
Preservation of Codd semantics in databases
with SQL nulls

Konrad Pijanowski
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

MInf Project (Part 2) Report
Master of Informatics
School of Informatics

University of Edinburgh

2023

Abstract
Research in database theory usually represents missing values as marked nulls, whereas
SQL-based systems use a single syntactic object NULL. To reconcile the mismatch in
the expressivity of the two approaches, SQL nulls are often interpreted as Codd nulls -
non-repeating marked nulls. However, if SQL nulls could truly be interpreted as Codd
nulls, the Codd semantics should also be preserved by queries in their answers, which
are incomplete databases themselves. Unfortunately, this is often not the case. In fact, it
was shown that the class of relational algebra queries preserving Codd semantics is not
recursively enumerable. Therefore, the best we can do is to recognise real-life queries
preserving Codd semantics using various syntactic criteria.

The available sufficient conditions for Codd semantics preservation suffer from one
crucial issue. Namely, the result of the verification depends on the exact formulation of
the query. That is, the decision can be different for two equivalent relational algebra
queries differing only in the order of the executed operations. In this project, we mitigate
this issue for chained unions by coming up with a new weaker condition that guarantees
formulation independent verification. Furthermore, we study the interpretation of SQL
nulls which allows marked nulls to be repeated, for now, only among records that are
duplicated in a table. We devise new sufficient conditions ensuring preservation of
this new semantics and compare them to the conditions for the preservation of Codd
semantics. Finally, we observe that both interpretations are equivalent when queries are
evaluated using set semantics. Hence, we use these new conditions to propose weaker
conditions for the preservation of Codd semantics over sets.

i

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Konrad Pijanowski)

ii

Acknowledgements
I would like to express my gratitude to my supervisor, Paolo Guagliardo, for his
invaluable guidance, encouragement, and unwavering support throughout the journey of
completing my project. His expertise and constructive feedback helped me immensely
in refining my research work.

I would also like to extend my sincere appreciation to my parents for their unconditional
love and support, which have been the source of my strength and motivation during my
time at the University of Edinburgh. Their constant encouragement and belief in me
have been vital in shaping me into the person I am today. Dziȩkujȩ!

Furthermore, I am immensely grateful to all my friends. The time spent together gave
me all the energy and motivation I needed to get through this demanding journey.

Lastly, I would like to thank all the individuals who have contributed in any way towards
the successful completion of my project. Without you, this accomplishment would not
have been possible.

iii

Table of Contents

1 Introduction 1
1.1 Background, motivations and related work 1
1.2 Contributions of this MInf Project 3

2 Preliminaries 4
2.1 Data model, schemas, and (incomplete) databases 4
2.2 Query language . 6
2.3 Queries preserving Codd semantics 8

3 New Condition for Union 10
3.1 Variadic union . 11
3.2 Pairwise disjoint bases of nullable children 13
3.3 Problems with PDJB . 15
3.4 Tracking value propagation . 16
3.5 Disjoint effective nullable attributes 20
3.6 Redundancy of variadic union . 24

4 Preserving Duplicated Marked Nulls 27
4.1 Redefining Codd semantics . 27
4.2 Sufficient conditions with new requirement 29
4.3 Comparison of conditions for different null interpretations 33
4.4 Evaluation under set semantics . 34

5 Conclusions and Future Work 39

Bibliography 41

A Additional and External Results 42
A.1 Theorems . 42
A.2 Propositions . 42
A.3 Lemmas . 42

B Additional Proofs 43
B.1 Propositions . 43
B.2 Lemmas . 50

iv

Chapter 1

Introduction

1.1 Background, motivations and related work

Representing and handling incomplete information has been actively studied since the
birth of relational database theory [1, 6]. Theoretical research usually represents missing
values as marked, or labelled, nulls [2, 7]. However, this model is more expressive than
the one employed by real-life SQL-based systems. In particular, using marked nulls we
can express the fact that two nulls are equal to each other. On the other hand, this is
impossible in SQL which represents nulls with the same syntactic symbol NULL. For
example, ⊥1 =⊥1 is always true, while NULL= NULL in SQL evaluates to unknown.

To reconcile this mismatch, the database community often models SQL nulls as Codd
nulls - non-repeating marked nulls [2, 3]. The idea is that together with the adjusted
comparison semantics that mimics the three-valued logic of SQL [4], a single NULL
symbol is no longer a problem as each null is interpreted as a distinct null anyway.
Although, this approach ignores the role of queries in database systems. If SQL nulls
could truly be interpreted as Codd nulls, the Codd semantics should be preserved by
queries in their answers, which are incomplete databases themselves [5].

The intuition behind this argument is depicted in Figure 1. To explain it here, let codd(D)
be an interpretation of a SQL database D in which all NULL values are replaced with
fresh marked nulls. Technically, codd(D) is a set of isomorphic databases as the labels
of the unique marked nulls can be chosen arbitrarily (e.g. {⊥x,⊥y} instead of {⊥1,⊥2}).

D

D′

Q(D)

Q(D′)

Q

Q

codd codd

Figure 1: Condition for the preservation of Codd semantics for SQL nulls. Source: [5].

1

Chapter 1. Introduction 2

Then we say that the query Q preserves Codd semantics on all SQL databases D, if the
answer to Q on a database D′ ∈ codd(D) can be obtained from the answer to Q on D by
replacing all SQL nulls with Codd nulls.

To give an example of how these two can differ, let D be a SQL database with two
relations: R = {A : 1,NULL} and S = {B : NULL}. Also, let D′ be an interpretation of
D in which all nulls were replaced by distinct marked nulls, e.g., R = {A : 1,⊥R} and
S = {B : ⊥S}. Then, the answers to the query R×S evaluated on these databases are:

Q(D):
A B
1 NULL

NULL NULL

Q(D′):
A B
1 ⊥S
⊥R ⊥S

Looking at the answer to the query on the database D, we could infer that the output
contains three distinct marked nulls. This is because assuming Codd semantics, we
interpret each NULL as a distinct labelled null. However, if we execute the same query
on the database D′, we can reach a conflicting conclusion. Namely, we get the table with
two duplicated marked nulls (⊥S) for the attribute B, even though the initial table did not
contain any repeated marked nulls. This leads to the inconsistency in the interpretation
of the nulls in the results, and therefore we say that Q does not preserve Codd semantics.

To close this gap between theory and practice, two main approaches have emerged. The
first one calls for the introduction of marked nulls in SQL. Some attempts have already
been made in this direction by [10]. However, as noted in the recent survey concerned
with database practitioners’ understanding of SQL nulls: ”any changes could also lead
to horrendous version control issues” [11]. On the other hand, the second approach,
developed in [5], aims to identify relational algebra (RA) queries which preserve Codd
semantics. This is achieved using a set of sufficient conditions (introduced later), which
if satisfied, guarantee the preservation.

In this MInf Project, we expanded on the latter solution. Our work focused primarily on
the issue of the formulation-dependent verification of the aforementioned conditions.
That is the fact that given two equivalent RA queries, the conditions might be satisfied
by one ordering of operations, but not the other. Ideally, we would like to be certain
that given a set of conditions either all or none of the equivalent formulations of a
query satisfy them. However, since any given query can be rewritten in infinitely
many (often ”creative”) ways, providing such guarantees seems extremely unlikely.
Nevertheless, there are cases when this inconsistency in the verification of the Codd
semantics preservation is especially flagrant. To be precise, we have shown that the
exact formulation of intersections or unions of multiple operands can affect the verdict
when using the conditions from [5]. For example, it might be the case that the query
Q1 ∪ (Q2 ∪Q3) satisfies the conditions, whilst the query (Q1 ∪Q2)∪Q3 does not. This
is highly undesirable as these RA operations are both associative and commutative
giving the author of a query full freedom to shuffle the order of intermediate operations.
Therefore, finding new weaker conditions and a procedure for verifying them that
produce formulation-independent results for these operations is a big step forward in
recognising the preservation of Codd semantics.

Moreover, we also started exploring interpretations of SQL nulls in which marked nulls

Chapter 1. Introduction 3

can repeat. This could allow us to utilise the more expressive nature of labelled nulls in
computations based on SQL nulls. In general, we do not know if finding conditions for
the preservation of null semantics with an arbitrary codd (null replacement) procedure
is possible. Therefore, to begin with, we considered an interpretation in which records
that are repeated in a table are assigned the same marked nulls. This led to a study of
corresponding conditions and gave birth to questions such as: are these two interpreta-
tions comparable? Are these new conditions weaker or stronger? Do they differ under
the bag and set semantics? We answer all of those in this report.

1.2 Contributions of this MInf Project

Motivated by the described research problems, over the last two years, we introduced
a number of improvements to the process of recognising Codd semantics preserving
queries described in [5].

To be precise, last year in Part 1 [9]:

• we showed how the information about which attributes are certain to be made non-
nullable by selection operations can be derived from their conditions;

• we introduced a variadic intersection operation together with a corresponding suffi-
cient condition that enabled us to identify more intersections of multiple operands
that preserve Codd semantics (by abstracting away their exact ordering information);

• we suggested a normalisation procedure that transforms the query in question into an
equivalent query which is more likely to satisfy the sufficient conditions;

• we implemented the verification of sufficient conditions in relational algebra queries
as a Java library coddifier [8].

Following up on these advancements, this year in Part 2:

• we devise a weaker sufficient condition for unions, disjoint effective nullable attributes
(DJEN), which enables us to identify even more Codd semantics preserving queries;

• we prove that DJEN on its own guarantees formulation-independent recognition of
Codd semantics preserving unions of multiple operands;

• we present sufficient conditions for the preservation of semantics of SQL nulls in
which records that repeat in a table are assigned the same marked nulls;

• we compare the conditions for the two interpretations and show that the conditions
for the original Codd semantics are weaker;

• we use the new conditions to derive sufficient conditions for RA queries evaluated
under set semantics that are weaker than those proposed in [5].

Chapter 2

Preliminaries

Before we present any concrete findings, let us introduce the data model and the
relational algebra query language based on which the sufficient conditions for the
preservation of Codd semantics were derived. To be consistent, we repeat most of this
chapter as written in Part 1 [9] of this project. In doing so, we use the same definitions
and follow the same conventions as in [5].

2.1 Data model, schemas, and (incomplete) databases

We start by defining a bag as an unordered collection of objects in which instances of
the same element, unlike in sets, can repeat. We say that an element e in a bag B has
multiplicity k, denoted as #(e,B) = k or e ∈k B, if e appears k times in B. Similarly, we
can write e ∈ B and e /∈ B to state a general fact that e is or is not in B, respectively. We
also use notation B ⊆ B′, if #(e,B)≤ #(e,B′) for every e ∈ B. Finally, we define four
bag operations: union ∪, intersection ∩, difference −, and duplicate elimination ε. If
e ∈m B and e ∈n B′, then: #(e,B∪B′) = m+n, #(e,B∩B′) = min(m,n), #(e,B−B′) =
max(0,m−n), and #(e,ε(B)) = 1 if e ∈ B, otherwise #(e,ε(B)) = 0.

Now, let us take two countably infinite and disjoint sets of names and values. Any
finite subset of names can be a signature. Then, a record is a map from some signature
to values. Using these concepts we define a table as a bag of records over the same
signature. sig(r) / sig(T) denotes the signature of a record r / table T , respectively.

The projection of a record r on a subset α of its signature is the restriction of r on α,
denoted by πα(r). For two records r and s of disjoint signatures, the product of r with
s, denoted by r× s, is the record over sig(r)∪ sig(s) whose projections on sig(r) and
sig(s) are r and s, respectively. For a record r, given N ∈ sig(r) and N′ ̸∈ sig(r), we
define the following renaming operation:

ρN→N′(r) def
== πsig(r)−N(r)×{N′ 7→ r(N)} .

The operations on records described above extend naturally to tables. The bag operations
∪, ∩ and − can be applied to tables of the same signature, which ensures the result is a
table. Duplicate elimination ε applies without restrictions.

4

Chapter 2. Preliminaries 5

Next, a relational schema is a set of relation names together with a function sig which
associates every relation name R with a set of attributes sig(R) - its signature. Then,
a database D maps each relation name R from the schema with a table JRKD over the
same signature as R. Each database instance can store values from only two countably
infinite and disjoint sets of constants (Const) and nulls (Null). The Null set contains a
special value N that is used to represent SQL’s NULL object. Other nulls are denoted ⊥,
potentially with some subscript. By Const(D) and Null(D) we denote sets of constants
and nulls present in a database D.

Real-life databases support several constraints on data in a table. We are specifically
interested in constraints that mark attributes as NOT NULL. To reflect them in our model,
we partition the signature of a relation R into nullable and non-nullable signatures,
denoted by n-sig(R) and c-sig(R) respectively. The non-nullable signature of R is a set
of its non-nullable attributes, that is, attributes that are allowed to take only constant
values (e.g., because of the NOT NULL or PRIMARY KEY constraint). On the other hand,
there is no such restriction for nullable attributes in the nullable signature of R which
can take both null and constant values.

Depending on the presence of nulls in a database as a whole, we can recognize four
types of databases. A database D is a:

• Complete database if D does not contain any nulls - Null(D) =∅.

• Naive database if D does not contain any SQL nulls - N /∈ Null(D).

• SQL database if all nulls in D are SQL nulls - Null(D) = {N}.

• Codd database if D is a naive database in which each null is different.

Remark. We can say that a table is a complete, naive, SQL, or Codd table if it satisfies
equivalent conditions.

Directly related to the notion of SQL and Codd databases is the idea of Codd interpreta-
tion of SQL nulls. Rephrasing what we said in the introduction using the newly defined
concepts, theoreticians model incomplete databases using naive databases, whereas in
practice SQL operates on SQL databases. To bridge this gap, SQL databases are usually
interpreted as Codd databases. This is achieved by replacing each SQL null N with a
unique element of Null−{N} that is not yet present in the database.

To formalise this idea, given a record r, we denote by sql(r) the record r′ over sig(r)
such that:

r′(A) =

{
r(A) if r(A) ∈ Const,

N otherwise

Moreover, by sql−1(r) we denote the set of all records r′ such that sql(r′) = r. The sql
and sql−1 notation can be further extended to tables and databases. Namely, for a table
T over sig(T), sql(T) is a table over the same signature that consists of records r, such
that:

#
(
r,sql(T)

)
= ∑
s∈sql−1(r)

#(s,T)

Chapter 2. Preliminaries 6

For a database D, sql(D) denotes a database, having the same schema as D, where:

JRKsql(D) = sql(JRKD)

The sql−1(T) and sql−1(D) denote sets of all tables T ′ and databases D′, respectively,
such that sql(T ′) = T and sql(D′) = D.

Finally, we can formalise what we mean by the Codd interpretation of an SQL database.
For that, we define codd(D) to be a set of all Codd databases in sql−1(D). Even though
this set may be infinite as the set of Null is countably infinite, all databases in it are
isomorphic since they differ only in the names of the nulls. For that reason, we allow
ourselves to talk about a single interpretation that is unique up to the renaming of nulls.

2.2 Query language

The sufficient conditions for Codd semantics preservation considered in this report apply
to queries written in relational algebra for bags. To be consistent, we follow the syntax
and semantics of the language as described in [5]. The syntax consists of two main
constructs, that is expressions E and conditions θ, whose semantics are summarised in
Figure 2.

A term t is either a name or a value, and its semantics JtKr is given with respect to a
record r: if t is a name in sig(r), then JtKr = r(t), otherwise, if t is a value, JtKr = t.

Atomic conditions consist of equality/inequality comparisons between terms and tests
which determine whether a term is null or constant. Complex conditions are constructed
from atomic ones by means of conjunction and disjunction. There is no explicit negation,
as it can be propagated all the way down to atoms. The signature of a condition θ,
denoted by sig(θ), is the set of names appearing in it. Its semantics JθKr is defined with
respect to a record r such that sig(θ) ⊆ sig(r): it can be either t (true) or f (false), as
determined by the rules in Figure 2b.

JRKD is given for every R

JE1 op E2KD
def
== JE1KD op JE2KD

for op ∈ {×,∪,∩,−}

Jπα(E)KD
def
== πα

(
JEKD

)
Jσθ(E)KD

def
== σθ

(
JEKD

)
Jε(E)KD

def
== ε

(
JEKD

)
JρN→N′(E)KD

def
== ρN→N′

(
JEKD

)
(a) EXPRESSIONS

Jt1 = t2Kr = t ⇐⇒ Jt1Kr = Jt2Kr ∈ Const

Jt1 ̸= t2Kr = t ⇐⇒ Jt1 = t2Kr ̸= t

Jnull(t)Kr = t ⇐⇒ JtKr ∈ Null

Jconst(t)Kr = t ⇐⇒ JtKr ∈ Const

Jθ1 ∧θ2Kr = t ⇐⇒ Jθ1Kr = Jθ2Kr = t

Jθ1 ∨θ2Kr = t ⇐⇒ Jθ1Kr = t ∨ Jθ2Kr = t

(b) CONDITIONS

Figure 2: Semantics of relational algebra. Source: [5].

Chapter 2. Preliminaries 7

For a table T and a condition θ such that sig(θ) ⊆ sig(T), we can then define the
following selection operation:

σθ(T)
def
==

{
r, . . . ,r︸ ︷︷ ︸
k times

| r ∈k T, JθKr = t
}

By c-sig(θ) we denote a set of all attributes in sig(θ) for which the selection operation
σθ is guaranteed to remove all records mapping any of these attributes to a null value [9].
It is defined inductively as follows:

c-sig(t1 ̸= t2) = c-sig(null(t)) =∅
c-sig(t1 = t2) = sig(t1 = t2)

c-sig(const(t)) = sig(const(t))
c-sig(θ1 ∧θ2) = c-sig(θ1)∪ c-sig(θ2)

c-sig(θ1 ∨θ2) = c-sig(θ1)∩ c-sig(θ2)

As for expressions, these are names of base relations present in the schema that can be
further composed using standard operations of union ∪, intersection ∩, difference −,
Cartesian product ×, selection σ, projection π, renaming ρ, and duplicate elimination
ε. The base of an expression E, denoted by base(E), is the set of relation names that
appear in it (i.e., the set of its atomic subexpressions). The signature of each expression
is defined recursively as follows:

sig(R) is given for every R
sig(E1 op E2) = sig(E1) for op ∈ {∪,∩,−}
sig(E1 ×E2) = sig(E1)∪ sig(E2)

sig
(
σθ(E)

)
= sig

(
ε(E)

)
= sig(E)

sig
(
πα(E)

)
= α

sig
(
ρA→B(E)

)
=
(
sig(E)−{A}

)
∪{B}

In a similar manner, we define the nullable signature of each expression:

n-sig(R) is given for every R
n-sig(E1 op E2) = n-sig(E1)∪n-sig(E2) for op ∈ {∪,×}
n-sig(E1 ∩E2) = n-sig(E1)∩n-sig(E2)

n-sig(E1 −E2) = n-sig(E1)

n-sig
(
σθ(E)

)
= n-sig(E)− c-sig(θ)

n-sig
(
ε(E)

)
= n-sig(E)

n-sig
(
πα(E)

)
= n-sig(E)∩α

n-sig
(
ρA→B(E)

)
= n-sig(E)[A/B]

where n-sig(E)[A/B] means that attribute A is replaced by B in n-sig(E).

A relational algebra query over some schema is an expression that is well-defined
with respect to this schema. One can recursively determine whether an expression is
well-defined using the following rules:

Chapter 2. Preliminaries 8

• An atomic expression R is well-defined if R is a relation name in the schema.

• E1 op E2, for op ∈ {∪,∩,−}, is well-defined if both E1 and E2 are well-defined
and sig(E1) = sig(E2).

• E1×E2 is well-defined if E1 and E2 are well-defined and sig(E1)∩ sig(E2) =∅.

• σθ(E) is well-defined if E is well defined and sig(θ)⊆ sig(E).

• πα(E) is well-defined if E is well defined and sig(α)⊆ sig(E).

• ρA→B(E) is well-defined if E is well defined, A ∈ sig(E), and B /∈ sig(E)−{A}.

• ε(E) is well-defined if E is well-defined.

Closely related to the relational algebra query is a notion of its syntax tree.

Definition 1 ([5]). The syntax tree of an RA query Q is a binary (ordered) tree con-
structed as follows:

• Each relation symbol R is a single node labelled R.

• For each unary operation symbol op1, the syntax tree of op1(Q) has root labelled
op1 and the syntax tree of Q rooted at its single child.

• For each binary operation symbol op2, the syntax tree of Q op2 Q′ has root
labelled op2 and the syntax trees of Q and Q′ rooted at its left child and right
child, respectively.

Remark. Each node in the syntax tree of Q defines a subquery of Q, so we can associate
properties of such queries with properties of syntax tree nodes.

2.3 Queries preserving Codd semantics

We have already said that in order to be able to interpret SQL nulls as Codd nulls it
must be the case that this interpretation not only applies to input databases but is also
preserved by query answers. Figure 1 in the introduction depicts the intuition behind
the condition for the Codd semantics preservation, which is formally defined below.

Definition 2 ([5]). A query Q preserves Codd semantics if for every SQL database D′

it holds that JQKD ∈ codd
(
JQKD′

)
, where D is the Codd interpretation of D′. This can

be equivalently formulated as:

sql
(
JQKD

)
= JQKsql(D) (1a) and JQKD is a Codd table. (1b)

Unfortunately, [5] showed that the class of queries preserving Codd semantics is not
recursively enumerable. For that reason, we can only come up with syntactic restrictions
that guarantee this property. Guagliardo and Libkin introduced in [5] a number of
conditions which can be satisfied by a node in a syntax tree.

Chapter 2. Preliminaries 9

Definition 3 ([5]). A node in the syntax tree of a query satisfies:

NNC (non-nullable child) - if one of its children is non-nullable.

NNA (non-nullable ancestor/self) - if either itself or one of its ancestors is non-nullable.

DJN (disjoint nullable attributes) - if its children have no common nullable attributes.

DJB (disjoint bases) - if its children have bases with no relation names in common.

Using these constraints they came up with sufficient conditions for the preservation of
Codd semantics.

Theorem 1 ([5]). Let Q be an RA query whose syntax tree is such that:

a) each ε node satisfies NNC;

b) each ∩ and − node satisfies DJN;

c) each × node satisfies NNA;

d) each ∪ node satisfies NNC or DJB or NNA.

Then, Q preserves Codd semantics.

Theorem 1 enables us to quickly verify whether a query is guaranteed to preserve Codd
semantics. We will illustrate this process on the query πA,B(T ×S)∩ ((R−T)∪ ε(U))
whose syntax tree is presented in Figure 3. The signature of each subexpression is
given to the left of the node (underlined attributes are non-nullable). The respective
sufficient conditions satisfied by the nodes are marked on the right. Now, in the right
subquery, the ε node satisfies NNC as relation U is non-nullable. The − node satisfies
DJN, as its children have non-overlapping nullable signatures. The union satisfies all
respective conditions, although one is enough for the preservation of Codd semantics.
In the left subquery, the × node satisfies the NNA condition because the root of the query
is non-nullable, which is the case, as the ∩ node satisfies DJN.

∩{A,B} |= DJN

πA,B{A,B}

×{A,B,C,D} |= NNA

T{A,B} S{C,D}

∪{A,B} |= DJB,NNC,NNA

−{A,B} |= DJN

R{A,B} T{A,B}

ε{A,B} |= NNC

U{A,B}

Figure 3: Syntax tree of the query πA,B(T ×S)∩ ((R−T)∪ ε(U)). Each node is marked with
the sufficient conditions it satisfies. The underlined attributes are non-nullable.

Chapter 3

New Condition for Union

As we have already discussed in Part 1 [9], recognising a RA query as Codd semantics
preserving does not depend only on its semantics, but also on its formulation. We
argued that this could be especially problematic for queries involving operations that
are both associative and commutative, that is intersection and union. When multiple
such operations are chained together, their exact ordering may impact the properties of
individual nodes in a syntax tree, and hence the satisfiability of the sufficient conditions.
To mitigate this problem for intersections, we:

1. introduced a variadic intersection operation that abstracts away the ordering in-
formation while capturing the information about all operands participating in the
intersection,

2. used query transformations to normalise the query to a form that is more likely to
satisfy the conditions.

Combining the two solutions helped us to capture the Codd semantics preservation of
queries involving chained intersections, regardless of their exact ordering.

Following up on the previous work, in this chapter, we will focus on another associative
and commutative operation - the union. To make our considerations more precise, let us
first define the concept of a chain of unions that will be the subject of this study.

Definition 4. A chain of unions is a query Q∪ complying with the grammar Q∪ :=Q∪Q
and Q := Q∪ | Q′, where Q′ is a query that does not have ∪ as its root.

Equipped with this new definition, we can illustrate the problem with chains of unions
using the following example.

Example 1. Consider a union of base relations R1, R1 (duplicated on purpose), R2,
and R3, where Ri, for i ∈ {1,2,3}, is over the attribute A and only R1 has A marked
as NOT NULL. Figure 4 presents syntax trees of two possible formulations of such
union. The signature of each node is displayed to its left with non-nullable attributes
underlined. Now, even though this query must be Codd semantics preserving, the chain
of unions on the left does not capture this property as the ∪1 node fails to satisfy any of
the conditions. The bases of ∪2 and ∪3 are not disjoint (R1 appears in both of them),

10

Chapter 3. New Condition for Union 11

∪1{A} ̸|= DJB,NNC,NNA

∪2{A} |= DJB,NNC

R1{A} R2{A}

∪3{A} |= DJB,NNC

R1{A} R3{A}

∪4{A} |= DJB,NNC

∪5{A} |= NNC,NNA

R1{A} R1{A}

∪6{A} |= DJB

R2{A} R3{A}

Figure 4: Annotated syntax trees of two possible formulations of the union from Example 1.

hence DJB is not satisfied. Also, none of these union nodes is non-nullable so the NNC
and NNA conditions cannot be met. Meanwhile, the formulation on the right can be
recognised as Codd semantics preserving, since all union nodes satisfy appropriate
conditions.

Interestingly, even though the structure of the two chains is the same, swapping the
two operands, R1 and R2, completely changes the number and the type of conditions
satisfied by each ∪ node. Most notably, the ∪1 node on the left-hand side does not
satisfy any conditions, while ∪4 on the right-hand side satisfies both DJB and NNC which
are concerned with seemingly unrelated properties of the subqueries. This conflicts
with the intuition that the order of operations should not matter for the preservation of
Codd semantics. Ideally, the preservation should be captured regardless of the exact
formulation of a union chain.

To solve this problem, in this chapter, in sections 3.1 and 3.2, we introduce a new variadic
union operation together with the PDJB condition that guarantees the preservation of
Codd semantics by union nodes. Next, in section 3.3, we identify the limitations
of PDJB that make it unnecessarily restrictive. Then, in sections 3.4 and 3.5, we
mitigate the recognised issues of PDJB, which leads us to the formulation of the weaker
DJEN condition that enables us to Capture more queries preserving Codd semantics.
Finally, in section 3.6, we present the formal proof that with DJEN we do not need the
variadic union to guarantee the formulation-independent verification process for chains
of unions.

3.1 Variadic union

Our first attempt to capture Codd semantics preservation of various chains of unions is
to represent them using a single variadic operation. Technically, this only introduces
yet another possible formulation of the same query and leaves the problem for a chain
of binary unions intact. However, as we will show, every chain of unions is equivalent
to some variadic union operation, therefore having weaker conditions for the n-ary
operator will help us to classify all equivalent chains of unions as Codd semantics
preserving queries.

To begin, let us extend the language of relational algebra with a new operation: n-ary
union

⋃
(E1, . . . ,En). It is well-defined with respect to a schema when:

• E1, . . . ,En are well-defined expressions;

• sig(E1) = · · ·= sig(En)

Chapter 3. New Condition for Union 12

The signature of a well-defined n-ary union
⋃
(E1, ...,En) is defined as follows:

sig
(⋃

(E1, . . . ,En)
)

def
== sig(E1) = · · ·= sig(En)

The set of nullable attributes is given by:

n-sig
(⋃

(E1, ...,En)
) def
==

n⋃
i=1

n-sig(Ei)

The semantics of an n-ary union
⋃
(E1, . . . ,En) w.r.t. a database D is the following:

r⋃
(E1, . . . ,En)

z

D

def
== JE1KD ∪·· ·∪ JEnKD

Remark. The RHS of the previous definition is well-defined since the union operation
is associative and commutative.

For notational convenience, we also define the n-ary union of bags B1, . . . ,Bn as⋃
(B1, . . . ,Bn) = B1 ∪·· ·∪Bn. Then, the following holds trivially:

r⋃
(E1, . . . ,En)

z

D
=

⋃
(JE1KD, . . . ,JEnKD) (2)

The definition of the syntax tree is also expanded to accommodate the n-ary operator:

• For each operator
⋃

, the syntax tree of
⋃
(Q1, ...,Qn) has the root labelled with ∪ and

syntax trees of Q1, ...,Qn as its children. The order of operands is preserved, meaning
that the syntax trees of Q1 and Qn are rooted as the leftmost and rightmost child nodes
respectively.

Clearly, all of the above definitions are generalisations of the corresponding defini-
tions for the binary union operation. For that reason, it should not be a surprise that
Q1 ∪Q2 ≡

⋃
(Q1,Q2). As expected, the semantics of these queries, as well as their

properties (e.g., the signature, the nullable signature, etc.), are the same without regard
to whether the rules for the binary union or the n-ary union are used.

Next, we present relevant properties of the newly defined n-ary union, which we will
later use in proofs.

Lemma 1 (Algebraic Properties of the n-ary Union of Bags). Let B1, . . . ,Bn, for
2 ≤ k < n, be bags. Then:

a) The order of bags in an n-ary union does not affect the result;

b)
⋃(⋃

(B1, . . . ,Bk),Bk+1, . . . ,Bn
)
=

⋃
(B1, . . . ,Bn).

These follow directly from the definition of the n-ary union of bags.

Remark. Lemma 1 presents the properties of the n-ary union of bags. However, because
of the relation (2), all of these properties can be lifted to the query level as long as the
RA expression

⋃
(E1, . . . ,En) is well-defined.

Chapter 3. New Condition for Union 13

Knowing the basic properties of the n-ary union, it should be clear that every chain of
unions Q∪ combining expressions E1 to En is equivalent to the expression

⋃
(E1, . . . ,En).

To put it in another way, regardless of the exact order in which we decide to combine
these expressions, the outcome will be always the same as if we combined them
”simultaneously” using a single n-ary union.

3.2 Pairwise disjoint bases of nullable children

The problem that a union poses for the preservation of Codd semantics is related to the
condition (1b). This is because marked nulls can be duplicated by a union even if its
operands are Codd tables [5]. Take a query R∪R as an example. It will not produce
a Codd table if the relation R contains any nulls. The immediate observation for the
binary operation is that:

• only nullable operands can pose problems for the preservation of Codd semantics, or
equivalently, that non-nullable cannot - which is reflected by the NNC constraint;

• the union can produce new repetitions of a marked null if and only if it comes from a
base relation that is mentioned in both operands. This is because the sets of marked
nulls present in two different base relations must be disjoint in every Codd database -
hence we have the DJB condition.

Projecting these observations onto the realm of multiple operands, we can observe that
non-nullable children are not a problem and we can safely focus only on nullable ones.
Thus, to guarantee that no marked nulls are duplicated in the output of a variadic union,
we can require that bases of nullable operands are pairwise disjoint.

Definition 5. A node in the refined syntax tree of a query satisfies PDJB (pairwise
disjoint bases of nullable children) if the bases of its nullable children are pairwise
disjoint.

We can now expand the sufficient conditions for the preservation of Codd semantics
from Theorem 1 with the new sufficient condition for the n-ary union:

Theorem 2. Let Q be an RA query whose syntax tree is such that:

a-d) As in Theorem 1

e) Each
⋃

(variadic union) node satisfies PDJB or NNA.

Then, Q preserves Codd semantics.

Now, before we prove the theorem, let us introduce one technical result from [5].

Proposition 1 (Proposition 4 in [5]). Every RA query whose syntax tree is such that:

• each ε node satisfies NNC,

• each ∩ and − node satisfies DJN

satisfies the condition (1a) on all databases (not only Codd ones).

Chapter 3. New Condition for Union 14

See Appendix B for the extension of the proof from [5] covering the variadic union
operator. Finally, with the help of this proposition, we can prove our theorem.

Proof of Theorem 2. Let Q be a query whose nodes in the syntax tree satisfy one
of the conditions required by the theorem, that is: every ε node satisfies NNC; every
∩ and − node satisfies DJN; every × node satisfies NNA; every ∪ (binary union) node
satisfies NNA or NNC or DJB; and every

⋃
(variadic union) node satisfies PDJB or NNA. To

prove the theorem we need to show that conditions (1a) and (1b) hold for every Codd
database D. Clearly, Q satisfies (1a) by Proposition 1. In order to show that Q satisfies
the condition (1b), we need to ensure that for every Codd database D, JQKD is a Codd
table. To this end, we proceed with the proof by induction on the structure of Q:

Base cases ([5]):

• Q is a relation name R. In such a case, JQKD is trivially a Codd table since D is a
Codd database.

• Q is non-nullable. Then JQKD is a complete table which is also a Codd table.

Induction:

Here, we only extend the proof of Theorem 1 from [5] with the inductive steps for the
new n-ary union. For the remaining operations and conditions, see the proof in [5].

First, note that the case when Q =
⋃
(Q1, . . . ,Qn) satisfies the NNA condition is already

covered in the base case as the condition implies that Q is non-nullable.

• Q is
⋃
(Q1, . . . ,Qn) and satisfies PDJB:

Let us partition the operands of the n-ary union into two sets of nullable and non-
nullable children. Without loss of generality, let us assume that, for some k ≤ n,
Q1 to Qk are nullable and the remaining subqueries Qk+1 to Qn are not. Clearly,
if some null were to repeat in JQKD, it must come from the nullable children, as
Null(JQk+1KD) = · · ·= Null(JQnKD) =∅.

By the induction hypothesis, JQ1KD to JQkKD are Codd tables. Thus, if some null was
duplicated in JQKD, it must come from two different children. So, we need to show that
Null(JQiKD)∩Null(JQ jKD) =∅ for all distinct i, j ∈ [1,k]. For this, recall that:

Null(JQiKD)⊆
⋃

R∈base(Qi)

Null(JRKD)

The PDJB condition guarantees that bases of nullable children are disjoint, that is
base(Qi)∩base(Q j) =∅ for all pairs of i and j, therefore⋃

R∈base(Qi)

Null(JRKD)∩
⋃

R∈base(Q j)

Null(JRKD) =∅

and thus

Null(JQiKD)∩Null(JQ jKD)⊆
⋃

R∈base(Qi)

Null(JRKD)∩
⋃

R∈base(Q j)

Null(JRKD) =∅

completing the proof.

Chapter 3. New Condition for Union 15

Remark. The attentive reader might notice that all conditions for variadic union nodes
can also apply to binary union nodes since

⋃
(Q1,Q2)≡ Q1∪Q2. Nevertheless, PDJB is

not listed as a condition for the latter. This is because for nodes with two children, PDJB
is equivalent to the disjunction of NNC and DJB (see Proposition 10 in Appendix A),
which is already included in the existing conditions for a binary union node.

Now, we would like to use the variadic union together with its corresponding conditions
to capture the preservation of Codd semantics of chained unions regardless of their exact
formulation. To do so, we can replace a chain of unions in a query with an equivalent
n-ary union and then check for the conditions of Theorem 2. Meanwhile, the next
proposition guarantees that the resulting variadic union node will satisfy PDJB whenever
there exists any equivalent chain of unions whose all union nodes satisfy PDJB as well.

Proposition 2. An n-ary union node
⋃

satisfies the PDJB condition if and only if there
exists an equivalent chain of (binary) unions in which every ∪ node satisfies a DJB or
NNC condition.

We include the proof in Appendix B.

Coming back to the query from Example 1, we could express the union of operands
R1, R1 (duplicated on purpose), R2, R3 as (R1 ∪R2)∪ (R1 ∪R3). Unfortunately, as we
showed before, this formulation does not satisfy the sufficient conditions (left syntax tree
in Figure 4). However, now we can represent this chain of unions as

⋃
(R1,R1,R2,R3).

Keeping in mind that R1 was non-nullable, the only pair of nullable operands is R2
and R3 whose bases are clearly disjoint, therefore this union node satisfies PDJB. As a
result, the whole union can be recognised as Codd semantics preserving even though
the original chain of unions was not recognised as such.

3.3 Problems with PDJB

In the previous section, we suggested a solution to the problem of formulation-dependent
verdicts for queries containing chained unions. However, Proposition 2 on which the
whole process relies, also tells us that we cannot identify in this way any ”semantically
new” chains of unions preserving the Codd semantics. That is, by using variadic
unions with the PDJB condition, we are only able to recognise formulations of chains
of unions for which there already existed some formulation satisfying the conditions
of Theorem 1. Or in other words, if all formulations of a union of multiple operands
could not be identified as Codd semantics preserving before, then they still cannot
be recognised as such now. For this reason, in this and the following sections, we
will identify what makes the PDJB condition unnecessarily restrictive and propose a
more relaxed condition which will allow us to identify more queries preserving Codd
semantics.

We have already said that the union poses problems with preserving Codd semantics
when the same null value is propagated from two or more different operands. To avoid
it, we have required nullable operands to have disjoint bases (PDJB condition). This
approach effectively treats the relation name as a proxy for the possible presence of a

Chapter 3. New Condition for Union 16

marked null from the base relation in the answer to the query. Namely, any marked null
from some relation R can appear in an answer to a query Q if and only if R ∈ base(Q).
Hence, there exists a possibility of duplicating a marked null from R if it appears in
more than one child. This heuristic works in many cases, although we have identified
three problems that make its logic unnecessarily restrictive.

Firstly, the PDJB condition does not account for non-nullable relations in the bases of
the union’s children. That is to say, for the query Q = Q1 ∪Q2, if all relations in the set
base(Q1)∩base(Q2) are non-nullable, then Q also preserves Codd semantics. This is
because non-nullable relations do not contain any nulls which could be duplicated.

Moreover, not all nullable relations in a base of a query can propagate their null values
to the query’s output. For example, the query Q = S−R has both S and R in its base,
while no nulls from JRKD can ever be found in JQKD, regardless of the database D. For
that reason, the query R∪ (S−R) preserves the Codd semantics, despite the fact that
DJB can never be satisfied by the union node.

Finally, using a relation name as a proxy for the presence of a marked null is too coarse
and can be made more precise. For instance, consider relation R over nullable attributes
A and B. Clearly, marked nulls mapped to the attribute A in R must differ from marked
nulls mapped to the attribute B. More formally:

Null(πA(JRKD))∩Null(πB(JRKD)) =∅

for all Codd databases D. This is because marked nulls in a Codd table must be unique
across the attributes. Therefore, the query πA(R)∪ ρB→A(πB(R)) will also always
preserve Codd semantics even though the DJB condition cannot be satisfied.

3.4 Tracking value propagation

The three problems described before are caused by the fact that the base of a query
does not do a good job of tracking how values from the base relation propagate through
the query to the output table. However, before we introduce a better method of doing
exactly that, we need a way to distinguish multiple appearances of the same relation
in the query. To illustrate why, consider the query R∪ (S−R), whose syntax tree is
presented in Figure 5a. We would like to be able to say that the relation R that is the left
child of the union node can propagate nullable values to the query answer, while the
same relation R that is the right child of the difference node cannot.

Currently, we cannot differentiate the two because they are referenced using the same
relation name R. For that reason, we add a unique superscript index to each ”use” of the
relation name in the query. We read such notation Ri as the instance Ri of the relation
R. Clearly, JRiKD = JRKD for all instances of R. Using the new terminology and the
instance annotations as in Figure 5b, we can unambiguously state that instances R1 and
S2 can propagate their values to the query answer, while the instance R3 cannot.

Moreover, for notational convenience, we overload the meaning of the base of a query.
When we talk about the base of a query in the context of base relations, we consider the
base to include names of relations only, e.g., R, S, etc. Whereas, when we talk about

Chapter 3. New Condition for Union 17

∪{A}

R{A} −{A}

S{A} R{A}

(a) Without relation instance annotations

∪{A}

R1{A} −{A}

S2{A} R3{A}

(b) With relation instance annotations

Figure 5: Syntax trees of the query R∪ (S−R).

the base of a query in the context of relation instances, we consider the base to include
names of all relation instances, i.e., R1, S2, R3, etc. So, the variable P in the statement
∀P ∈ base(R1 ∪ (S2 −R3)) would take a value of relations R and S, while the variable
Pi in the statement ∀Pi ∈ base(R1 ∪ (S2 −R3)) would take a value of relation instances
R1, S2, and R3. Despite this ambiguity, we ensure that the meaning of the base will be
always clear from the context.

At last, being able to distinguish between individual uses of the relation name in the
query, we introduce a concept of an effective signature map. A function that will help
us to track the propagation of values from leaves to the root of a query’s syntax tree.

Definition 6 (Effective Signature Map). Let R be a relation in a database D and Q be
an RA query. We will write φRi(Q)(A) = B to denote that values associated with an
attribute A in the instance Ri of the relation R can be propagated to and appear among
values associated with an attribute B in JQKD. The effective signature map is defined
recursively in the following manner:

φRi(Ri)
def
== { (A,A) | A ∈ sig(R) }

φRi(R j)
def
== ∅, where R j is any instance of any relation other than Ri

φRi(ρN→N′(Q))
def
==

{
φRi(Q)[(A,N)\(A,N′)] if (A,N) ∈ φRi(Q),

φRi(Q) otherwise

φRi(πα(Q))
def
== { (A,B) ∈ φRi(Q) | B ∈ α }

φRi(σθ(Q))
def
== φRi(Q)

φRi(ε(Q))
def
== φRi(Q)

φRi(Q1 op Q2)
def
== { (A,B) | (A,B) ∈ φRi(Q1) or (A,B) ∈ φRi(Q2) }
for op ∈ {×,∪,∩}

φRi(Q1 −Q2)
def
== φRi(Q1)

Defined in this way, φRi(Q) is a partial function from sig(R) to sig(Q). It is partial as
values from some attributes of Ri might be dropped by a query via projection operation,
in which case we lose the mapping for the removed attributes.

Chapter 3. New Condition for Union 18

∪{A → A} {B → A}

σconst(A){A → A} ∅

πA{A → A} ∅

R1{A → A,B → B} ∅

ρB→A∅ {B → A}

πB∅ {B → B}

R2∅ {A → A,B → B}

Figure 6: Analysis of the propagation of values from Example 2.

For convenience, we will write φRi(Q)(X), where X ⊆ sig(R), to represent a set:

{φRi(Q)(A) | A ∈ X and φRi(Q)(A) is defined}

Furthermore, note that φRi(Q) is injective because all renamings in Q must be well-
defined. For that reason, we can define φ

−1
Ri (Q) = { (B,A) | (A,B) ∈ φRi(Q) } which

denotes that values of attribute B in Q can consist of values associated with attribute A
in Ri. We will abuse the nomenclature and refer to φ

−1
Ri (Q) as the ”inverse” of φRi(Q).

Example 2. An example of how the effective signature map keeps track of the value
propagation through the query is depicted in Figure 6. We will refer to this query
using the symbol Q. We assume that the relation R is over nullable attributes A and B.
Then, annotations to the left of a node represent effective signature mappings between
the instance R1 and the node, and to the right between the instance R2 and the node.
Analysing the mappings for the root node, we see that the attribute A in the query answer
can consist of values from both attributes A and B in the relation R as φ

−1
R1 (Q)(A) = A

and φ
−1
R2 (Q)(A) = B, respectively.

Remark. Observe that the map contains no entries if the relation instance is not in the
subtree rooted at the node with respect to which the map is computed (denoted by the
∅ symbol in the diagram).

Now, with the help of the effective signature map, we can keep track of the propagation
of values through the query at a more granular level. Then, using its inverse we can find
the corresponding attributes in the particular instance of the relation. This solves the
first discussed problem with the PDJB condition - the fact that not all relations propagate
all values to the output of a query. However, what we really want to keep track of is
what attributes in a relation instance can propagate nulls to the query output. One naive
approach to achieving this could be using the inverse of the effective signature map:

n-sig(Ri)∩φ
−1
Ri (Q)(n-sig(Q)) (3)

The left-hand side of this formula is the set of all nullable attributes in Ri. The right-hand
side represents the set of attributes in Ri that can propagate values to nullable attributes
in Q. Consequently, the set of attributes which can contribute null values to the nullable
attributes in the output is the intersection of the two sets.

However, this approach is not without faults. Most importantly, it misses the fact
that attributes that are nullable in Ri and propagate to nullable attributes in Q may

Chapter 3. New Condition for Union 19

have their null values removed in the process. For example, this happens in the query
presented in Figure 6 that we analysed before (again, we refer to this query as Q). It can
be easily verified that: n-sig(R1) = {A,B}, n-sig(Q) = {A}, and φ

−1
R1 (Q) = {(A,A)}.

Using equation (3), we could infer that the attribute A of R1 can propagate null values
to the answer:

n-sig(R1)∩φ
−1
R1 (Q)(n-sig(Q)) = {A,B}∩φ

−1
R1 (Q)({A}) = {A,B}∩{A}= {A}

However, this is not the case since the selection on the constant value of A precedes the
union. Therefore, no null values from R1 can propagate to the query output. Only the
attribute B in R2 can contribute null values to the answer.

For this reason, we need to adjust the definition of the effective signature map so that it
explicitly filters out the attributes that can no longer contain nullable values.

Definition 7 (Effective Nullable Signature Map). Let R be a relation in a database D and
Q be an RA query. We will write ψRi(Q)(A) = B to denote that null values associated
with a nullable attribute A in the instance Ri of relation R can be propagated to and
appear among null values associated with a nullable attribute B in JQKD. The effective
nullable signature map is defined recursively in the following manner:

ψRi(Ri)
def
== { (A,A) | A ∈ n-sig(R) }

ψRi(R j)
def
== ∅, where R j is any instance of any relation other than Ri

ψRi(ρN→N′(Q))
def
==

{
ψRi(Q)[(A,N)\(A,N′)] if (A,N) ∈ ψRi(Q),

ψRi(Q) otherwise

ψRi(πα(Q))
def
== { (A,B) ∈ ψRi(Q) | B ∈ α }

ψRi(σθ(Q))
def
== { (A,B) ∈ ψRi(Q) | B ∈ n-sig(σθ(Q)) }

ψRi(ε(Q))
def
== ψRi(Q)

ψRi(Q1 op Q2)
def
== { (A,B) ∈

(
ψRi(Q1)∪ψRi(Q2)

)
}

for op ∈ {×,∪}

ψRi(Q1 ∩Q2)
def
== { (A,B) ∈

(
ψRi(Q1)∪ψRi(Q2)

)
| B ∈ n-sig(Q1 ∩Q2) }

ψRi(Q1 −Q2)
def
== ψRi(Q1)

Remark. The properties of and conventions for the effective nullable signature map are
the same as in the case of the effective signature map.

With the help of the effective nullable signature map, we can directly model the propa-
gation of nullable attributes through the query.

Example 3. Figure 7 depicts the effective nullable signature maps for the query from
Example 2, assuming that both attributes of R are nullable. Again, the map between
R1 and any given node is presented to the left of that node and to the right for R2. The
key difference is, that this time, we removed the mapping for the attribute A at the node
σconst(A) as it filters out all null values that propagated from that attribute. As a result,

Chapter 3. New Condition for Union 20

∪∅ {B → A}

σconst(A)∅ ∅

πA{A → A} ∅

R1{A → A,B → B} ∅

ρB→A∅ {B → A}

πB∅ {B → B}

R2∅ {A → A,B → B}

Figure 7: Analysis of the propagation of nulls from Example 3.

we can correctly identify that only null values from the attribute B of R2 can propagate
to the query answer.

Remark. We introduced the definitions of both effective signature and effective nullable
signature maps instead of proceeding directly with the latter as the former will be used
in Chapter 4.

3.5 Disjoint effective nullable attributes

In section 3.3, we argued that using relation names in the base of a query is too coarse
as a proxy for the presence of nulls. Instead, we noticed that marked nulls associated
with different relation attributes must also be distinct. Thus, the union operation should
preserve Codd semantics as long as each relation appearing in a base of at least one
child contributes nulls from different attributes than the same relation in the bases of
other children. To formalize this intuition, we first introduce the concept of effective
nullable signature.

Definition 8 (Effective Nullable Signature). Effective nullable signature of the relation
R w.r.t. the query Q, denoted by en-sig(R,Q), is the set of all nullable attributes of R
such that for each attribute A in en-sig(R,Q), there exists some instance of R in Q which
can propagate null values from its attribute A to the query answer. It can be computed
as:

en-sig(R,Q) =
⋃

Ri∈base(Q)

ψ
−1
Ri (Q)

(
n-sig(Q)

)
Having defined the effective nullable signature, we propose a new condition for the
n-ary union.

Definition 9. A node in the refined syntax tree of a query satisfies the DJEN (disjoint
effective nullable signature) condition if for every pair of its children Qi and Q j, it holds
that:

∀R ∈
(
base(Qi)∩base(Q j)

)
en-sig(R,Qi)∩en-sig(R,Q j) =∅ (4)

In other words, for all pairs of children, Qi and Q j, we require that the effective nullable
signatures w.r.t. Qi and Q j must be disjoint for all relations shared by Qi and Q j.

Chapter 3. New Condition for Union 21

Remark. To clarify, from now on, when we consider a pair of operands/children, Qi and
Q j, then Qi and Q j cannot represent the same operand/child. However, Qi and Q j can
be the same query. For example, in the query R∪R, the two children nodes R of the ∪
node are considered distinct children even though they are the same query.

Now, since we want to use the new condition to capture strictly more queries preserving
Codd semantics, we must ensure that every n-ary union node satisfying PDJB satisfies
DJEN as well. This turns out to be the case for every node in the syntax tree of a query.

Proposition 3. DJEN is strictly weaker than PDJB.

We include the proof in Appendix B.

Satisfied with the above result, we can extend the sufficient conditions for the preserva-
tion of Codd semantics from Theorem 1 with the DJEN condition for the n-ary union:

Theorem 3. Let Q be an RA query whose syntax tree is such that:

a-c) As in Theorem 1

d) Each ∪ (binary union) node satisfies NNC or DJB or NNA or DJEN.

d) Each
⋃

(variadic union) node satisfies DJEN or NNA.

Then, Q preserves Codd semantics.

Proof. Let Q be a query whose nodes in the syntax tree satisfy at least one of the
conditions required by the theorem. To prove the theorem we need to show that
conditions (1a) and (1b) hold for every Codd database D. As before, Q satisfies (1a) by
Proposition 1. In order to show that Q satisfies the condition (1b), we need to ensure
that for every Codd database D, JQKD is a Codd table. To this end, we proceed with the
proof by induction on the structure of Q:

Base cases ([5]):

• Q is a relation name R. In such a case, JQKD is trivially a Codd table since D is a
Codd database.

• Q is non-nullable. Then JQKD is a complete table which is also a Codd table.

Induction:

Here, we only extend the proof of Theorem 1 from [5] with the inductive steps for the
new n-ary union. For the remaining operations and conditions, see the proof in [5].

First of all, note that the case when Q =
⋃
(Q1, . . . ,Qn) satisfies the NNA condition

is already covered in the base case as the condition implies that Q is non-nullable.
Secondly, the case when Q is Q1 ∪Q2 and satisfies DJEN is covered by the proof for the
case when Q is

⋃
(Q1, . . . ,Qn) (below) as Q1 ∪Q2 ≡

⋃
(Q1,Q2).

• Q is
⋃
(Q1, . . . ,Qn) and satisfies the DJEN condition:

By the induction hypothesis, JQ1KD to JQnKD are Codd tables. If some marked null were
to be repeated in JQKD, it must come from two different operands as Codd tables cannot

Chapter 3. New Condition for Union 22

contain duplicated nulls. Therefore, we need to show that Null(JQiKD)∩Null(JQ jKD) =
∅ for all pairs of i, j ∈ [1,n], i ̸= j.

Clearly, if the same null were to appear in both JQiKD and JQ jKD, it must come from the
same base relation. This is because Null(JRKD)∩Null(JSKD) =∅ for any two distinct
relations R and S in a Codd database D. Therefore, we only need to focus on relations
R ∈

(
base(Qi)∩base(Q j)

)
.

The set of null values in JQiKD and JQ jKD that come from the relation R can be ex-
pressed as Null(JQiKD)∩ Null(JRKD) and Null(JQ jKD)∩ Null(JRKD), respectively. By
the definition of the effective nullable signature, we know that:

Null(JQiKD)∩ Null(JRKD)⊆ Null(πen-sig(R,Qi)(JRKD)) (5)

Null(JQ jKD)∩ Null(JRKD)⊆ Null(πen-sig(R,Q j)(JRKD)) (6)

Because the union satisfies the DJEN condition, we know that the nullable signatures of
R w.r.t. Qi and Q j are disjoint for each pair of children and for every base relation R in
base(Qi)∩base(Q j). Thus, we can conclude that

Null(πen-sig(R,Qi)(JRKD))∩ Null(πen-sig(R,Q j)(JRKD)) =∅ (7)

as well. This is because, by the induction hypothesis, JRKD is a Codd table, hence nulls
associated with different attributes must be distinct.

Finally, combining equations (5), (6), and (7) we can conclude that the set of nulls from
any relation R shared by the two operands must be empty:(
Null(JQiKD)∩ Null(JQ jKD)

)
∩ Null(JRKD) =

=
(
Null(JQiKD)∩ Null(JRKD)

)
∩
(
Null(JQ jKD)∩ Null(JRKD)

)
⊆ Null(πen-sig(R,Qi)(JRKD))∩ Null(πen-sig(R,Q j)(JRKD)) (by eq. 5 and 6)

=∅ (by eq. 7)

This proves that no two operands can share a null, so the n-ary union must preserve
Codd semantics.

The importance of the above theorem lies in the fact that the conditions of Theorem 3
enable us to capture strictly more RA queries that preserve Codd semantics than the
condition from Theorem 2. This is because the requirements of Theorem 3 are satisfied
whenever the requirements of Theorem 2 are met as the DJEN condition is weaker than
PDJB. At the same time, the converse is not necessarily true as demonstrated in the
following example.

Example 4. Let our query be:⋃
(σconst(B)(ρA→C(R)), σconst(B)(ρA→B(ρB→C(R))), ρA→C(S−R))

Its annotated syntax tree is presented in Figure 8. The query references two base
relations R and S over attributes A,B. Let us assume that both A and B are nullable in

Chapter 3. New Condition for Union 23

∪̸|= PDJB |= DJEN

σ1
const(B){A →C}

ρA→C{A →C,B → B}

R1{A → A,B → B}

σ2
const(B){B →C}

ρA→B{A → B,B →C}

ρB→C{A → A,B →C}

R2{A → A,B → B}

ρA→C∅

−∅ |= DJN

S3 R4{A → A,B → B}

Figure 8: Analysis of the propagation of nulls in the query from Example 4.

R and that the relation S is non-nullable (so that the − node satisfies DJN). We are not
able to capture the preservation of Codd semantics of the

⋃
node with the help of the

PDJB condition alone since the relation R appears in two nullable children (σ1 and σ2).

However, using DJEN, we can allow the null values to propagate from the same base
relation in two different operands as long as the null values come from different attributes
of the relation. Analysing the propagation of null values from instances of R to σ1, σ2

and − nodes (annotations to the left of nodes in Figure 8), we can observe that effective
nullable signatures of R with respect to these nodes are {A}, {B}, and ∅, respectively.
For σ1, the attribute B is removed from the en-sig by the selection operation. For σ2,
the selection filters out nulls from attribute B as well, but at this stage, the values in B
come originally from the attribute A in R (represented by the A → B mapping). Hence,
only the attribute B of R is in the effective nullable signature. Finally, no nulls from R
can be found in the output of the − node, so its effective nullable signature is empty.
Clearly, the three sets are disjoint, so there is no risk of creating repeated nulls. The
DJEN condition is satisfied and the union can be correctly recognised as Codd semantics
preserving.

Remark. As a result of the previous theorem, we now have four sufficient conditions
for the preservation of Codd semantics by the binary union operation. That is NNA,
DJB, NNC, and DJEN. However, it should be recognised that DJB and NNC are special
cases of DJEN (as shown formally in the proof of Proposition 10 in Appendix B). On
the other hand, a node can satisfy DJEN without satisfying NNC or DJB as is the case in
Example 2. Consequently, DJEN is weaker than the disjunction of NNC and DJB and it
enables us to capture more queries that preserve Codd semantics even in the case of
a single binary union. This, however, should not be surprising as we previously said
that the disjunction of NNC and DJB is equivalent to PDJB (in the binary case), which
was shown to be stricter than DJEN. Therefore, we can simplify the condition for binary
union nodes in Theorem 3 to the form:

d) Each ∪ (binary union) node satisfies DJEN or NNA.

Chapter 3. New Condition for Union 24

3.6 Redundancy of variadic union

In the previous section, we introduced the new DJEN condition for union nodes. We
also demonstrated that the DJEN condition enables us to capture strictly more queries
preserving Codd semantics. Now, we will show how it can be used to identify chains of
unions preserving Codd semantics regardless of their exact formulation.

With the PDJB condition, we relied on Proposition 2. It guaranteed that we can safely
rewrite chains of unions using equivalent n-ary unions, which would then satisfy PDJB
whenever any equivalent formulation satisfied the premises of Theorem 2. This time,
it turns out we can completely avoid replacing chains of unions with variadic unions.
Namely, we show that it is enough to check whether each union node in the query, as
given, satisfies DJEN. To this end, we first propose the following claim.

Proposition 4. Let Q1 to Qn be RA queries with the same signature. Then the following
statements are equivalent:

(a)
⋃
(Q1, . . . ,Qn) satisfies DJEN.

(b) In all chains of binary unions that combine queries Q1 to Qn, every ∪ node satisfies
DJEN.

(c) There exists a chain of binary unions that combines queries Q1 to Qn in which
every ∪ node satisfies DJEN.

Proof. We prove the equivalence of statements using the circular chain of implications.

• (a)→ (b): Let us assume that
⋃
(Q1, . . . ,Qn) satisfies DJEN. Under this assumption,

we will show that every ∪ node in all chains of binary unions that combine queries
Q1 to Qn satisfies DJEN.

For that, let Pl and Pr be two disjoint non-empty subsets of {Q1, . . . ,Qn}. Let Ql and
Qr be some chains of unions merging together queries from Pl and Pr, respectively.
Also, let ∪∗ be the union node in the query Ql ∪∗ Qr. Since sets Pl and Pr can be
chosen arbitrarily, the same as the structure of Ql and Qr, the ∪∗ node effectively
represents all possible union nodes in all chains of unions that are equivalent to⋃
(Q1, . . . ,Qn).

Now, the ∪∗ node satisfies the DJEN condition if for all relations R that appear both in
the base of Ql and in the base of Qr, it holds that:

en-sig(R,Ql)∩en-sig(R,Qr) =∅

We can rewrite the above equation using the fact that Ql and Qr are just chains of
unions and therefore the effective nullable signatures w.r.t. Ql and Qr are made up of
attributes from the nullable signatures w.r.t. the operands they combine:(⋃

Qi∈Pl

en-sig(R,Qi)
)
∩
(⋃

Q j∈Pr

en-sig(R,Q j)
)
=∅

or equivalently: ⋃
Qi∈Pl

⋃
Q j∈Pr

(
en-sig(R,Qi)∩en-sig(R,Q j)

)
=∅

Chapter 3. New Condition for Union 25

Now, this is indeed the case as, by our assumption,
⋃
(Q1, . . . ,Qn) satisfies the DJEN

condition, so en-sig(R,Qi)∩ en-sig(R,Q j) = ∅ for all pairs of operands Qi,Q j ∈
{Q1, . . . ,Qn} and for all R ∈ base(Qi)∩base(Q j):⋃

Qi∈Pl

⋃
Q j∈Pr

(
en-sig(R,Qi)∩en-sig(R,Q j)

)
=

⋃
Qi∈Pl

⋃
Q j∈Pr

(∅) =∅

Thus, ∪∗ satisfies DJEN and so do all ∪ nodes in all possible chains of unions.

• (b)→ (c): The conclusion follows trivially from the premise because there always
exists at least one chain of binary unions that combines queries Q1 to Qn.

• (c)→ (a): Let us assume that there exists a chain of binary unions that combines
queries Q1 to Qn in which every ∪ node satisfies DJEN. Under this assumption, we
will show that

⋃
(Q1, . . . ,Qn) satisfies DJEN as well.

To this end, consider a chain that satisfies our initial assumption. Then, for any pair
of operands Qi and Q j, where i, j ∈ [1,n], let ∪∗ be their lowest common ancestor
node in the chain of unions. Without loss of generality, we can assume that Qi and Q j
are subqueries of ∪∗’s left and right children, Ql and Qr, respectively.

Using the fact that Ql must be Qi itself or a chain of unions containing Qi, we
know that en-sig(R,Qi) ⊆ en-sig(R,Ql) for all relations R that appear in the base
of Qi. Similarly for Qr and Q j. Also, as ∪∗ satisfies DJEN by our assumption, we
know that: en-sig(R,Ql)∩en-sig(R,Qr) =∅. Combining all of these observations
together, we can conclude that for each pair of queries Qi and Q j and for all relations
R ∈ (base(Qi)∩base(Q j)), it holds that:

en-sig(R,Qi)∩en-sig(R,Q j)⊆ en-sig(R,Ql)∩en-sig(R,Qr) =∅

which is exactly what is required by the DJEN condition for
⋃
(Q1, . . . ,Qn).

Having proved the equivalence of the statements from Proposition 4, we can state the
main result of this section.

Corollary 1. Let Q1 to Qn be RA queries with the same signature. Then the following
statements are equivalent:

a)
⋃
(Q1, . . . ,Qn) does not satisfy DJEN

b) there exists a chain of binary unions that combines queries Q1 to Qn in which some
∪ node does not satisfy DJEN.

c) there does not exist a chain of binary unions that combines queries Q1 to Qn in
which every ∪ node satisfies DJEN.

Proof. Each statement is the negation of the corresponding statement from Proposi-
tions 4, therefore they must be equivalent too.

The significance of the above corollary is the following. Firstly, by Theorem 3, if all ∪
nodes in a chain of binary unions satisfy DJEN, then we know that it preserves Codd

Chapter 3. New Condition for Union 26

semantics. Otherwise, it means that we have found a chain of binary unions in which
some ∪ node does not satisfy DJEN. As a consequence, by Corollary 1, we can be
certain that no other formulation of the chain nor the equivalent n-ary union satisfies
the conditions of Theorem 3. This is a very strong result as before we were not able to
discard this possibility. Therefore, we can limit ourselves to verifying the preservation
of the Codd semantics directly on the chains of unions as formulated in the query.

Remark. Technically, an equivalent formulation could be also identified as Codd seman-
tics preserving by satisfying the NNA condition. Although, it can be easily shown that in
a chain of unions satisfying the conditions of Theorem 3 either all union nodes satisfy
DJEN or all satisfy NNA. In the latter case, all union nodes in the original formulation
would satisfy NNA as well, so there is no need to check other formulations.

As a consequence, it turns out that we do not need the variadic union at all. This is
because any variadic union can be represented using solely binary unions and all the
checks can be performed on the binary unions directly. Therefore, for the remainder of
the report, we will consider only RA queries without the variadic union. This leads us
to the final version of the conditions for the preservation of Codd semantics.

Theorem 4. Let Q be an RA query whose syntax tree is such that:

a) each ε node satisfies NNC;

b) each ∩ and − node satisfies DJN;

c) each × node satisfies NNA;

d) each ∪ node satisfies NNA or DJEN.

Then, Q preserves Codd semantics.

Chapter 4

Preserving Duplicated Marked Nulls

4.1 Redefining Codd semantics

So far we have defined the Codd interpretation of an SQL database D, i.e. codd(D),
as a result of replacing each SQL null in D with a fresh marked null. Under such
semantics, no marked null can occur twice in a database nor in an answer to a query.
Now, we would like to relax this constraint and allow duplicated labelled nulls in tables.
Ideally, in the extreme case, we would like to be able to replace SQL nulls in D with
any marked null. Unfortunately, such an interpretation introduces another degree of
non-determinism to the null replacement procedure. As a result, the codd function
could produce a set of databases that are no longer all isomorphic to each other. For
example, the SQL table on the left (below) could be interpreted as each of the tables to
its right.

A B
1 N
2 N
2 N
2 N

A B
1 ⊥1
2 ⊥2
2 ⊥3
2 ⊥4

A B
1 ⊥1
2 ⊥2
2 ⊥2
2 ⊥3

A B
1 ⊥1
2 ⊥2
2 ⊥2
2 ⊥2

This poses multiple problems. The biggest one is the fact that even if a query Q preserves
the semantics of nulls under such interpretation, it might not be immediately clear which
replacement of nulls the answer represents. In simple terms, we cannot talk anymore
about the single interpretation of an SQL table. This makes the semantics of the query’s
output ambiguous which is undesirable in real-life systems. Therefore, we focus on the
interpretation of SQL nulls in which N values are still replaced by fresh marked nulls
but this time all records that are repeated within the SQL table are associated with the
same marked nulls. This is to say that the multiplicity of each record in a table after
replacing SQL nulls with marked nulls is preserved by the transformation.

Remark. The newly introduced interpretation of SQL nulls is obviously different from
the original Codd interpretation. However in this chapter, for consistency with the
notation and nomenclature introduced before, we will keep using the terms Codd
semantics, Codd table, Codd database, codd function, etc., when referring to the

27

Chapter 4. Preserving Duplicated Marked Nulls 28

corresponding objects under the new interpretation. In particular, from now on we will
call:

• Codd semantics - the interpretation of nulls in which records that are repeated in a
table are assigned the same marked null,

• a Codd table - a naive table in which each marked null is different except in repeated
records; similarly for the Codd database,

• the codd function - a function that assigns fresh marked nulls to distinct records and
the same nulls to records that are repeated in a table,

Moreover, whenever we compare the two interpretations, we will clearly distinguish
between them in order to avoid any confusion.

Coming back, an example of the new Codd interpretation is presented below:

SQL:

A B C
1 N N
2 N N
2 N N

Codd:

A B C
1 ⊥1 ⊥2
2 ⊥3 ⊥4
2 ⊥3 ⊥4

This approach yields a codd procedure that produces a set of databases which are all
isomorphic to each other. Hence, once again, we can talk about the unambiguous Codd
interpretation of SQL database/table that is unique up to the renaming of nulls.

While the definition of the preservation of the semantics of nulls remains intact, it is no
longer the case that a query Q preserves the new Codd semantics if conditions (1a) and
(1b) from Definition 2 hold. This is demonstrated in the following example.

Example 5. Consider the query Q = R∪S evaluated on a Codd database D where:

JRKD =
A B
1 ⊥1

; JSKD =
A B
1 ⊥2

In such case, the answers to the query Q on databases D and sql(D) are:

JQKD =

A B
1 ⊥1
1 ⊥2

; JQKsql(D) =

A B
1 N
1 N

Clearly, sql(JQKD) = JQKsql(D) as well as JQKD is a Codd table. However, JQKD is not a
valid Codd interpretation of JQKsql(D) as it would need to have two identical records,
whereas the query evaluated on Codd database produces the table with two distinct
records.

Most importantly, notice that in the new Codd semantics not every Codd database/table
is a Codd interpretation of some SQL database/table (as was the case in the original
Codd semantics). Therefore, we need an additional condition for the preservation of the
new Codd semantics that captures the fact that the modified codd function must keep
multiplicities of translated records the same. We achieve that by requiring that no two
records in JQKD differ only in null values. This condition prevents two records in JQKD
to be transformed into the same record in sql(JQKD). Consequently, the multiplicity

Chapter 4. Preserving Duplicated Marked Nulls 29

of a record r in JQKD must be the same as the multiplicity of a corresponding record
sql(r) in sql(JQKD) and vice-versa. We formalise the above discourse in the following
proposition.

Proposition 5. Let T be a table and let T ′ = sql(T). Then, all the following statements
are equivalent:

(a) No two records in T differ only in nulls.

(b) For every record r in T , #(r,T) = #(sql(r),T ′).

(c) For every record r′ in T ′, there exists a unique record r in T such that r ∈ sql−1(r′)
and #(r,T) = #(r′,T ′).

The proof of the above proposition is given in Appendix B.

As a result, the definition of the preservation of Codd semantics, using the new codd
function, can be equivalently formulated as:

Definition 10. A query Q preserves the new Codd semantics if for every SQL database
D′ it holds that JQKD ∈ codd

(
JQKD′

)
, where D is the Codd interpretation of D′, which

can be equivalently formulated as:

sql(JQKD) = JQKsql(D), (2a)

JQKD is a Codd table, (2b)

and no two records in JQKD differ only in null values. (2c)

4.2 Sufficient conditions with new requirement

Having identified the new requirement (2c), we need to consider which RA operations
can be affected by it. Clearly, renaming just changes the signature of a table so it cannot
interfere with (2c). Intersection, difference, selection, and duplicate elimination produce
a table that is always contained in one of input tables. So, the output can contain two
records differing only in null values only if the input tables contain such records too.
Similarly, records produced by the Cartesian product can differ only in null values
only if there are at least two such records in some input table as well - see the formal
argument in the proof of Proposition 6.

Therefore, the only problematic operations with respect to the new condition are
projection and union. The former can produce two records differing only in null values
when it removes all the attributes that differentiated the two records on the constant
values in the input table. We demonstrate this scenario in the following example.

Example 6. Consider the query Q = πB(R) evaluated on a Codd database D

where JRKD =

A B
1 ⊥1
2 ⊥2

. The answer to Q on D is JQKD =

B
⊥1
⊥2

.

Chapter 4. Preserving Duplicated Marked Nulls 30

Clearly, the two records in JQKD differ only in nulls (⊥1 and ⊥2) even though JRKD
satisfies the condition (2c). This is because the attribute A that differentiated the two
records on constant values was removed by the projection.

Nevertheless, we can still allow such a situation to happen as long as such records will
be eventually removed from the output, which can be ensured by the NNA condition.

On the other hand, the union may not satisfy the requirement (2c) when two records
differing only in nulls come from two separate children. This is because the two records
are then put together in one output table (as we saw in Example 5). There is a number
of ways we can prevent that from happening. First, we could require the NNA condition
and ignore the problem since the problematic records will be eventually discarded.
Alternatively, we can require the NNC condition which ensures that at least one child
is a complete table, hence it cannot contain any nullable records. Following similar
reasoning, we can also require the DJN condition. The intuition is that if two records do
not share nullable attributes then they cannot differ only in nulls. This is because one
record is guaranteed to have a constant value for the attribute that is nullable in the other.
Putting all the above observations together we can formulate the following proposition.

Proposition 6. Every RA query whose syntax tree is such that all πα nodes satisfy the
NNA condition and every ∪ node satisfies NNA or DJN or NNC conditions satisfies (2c) on
all Codd interpretations of SQL databases.

See the proof in Appendix B.

Furthermore, we can utilise the new property of Codd semantics allowing marked nulls
to be duplicated among repeated records to come up with a new sufficient condition
which ensures that the result of the union operation is a Codd table.

Definition 11. A node Q in the syntax tree of a query satisfies the SESM (same effective
signature map) condition if for every relation R ∈

(
base(Q1)∩base(Q2)

)
, where Q1

and Q2 are children of Q, the following statement holds:

For all Ri,R j ∈ base(Q), if φRi(Q) and φR j(Q) are total and surjective functions
(effective signature maps) from sig(R) to sig(Q), then φRi(Q) = φR j(Q).

The condition is based on the fact that if a relation instance contributes values to the
output of a query from a record which is either restricted by an intermediate projection
or extended by an intermediate Cartesian product, then the propagated values must be
constant. This is because if π and × nodes satisfy the NNA condition, then the nullable
records they produce must be removed from the output at some point. We formalise
this observation in the following lemma.

Lemma 2. Let Q be a RA query whose syntax tree is such that all πα and × nodes
satisfy the NNA condition. An instance of a relation Ri can propagate null values to the
query output only if φRi(Q) is a total and surjective function from sig(R) to sig(Q).

See the proof in Appendix B.

For that reason, only records which are neither truncated nor extended can potentially
contribute null values to the output. Hence, by ensuring that the same attributes from
all instances of a base relation are mapped to the same attributes in the output table,

Chapter 4. Preserving Duplicated Marked Nulls 31

we are able to guarantee that propagated records have the same ”shape” and only the
same records contain the same marked nulls. For the formal argument see the proof of
Theorem 5.

Taking into account all the aforementioned findings, we now present the conditions for
the preservation of the Codd semantics with the new codd function.

Theorem 5. Let Q be an RA query whose syntax tree is such that:

a) each ε node satisfies NNC;

b) each ∩ and − node satisfies DJN;

c) each × and πα node satisfies NNA;

d) each ∪ node satisfies (NNA or DJN or NNC) AND (NNA or DJEN or SESM).

Then, Q preserves the new Codd semantics.

Proof. Let Q be an RA query whose syntax tree satisfies the conditions of Theorem 5.
To prove the theorem we need to show that conditions (2a), (2b), and (2c) hold for
every Codd database D. Clearly, Q satisfies condition (2a) by Proposition 1 as it
guarantees that sql(JQKD) = JQKsql(D) holds for all databases D. Moreover, Q satisfies
condition (2c) by Proposition 6.

Therefore, we only need to show that Q satisfies the condition (2b). We prove it by the
induction on the structure of Q.

Base cases ([5]):

• Q is a relation name R. In such a case, JQKD is trivially a Codd table since D is a
Codd database.

• Q is non-nullable. Then JQKD is a complete table which is also a Codd table.

Induction:

First of all, note that the case when Q is ε(Q1) and satisfies NNC is already covered
in the base case as the condition implies that Q is non-nullable. Similarly when Q is
Q1∩Q2 or Q1−Q2 and satisfies DJN and when Q is Q1×Q2 or Q1∪Q2 or πα(Q1) and
satisfies NNA.

• Q is σ(Q1):

The proof follows from the fact that JQKD ⊆ JQ1KD and, by the induction hypothesis,
JQ1KD is a Codd table.

• Q is ρA→B(Q1):

The claim trivially follows from the fact that ρA→B only changes the name of attribute
A in each record in JQ1KD, which is a Codd table by the induction hypothesis, but not
the value this attribute is mapped to.

• Q is Q1 ∪Q2 and satisfies DJEN:

Chapter 4. Preserving Duplicated Marked Nulls 32

By the induction hypothesis, JQ1KD and JQ2KD must be Codd tables. Then, ε(JQ1KD)
and ε(JQ2KD) are Codd tables in the original sense (no repeated nulls). In the proof
of Theorem 3, we show that if the input tables are Codd tables (in the original sense)
and the union satisfies DJEN, then the output table is also a Codd table (in the original
sense). Hence, we know that ε(JQ1KD)∪ε(JQ2KD) is a Codd table (in the original sense).
Furthermore, it is the case that ε(JQ1KD ∪ JQ2KD)⊆ ε(JQ1KD)∪ ε(JQ2KD). Therefore,
ε(JQ1KD ∪ JQ2KD) must also be a Codd table (in the original sense) and JQ1KD ∪ JQ2KD
must be a Codd table as defined in this chapter (duplicated nulls only among repeated
records). Thus, JQKD is also a Codd table.

• Q is Q1 ∪Q2 and satisfies SESM:

By the induction hypothesis, JQ1KD and JQ2KD are Codd tables. Therefore, if we show
that the nulls they share are repeated only among identical records in both children,
then we can conclude that JQ1 ∪Q2KD is also a Codd table. To this end, we will show
that there cannot exist two distinct records r1 ∈ JQ1KD and r2 ∈ JQ2KD that contain the
same null. That is, r1 and r2 such that r1 ̸= r2 and r1(A) = r2(B) =⊥ ∈ Null, for some
attributes A,B ∈ sig(Q). As a consequence, the output table cannot contain two different
records with the same marked null, which proves that JQKD is a Codd table.

Remark. Note that if r1 = r2, then #(r1,JQ1 ∪Q2KD) = #(r1,JQ1KD)+ #(r2,JQ2KD).
Such records do not cause problems with the condition (2b) as the nulls are duplicated
in the output only among identical records. Therefore, only the case when r1 ̸= r2 needs
to be considered.

To begin with, let us notice that ⊥ must come from the same base relation in both
children. This is because Null(JRKD)∩Null(JSKD) =∅ for any two different relations R
and S. Thus, we can only focus on nulls that come from some relation R that is in the
base of both Q1 and Q2.

Next, we observe that all instances of a base relation R in the base of Q can be partitioned
into two sets based on whether φRi(Q) is a total and surjective function from sig(R)
to sig(Q) or not. By Lemma 2, the instances belonging to the latter category cannot
propagate null values to the query output. Summing up, only records from instances of
the same base relation that have total and surjective maps w.r.t. Q can cause problems
with the preservation of Codd semantics. In the remaining part of the proof, we show
that if the condition SESM is satisfied, then all records r1 ∈ JQ1KD and r2 ∈ JQ2KD such
that r1(A) = r2(B) =⊥ ∈ Null must be the same and, therefore, JQ1 ∪Q2KD must be a
Codd table.

We prove the statement by contradiction. Let us assume that r1 and r2 are indeed distinct
and that originally they come from Ri ∈ base(Q1) and R j ∈ base(Q2), respectively. For
that reason, let f1 = φRi(Q1) = φRi(Q) and f2 = φR j(Q2) = φR j(Q). By our assumption,
f1 and f2 are total and surjective, which means that records from Ri and R j are not
truncated nor extended by projection or Cartesian product operations. Therefore, it
must be the case that r1 ∈ ρ f1(JRKD) and r2 ∈ ρ f2(JRKD), where ρ f1 and ρ f2 is an abuse
of notation for the renaming operation that applies all mappings from the effective
signature map to its input. Moreover, since the ∪ node satisfies the SESM condition, we
know that f1 = f2, so ρ f1(JRKD) = ρ f2(JRKD). As a result, both r1 and r2 must come

Chapter 4. Preserving Duplicated Marked Nulls 33

from the same table ρ f1(JRKD). It is important to observe at this point that ρ f1(JRKD)
must be a Codd table because, by the induction hypothesis, JRKD is a Codd table. But
this leads to a contradiction since we just showed that ρ f1(JRKD) contains two distinct
records r1 and r2 which share the same marked null ⊥. As a consequence, such two
distinct r1 and r2 cannot exist, which completes the proof.

The last thing that we would like to notice here is that the condition for the union can
be equivalently stated as: each ∪ node satisfies NNA or NNC or (DJN and DJEN) or (DJN
and SESM). This is because NNC is a special case of DJEN. However, it turns out that this
set of clauses is not minimal due to the following proposition.

Proposition 7. Let Q be an RA query whose syntax tree is such that every πα and ×
node satisfies the NNA condition. Then, every ∪ node in Q that does not satisfy NNA but
satisfies DJN and SESM must also satisfy DJEN.

See the proof in Appendix B.

As a consequence, we know that if a ∪ node satisfies NNA, then it satisfies the conditions
of Theorem 5. Otherwise, if ∪ does not satisfy NNA, then it cannot satisfy DJN and SESM
without satisfying DJEN. Hence, we can safely rewrite the clause (DJN and SESM) as
(DJN and SESM and DJEN) which in turn subsumes (DJN and DJEN). Thus, the minimal
formulation of the condition for union nodes is:

d) each ∪ node satisfies NNA or NNC or (DJN and DJEN)

4.3 Comparison of conditions for different null interpre-
tations

So far, we have analysed and refined the sufficient conditions for the preservation of
null semantics for two interpretations of an SQL table/database. That is, when codd
function assigns:

1. a fresh marked null to each SQL null - original Codd semantics;

2. a fresh marked null to each SQL null in different records, but repeats the same
marked nulls in the same records within a table - Codd semantics as defined in
this chapter

The conditions for the preservation of these semantics are captured by Theorems 4
and 5, respectively. The key differences between the two are the following:

• for interpretation 2, all πα nodes have to satisfy the NNA condition;

• for interpretation 2, if NNA is not satisfied, then ∪ nodes cannot satisfy DJEN on
its own (as it is for interpretation 1) and are required to satisfy NNC or (DJN and
DJEN).

Furthermore, observe that DJEN is subsumed by both NNC and (DJN ∧ DJEN) conditions.
This is because DJEN needs to be satisfied for (DJN ∧ DJEN) to be satisfied, while NNC

Chapter 4. Preserving Duplicated Marked Nulls 34

is a special case of DJEN. Therefore, due to stricter conditions for πα and ∪ nodes for
interpretation 2, we can state the following proposition.

Proposition 8. The conditions of Theorem 4 are strictly weaker than the conditions of
Theorem 5.

To demonstrate this, in the next examples, we present two queries which preserve
interpretation 1 but not interpretation 2.

Example 7. Let Q be the query whose annotated syntax tree is presented in Figure 9.
Also, let relation R be over nullable attributes A and B. The annotations to the left
of a node represent the effective nullable signature map of the instance of R that is
present in the subquery with respect to the given node. Based on these, we can see that
the instance R1 can contribute nulls to the answer of the query only from the attribute
A, while R2 only from the attribute B. Therefore, clearly, ∪ satisfies DJEN. On the
other hand, n-sig(σ1) = n-sig(σ2) = {C}, so DJN is not satisfied. For the same reason,
neither σ1 nor σ2 is non-nullable so the ∪ node does not satisfy NNC nor NNA. Thus, the
conditions of Theorem 4 are satisfied, while those of Theorem 5 are not.

Remark. Note that in this example the ∪ node does not satisfy SESM as well. The
effective signature maps of R1 and R2 with respect to the ∪ node are φR1(Q) =
{A →C,B → B} and φR2(Q) = {A → B,B →C}, respectively. Clearly, both of them
are total and surjective functions from sig(R) to sig(Q), but they are not equal to each
other, so SESM is not satisfied.

Example 8. Consider the query Q = πA(R). Clearly, Q preserves the original Codd
semantics on all SQL databases for which Q is well-defined as Theorem 4 does not
impose any restrictions on projections. On the other hand, Q satisfies the conditions of
Theorem 5 if and only if attribute A of R is marked as NOT NULL.

4.4 Evaluation under set semantics

Whilst the two interpretations of nulls differ when queries are evaluated using bag
semantics, they turn out to be equivalent when applied under set semantics. This is

∪ ̸|= DJN,NNC,NNA|= DJEN

σ1
const(B){A →C}

ρA→C{A →C,B → B}

R1{A → A,B → B}

σ2
const(B){B →C}

ρA→B{A → B,B →C}

ρB→C{A → A,B →C}

R2{A → A,B → B}

Figure 9: Analysis of the propagation of nulls in the query from Example 7.

Chapter 4. Preserving Duplicated Marked Nulls 35

because, by definition, set tables do not contain any duplicated records. Therefore, the
new codd function will always replace every SQL null with a fresh marked null. For
that reason, it is impossible to talk about the conditions for two different interpretations.
Instead, we can use the new conditions for bags to devise new conditions for the
preservation of Codd semantics over sets.

For the purpose of this analysis, let RAset be a fragment of RA without ε. Moreover, we
define a set database to be a database where each record appears only once in a table.
Then, the set semantics of an RAset query Q on the set database D, denoted by JQKset

D is
recursively defined in the following manner:

JRKset
D

def
== JRKD

JQ1 op Q2Kset
D

def
== JQ1Kset

D op JQ2Kset
D for op ∈ {∩,−,×}

JQ1 ∪Q2Kset
D

def
== ε

(
JQ1Kset

D ∪ JQ2Kset
D
)

Jπα(Q′)Kset
D

def
== ε

(
πα(JQ′Kset

D)
)

JρA→B(Q′)Kset
D

def
== ρA→B(JQ′Kset

D)

Jσθ(Q′)Kset
D

def
== σθ(JQ′Kset

D)

The above is well-defined because D is a set database and because each record is
guaranteed to appear only once in a table (despite the fact that the semantics of each
subexpression formally returns bag) [5].

Subsequently, we can define the notion of the preservation of the Codd semantics over
sets.

Definition 12 ([5]). An RAset query Q preserves Codd semantics over sets if, for every
SQL set database D′ and for every D ∈ codd(D′), it holds that JQKset

D ∈ codd
(
JQKset

D′
)
.

This can be equivalently formulated as:

sql
(
JQKset

D
)
= JQKset

D′ (3a) and JQKset
D is a Codd table. (3b)

Even though the condition (2c) is not strictly required for the preservation over sets, we
can still use it to come up with weaker conditions. To understand how, consider the
following situation. In [5], authors argue that DJB is no longer sufficient for the union
node to preserve Codd semantics, which they demonstrate using the following example.

Example 9 ([5]). Consider a schema with R and S over a single nullable attribute A. The
RAset query Q = R∪S trivially satisfies DJB, but it does not preserve Codd semantics
over sets. To see this, consider the Codd database D and its SQL equivalent D′, where

JRKD =
B
⊥1

; JSKD =
B
⊥2

; JRKD′ =
B
N

; JSKD′ =
B
N

Obviously, D ∈ codd(D′). However, we have:

Chapter 4. Preserving Duplicated Marked Nulls 36

JR∪SKset
D =

B
⊥1
⊥2

; JR∪SKset
D′ =

B
N

Clearly, JQKset
D ̸∈ codd(JQKset

D′). However, in this example, the problem is not that DJB
fails to guarantee that JQKset

D is a Codd table (its original purpose), but rather that it
does not ensure that sql

(
JQKset

D
)
= JQKset

D′ . Therefore, instead of discarding the sufficient
conditions for (3b) which do not happen to ensure (3a) as well, we suggest finding new
conditions on top of them which will guarantee the satisfiability of the condition (3a) -
on their own or with conjunction with other conditions. As it turns out, requiring the
condition (2c) to hold achieves exactly that. But before proving it, we need to introduce
another technical result derived in [5].

Lemma 3 (Lemma 9 in [5]). Let Q be an RAset query whose syntax tree is such that
every ∩ and − node satisfies DJN. Then, for all set databases D and D′ such that
D′ = sql(D), it holds that:

ε
(
sql(JQKset

D)
)
= JQKset

D′

As a consequence, for all RAset queries Q satisfying the premises of Lemma 3, proving
that the condition (3a) is satisfied comes down to showing that sql(JQKset

D) is a set [5].
With this in mind, we can now formally present our results.

Proposition 9. Let Q be an RAset query such that ε
(
sql(JQKset

D)
)
= JQKset

D′ for every SQL
set database D′ and for every D ∈ codd(D′). If no two records in JQKset

D differ only in
null values, then sql(JQKset

D) = JQKset
D′ .

Proof. Let D′ be an SQL set database and D be its Codd interpretation, that is
D ∈ codd(D′). Also, let Q be an RAset query such that (‡) ε

(
sql(JQKset

D)
)
= JQKset

D′

and in which no records differ only in null values. Now, since D is a set database,
it follows that JQKset

D is a set table. Thus, for every record r in JQKset
D we know that

#(r,JQKset
D) = 1. Consequently, by the equivalence of statements (a) and (b) in Proposi-

tion 5, we get that #(sql(r),sql(JQKset
D)) = 1 meaning that (†) sql(JQKset

D) must be a set
as well. Hence:

sql(JQKset
D)

(†)
= ε(sql(JQKset

D))
(‡)
= JQKset

D′

which completes the proof.

As a result, the above proposition acts like a ”proxy” letting us find sufficient conditions
for (3a) by coming up with sufficient conditions for (2c) and combining them with
conditions of Lemma 3, which we believe is easier as (2c) is more ”concrete” than (3a).

Moreover, it should be noted that the conditions of Proposition 6 can also be used to
ensure (2c) under set semantics. This is because every RAset query Q evaluated on set
databases under set semantics can be rewritten as the RA query evaluated under bag
semantics by immediately following each operation in Q with duplicate elimination. As
Proposition 6 does not impose any restrictions on the added ε nodes, it means that the
conditions must be the same for the two evaluation modes.

Building on these observations we present new sufficient conditions for the preservation
of Codd semantics over sets.

Chapter 4. Preserving Duplicated Marked Nulls 37

Theorem 6. Let Q be an RAset query whose syntax tree is such that:

a) each ∩ and − node satisfies DJN;

b) each × and πα node satisfies NNA

c) each ∪ node satisfies (NNA or DJN or NNC) AND (NNA or DJEN or SESM)

Then, Q preserves Codd semantics over sets.

Proof of Theorem 6. Let Q be an RAset query whose syntax tree satisfies the conditions
of the theorem. Also, let D′ be an SQL set database and D be its Codd interpretation,
that is D ∈ codd(D′). We need to show (3a) and (3b).

We start by proving (3a). To this end, notice that each ∩ and − node satisfies DJN, hence
by Lemma 3, it holds that ε

(
sql(JQKset

D)
)
= JQKset

D′ . Moreover, every πα node satisfies
the NNA condition and every ∪ node satisfies NNA or DJN or NNC condition, therefore by
Proposition 6, we know that JQKset

D does not contain any two records that differ only
in nulls. Then, combining these two observations together, by Proposition 9, we can
conclude that sql(JQKset

D) = JQKset
D′ completing the first part of the proof.

As for (3b), we prove it by the induction on the structure of Q.

Base cases: ([5]):

• Q is a relation name R. Then, JQKset
D = JRKD, which is a Codd table because D is a

Codd database by assumption.

• Q is non-nullable. Then, JQKset
D is a complete set, so it is a Codd table.

Induction:

Note that cases when Q is πα(Q1) or Q1×Q2 or Q1 ∪Q2 and satisfies NNA are covered
in the base cases as NNA implies that Q is non-nullable. Similarly, when Q is Q1 ∩Q2
and satisfies DJN as it also enforces non-nullability.

• Q is Q1 ∪Q2 and satisfies DJEN:

We have JQKset
D = ε(JQ1Kset

D ∪ JQ2Kset
D). By the induction hypothesis, JQ1Kset

D and JQ2Kset
D

are Codd tables (without repeated nulls). In the proof of Theorem 3, we showed that
if that is the case and ∪ node satisfies DJEN, then JQ1Kset

D ∪ JQ2Kset
D is also a Codd table

(without repeated nulls). Consequently, JQKset
D must be a Codd table as well.

• Q is Q1 ∪Q2 and satisfies SESM:

We have JQKset
D = ε(JQ1Kset

D ∪ JQ2Kset
D). By the induction hypothesis, JQ1Kset

D and JQ2Kset
D

are Codd set tables. In the proof of Theorem 5, we showed that if that is the case and ∪
node satisfies SESM, then JQ1Kset

D ∪JQ2Kset
D is a Codd table with potentially repeated nulls

among duplicated records. Consequently, ε(JQ1Kset
D ∪ JQ2Kset

D) get rids of duplicated
records, and therefore of repeated marked nulls, thus JQKset

D must be a Codd set table.

• Q is op1(Q1) for op1 ∈ {σθ,ρA→B} or Q1 −Q2:

The proof is exactly the same as the proof for the corresponding case in Theorem 3 in
[5].

Chapter 4. Preserving Duplicated Marked Nulls 38

Having found the new sufficient conditions for sets, we can compare them with the suffi-
cient conditions for the preservation of Codd semantics presented in [5] (see Theorem 7
in Appendix A). Clearly, the two differ only in restrictions imposed on ∪ nodes. To
contrast them, recall that our restrictions for union nodes can be equivalently formulated
as: NNA ∨ NNC ∨ (DJN ∧ DJEN). Obviously, these are weaker than NNA ∨ NNC required
by Theorem 7. And since there are many examples of unions satisfying (DJN∧DJEN)
without satisfying NNA or NNC (e.g. σconst(A)(R)∪σconst(B)(R), where R is over nullable
attributes A and B), we can conclude that our conditions are strictly weaker than those
proposed in [5].

Chapter 5

Conclusions and Future Work

In this report, we set out several improvements to the process of recognising Codd
semantics queries, which can be roughly divided into three categories.

First, we presented the derivation process of the DJEN condition that improves on the
identified shortcomings of PDJB. Moreover, we proved that DJEN is strictly weaker than
PDJB. This enabled us to identify chains of unions preserving Codd semantics that could
not be recognised as such before. Also, we showed that with the help of DJEN, we can
guarantee formulation-independent recognition of chains of unions preserving Codd
semantics. In other words, we proved that if some chain of unions does not satisfy
sufficient conditions, then its other equivalent formulations cannot satisfy them as well.
While we showed that the use of a variadic union is completely unnecessary in the
verification process, its ability to abstract away the ordering information happened to be
immensely useful in proving that the satisfiability of DJEN does not depend on the exact
formulation of a chain. We believe that a similar technique could be applied to find a
formulation-independent condition for chains of intersection. This would remove the
need for replacing chains of intersections with single variadic intersections nodes as is
currently suggested in Part 1.

Secondly, we studied the conditions for the preservation of the interpretation of nulls in
which the codd function assigns the same marked nulls to repeated records. We found
out that for such semantics to be preserved, queries must satisfy the extra condition (2c).
We came up not only with the sufficient conditions for (2c) but also with the new
sufficient condition, SESM, for (2b). Unfortunately, we also showed that currently SESM
does not allow us to capture any new queries preserving Codd semantics. This does not
mean that its discovery is pointless though. At the moment, its potential is limited by
quite strict conditions for (2c) that are required alongside it. However, when new weaker
sufficient conditions for (2c) are found, it might be the case that SESM will enable us to
capture queries that would not be recognised by any other condition. Eventually, we
showed that the conditions ensuring the preservation of this new interpretation of nulls
are stricter than those guaranteeing the preservation of the original Codd semantics.
Again, this is mainly due to quite strict conditions for (2c).

Last but not least, we showed that the two interpretations of nulls are equivalent when

39

Chapter 5. Conclusions and Future Work 40

queries are evaluated on sets. This allowed us to use the new sufficient conditions to
derive weaker requirements for the preservation of Codd semantics over sets. This time,
the process was actually facilitated by the new findings related to the condition (2c). This
is because we showed that when (2c) holds it is easier to prove that the requirement (3a)
is satisfied as well.

Given all of that, there are still many directions one could explore beyond finding even
weaker conditions for the preservation of the Codd semantics. The first thing that comes
to mind would be to check whether real-life queries written in a suitable fragment of
SQL are Codd semantics preserving. To achieve that, SQL queries from some datasets
could be translated to relational algebra as described in [4] and then verified using the
results presented in this MInf Project (Parts 1 & 2). The results of such evaluation could
tell us whether the assumption about the Codd interpretation of SQL nulls does in fact
hold in the majority of real-life queries. However, even if the results of the study are not
positive, it would not immediately mean that most queries do not preserve the semantics
of nulls. This is because the presented conditions are only sufficient and not strictly
necessary.

With respect to the above considerations, at least two things come to mind which can
hinder such a study. Firstly, the exact translation rules may influence the results as
the verification process is still formulation dependent - even with all the presented
improvements. We hope that this issue can be mitigated by first normalising queries to
a form that is more likely to satisfy the conditions (as explained in Part 1). Therefore, it
is important to further improve this transformation procedure. For example, one could
think about propagating selections or projections towards the leaves of a syntax tree
to narrow down the nullable signature of a larger number of nodes. Secondly, many
real-life queries include groupings and aggregations which are not currently studied in
the context of the preservation of Codd semantics. Doing that could greatly increase the
number of eligible SQL queries that could be checked during the study.

Bibliography

[1] Marco Console, Paolo Guagliardo, Leonid Libkin, and Etienne Toussaint. Cop-
ing with Incomplete Data: Recent Advances. In Proceedings of the 39th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS’20, pages 33–47, New York, NY, USA, June 2020. Association for Com-
puting Machinery.

[2] Todd J. Green and Val Tannen. Models for incomplete and probabilistic informa-
tion. In Torsten Grust, Hagen Höpfner, Arantza Illarramendi, Stefan Jablonski,
Marco Mesiti, Sascha Müller, Paula-Lavinia Patranjan, Kai-Uwe Sattler, Myra
Spiliopoulou, and Jef Wijsen, editors, Current Trends in Database Technology –
EDBT 2006, pages 278–296, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[3] Paolo Guagliardo and Leonid Libkin. Correctness of SQL Queries on Databases
with Nulls. ACM SIGMOD Record, 46(3):5–16, October 2017.

[4] Paolo Guagliardo and Leonid Libkin. A formal semantics of sql queries, its
validation, and applications. Proc. VLDB Endow., 11(1):27–39, sep 2017.

[5] Paolo Guagliardo and Leonid Libkin. On the codd semantics of SQL nulls. Inf.
Syst., 86:46–60, 2019.

[6] Tomasz Imieliński and Witold Lipski. Incomplete Information in Relational
Databases. Journal of the ACM, 31(4):761–791, September 1984.

[7] Witold Lipski. On relational algebra with marked nulls preliminary version.
In Proceedings of the 3rd ACM SIGACT-SIGMOD symposium on Principles of
database systems, PODS ’84, pages 201–203, New York, NY, USA, April 1984.
Association for Computing Machinery.

[8] Konrad Pijanowski. coddifier. https://github.com/kopi22/coddifier, 2022. Re-
trieved April 2, 2023.

[9] Konrad Pijanowski. Preservation of codd semantics in databases with sql nulls.
Bachelor’s thesis, University of Edinburgh, 2022.

[10] Peter Storeng. Implementing marked nulls in postgresql. Master’s thesis, Univer-
sity of Edinburgh, 2016.

[11] Etienne Toussaint, Paolo Guagliardo, Leonid Libkin, and Juan Sequeda. Trou-
bles with nulls, views from the users. Proceedings of the VLDB Endowment,
15(11):2613–2625, July 2022.

41

Appendix A

Additional and External Results

A.1 Theorems

Theorem 7 (Theorem 3 in [5]). Let Q be an RAset query whose syntax tree is such that:

a) each ∩ and − node satisfies DJN;

b) each × and πα node satisfies NNA;

c) each ∪ node satisfies NNC or NNA.

Then, Q preserves Codd semantics over sets.

A.2 Propositions

Proposition 10. A node in the syntax tree of a query satisfies PDJB if and only if every
pair of its distinct children, Qi and Q j, satisfies DJB or NNC condition, that is:

• Qi or Q j is non-nullable

• or their bases are disjoint

See Appendix B for the proof.

A.3 Lemmas

Lemma 4. Let T1 to Tn be tables. Then sql(
⋃
(T1, . . . ,Tn)) =

⋃
(sql(T1), . . . ,sql(Tn)).

The proof is given in Appendix B.

42

Appendix B

Additional Proofs

B.1 Propositions

Proof of Proposition 1 (extending the proof of Proposition 4 in [5]).
Let Q be an RA query whose syntax tree is such that every ∩ and − node satisfies DJN,
and every ε node satisfies NNC. Let D be a database and let D′ = sql(D). By induction
on the structure of Q, we will show that JQKD′ = sql(JQKD).

Base case: Q is a relation R. Then, obviously, JRKD′ = sql(JRKD) since D′ = sql(D).

Induction:

• Q is
⋃
(Q1, . . . ,Qn):

By applying (†) the semantics of the variadic intersection in queries, (‡) the induction
hypothesis, (††) Lemma 4, we get:

r⋃(
Q1, . . . ,Qn)

z

D′

(†)
=

⋃
(JQ1KD′, . . . ,JQnKD′

)
(‡)
=

⋃(
sql

(
JQ1KD

)
, . . . ,sql

(
JQnKD

))
(††)
= sql

(⋃(
JQ1KD, . . . ,JQnKD

))
(†)
= sql

(r⋃
(Q1, . . . ,Qn)

z

D

)

• Q is op1(Q1) for op1 ∈ {ε,πα,σθ,ρA→B} or Q1 op2 Q2 for op2 ∈ {×,∪,∩,−}:

The proof is exactly the same as in the proof for the corresponding case in Proposition
4 in [5].

Proof of Proposition 2. Let Q1 to Qn be queries to be combined using a chain of
unions or the n-ary union operation. Also, let us assume, without loss of generality, that
for some k ≤ n, Q1 to Qk are nullable and Qk+1 to Qn are not.

43

Appendix B. Additional Proofs 44

We start by showing that there always exists a chain of binary unions in which each
union node satisfies either DJB or NNC condition, if we assume that

⋃
(Q1, . . . ,Qn)

satisfies PDJB, that is, Q1 to Qk have pairwise disjoint bases. Under this assumption,
consider the equivalent chain of unions:

((((((Q1 ∪2 Q2)∪3 Q3)...)∪k Qk)∪k+1 Qk+1)...)∪n Qn

where we marked each binary union with a superscript i and the children of ∪i are
subqueries Ql = ((Q1 ∪Q2) · · ·)∪Qi−1 and Qr = Qi. Now, we need to show that all
nodes ∪i for 2 ≤ i ≤ n satisfy either DJB or NNC condition.

Firstly, for 2 ≤ i ≤ k, the union ∪i is combining only nullable operands (by assumption).
We show that each such node ∪i satisfies the DJB condition:

base(Ql)∩base(Qr) =
(i−1⋃

p=1

base(Qp)
)
∩base(Qi)

=
i−1⋃
p=1

(
base(Qp)∩base(Qi)

)
(distributive law)

=
i−1⋃
p=1

∅ (PDJB condition)

=∅

Secondly, for k < i ≤ n, the union ∪i has a non-nullable query Qi as its right child,
therefore it must satisfy the NNC condition.

Combining the two observations we get that nodes ∪2 to ∪k satisfy the DJB condition
and nodes ∪k+1 to ∪n satisfy the NNC condition, thus all union nodes in the chain satisfy
either DJB or NNC.

To prove the statement in the other direction, we show that Q1 to Qk must have pairwise
disjoint bases whenever there exists a chain in which every union satisfies DJB or NNC.
To this end, consider a chain that satisfies this assumption. Then, for any pair of distinct
nullable operands Qi and Q j, let ∪∗ be their lowest common ancestor node in the chain
of unions. Without loss of generality, we can assume that Qi and Q j are subqueries of
its left and right children, Ql and Qr, respectively.

Using the fact that Ql must be Qi itself or a chain of unions containing Qi, we know that
n-sig(Qi)⊆ n-sig(Ql). Similarly for Qr and Q j. Now, because Qi and Q j are nullable,
so must be Ql and Qr. Therefore, ∪∗ cannot satisfy the NNC condition and must satisfy
DJB as we assumed it satisfies at least one of these two.

Finally, combining the facts that base(Qi)⊆ base(Ql) and base(Q j)⊆ base(Qr) with
the observation that base(Ql)∩base(Qr) =∅ which is guaranteed by the DJB condition,
we can conclude that

base(Qi)∩base(Q j)⊆ base(Ql)∩base(Qr) =∅

proving that each pair of distinct nullable operands must have disjoint bases. This
finishes the proof of Proposition 2.

Appendix B. Additional Proofs 45

Proof of Proposition 3. Both PDJB and DJEN are conditions that impose their restric-
tions on the node’s children in a pairwise fashion. Therefore, to prove that DJEN is
strictly weaker than PDJB it suffices to show that the condition enforced by PDJB on any
pair of children guarantees that the same pair satisfies the requirement of DJEN as well.
To this end, let Qi and Q j be two children of the node that satisfies PDJB. Consequently,
it must be the case that base(Qi)∩base(Q j) =∅ or either Qi or Q j is non-nullable (as
the requirement applies to nullable children only). We will consider these two cases
separately.

• Bases of Qi and Q j are disjoint:

For DJEN to be satisfied, equation (4) must hold for all R in base(Qi)∩ base(Q j).
Since there are no such relations, as bases of Qi and Q j are disjoint, DJEN is trivially
satisfied.

• Qi or Q j is non-nullable:

Without loss of generality, let us assume that Qi is the non-nullable child, so n-sig(Qi)=
∅. Consequently, (†) for every R ∈ base(Qi) it is the case that en-sig(R,Qi) is equal
to ∅:

en-sig(R,Qi) =
⋃

Ri∈base(Qi)

ψ
−1
Ri (Qi)

(
n-sig(Qi)

)
(definition)

=
⋃

Ri∈base(Qi)

ψ
−1
Ri (Qi)

(
∅
)

(Qi is non-nullable)

=
⋃

Ri∈base(Qi)

∅=∅

Therefore, the equation (4) is always satisfied for all R in base(Qi)∩base(Q j):

en-sig(R,Qi)∩en-sig(R,Q j)
(†)
=∅∩en-sig(R,Q j) =∅

As required by the DJEN condition.

To show that converse is not necessarily the case, that is DJEN does not imply PDJB,
consider the following query: σconst(A)(R)∪ σconst(B)(R), where relation R is over
nullable attributes A and B. Now, let Q1 = σconst(A)(R) and Q2 = σconst(B)(R) be
the nullable children of the ∪ node. Clearly, base(Q1) = base(Q2) = {R}, so the
PDJB condition is not satisfied as the bases are not disjoint. On the other hand, one
can quickly verify that en-sig(R,Q1) = {B}, while en-sig(R,Q2) = {A}. So DJEN is
satisfied because the effective nullable signatures of R w.r.t. Q1 and Q2 are disjoint.
This proves that DJEN is strictly weaker than PDJB.

Proof of Proposition 5. Let T be a table and let T ′ = sql(T). We prove the proposition
using the circular chain of implications.

• (a)→ (c): Let us assume that no two records in T differ only in nulls. We prove the
first part of the conclusion - ”for every record r′ in T ′, there exists a unique record r
in T such that r ∈ sql−1(r′)” - by contradiction.

Appendix B. Additional Proofs 46

To begin with, let r′ be a record in T ′. Also, let r1 and r2 be two distinct records in
sql−1(r′) and let r1,r2 ∈ T . We have to consider two cases. If r′ does not contain
any nulls, then sql−1(r′) = {r′}, so r1 and r2 cannot be distinct which contradicts our
assumption. Otherwise, r1 and r2 must differ only in nulls since constant values are
unaffected by the sql−1 operation. This in turn contradicts our premise - the statement
(a). Therefore, we can conclude that it is impossible for two such records to be in T
and there must exist a unique record r in T such that r ∈ sql−1(r′)

As for the second part of the conclusion, it must hold because (†) r is the only record
which is both in sql−1(r′) and in T , so:

#(r′,T ′) = ∑
s∈sql−1(r′)

#(s,T)
(†)
= #(r,T)

• (c) → (b): Let us assume that (†) for every record r′ in T ′, there exists a unique
record r in T such that r ∈ sql−1(r′), in which case (‡) #(r,T) = #(r′,T ′).

Now, clearly, for every record s ∈ T , the record s′ = sql(s) is in T ′. Thus, by (†), s is
the unique record in T which is also in sql−1(s′). Consequently:

#(s,T)
(‡)
= #(s′,T ′) = #(sql(s),T ′)

• (b)→ (a): First, observe that two records containing nulls, call them p and q, differ
only in nulls if and only if:

1. p ̸= q, and

2. sql(p) = sql(q), and

3. p,q ∈ sql−1(sql(p)) = sql−1(sql(q)).

Therefore, we will prove that no two records in T differ only in nulls, assuming that
for every record r in T it is the case that #(r,T) = #(sql(r),T ′), by showing that no
record other than r belongs to both sql−1(sql(r)) and T at the same time.

For that, let r′ = sql(r). Then:

#(r′,T ′) = ∑
s∈sql−1(r′)

#(s,T) = #(r,T)+∑
s∈(sql−1(r′)−{r})

#(s,T) = #(r′,T ′)+∑
s∈(sql−1(r′)−{r})

#(s,T)

The last equality holds because of our assumption we know that #(r,T) = #(r′,T ′).
Now, subtracting #(r′,T ′) from both sides of the above equation we get that:

∑
s∈(sql−1(r′)−{r})

#(s,T) = 0

So no record from sql−1(r′) other than r is present in T , which completes the proof.

Proof of Proposition 6. Let Q be an RA query whose syntax tree is such that every
πα node satisfies the NNA condition and every ∪ node satisfies one of NNA, DJN, or NNC

Appendix B. Additional Proofs 47

conditions. Let D′ be an SQL database and let D be its Codd interpretation, that is
D ∈ codd(D′). We proceed with the proof by induction on the structure of Q.

Base cases:

• Q is a relation name R.

By definition, JRKD ∈ codd(JRKD′). Now, towards contradiction, let us assume that
there exist two distinct records r1 and r2 in JRKD that differ only in nulls. Consequently,
sql(r1) and sql(r2) in JRKD′ are exactly the same. On the other hand, codd maps the
same records in JRKD′ to the same records in codd(JRKD′). Therefore, r1 and r2 would
have to be the same in JRKD, which contradicts our initial assumption. Hence there
cannot exist two such records in JQKD.

• Q is non-nullable. Then JQKD is a complete table so it cannot contain any records
with null values.

Note that cases when Q is πα(Q1) and when Q is Q1 ∪Q2 and satisfies NNA are already
covered by the base case as the NNA condition forces Q to be non-nullable.

Inductive steps:

• Q is ρA→B(Q1):

The renaming operation only changes the name of the attribute A to B in each record
in JQ1KD. It does not affect any values associated with that attribute. Since by the
induction hypothesis JQ1KD does not contain two records which differ only in null
values, there cannot be such records in JQKD as well.

• Q is op1(Q1) for op1 ∈ {σθ,ε} or Q1 op2 Q2 for op2 ∈ {∩,−}:

The claim follows from the fact that JQKD ⊆ JQ1KD. By the induction hypothesis,
JQ1KD does not contain two records that differ only in nulls. Therefore, it must be the
case for JQKD as well.

• Q is Q1×Q2:

Let r1,s1 be records in JQ1KD and r2,s2 be records in JQ2KD. Then, the records
r = r1×r2 and s = s1×s2 must be in JQKD. If r and s were to differ only in nulls in
JQKD, then it would have to be the case that either r1 and s1 or r2 and s2 must also
differ in nulls only. This is because r and s can differ only in nulls iff:

a) r1 = s1 and r2 and s2 differ only in nulls;

a) r1 and s1 differ only in nulls and r2 = s2;

a) r1 and s1 differ only in nulls and r2 and s2 differ only in nulls.

Although, by the induction hypothesis, we know that neither JQ1KD nor JQ2KD can
have two records differing only in nulls. Therefore, JQKD cannot contain two records
that differ only in nulls as well.

• Q is Q1 ∪Q2 and satisfies NNC:

Appendix B. Additional Proofs 48

Let us assume without loss of generality that Q1 is the non-nullable child. Also,
by the induction hypothesis, JQ2KD does not contain two records that differ only in
nulls. Since JQ2KD is the only child that can contribute records with nulls to the query
answer, it follows that JQKD does not contain two such records as well.

• Q is Q1 ∪Q2 and satisfies DJN:

Since the ∪ node satisfies the DJN condition, we know that for any two records
r1 ∈ JQ1KD and r2 ∈ JQ2KD, whenever r1(A) ∈ Null for an attribute A ∈ n-sig(Q), it
must be the case that r2(A) ∈ Const and vice-versa. So it is impossible for r1 and
r2 to differ only in nulls because they never take a null value for the same attribute.
Therefore, it follows that two such records from separate children cannot be put
together in the output table and violate the condition.

Moreover, by the induction hypothesis, each of the tables JQ1KD and JQ2KD does not
contain two records that differ only in nulls so such records cannot propagate to the
output from the same child. Combining the two results, we conclude that JQKD cannot
contain such two records, thus it satisfies the condition (2c).

Proof of Proposition 7. Let Q′ be an RA query whose syntax tree is such that every
πα and × node satisfies the NNA condition. Under this assumption, we want to prove
that for every ∪ node in Q′, it holds that:

(∪ |= DJN,SESM ∧ ∪ ̸|= NNA) =⇒ ∪ |= DJEN

We prove the statement by contradiction. To this end, let us assume that Q = Q1 ∪Q2 is
a subquery of Q′ and that this ∪ node satisfies DJN and SESM, while it does not satisfy
NNA and DJEN. Therefore, we know that:

1. Q and all of its ancestors are nullable - as Q does not satisfy NNA.

Consequently, as every × and πα node in Q′ satisfies NNA, it follows that (†) all,
if any, × and πα nodes must be descendants of Q. Otherwise, Q would satisfy
NNA itself.

2. n-sig(Q1)∩n-sig(Q2) =∅ - as Q satisfies DJN;

3. there exists a base relation R that appears in Q1 and Q2 for which

en-sig(R,Q1)∩en-sig(R,Q2) ̸=∅

as Q does not satisfy DJEN.

Expanding the equation from point (3) using the definition of en-sig we get that:⋃
Ri∈base(Q1)

ψ
−1
Ri (Q1)

(
n-sig(Q1)

)
∩

⋃
R j∈base(Q2)

ψ
−1
R j (Q2)

(
n-sig(Q2)

)
̸=∅

Consequently, there must exist instances Ri ∈ base(Q1) and R j ∈ base(Q2) of this
relation R, such that:[

ψ
−1
Ri (Q1)

(
n-sig(Q1)

)]
∩

[
ψ
−1
R j (Q2)

(
n-sig(Q2)

)]
̸=∅

Appendix B. Additional Proofs 49

It can be easily verified using definition that ψ
−1
Ri (Q1)=ψ

−1
Ri (Q) and ψ

−1
R j (Q2) = ψ

−1
R j (Q),

so the equation B.1 can be rewritten as:[
ψ
−1
Ri (Q)

(
n-sig(Q1)

)]
∩

[
ψ
−1
R j (Q)

(
n-sig(Q2)

)]
̸=∅ (9)

Now, recall that we write φRi(Q)(n-sig(Q1)) to represent a set:

{φRi(Q)(A) | A ∈ n-sig(Q1) and φRi(Q)(A) is defined}

For that reason, let X1 be a subset of n-sig(Q1) for which ψ
−1
Ri (Q) is defined and X2 be

a subset of n-sig(Q2) for which ψ
−1
R j (Q) is defined. Then, we can equivalently rewrite

equation (9) as: [
ψ
−1
Ri (Q)

(
X1)

]
∩

[
ψ
−1
R j (Q)

(
X2)

]
̸=∅ (10)

Furthermore, observe that for all sets X such that ψ
−1
Ri (Q) is defined on elements of X ,

ψ
−1
Ri (Q)(X) = φ

−1
Ri (Q)(X) as ψ

−1
Ri (Q) is a restriction of φ

−1
Ri (Q) . Similarly for ψ

−1
R j (Q)

and φ
−1
R j (Q). Hence, we can rewrite equation (10) as:[

φ
−1
Ri (Q)

(
X1)

]
∩

[
φ
−1
R j (Q)

(
X2)

]
̸=∅ (11)

Now, we know that Ri and R j must be able to propagate nullable values to the output
of the ∪ node (otherwise X1 and X2 would be empty sets and the previous equation
would not hold). Thus, by Lemma 2, its conditions are satisfied because of (†), it
follows that φRi(Q) and φR j(Q) are total and surjective functions from sig(R) to sig(Q).
Moreover, since ∪ satisfies SESM, we know that φRi(Q) = φR j(Q) and consequently
φ
−1
Ri (Q) = φ

−1
R j (Q). Thus, equation (11) can be written as:[

φ
−1
Ri (Q)

(
X1)

]
∩

[
φ
−1
Ri (Q)

(
X2)

]
̸=∅ (12)

Finally, applying φRi(Q) map to both sides of the equation (12) and manipulating it
using basic properties of a function on sets, we get:

φRi(Q)
([

φ
−1
Ri (Q)

(
X1)

]
∩

[
φ
−1
Ri (Q)

(
X2)

])
̸= φRi(Q)(∅)

φRi(Q)
([

φ
−1
Ri (Q)

(
X1)

]
∩

[
φ
−1
Ri (Q)

(
X2)

])
̸=∅

φRi(Q)
([

φ
−1
Ri (Q)

(
X1)

])
∩ φRi(Q)

([
φ
−1
Ri (Q)

(
X2)

])
̸=∅

X1 ∩ X2 ̸=∅

Now, by definition, X1 and X2 are subsets of n-sig(Q1) and n-sig(Q2), respectively.
Hence it has to follow that n-sig(Q1)∩ n-sig(Q2) ̸= ∅, which contradicts our initial
assumption that the DJN condition is satisfied. This completes the proof that:

(∪ |= DJN,SESM ∧ ∪ ̸|= NNA) =⇒ ∪ |= DJEN

Proof of Proposition 10.
Let Q be a node in the syntax tree of a query and let Q1 to Qn be its children. We present
the proof in both directions.

Appendix B. Additional Proofs 50

• PDJB =⇒ pairwise (DJB or NNC):

First, let us assume that Q satisfies PDJB. Under this assumption, we will show that
every pair of children Qi and Q j, for i, j ∈ [1,n], i ̸= j, satisfies NNC or DJB. Obviously,
if either Qi or Q j is non-nullable, then such a pair satisfies the NNC condition. Therefore,
we are only left with pairs where both Qi and Q j are nullable. However, by our initial
assumption, we know that all the nullable children must have pairwise disjoint bases
and thus each such pair must satisfy the DJB condition.

• Pairwise (DJB or NNC) =⇒ PDJB:

Now, let us assume that for every pair of children Qi and Q j, for i, j ∈ [1,n], i ̸= j, either:

• Qi or Q j is non-nullable,

• or their bases are disjoint.

Based on this assumption, we will show that all pairs of distinct nullable children
satisfy the DJB condition. This conclusion follows naturally, as the children nodes in
question are not non-nullable, hence it must be the case that their bases are disjoint.
This completes the proof.

B.2 Lemmas

Proof of Lemma 2. Let Q be an RA query whose syntax tree is such that every πα

and × node satisfies the NNA condition. Also, let Ri be an instance of some relation
R ∈ base(Q). Finally, let f be an effective signature map of Ri w.r.t. Q. We prove our
statement by the contraposition. That is, we show that if f is not a total and surjective
function from sig(R) to sig(Q), then Ri cannot propagate null values to the query output.

Before we start, let Dom(f) denote the domain of definition (or natural domain) of
f , that is the set of all elements for which f is actually defined (as f can be a partial
function). Now, note that f is a total and surjective function if and only if Dom(f) =
sig(R) (f is total) and |Dom(f)|= |sig(Q)| (f is surjective - and bijective since the map
is injective by definition). Therefore, one can verify that there are only two cases when
f is not total and surjective:

• Dom(f)⊂ sig(R):

f is a partial function. This can only happen as a result of an intermediate projection
operation. Since all projections satisfy the NNA condition, the result of the projection
is either a table without nulls (a complete table) or all of its records containing null
values will be eventually discarded. This applies to records containing the nulls from
JRiK as well. Consequently, no nulls from JRiK can propagate to JQKD.

• Dom(f) = sig(R) and |Dom(f)|< |sig(Q)|:

If |Dom(f)|< |sig(Q)|, then we can be sure that there must be at least one Cartesian
product node in the syntax tree of Q on the path from Ri to the root. This is because
the query Q must be well-defined so all the records in the query output must have the
same signature. And the only way to extend the signature of a record is by using the

Appendix B. Additional Proofs 51

Cartesian product operation. Since all × nodes satisfy the NNA condition, we use the
same reasoning as before to conclude that no nulls from JRiK can propagate to JQKD.

Proof of Lemma 4 (based on the proof of Lemma 3a in [5]).
Let T1 to Tn be tables over the same signature. Clearly, both tables sql(

⋃
(T1, . . . ,Tn))

and
⋃
(sql(T1), . . . ,sql(Tn)) are well-defined and they are both over sig(T1). Then, for

every record r over sig(T1), we get:

#
(

r,sql
(⋃

(T1, . . . ,Tn)
))

= #(r,sql(T1 ∪·· ·∪Tn))

(†)
= ∑
s∈sql−1(r)

#
(
s,T1 ∪·· ·∪Tn

)
(‡)
= ∑
s∈sql−1(r)

(
#(s,T1)+ · · ·+#(s,Tn)

)
= ∑
s∈sql−1(r)

#(s,T1)+ · · ·+∑
s∈sql−1(r)

#(s,Tn)

(†)
= #(r,sql(T1))+ · · ·+#(r,sql(Tn))

(‡)
= #(r,sql(T1)∪·· ·∪ sql(Tn))

= #(r,
⋃

(sql(T1), . . . ,sql(Tn)))

where (†) are by the definition of sql on tables and (‡) are by the definition of the union
operation on tables.

