. The sequence space is
characterised by one continuous cluster of sequences. The distribution of expression
(right) shows a slight bimodal, left-skewed distribution. This indicates high expression
sequences are more prevalent in the dataset, but low expression sequences are still
abundant.

In Chapter 5, the models were trained and validated using data randomly sampled from
the defined and complex medium datasets. Random sampling was used to obtain an
unbiased sample of the entire sequence space while maintaining the same distribution
of expression values present in the full dataset. To prevent data leakage, where a
sequence-expression pair appears in both the training and validation sets, the samples
were compared against each other prior to training.

While the training data is used solely to overtrain our sequence-to-expression models,
the validation data is evaluated by the model after every epoch to get a validation error.
Traditionally, validation error is used to determine at what epoch training should stop to
avoid overfitting. In our case, this loss is then plotted against training epochs to see if
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double descent has occurred for this training procedure.

3.1.2 Held-Out Test Set

Once we have observed double descent in our models, we need a way to determine if
double descent has improved model performance. Although we can observe if double
descent has improved performance by checking if the validation error is lower after
the second descent than the first, we need a quantifiable metric of improvement for the
model. We can use a held-out test set to evaluate the model both before and after the
double descent to check if model performance improved.

Vaishnav et al. (2022) provides us with a held-out test set that consists of 61,150
native promoter sequences from yeast grown in complex medium. As mentioned, these
sequences will be evaluated to produce an R2 to quantify how well our model generalises
to unseen data before and after the double descent has occurred. Figure 3.3 presents
a UMAP of the held-out test set’s sequence space as well as a distribution of their
expression values.

Figure 3.3: The held-out test set sequence space. The UMAP of the held-out test
set sequence space (left) was generated by encoding all sequences in the set as
overlapping 4-mers. The UMAP demonstrates that the sequence space is characterised
by a single continuous cluster of sequences, which is like that of the defined and complex
media. The distribution of expression values (right) is characterised by a right-skewed
distribution. Specifically, the distribution indicates that sequences with lower expression
values are more abundant in the test dataset.

The UMAP presented in Figure 3.3 was generated using the same parameters as in the
previous figures, with the exception that the entire test set was dimensionality reduced.
Our analysis reveals that the sequence space of the test set is like that of the training
and validation sets, which is evident in the continuity of the cluster observed in Figures
3.1 and 3.2. However, a notable difference between the test set and the training and
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validation sets is the distribution of expression values. Specifically, we observe a right-
skewed distribution of expression values in the test set, which indicates a prevalence of
lower expression sequences. Nonetheless, we note that the test set still contains enough
high expression sequences, which ensures that the testing remains representative of the
sequence space.

3.1.3 Mutational Series Dataset

In the paper by Nikolados et al. (2022), they provided a dataset of Escherichia coli
(E. coli) sequences from 56 different mutational series. During the construction of
sequence-to-expression datasets, a seed sequence is used to generate multiple sequences
in the same area of the sequence space by way of mutation. A mutational series is de-
fined as all sequences generated from a single seed sequence, and hence these sequences
cluster in the same part of the sequence space. Given that each of these mutational
series operates in the same part of the sequence space, we can use the sequences as a
simulation of how these models may be used by researchers, who have access to only
a few thousand sequences and want to predict protein expressions from these DNA
sequences.

The dataset consists of ∼4,000 sequence and expression pairs for each mutational
series. These pairs were partitioned into train, validate, and test sets to train our models
and investigate the phenomenon of double descent. Specifically, we selected five muta-
tional series from the dataset highlighted by Nikolados et al. (2022) as they followed
distinct expression distributions.

Figure 3.4: Mutational Series sequence space. The UMAP visualisation of the
mutational series dataset (left) shows 56 distinct clusters, each representing a mutational
series. To generate the visualisation, 2,400 sequences were sampled from each series
and encoded as overlapping 4-mers. The five series that will be used for training,
validation, and testing of our model are highlighted in the visualisation. Additionally, the
expression values for these five series (right), reveal that each cluster we plan to train on
has a unique distribution. Figure from Nikolados et al. (2022).
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In Figure 3.4, we present the sequence space of all 56 mutational series in our dataset,
along with the 56 clusters formed by these series. To generate this UMAP visualisation,
2,400 sequences were sampled from each series and encoded as overlapping 4-mers.
In addition, Figure 3.4 provides insights into the expression distribution of the five
mutational series selected for our overtraining experiments. These series were chosen
by Nikolados et al. (2022) based on their distribution types, which include uniform,
near-Gaussian, bimodal, right-skewed, and left-skewed. The visualisation provides
a comprehensive overview of the sequence space and expression distribution for the
selected mutational series, which will be used to evaluate our model’s performance
under different conditions.

3.2 Preprocessing

Preprocessing input data is standard practice in most machine learning applications. In
our case, preprocessing of inputs was required as models cannot read input encoded
as strings, such as DNA sequences. Therefore, we must transform our strings into a
numerical equivalent that the model can understand.

As previously mentioned in Chapter 2, DNA sequences have a variety of encoding
methods that have been used across the literature. Although each encoding method has
its merits, Nikolados et al. (2022) showed that binary one-hot improved R2 accuracy of
many non-deep and deep machine learning models when compared to other encoding
methods. This method is also the most popular amongst the sequence-to-expression
model literature (Höllerer et al., 2020; Vaishnav et al., 2022), so it’s useful for compara-
bility of results.

Binary one-hot encoding involves transforming each base pair into an array of length 4,
where each index of that array has either a 0 or 1. The value at each index is dictated by
which base pair we are encoding. For example, if we were to encode base pair A, the
associated array is [1,0,0,0] and for base pair T, the associated array is [0,1,0,0]. This
method of encoding follows for base pairs C and G.

The standard length of a sequence in the dataset is 110 base pairs long, meaning
that once binary one-hot encoding is applied, the input shape for a 1-D convolutional
layer is (110, 4) and (1, 110, 4) for a 2-D convolutional layer. Figure 3.5 visualises the
preprocessing pipeline that occurs before model training.

Label normalisation is a technique used in many machine learning applications to bring
the mean value of a label (in our case, the expression value) close to 0 and the standard
deviation close to 1. Although this is a popular preprocessing method for regression
tasks, it was not employed in Vaishnav et al. (2022) or Nikolados et al. (2022) so for
comparability of results, this was omitted.
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Figure 3.5: The sequence encoding pipeline. The raw sequences must be encoded
in a numerical format before being passed to a model. Each model we train in Chapter
5 follows this preprocessing pipeline. We first transform each base pair into its binary
one-hot equivalent, and we then collate these arrays to form a 4×110 matrix, which is
then transposed (for 1-D layers) or reshaped (for 2-D layers) before being passed to our
machine learning models.

3.3 Candidature for Double Descent

Double descent was observed by Nakkiran et al. (2019) on calibrated datasets such as
CIFAR-10 and CIFAR-100 with artificial label noise added to induce the phenomenon.
For epoch-wise double descent, the second descent only occurs after label noise has
been added, meaning that the amount of noise present in the dataset is a contributing
factor. Therefore, sequence-to-expression models are an excellent candidate for observ-
ing the phenomenon.

Sequence-to-expression data has a natural noise component due to the sequencing
process itself. It was found in a study conducted by Schirmer et al. (2016) that substitu-
tion errors were the primary source of noise in genomic sequencing. During the process
of sequencing, when DNA fragments are amplified through cycles of synthesis for the
detection of the incorporated nucleotides, the DNA polymerase sometimes incorporates
the wrong nucleotide into the DNA strand, which leads to a substitution error. For
example, the polymerase incorporates cytosine instead of thymine, resulting in a C-to-T
substitution error. These errors contribute to the overall noisiness of the dataset we use
to train the models.
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As detailed by Nakkiran et al. (2019), a noisy dataset is more likely to exhibit the double
descent phenomenon, as when we are overfitting, the model starts to learn the noisiness
of the data. This benefits us, as the noisiness is an inhernet part of the dataset and should
be learned to produce a more accurate model. The double descent phenomenon can
then be exploited to decrease the overall test loss of the model and improve performance.

Nakkiran et al. (2019) proposed that double descent only occurs when the effective
model complexity exceeds the number of training samples by a significant margin. This
is particularly relevant to sequence-to-expression models, which require a large amount
of sequence data to train effectively. By leveraging the over-parameterized regime,
where the effective model complexity is much greater than the number of training
samples, we can create more accurate models with less data, making this approach more
feasible for researchers with limited resources.
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Methodology

In this chapter, we present the methodology used for overtraining sequence-to-expression
models to produce epoch-wise double descent. First, we give an overview of each CNN
component, which builds our sequence-to-expression models. Next, we present the
model architectures used for overtraining, which have regularisation and drop-out layers
removed from them. Finally, we present the training procedure and evaluation metrics
used to determine if double descent has occurred and what the improvement was.

4.1 Sequence-to-Expression Architectures

Model architecture is a substantial component of EMC. Each model architecture has
different hyperparameters that contribute to the overall complexity of the model. The
deep double descent phenomenon in Nakkiran et al. (2019) was an empirical observation
that relied on different architectures of classifiers, such as CNNs and ResNets. In this
section, we present multiple architectures in the literature that will be overtrained to
confirm double descent’s existence across sequence-to-expression models.

4.1.1 Components

A typical sequence-to-expression CNN architecture consists of sequentially alternating
layers that extract sequence features and try to predict a continuous output variable, i.e.,
protein expression. Each layer of a CNN executes a linear transformation of the output
from the previous layer by multiplying by a weight matrix and applying a nonlinear
transformation. The three basic layers of a CNN are the convolutional layer, the pooling
layer, the and fully connected (dense) layer.

A convolutional layer computes output by one or two-dimensional convolution op-
erations that have a specified number of kernels, i.e., weight matrices. Each convolution
output is then transformed non-linearly by an activation function, which is then passed
to the next layer of the model. A convolution is defined as follows:

convolution(X)ik = σ(
M−1

∑
m=0

N−1

∑
n=0

W k
mnXi+m,n) (4.1)
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where X is the input of the convolution, i is the index of the output position, k is
the index of the kernels, W k is an M ×N weight matrix where M is window size, N
is input channels, and σ is an activation function that does the non-linear transformation.

A maximum pooling layer downsamples the previous convolutional layers of the feature
map by taking the maximum value of a sub-region of the map. This sub-region, or
pooling window, traverses the feature map and selects the maximum value in each
region. The result is a smaller output feature map, which improves the computational
efficiency of the model. A pooling operation is defined as follows:

pooling(X)ik = max({XiM,k,X(iM+1),k, ...,X(iM+M−1),k}) (4.2)

where X is the input of the pooling, i is the index of the output position, k is the index
of kernels, and M is the sub-region or pooling window size.

A dense layer performs a linear operation on the input and applies a non-linear ac-
tivation function. The layer is referred to as ”fully connected” as all input neurons are
connected to all output neurons. A dense operation is defined as follows:

dense(X) = σ(WX +b) (4.3)

where X is the input of the dense layer, σ is the activation function, W is the weight
matrix, and b is the bias vector.

An activation function σ is applied to the output of each neuron in a convolutional or
dense layer. It introduces non-linearity into the network, allowing it to learn and model
complex, non-linear relationships between input features. The most common activation
functions used in our models are ReLU, Sigmoid, and Linear:

ReLU(X) = max(0,X) (4.4)

Sigmoid(X) =
1

1+ e−X (4.5)

Linear(X) = X (4.6)

The stride of a convolutional layer refers to the distance the filter moves after each
convolution operation. A stride size of one means that the filter slides over one element
after each convolution. Padding, on the other hand, determines the additional values
added to the input data to maintain its original size and shape during the convolution
operation. If a padding value of ”SAME” is used, the amount of padding is applied
uniformly to all elements of the input data, ensuring that the output feature maps have
the same dimensions as the input data.

4.1.2 DeepSEA

The DeepSEA architecture was proposed by Zhou and Troyanskaya (2015) for predict-
ing chromatin effects of noncoding variants. DeepSEA was able to predict chromatin
features with high accuracy, achieving a median area under the curve (AUC) of 0.958,
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which surpassed the state-of-the-art k-mer SVM at the time. This model was chosen as
a basic sequence-to-expression architecture that has been previously used as a bench-
marking model (Vaishnav et al., 2022). This gives us a base architecture to investigate if
double descent occurs, whilst ensuring our results are comparable with recent literature.

The implementation of the architecture, as shown in Table 4.1 and Figure 4.1, was taken
from https://github.com/ljw-struggle/Bioinfor-DeepATT with the L1 and L2
Kernel Regularisation, Kernel MaxNorm Constraint, and Dropout Layers all removed
to induce overfitting.

Blocks Hyperparameter Value
number of filters [320, 480, 960]

kernel size 8
Convolutional (1-3) strides 1

padding SAME
activation ReLU
pool size 4

MaxPool (1-2) strides 4
padding SAME

units 925
Dense (4-5) activation [ReLU, Sigmoid]

bias True
units 1

Dense (final) activation linear
bias True

Table 4.1: The hyperparameters used in our implementation of the DeepSEA
architecture. Our architecture is divided into blocks, with each block corresponding
to a specific section of layers in the model. The values in square brackets denote the
varying parameters for each layer within the block. It’s important to note that both the
Convolutional and MaxPool layers in our architecture are 1-D.

Figure 4.1: Visualisation of our DeepSEA model. Our DeepSEA model begins with
two 1-D convolutional and MaxPool layers, followed by a final 1-D convolutional layer that
does not use a MaxPool layer. Next, a flatten layer is utilised to reduce the dimensions
for input into the dense layer. Two additional dense layers follow the flatten layer. Finally,
the model includes an output layer with linear activation.

4.1.3 Nikolados et al. CNN

The CNN proposed by Nikolados et al. (2022) was designed with Bayesian Optimisa-
tion to find a single architecture for all mutational series in the paper. The resulting
architecture is of similar complexity to models proposed by Zhou and Troyanskaya

https://github.com/ljw-struggle/Bioinfor-DeepATT
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(2015) and Vaishnav et al. (2022) and produces excellent prediction accuracy’s with
a low number of training samples. The architecture achieves R2 = 0.82 for 160,000
training sequences, and in some cases, R2 = 0.87 for as few as 1,000 sequences.

Although this architecture is similar to DeepSEA, its ability to produce excellent
prediction accuracy’s well into the over parameterised regime makes it a strong candi-
date for double descent. The architecture, as shown in Table 4.2 and Figure 4.2, was
implemented with TensorFlow by following the architecture specification provided
in the paper. Again, my implementation of the model removes the regularisation and
dropout layers to induce overfitting.

Blocks Hyperparameter Value
number of filters 256

kernel size 13
Convolutional (1-3) strides (1, 1)

padding SAME
activation ReLU
pool size (2, 2)

MaxPool (1-3) strides None
padding SAME

units 256
Dense (4-7) activation ReLU

bias True
units 1

Dense (final) activation linear
bias True

Table 4.2: The hyperparameters used in our implementation of the Nikolados
et al. (2022) architecture. Our architecture is divided into blocks, with each block
corresponding to a specific section of layers in the model. The values in square brackets
denote the varying parameters for each layer within the block. It’s important to note that
both the Convolutional and MaxPool layers in our architecture are 2-D.

Figure 4.2: A visualisation of the Nikolados et al. (2022) CNN. The model consists
of three 2-D convolutional blocks, each followed by a MaxPool layer. After the three
convolutional blocks, a flatten layer is employed to reduce the output’s dimensionality and
prepare it for input into the dense layers. The model has four dense layers, each utilising
a ReLU activation function, and a final dense layer with a linear activation function.

4.1.4 Vaishnav et al. CNN

The CNN proposed by Vaishnav et al. (2022) was created to build a fitness landscape
that maps each DNA sequence to its associated fitness. This model was used to pre-
dict protein expressions from DNA sequences, helping to understand evolution from
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sequence to expression whilst also being used for designing sequences with high and
low expression. This model achieves state-of-the-art accuracy (Pearson’s r = 0.960,
P < 5×10−324, n = 61,150) on the complex medium described in Chapter 3 for which
this model was curated.

The implementation of the architecture, as shown in Table 4.3 and Figure 4.3 was
taken from https://codeocean.com/capsule/8020974/tree/v1 with the L2 Ker-
nel Regularisation and Dropout Layers removed to induce overfitting. This architecture
also employs forward and reverse strand convolutional layers, which take two inputs, a
sequence in its normal form and a sequence that has been reversed, as well as a bias
term added to each layer, which is different from the other architectures.

Blocks Hyperparameter Value
number of filters 256

kernel size [(1, 30), (30, 1)]
Forward Convolutional (1-2) strides (1, 1, 1, 1)

padding SAME
activation ReLU

number of filters 256
kernel size [(1, 30), (30, 1)]

Reverse Convolutional (1-2) strides (1, 1, 1, 1)
padding SAME

activation ReLU
number of filters 256

kernel size (30,1)
Convolutional (3-4) strides (1, 1, 1, 1)

padding SAME
activation ReLU

units 256
Dense (5-6) activation ReLU

bias True
units 1

Dense (final) activation linear
bias True

Table 4.3: The hyperparameters used in our implementation of the Vaishnav et al.
(2022) architecture. Our architecture is divided into blocks, with each block correspond-
ing to a specific section of layers in the model. The values in square brackets denote the
varying parameters for each layer within the block. It’s important to note that both the
Convolutional and MaxPool layers in our architecture are 2-D.

https://codeocean.com/capsule/8020974/tree/v1
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Figure 4.3: A visualisation of the Vaishnav et al. (2022) CNN. The model begins with
two convolutional layers, one used for forward strands and the other for reverse strands.
These layers are then joined together with a concatenation layer. We then employ two
further convolutional layers, which are then passed to a flatten layer to reduce the output
dimensionality. Finally, we have two ReLU-activated dense layers and a final linearly
activated dense layer.

4.2 Training Procedure

4.2.1 Data Partitioning

Double descent occurs when our models are sufficiently larger than the dataset, i.e.
EMC > n. To achieve this, we must sub-sample our defined and complex media dataset
such that the number of training samples is sufficiently smaller than the EMC. As
mentioned in Chapter 3, we accomplish this through random sampling. This method
decreased our chance of sampling errors when compared to non-probability methods,
as well as reducing the bias in our samples.

Our training and validation data is randomly sampled from the entire dataset to meet our
needs for certain training procedure sizes. The training sequences are then compared
with the validation sequences to ensure there is no data leakage across the samples.

4.2.2 Training Specifications

A batch size of 64 was used throughout the entire model training process, and models
were compiled with an Adam optimizer (Kingma and Ba, 2017) with a learning rate of
0.0001; this was done to ensure consistency with Nakkiran et al. (2019).

Since we are focused on epoch-wise double descent, we increased the number of
training epochs to 4,000 for our early results and dialled it back to 1,000 after we
observed double descent.

4.2.3 Evaluation

To determine if epoch-wise double descent has occurred, we must plot the validation
error in terms of the number of training epochs. We will know if it has occurred if the
validation error decreases, increases, then decreases again relative to the number of
training epochs. Traditionally, this plot of validation error and training epochs would
show us after how many epochs we should stop training, but in our case, it’s the main
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visualisation method of double descent. The loss metric we use for our regressors is
mean squared wrror (MSE) which is defined as follows:

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2 (4.7)

Where n is the number of data points, Yi is the observed value and Ŷi is the predicted
value. The main advantage of using MSE over other metrics such as mean absolute
error (MAE), is that it ensures our trained model has no outlier predictions with huge
errors. This is due to MSE putting a larger weight on these errors due to the squaring of
the function.

Although MSE is a key metric in determining if model performance is increasing
or decreasing, we need a quantifiable metric for evaluation to observe if model perfor-
mance is better or worse after double descent. The metric we use is R2 which is defined
as follows:

R2 = 1− ∑i(ŷi − ȳ)2

∑i(yi − ŷ)2 (4.8)

Where yi is the i-th element of the validation or test set. ŷi is the model’s prediction of
yi, and ȳ is the mean of yi. We would have R2 = 1 for a perfect fit of the validation or
test sets and an R2 = 0 if the model predicted all sequences have the mean value ȳ i.e a
baseline model. Therefore, negative R2 values indicate an inadequate model structure
with worse predictions than the baseline model.
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Results

In this chapter, the results of our research are presented. First, we present our initial
observation of double descent in sequence-to-expression models. Next, we show double
descent occurring across different training sample sizes and architectures. Finally, we
observe under what conditions double descent improves the performance of sequence-
to-expression models.

5.1 Double Descent

Given that double descent is an empirical evaluation, we must assess it across multiple
sequence-to-expression datasets to confirm its existence. As mentioned in Chapter 3,
sequence-to-expression models in the literature are trained on datasets from complex
and defined media. Figure 5.1 shows double descent occurring when trained on both a
defined and complex medium using the DeepSEA model.

The DeepSEA model used in Figure 5.1 was trained on 50,000 sequences and validated
on 10,000 sequences per epoch. This train-validate split was chosen to follow Nakkiran
et al. (2019) which observed double descent on the CIFAR-10 dataset, which has the
same training data split. We can observe that the model’s interpolation threshold occurs
at approximately 10 epochs and reaches a new local minima at between 100 and 1000
epochs. It is imperative to note that models such as the CNN produced by Vaishnav
et al. (2022) are solely trained for 5 epochs, which may result in potential inadequacies
in model performance.

Although double descent occurs across sequence-to-expression datasets, the model
accuracy after the second descent is on par, or worse, than the accuracy before. This is
an indication that the EMC is not sufficiently larger than the number of training samples.
Given that double descent occurs for both defined and complex media, we will continue
to use only the complex media for the remainder of our results.

30
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Figure 5.1: Observation of double descent across datasets. We trained the DeepSEA
model on both a defined medium dataset (left) and a complex medium dataset (right).
These models were trained on 50,000 samples from each dataset and validated on
10,000 samples.

5.2 Double Descent Across Sample Sizes

Our primary focus lies on the phenomenon of epoch-wise double descent enhancing the
performance of low-N sequence-to-expression models. This is based on the premise that
this approach provides us with a greater likelihood of observing the said phenomenon,
as the EMC is expected to be significantly larger than the number of training samples.
Therefore, we must determine if, for the DeepSEA model, double descent exists within
the training sample bounds of low-N models and at what point the model no longer
double descends. Figure 5.2 explores double descent for a varied training set size, with
the DeepSEA model trained on 1,000 sequences to 1,000,000 sequences. Each model
was validated on 10,000 sequences.

As shown in Figure 5.2, double descent still occurs when trained on 1,000,000 se-
quences, as the EMC is still greater than the number of training samples. When we
reach 1,000 samples, we can see that double descent does not occur, but rather the
model validation error steadily decreases until it plateaus at between 10 and 100 epochs.
The underlying idea is that the EMC, being substantially larger than the number of
training samples, results in the phenomenon of double descent being bypassed. As a
consequence, the model consistently stays in the over-parameterised regime, instead of
making a transition from the under-parameterised to the over-parameterised regime as
depicted in Figure 5.1.

The most promising observation is the model trained on 10,000 samples. This model
hits a peak in validation error at ∼15 epochs and reaches a new local minimum just
before 1,000 epochs, which is approximately the same loss as reached at 9 epochs before
the peak. This gives us grounds to investigate double descent at between 10,000 and
1,000 samples to find at what point double descent occurs and improves performance.
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Figure 5.2: Observation of double descent across training sample sizes. We trained
the DeepSEA model on varied training sample sizes of 1,000,000 (top-left), 100,000 (top-
right), 10,000 (bottom-left), and 1,000 (bottom-right). These models were all validated on
10,000 different sequences, and we found that there exists a lower bound where double
descent does not occur for sequence-to-expression models.

Note that the number of samples where double descent improves performance may be
different for each model as the EMC will change.

5.3 Double Descent Across Architectures

To confirm the existence of double descent across sequence-to-expression models, we
must show it is not architecture-specific. Given that Nakkiran et al. (2019) showed
double descent for CNNs and ResNets, we have an indication that double descent is
solely dependent on EMC the and number of training samples. However, we must
observe that popular sequence-to-expression models have sufficient EMC to produce
double descent in a low-N scenario. We decided to overtrain two models from the
sequence to expression literature, specifically Nikolados et al. (2022) and Vaishnav et al.
(2022).

5.3.1 Double Descent on the Nikolados et al. CNN

The model proposed by Nikolados et al. (2022) was trained on 56 different mutational
series, with each mutational series containing roughly 4,000 sequences. In some cases,
this model achieved state-of-the-art accuracy in a low-N scenario, meaning this model
is a prime candidate for double descent as it can generalise well for a low number of
sequences.

To be aligned with the paper by Nikolados et al. (2022) we overtrained the model on
4,000 training sequences from the complex medium and validated the model on 10,000
different sequences. We also trained the model on 10,000 sequences and validated it on
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Figure 5.3: Observation of double descent on the Nikolados et al. (2022) CNN. We
overtrained the CNN proposed by Nikolados et al. (2022) on 4,000 and 10,000 training
samples and validated both models on 10,000 samples. We showed that double descent
occurs in both cases, with the second descent on 10,000 training samples being more
profound.

10,000 to get comparable results with Figure 5.2.

As shown in Figure 5.3 double descent does occur for the low-N sequence-to-expression
model proposed by Nikolados et al. (2022). As we can see, double descent occurs for
both 4,000 and 10,000 training samples, meaning it has a similar EMC to the DeepSEA
(Zhou and Troyanskaya, 2015) model. Although this is promising, we still observe that
double descent does not improve model performance for a model that is specifically
designed for low-N tasks. This alludes to performance improvements coming from
large sequence-to-expression models that are used for low-N tasks.

5.3.2 Double Descent on the Vaishanv et al. CNN

The model produced by Vaishnav et al. (2022) was originally designed to generalise
over a large number of sequences, i.e., the entire 20,000,000 and 30,000,000 sequence
datasets. Although this is the case, the model employs a forward and reverse strand
layer, which increases the number of model parameters and, in turn, increases the overall
EMC. Furthermore, this model doesn’t employ any MaxPool layers, which lowers the
number of parameters in the model.

Given this, the model is a prime candidate for double descent, as the EMC is much
larger than previous architectures, pushing it further into the over-parameterised regime.
As we are only concerned with low-N models, we trained the model on 4,000 and
10,000 sequences while validating on 10,000 sequences. As shown in Figure 5.4, this
did not produce any meaningful results as the model was not able to generalise well.
The promising results came from pushing the model further into the over-parameterised
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regime when training on 1,000 sequences and validating on 10,000 sequences.

Figure 5.4: Vaishnav et al. (2022) CNN unable to fit data. We observed that the
Vaishnav et al. (2022) CNN was unable to overtrain on 4,000 and 10,000 sequences
from the complex medium. This was due to the number of sequences being too similar to
the EMC of the model, causing the model to generalise poorly to new data. To observe
double descent on this architecture, we must reduce the number of training sequences
to push the EMC further into the over-parameterised regime.

As shown in Figure 5.5, double descent does not only occur, but the validation error
improves after the second descent. We observe that, just after 10 training epochs, the
local minima of the under-parameterised regime occurs. We observed that our model
reaches a peak validation error between 10 and 100 epochs, following which, after the
second descent, it gradually starts to plateau in terms of generalisation error beyond
1000 epochs. To quantify if double descent has improved model performance, we
must look at a performance metric before and after the second descent, which has
been evaluated on an unseen test set, to determine if model performance has actually
improved.

5.4 Double Descent Improving Performance

As shown in Figure 5.5 double descent can be used to decrease the overall validation
error of a model. While this is promising, we must investigate if this translates into
increased performance (R2) on a held-out test set as discussed in Chapter 3. Before
we investigate, we must confirm that the improvement caused by double descent isn’t
correlated to the size of the validation data and that this improvement can be achieved
with validation data of any size.

5.4.1 Double Descent Across Validation Sizes

Given the empirical nature of double descent, we want to decouple it from as many
training factors as possible so that its existence can be justified solely based on EMC
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Figure 5.5: Observation of double descent on the Vaishnav et al. (2022) CNN.
We observed double descent on the Vaishnav et al. (2022) when training on 1,000
sequences and validating on 10,000 sequences. We can see that between 10 and 1000
epochs a peak in validation error is reached, and after 1,000 epochs validation loss
plateaus.

and the number of training samples. To do this, we must observe double descent across
a wide range of validation sample sizes to determine if it is related to double descent or
not. To do this, we trained the Vaishnav et al. (2022) CNN, which produced a double
descent that improved validation loss. We trained this model on 1,000 sequences but
varied the validation data size each time, starting at 5,000 validation sequences and
decreasing it to 100.

Figure 5.6: Observation of double descent across many validation set sizes. We
observed double descent on validation sets of 5,000 sequences (top-left), 2,500 se-
quences (top-middle), 1,000 sequences (top-right), 500 sequences (bottom-left), 250
sequences (bottom-middle), and 100 sequences (bottom-right). The validation sets were
used on the Vaishnav et al. (2022) CNN and trained on 1,000 sequences.

As shown in Figure 5.6, epoch-wise double descent is not dependent on validation data
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size. In all cases, we observe an initial decrease in validation error, followed by a sharp
increase and a final decrease, i.e., double descent. An important observation is that as
validation size decreases, the validation loss after the second descent generalises poorly.
Good model generalisation stops after 1,000 validation samples, as after that point the
validation error after the second descent doesn’t plateau like previous validation sample
sizes.

5.4.2 Evaluation on Held-Out Test Set

Given that we have now decoupled double descent from validation set size, we must
quantify our improvement in validation error using a more quantitative metric. To do
this, we will train the Vaishnav et al. (2022) CNN on 1,000 samples and validate it
on 10,000. At each local minima, both before and after the second descent, we will
evaluate the entire held-out test set described in Chapter 3. This will generate an R2

score that we can use to determine if the model’s accuracy has improved or not.

Figure 5.7: Observation of double descent improving performance when evaluated
on a held-out test set. We observe that when the Vaishnav et al. (2022) CNN is trained
on 1,000 sequences, and evaluated on a held-out test set, double descent improves the
model’s performance by 200%. We recorded the best R2 both before and after double
descent and saw an increase from R2 = 0.01 to R2 = 0.03. This performance increase
isn’t huge, but it gives us precedence to investigate further.

As shown in Figure 5.7, double descent does improve R2 of the model by 200%.
Although this improvement from R2 = 0.01 to R2 = 0.03 does not seem high, this is due
to the model trying to infer sequences from a broader region of the sequence space. We
trained the model on only 1,000 sequences from the entire sequence space but evaluated
it on over 60,000, which contains more samples of the sequence space. Given that an
improvement in R2 has occurred, we have precedence to investigate model improvement
on a model trained on sequences from a specific region of the sequence space.
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5.4.3 Evaluation on Mutational Series

We have now observed that epoch-wise double descent does indeed improve the model
performance of low-N sequence-to-expression models. Although this is promising,
we have only observed this during the evaluation of the model on a sub-sample of the
sequence space. In practice, this improvement in model performance would come from
sequences that operate in a small region of the sequence space where few sequences are
available.

To simulate this, we overtrained the Vaishnav et al. (2022) CNN on the five muta-
tional series described in Chapter 3 using the training procedure proposed by Nikolados
et al. (2022). Specifically, we trained the model on each mutational series with varying
training size (5%, 10%, 25%, 50%, and 75% of the series) and reserved 10% of the
series for validation and 10% for our held-out test set. We discarded the the remaining
sequences. Figure 5.8 shows the most promising results, which came from models
trained on mutational series 24 and 39, using 10% of the total series to train.

Figure 5.8: Observation of double descent improving performance when trained
and evaluated on the mutational series dataset. Double descent was observed in
two mutational series, namely series 24 (left) and series 39 (right), when we overtrained
the Vaishnav et al. (2022) CNN on 10% of the total series while validating on 10% and
testing on 10%. Mutational series 24 exhibited the most significant improvement in
performance, resulting in a 14% increase in R2. In contrast, mutational series 39 also
showed a considerable improvement in performance, with an increase in R2 of 5.4%.

As shown in Figure 5.8, double descent improves model performance on mutational
series data, increasing the R2 by 5.4% for series 39 and 14% for series 24. This
performance increase comes from pushing the EMC of the Vaishnav et al. (2022) CNN
further into over-the parameterised regime by training on ∼400 sequences. This gives
a more realistic indication of double descent performance as the model only has to
generalise to new data inside a mutational series (or a small cluster of the sequence
space), which is where low-N sequence-to-expression models perform best.
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Conclusions

In this report, we present epoch-wise double descent across a wide range of sequence-
to-expression models. We saw double descent occur in a range of datasets, training
and validation sizes, and architectures. We observed that under specific model and
training set conditions, epoch-wise double descent can be used to improve low-N
sequence-to-expression model performance simply by training a model for longer.

6.1 Accomplishments

1. Observed double descent empirically in sequence-to-expression models across
different datasets. We observed this phenomenon when trained on a dataset of
both complex and defined media, which shows that the sequence data type does
not play a part in the existence of double descent.

2. Observed double descent empirically in sequence-to-expression models across
different training and validation set sizes. We show that double descent occurs
for a wide range of training sample sizes, with the most profound decent coming
from extremely low-N models that are trained on less than 10,000 samples. We
also decoupled validation set size from double descent by showing that it does
not affect the existence of the phenomenon.

3. Observed double descent empirically in sequence-to-expression models across
different architectures. We show that double descent in sequence-to-expression
models isn’t architecture-specific, as it occurs in all tested architectures regard-
less of whether the architecture was designed for low-N sequence-to-expression
models or not. We can conclude that while architecture plays a part in double
descent, if we want to see performance gains, we must alter the number of training
samples.

4. Observed that double descent, under certain conditions, can improve model
performance. We saw that when sequence-to-expression models were only
trained on a small sub-sample of the sequence space (using mutational series),
epoch-wise double descent could improve model performance. For the Vaishnav
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et al. (2022) CNN we found that double descent improved performance by up to
14% for some mutational series.

Overall, we show that the double descent phenomenon can be beneficial for researchers
who want to improve their low-N sequence-to-expression model performance. Although
this phenomenon does not improve accuracy in every case, it may be worth investigating
by researchers to see if their specific model can take advantage of double descent.

6.2 Research Question

As stated in Chapter 1, the goal of this project was to observe double descent in
sequence-to-expression models and see under what conditions, we could improve model
performance. Based on the results from Chapter 5, we can conclude that the goal has
been achieved. Not only does the double descent phenomenon exist in sequence-to-
expression models, across a wide range of datasets, training and validation sizes, and
architectures, but it can also be used to improve model performance for certain models
that are trained on a low number of sequences.

6.3 Future work

6.3.1 Further research into Double Descent

Double descent can be observed empirically by overtraining sequence-to-expression
models, but no formal definition or proof exists to justify the phenomenon. Nakkiran
et al. (2019) formalises an EMC that hypothesises why general double descent occurs,
but it is based purely on observation. A more rigorous definition of double descent in
sequence-to-expression models is required to understand what the model generalises
well to and what it doesn’t when operating in the over-parameterised regime.

6.3.2 A General Double Descent Sequence-to-Expression Model

Double descent was shown to exist across a wide range of architectures in Chapter 5, but
no architecture exists where double descent occurs across a wide range of low-N training
sizes. We must develop an architecture that only operates in the over-parameterised
regime, regardless of the size of the training samples. This can be achieved by stripping
away model components such as MaxPool, which decreases the number of parameters
of a model after each convolutional layer. By constructing an architecture with a large
number of parameters, we can guarantee that EMC will be much greater than the number
of training samples and force the model to operate in the over-parameterised regime.
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6.3.3 Formulation of Double Descent Classifier

Although double descent can be used by low-N sequence-to-expression models to
achieve better performance, there is no way to determine, before running the model, if
double descent will improve model performance. A double descent classifier should be
developed that, given number of model parameters, training epochs, training set size etc.
would return if this is a viable candidate for double descent. This would initially take a
large amount of computing but may be beneficial for researchers who don’t have the
time or resources to overtrain multiple models and determine for themselves if whether
double descent can improve performance.
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