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Abstract
In this study, we investigate the effectiveness of self-supervised learning techniques on
bat echolocation call classification using a dataset contains calls from 17 bat species
breeding in the UK. Self-supervised learning aims to learn useful features and rep-
resentations from raw data without the need for labelled data. We implement two
self-supervised learning architectures, SimCLR and autoencoder, and train them on
the bat echolocation call spectrogram database we produced from the given dataset.
By comparing their performance with a ResNet-18 supervised baseline, we find that
the SimCLR model achieves a test accuracy of 75.49% using only 50% of the labelled
dataset, which is competitive with the baseline model’s performance of 75.92% using
100% of the labelled dataset. Moreover, we observe that the SimCLR model can learn
visual representations that are competitive to those learnt by the supervised baseline
without using any labelled data at the genus level, where the linear evaluation accuracy
of the pretrained SimCLR model is only 2% different from the accuracy achieved by
the supervised baseline trained end-to-end. Furthermore, we identify that the primary
reason for misclassification in species discrimination tasks is the low inter-class dif-
ferences between species, and self-supervised pretrained models have demonstrated
improved performance in addressing this challenge. This report shows the potential of
self-supervised learning method in the task of bat echolocation call classification and
provides valuable insights for future research in this area.
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Chapter 1

Introduction

1.1 Motivation

There is a critical need for robust measurements to monitor environmental change. A
bioindicator, which is a living organism used to evaluate the health of an ecosystem,
stands out from other candidates to monitor the ecosystem’s health since it’s more
sensitive, economical and determined [29]. Bats have been identified as an excellent
bioindicator as they are globally distributed, taxonomic stable, and particularly sensitive
to habitat environmental change [19]. Thus, monitoring bat populations and species
dynamics can be a powerful tool to monitor environmental change.

However, bats are nocturnal, elusive, and very sensitive to disturbance, which makes
visually monitoring bats impossible [36]. As a result, audio-based monitoring has
become a powerful tool for monitoring bat populations and species distribution [2,
38]. Acoustic monitoring of bats is an approach for estimating bat populations and
distributions by analysing the echolocation calls emitted by them. Echolocation calls
are the ultrasound signals that bats emit to navigate, acquire prey, and communicate
[39]. This monitoring method stands out from other methods of bat monitoring as it
offers a non-invasive way to monitor bats at a low cost. Furthermore, multiple large
target areas can be monitored intensively at the same time using automated acoustic
sensing devices [1, 11].

However, bat calls exhibit large variation [35], and many species have small inter-class
differences [21]. These all make manually labelling bat echolocation calls challenging,
and normally require professionals with years of training to label the echolocation calls
individually. Figure 1.1 shows an example spectrogram containing bat echolocation
calls belonging to two species with small inter-class differences.

The recent advancements in deep learning revolutionised the detection and classification
of bat echolocation calls. Deep learning methods show the potential to build up a fully
automated pipeline for bat echolocation call classification, which is particularly helpful
in large-scale ecological studies. The contributions from researchers have demonstrated
the capability of supervised machine-learning methods to detect and classify the bat
echolocation calls from raw audio [26, 27, 24, 45]. For example, Tabak et al. [45]
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Figure 1.1: An example of a spectrogram containing bat echolocation calls, ’Pip nat’ and
’Pip pip’ in the graph are short for bat species names Pipistrellus nathusii and Pipistrellus
pipistrellus respectively.

applied a ResNet-18 architecture to the echolocation calls of the 10 bat species in the
United States and achieved a classification accuracy of 90%.

However, existing works that apply deep learning to bat echolocation call classification
heavily rely on the availability of a sufficiently large, high-quality labelled dataset.
Establishing such a dataset can be challenging, as labelling bat echolocation call data
requires a high level of expertise and is time-consuming. Furthermore, the bat species
distribution in distinct areas differ largely, such that even the same species distributed
in different geographical environments can have different echolocation call features
[18, 33]. This makes the model trained on the existing dataset hard to generalise on the
bat population from a different geographical location.

Therefore, we wish to find a way to build an efficient deep learning-based approach that
does not rely on large-scale, high-quality labelled datasets. Self-supervised learning
stands out for its ability to learn meaningful features and representations from unlabelled
data. Self-supervised learning is a machine learning method where models learn
meaningful representations using unlabelled data to generate supervision for target
tasks. The current state-of-the-art techniques in self-supervised learning are capable
of producing visual representations that are competitive to those generated by fully
supervised models in many downstream tasks [9]. Despite its potential, there are limited
studies on the application of self-supervised techniques in bioacoustics classification,
and to the best of our knowledge, no research has been conducted on applying self-
supervised learning techniques in the task of bat echolocation call classification. In
this report, we aim to explore the utility and effectiveness of self-supervised learning
techniques in bat echolocation call classification, bridging the gap in the current research
landscape.

1.2 Goal of this project

In this project, our primary objective is to develop an efficient deep learning-based
approach for classifying bat echolocation events of interest in audio files, using limited
species-level supervision, while maintaining performance comparable to the fully
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Figure 1.2: A high-level overview of the training process used to obtain the final bat
echolocation call classification model. We developed the final bat echolocation call
classification model by first pretraining the model using a self-supervised method with
unlabelled data, followed by finetuning or linear evaluation of the model.

supervised baseline.

Through our experiments, we aim to address the following research questions:

• Can self-supervised pretraining improve the performance of the model when
utilising all available audio and labels?

• Can self-supervised pretraining enable a model to achieve competitive perfor-
mance using a smaller amount of labelled data compared to a baseline model that
utilises all available labelled data? If so, by what extent can the amount of data
be reduced while maintaining competitive performance?

• Can self-supervised pretraining help the model learn to produce meaningful and
discriminative visual representations that are competitive to those learnt by fully
supervised model?

• What insights can be derived from the experimental results regarding the chal-
lenges faced when performing bat echolocation call classification, and how can
these insights inform future research in this area?

1.3 Achievements

In this report, we have achieved the stated goal by applying the SimCLR [6] and
autoencoder self-supervised approaches and comparing their performance with a fully
supervised, end-to-end trained, ResNet-18 baseline. The SimCLR model achieves
an average testing accuracy of 75.49% using 50% of the labelled dataset, which is
competitive to the performance achieved by the baseline model (75.92%) while using
100% of the labelled dataset. By linearly evaluating and visualising the representation
learnt by supervised baseline and self-supervised models, we found both self-supervised
models have learnt a meaningful representation both at the species and genus level
without using any labelled data. Especially for the SimCLR model, which learnt
competitive representations to those learnt by the supervised baseline at the genus level,
achieving a linear evaluation accuracy which is only 2% different from the accuracy
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achieved by the supervised baseline. An overview of our main pipeline can be seen in
Figure 1.2.

In order to achieve the main targeted objectives, the following steps have been under-
taken:

• Production of a spectrogram database containing 32,651 bat echolocation calls
from the UK bat echolocation call database constructed by Mac Aodha et al. [27].

• Creation of the first self-supervised machine learning pipeline for training and
evaluating bat echolocation call classification models, from raw audio data to a
complete and efficient machine learning model.

• Investigation of the challenges faced when applying deep learning methods to bat
echolocation call classification, providing insights for future research.

• Assessment of the visual representation quality learnt by the two self-supervised
models, demonstrates the potential of self-supervised learning approaches for this
task.

Our results showcase the viability of self-supervised learning approaches for bat echolo-
cation call classification and provide valuable insights for future research in this area.



Chapter 2

Background

In this chapter, we discuss the technical background and concepts which this report
is based on. We also cover the related work in this field, which demonstrate how our
contributions fit within the broader research context.

2.1 Bioindicator

A bioindicator, also known as biological indicator, is a living organism that can be used
to screen the health of an ecosystem and its subsequent effect on human society [29].
Common bioindicators includes birds, lichens, and amphibians. Compared to the
traditional way of screening the ecosystem, using bioindicator to screen the environment
have advantages including the biological impacts being determined, its easier to be
monitored and it can diagnose the ecosystem change in the early stage.

Bioindicators can be used to monitor environmental change as they are normally sensi-
tive to habitat environmental changes. As a result, the biodiversity of the environment
will be affected, which can be monitored by population and species distribution fluctua-
tions [15].

Bats have shown great potential to be excellent bioindicators with the reason of they
are extremely sensitive to environmental changes [19]. Moreover, bats inhabit all
six continents except Antarctica, with a total of over 1,400 species overall, which is
more than one-fourth of the total mammal species [42]. This implies that bats can be
used as a general bioindicator around most places on Earth. Furthermore, with the
advancement and wide application of audio based monitoring, collecting bat calls has
become extremely easy.

2.1.1 Biological Taxonomy

Taxonomy is the scientific theory and practice of classifying groups of biological
organisms based on their shared characteristics [43]. It follows a hierarchical structure,
with the most basic unit of classification being the species. Species are then further
grouped together to form higher levels of classification, known as taxonomic ranks.

5
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Figure 2.1: Taxonomic ranks in descending order. Image taken from [5]
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Figure 2.2: The taxonomy tree of the 17 bat species we investigated in the report.

As the level of classification increases, organisms within the same group share fewer
common characteristics. A detailed representation of taxonomic ranks are shown in
Figure 2.1.

In this report, we aim to classify 17 bat species which are known to be breeding in the
UK at the species level, these 17 bat species can be further grouped into 7 genera, 2
families and 1 order. A specific taxonomy tree of the 17 bat species is shown in Figure
2.2.
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2.2 Representing Audio

2.2.1 Fourier Transformation

Fourier Transform is a mathematical transformation that transforms a function of time,
into a function of frequency [12]. In the audio processing domain, it decomposes a
complex waveform into individual frequency components, each in time segment of the
audio wavefront for analysis. The Fourier transformation of a function f (t) is defined
below.

F(k) =
∫

∞

−∞

f (t)e−iktdt (2.1)

The output value of Fourier transformation will be plotted as a spectrogram, and the bat
echolocation calls classification will be carried out on the spectrogram of each bat call.

2.2.2 Spectrograms

A spectrogram is a visual representation of an audio signal that displays the variation of
the magnitude of each frequency band over time. An example of the spectogram with
the audio input waveform is shown in Figure 2.3, the x-axis is the time, the y-axis is the
frequency, and the colour shows the magnitude of the signal at each frequency band
and time segment.

The spectrogram is generated from the raw audio by first splitting the audio into numbers
of small and overlapping segments. After that, a Fourier transformation is calculated
for each segment. Then, the absolute value of the output of the Fourier transformation
is taken, which results in a series of frequency spectra. After plotting each spectrum
following the time order on the x-axis, the resulting plot is the spectrogram of the input
raw audio. The implementation details of this process is shown in section 4.2.

The classification of the bat echolocation calls is performed on the spectrogram gen-
erated from the audio instead of the raw audio itself because: First, the spectrogram
visualises the variation of the magnitude of each frequency band over time, which
makes analysing the characteristics of the audio easier. This is particularly essential
for bat echolocation call classification as the bat echolocation call frequency is closely
related to the species it belongs [18]. Second, the spectrogram could help with noise
reduction by focusing the frequency bands related to the classification tasks, and the
constant noise can be easily removed by deducting the mean value from each frequency
band.

2.3 Related Work

As stated in the motivation section, there is only a limited amount of research carried
out about self-supervised bioacoustic monitoring, and no research has been carried out
about self-supervised bat echolocation call classification. Therefore, in this section,
we talk about the previous works carried out in machine learning-based bat acoustic
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Figure 2.3: The waveform of an example audio and the spectrogram computed.

monitoring, as well as self-supervised learning in bioacoustic monitoring. The aim of
this section is to discuss the limitations and the breakthrough of the previous related
studies.

2.3.1 Machine Learning in Bat Echolocation Call Classification

Recent advancements in bioacoustic sensing techniques and machine learning resulted
in various attempts to establish a fully automatic pipeline for bioacoustic monitoring.
In the supervised approach, there are two main directions. The first one is applying
machine learning-based approaches to the acoustic features extracted manually from the
audio recording and classifying the species present in the audio recording. The second
one is applying deep learning-based approaches directly to the audio recording.

There is a rich history of applying machine learning methods to manually extracted
features from the bat echolocation call recordings [30, 47, 34], These researches are all
leveraging the fact that bat echolocation calls have less diversity as their primary function
is objective locating, and the difference in extracted features like highest frequencies
and duration, which makes the identification of most spices in a community possible
[20, 34]. The extracted features in the previously mentioned work are manually extracted
discriminative features related to the frequency-based and time-based characteristics of
the bat echolocation calls, such as duration, highest frequency and sonotypes. Compared
with deep learning feature, the manually extracted feature method usually require less
amount of data, and it’s a quicker and easier approach to distinguish the main bat
species.

However, the structure of bat echolocation calls varies largely on various factors,
including sex, age and habitat, making the manually extracted feature methods hard to
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predict bat species with high accuracy [20]. Furthermore, the presence of background
noise and other vocalising species further increases the challenge of manually extracted
feature methods. The deep learning-based methods aim to solve this problem by
learning meaningful representations that could be used to discriminate calls from
each species directly to the raw audio recording. The recent applications of deep
learning-based approaches to the bat bioacoustic classification all yield promising
results, which outperform traditional feature extraction classification methods on many
datasets [8, 24, 27].

Kobayashi et al. [24] applied CNN based MobileNet-V1 model to a dataset containing
30 species which is collected from Japan and South Korea from 1999 to 2019. They
applied short-time Fourier Transformation to the bat echolocation calls to generate
spectrograms. Next, they apply an automatic algorithm to detect peaks in the recording
and trim out spectrograms with 20ms long centred on the peak point detected. i.e., the
peak point is in the middle of the trim-out 20ms spectrogram. After manually inspecting
all the result spectrograms and filtering wrongly detected noises, the resulting 20ms
spectrograms will be the input of the CNN-based model. The model successfully
outperformed the feature extraction baseline from the previous studies and achieved an
accuracy of 98.1%.

Mac Aodha et al. [27] developed CNN-based U-Net-Style architecture with skip con-
nections and a transformer-based self-attention layer in the middle. The model is tested
and shown promising results on 5 datasets collected from 4 geographically distinct
areas. The model also outperformed the feature extraction baseline on the UK dataset.
Be noted, compared with previous works, the model proposed by Mac Aodha et al. is
able to take longer audio input (duration of 1 second long) effectively because of the
existence of the self-attention layer.

However, all these works heavily rely on the availability of a large-scale, fully labelled
dataset, which makes it challenging to apply to the area where datasets with similar
quality are not established.

2.3.2 Self-supervised Learning

Self-supervised learning is a subfield of unsupervised learning in which the model
learns to produce meaningful representations by solving proxy tasks created by the
self-supervised learning method. Solving these proxy tasks does not require any human-
labelled examples, as the model leverages the inherent structure of the input data to
create its own supervision signals.

Self-supervised learning has emerged as a potent pretraining technique for classification
tasks. Current state-of-the-art self-supervised methods can generate competitive repre-
sentations compared to their supervised counterparts in various downstream tasks [10].
In many general classification tasks, the self-supervised learning method outperforms
the supervised counterpart such as CIFAR100, ImageNet and places [6, 7, 13]. Self-
supervised techniques are applied to classification tasks through a two-stage process. In
the first stage, the model utilises a large unlabelled dataset. Self-supervised learning
creates supervision signals for proxy tasks using unlabelled data, enabling the model
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to capture meaningful features or representations. In the second stage, the pretrained
model is fine-tuned on a smaller labelled dataset specific to the classification task. The
representation learnt during the self-supervised pretraining stage is leveraged at this
point. Consequently, the model is adapted and optimized for the target classification
task, allowing it to effectively perform the task using the meaningful features extracted
during the self-supervised learning phase. The self-supervised technique helps the
model utilise a large amount of unlabelled data, which supervised tasks cannot. This
usually results in an improvement in classification task performance with limited super-
vision, making self-supervised learning a powerful approach in scenarios where labelled
data is expensive to obtain. Though self-supervised learning has been proven to be
effective and sometimes outperforms the fully supervised models, there are only limited
applications of self-supervised learning in bioacoustic monitoring, which mainly focus
on the detection of bioacoustic events.

Bermant et al. [4] applied self-supervised learning in detecting sperm whale coda clicks.
They trained the network in a self-supervised manner by feeding the model with clips
of audio created by the sliding windows approach with no overlapping and train the
model to maximise the agreement between adjacent window data and minimise the
agreement between randomly sampled non-adjacent window data. Next, they applied
a peak-finding algorithm to the output of the trained model. The model successfully
outperformed the baseline energy amplitude threshold detector.

Although there have not been any applications of self-supervised learning in bioacoustic
classification, there are several successful applications in related fields, such as environ-
mental sound classification, that can provide valuable insights and inspiration for our
research.

Tripathi et al. [46] applied the self-supervised learning technique to environmental
sound classification. They chose ResNet-18 to perform the self-supervised learning.
They pretrained the model to recognise the type of data augmentation they applied to
the signal before feeding it to the network. The model successfully outperformed both
CNN-based and feature extraction baselines.

Although self-supervised learning has demonstrated effectiveness in environmental
sound classification, the task of bat echolocation call classification presents a unique set
of challenges. Unlike environmental sounds, which typically exhibit higher inter-class
differences, bat echolocation calls often have lower inter-class variations, making the
classification task more challenging. Therefore, the effectiveness of self-supervised
learning in the context of bat echolocation call classification remains to be investigated.



Chapter 3

Methodology

In this chapter, we discuss the methodologies used in the experiments, including model
architectures, loss functions we applied and a list of data augmentation we applied.

3.1 Supervised Baseline Model

In this section, we outline the architecture and implementation details of the baseline
models we choose in this report: ResNet-18.

3.1.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) is a special type of Artificial Neural Network
(ANN). Compared with normal ANNs, CNN uses a special type of layer called “convo-
lutional layers”, which apply convolution operations on input data. In the convolutional
layers, a weight matrix, also known as the kernel, strides through the layer input and
performs the convolution operation to produce feature maps. Be noted, the weight
matrix will not change while striding through the layer input, which means the same
weights are applied at different locations using convolution. Normally, the average
pooling and nonlinear activation will be applied after the convolution operation.

Through convolution, the network learns to extract patterns and features from the input
data such as edges and shapes. As more and more convolutional layers have been passed,
the features that are extracted by the convolutional layers will be more specific and
higher level, such as face or hands. Finally, the Neural Network could do classification
or detection tasks based on the features extracted from convolutional layers.

CNN is widely used in image-processing tasks mainly because the convolutional layers
in the CNN could reduce high-dimension images to extract features of the image while
not losing any information [40]. It address the challenges of dealing with massive
trainable parameters and computational complexity, making them efficient for image
recognition and classification tasks.

11
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Figure 3.1: A detailed architecture of a ResNet block.

3.1.2 ResNet

ResNet (Residual Networks) is a special type of convolutional neural network proposed
by He et al. [14] to solve the vanishing gradient problem in deep convolutional neural
networks. The ResNet architecture is formed by blocks of several convolutional layers,
an example of a ResNet block is shown in the Figure 3.1. The ResNet solve the
vanishing gradient problem by adding a residual connection for each block which adds
the input of the block to its output. This effectively prevents the gradient from getting
too small, as it is really easy for the block to learn identity mapping since the input is
directly added to the output.

In this report, we specifically implement a ResNet-18 architecture and refer to it as the
baseline model. Additionally, we use ResNet-18 as the backbone for implementing
the two self-supervised models explored in this report to make them comparable with
the baseline. ResNet-18 is a specific type of ResNet that include 18 layers in total.
It is chosen as the baseline model because ResNet architectures are commonly used
in self-supervised tasks. ResNet-18 is selected among all ResNet networks because
of the objective of building an efficient deep learning model and the constraints of
computational resources.

The main body of the ResNet-18 neural network is a 17-layer CNN, which consists of 8
residual blocks with a single CNN layer at the beginning. A complete architecture of
ResNet-18 is shown in Figure 3.2. Following the 17-layer CNN is a fully connected
layer to output the classification probabilities for each bat species. Within each residual
block, each convolutional layer is followed by a 2D batch normalisation layer [17] with
a ReLU layer, and a residual connection adds the input to the output of the second batch
normalisation layer to prevent the gradient in the network from getting too small. A
detailed architecture of the residual block is shown in Figure 3.1. All convolutional
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Figure 3.2: A detailed description of the ResNet-18 architecture. Image taken from [32].

layers in the ResNet-18 architecture have a kernel size of 3× 3, and the number of
channels for the initial convolutional layers starts with 64. The number of channels
doubles every 4 layers, with the output channels of the 17 convolutional layers totaling
512. Follows the convolutional layers, an average pooling and a fully connected layer
map the extracted features to the probabilities of the input data belongs to each class.
The final softmax function normalise these probabilities so that their sum equals 1
across all classes. In our implementation, the output of the entire ResNet-18 network is
a one dimensional vector with length 18, where each entry represent the probability of
the input data belongs to that class.

The network is trained with the objective to minimise the cross entropy loss. The
cross entropy loss shows the difference between true probability distribution and output
probability distribution of the input data, the cross entropy loss of data X is calculated
as follows:

Loss =−
K

∑
k=1

yk logP(Y = k|X) (3.1)

where K represent the total number of classes. The indicator variable yk is set to 1 if
data X belongs to class k and 0 otherwise, P(Y = k|X) is the output probability of data
X belongs to class K.

3.2 Self-Supervised Models

In this section, we outline the architecture and implementation details of the two
self-supervised models investigated in this report: SimCLR and the autoencoder.

3.2.1 SimCLR

SimCLR (Simple Framework for Contrastive Learning of Visual Representations) is a
contrastive learning framework first proposed in 2020 by Chen et al. [6]. The SimCLR
model learns to produce meaningful visual representations by maximising the agreement
between different augmented versions of the same image. As shown in Figure 3.3,
SimCLR consists of four components: a data augmentation scheme T , a neural network
encoder f , a small neural network projection head g and a contrastive loss function L.
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The data augmentation scheme T generates two different augmented views, xi and x j,
for every input data x. During training, xi and x j are considered as a positive pair, while
xi or x j with all other augmented views generated from all other data in the same training
batch are considered negative pairs. In our implementation, 7 data augmentations are
applied to generate different augmented views, but we assigned a 50% probability
for each to be applied, thereby enhancing randomness and diversity during training.
The torchvision.transforms and torchaudio.transforms packages are used for all data
augmentations. The list of augmentations applied is described in section 3.4.

The encoder f is a neural network that extracts a representation hi from the augmented
data view xi. The SimCLR architecture allows flexibility in the design of the encoder
network. In our implementation, we employed a ResNet-18 architecture as the encoder
network f due to its widespread use in self-supervised tasks and our goal of constructing
an efficient network. Moreover, we aimed to make the SimCLR model comparable to
the ResNet-18 baseline model.

The projection head g is a small fully connected neural network which projects the
visual representation hi extracted by encoder f to the space where the contrastive
loss is applied. The projection of the visual representation hi is defined as zi, where
zi = g(hi). The original design of the projection head proposed in [6] consists of two
fully connected layers with a ReLU layer in between. However, we adopted the approach
suggested in [7] which involves increasing the width and depth of the projection head,
as adding another fully connected layer improved the performance of ResNet-based
SimCLR models by 5% on ImageNet. Consequently, we implemented a projection head
comprising three fully connected layers, with a ReLU layer between each pair of dense
layers. In terms of width, aside from the first dense layer with an input and output size
of 512, the remaining two dense layers have an input size that is double their output
size.

For the contrastive loss function L, follows [6] and [7], we employed the NT-Xent (the
normalised temperature-scaled cross-entropy loss) as follows.

sim(A,B) =
A⊤B

||A||||B||
(3.2)

Li, j =−log
exp(sim(zi,z j)/τ)

∑
2N
k=11[k ̸=i]exp(sim(zi,zk)/τ)

(3.3)

Where 1[k ̸=i] ∈ {0,1} returns 1, iff k ̸= i, zi and z j is the projected visual representation,
and τ indicate the temperature constant.

The NT-Xent loss awards high similarity between positive pairs (the two augmented
views generated from the same data) in the batch and penalizes high similarities between
negative pairs (all other augmented views generated from different data in the batch).
Consequently, the positive pairs are attracted, and the negative pairs are repelled.
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Figure 3.3: An overview of the SimCLR framework. Image taken from [6].

3.2.2 Autoencoders

Autoencoder is another popular type of self-supervised representation learner. The
autoencoder model learns to produce meaningful visual representations by minimising
the difference between input data yi and reconstructed data ŷi. An autoencoder has three
major components, a neural network-based encoder f , a neural network-based decoder
g and a loss function L. An overview of the autoencoder architecture is shown in Figure
3.4.

The neural network-based encoder f extracts a visual representation hi from the data
yi provided. In our implementation, we adopt the commonly used ResNet, more
specifically we selected a ResNet-18 architecture due to the limitation of computation
resources and the aim of making the autoencoder model comparable to the SimCLR
model and baseline model.

The neural network-based decoder g is employed to project the representation hi back
into the data space. To ensure that the encoder and decoder have a similar capacity for
learning to produce representations and reconstructing data, our decoder is designed to
mirror the architecture of the encoder, which is a mirrored ResNet-18. The mirrored
ResNet-18 decoder comprises ResNet blocks that consist of deconvolutional layers,
batch normalisation, ReLU activation functions, and residual connections. The ResNet
blocks are arranged in reverse order compared to the ResNet-18 encoder. This means
the decoder starts with the final layer of the encoder and ends with the encoder’s
first layer. The decoder operates in reverse compared to the encoder, upscaling the
lower-dimensional representation back to the original size. Similar to the encoder,
each deconvolutional layer in the decoder has a kernel size of 3× 3. This design
choice ensures that both the encoder and decoder can effectively learn and process the
data in a symmetrical manner, helping the autoencoder learn to produce meaningful
representations.

The loss function L compares the difference between data yi and reconstructed data ŷi.
We applied a commonly used mean squared error shown as follows.
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Figure 3.4: An overview of the autoencoder framework.

MSE(y, ŷ) =
1
N

N

∑
i=1

(yi − ŷi)
2 (3.4)

3.3 Multinomial Logistic Regression

In this report, the multinomial logistic regression classifier is employed to linearly
evaluate the visual representations extracted by self-supervised models. This approach
is preferred over the commonly used attaching a linear layer at the end of the network for
linear evaluation because multinomial logistic regression is convex, which can produce
more stable and optimal results.

Multinomial logistic regression is a classifier that generalises the logistic regression to
classification problems with more than two classes. Multinomial logistic regression
maps the input data to a set of probabilities that the data belongs to each class using the
softmax function. The probability of the data Xi belonging to class k when applying a
softmax function is shown below:

P(Y = k|Xi) =
e(bk0+bk1Xi1+bk2Xi2+···+bknXin)

∑
K
j=1 e(b j0+b j1Xi1+b j2Xi2+···+b jnXin)

(3.5)

Here, P(Y = k|Xi) represents the probability that data Xi belongs to class k given the
data Xi. K denotes the total number of classes, and bk0,bk1, ...,bkn are the parameters to
be learnt during training. Xi1,Xi2, ...,Xin are the features of the input data Xi.

The softmax function calculates the probability of input data belonging to each class
and normalizes these probabilities so that their sum equals 1 across all classes.
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Figure 3.5: Illustration of all data augmentations applied in this report, showing the
original spectrogram and 7 augmented views.

During training, a set of optimal parameters bk0,bk1, ...,bkn are learnt by minimising the
cross entropy loss, which is the same loss function the baseline model applied during
training. The formula of cross entropy loss is shown in equation 3.1.

3.4 Data Augmentation

Data augmentation is a machine learning technique that increases the diversity of
the dataset by applying various transformations to existing data to generate slightly
different copies and then added them to the dataset. The common transformations
used in data augmentation include rotation, colour jittering, cropping and masking.
Data augmentation is an effective regularization technique and could effectively reduce
overfitting in the model training [41].

In our experiments, data augmentation is used in the training of the three models
mentioned above (supervised ResNet-18, autoencoder and SimCLR). In the training
of supervised ResNet-18 and autoencoder, data augmentation is used to increase the
training dataset and reduce overfitting. In the training of SimCLR, data augmentation
is used to generate positive and negative pairs, which is used to learn the meaning of
visual representation by training the model to be invariant to transformations.

In this report, we employed 7 data augmentations in total, including time masking,
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frequency masking, and time wrapping which are proposed by [28], these three augmen-
tations are proposed for speech recognition tasks on log mel spectrogram. Following
[44] we added strech and pitch shift, these two augmentations are applied in bioacous-
tics classification tasks on spectrograms. We also added other two types of popular data
augmentation in the field of image classification, which are gaussian blur and random
erasing. Illustrations of all the data augmentations applied in this report are shown in
Figure 3.5

3.5 Machine Learning Pipeline

Finally, we introduce the pipeline for developing deep learning-based self-supervised
models we employed in this report to pretrain the self-supervised models, starting with
the raw audio input data and ending with a model capable of classifying bat echolocation
calls. A flowchart illustrating the pipeline is provided in Figure 3.6.
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Figure 3.6: Machine learning pipeline to develop the deep learning model in this report.
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Dataset

In this chapter, we described the dataset used in this report, as well as outlined all
the preprocessing steps we carried out in order to convert the raw audio recordings to
spectrograms containing bat echolocation calls which we did the classification with.

4.1 Dataset Description

The dataset contains 2,737 recordings with an average length of 2 seconds. All record-
ings have a frequency range from 0kHz to 150kHz with a sample rate of 300,000. The
dataset includes 32,651 calls from all 17 known breeding bat species in the UK, the class
distribution of the dataset is shown in Table 4.1, and the mean average image of each
class of the dataset is shown in Figure 4.1. The recordings are collected by different
devices and were provided by six different sources, where each source corresponds to an
organisation or individuals that provide multiple audio files. The multi-sources feature
of the dataset maximises the variation in the dataset, which increases the challenge and
improves the generalisation ability.

The annotations of the data are from [27], where they manually annotate each bat call
using the audio annotation interface they developed. The species class information
at the file level is provided to the annotators. The annotators draw boxes and assign
a species class label to each call on each recording’s spectrogram; an example of the
spectrogram of a recording with the labels is shown in Figure 4.2. Under the condition
where it is not possible to to assign the correct class or there are multiple species present
in a single file, the unknown class calls will be marked to a generic class ‘Bat’.

20
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Figure 4.1: Visualisation of the average spectrogram of the echolocation calls from each
species in the dataset. The y-axis represents kHz, which spans from 10kHz to 140kHz,
the time duration for each spectrogram is 20ms.
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Figure 4.2: Example of the recording and annotations in the dataset, ”Bar bar” in the
graph is short for bat species name Barbastellus barbastellus.

Class Name Numbers Num Train Calls Num Test Calls
Bat 1389 1389 0

Barbastellus barbastellus 984 791 193

Eptesicus serotinus 2585 2025 560

Myotis alcathoe 866 702 164

Myotis bechsteinii 880 718 162

Myotis brandtii 1936 1553 383

Myotis daubentonii 6337 4992 1345

Myotis mystacinus 2757 2184 573

Myotis nattereri 2627 2090 537

Nyctalus leisleri 1150 879 271

Nyctalus noctula 402 302 100

Pipistrellus nathusii 1442 1145 297

Pipistrellus pipistrellus 1891 1493 398

Pipistrellus pygmaeus 2346 1903 443

Plecotus auritus 1120 814 306

Plecotus austriacus 842 680 162

Rhinolophus ferrumequinum 1637 1322 315

Rhinolophus hipposideros 1460 1173 287

Table 4.1: Class distribution of the dataset used.
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4.2 Data Prepossessing

In this section, we outline each step applied to convert raw audio recordings into
cut spectrograms, which serve as the input for our models. After loading all the
audio recording files from the disk, we apply a short-time Fourier transformation with a
window size of 1024 and an 80% window overlap to the audio to compute the magnitude
spectrogram. We then trim out the frequency bands higher than 140 kHz or lower than
10 kHz, as most of the bat classes only appear in the frequency range between 10 kHz
and 140 kHz. Similar to [27] and [3], we deduct the mean value of each frequency band
from the frequency band to remove the constant background noise. Next, we crop out
each bat call from the spectrogram by cropping out 20 milliseconds of data starting
from 2.5 milliseconds before the call start. Although some bat calls have a duration
longer than 20ms, the starting 20ms of the bat calls contain features most relevant to bat
species, such as start frequencies and frequency with maximum energy [37]. As a final
step, we resample each cropped spectrogram into 128 frequency bins. We assume only
one bat call appears in one cropped spectrogram. Ultimately, when given an audio file
containing mutiple bat echolocation calls, this preprocessing process generates multiple
spectrograms each contraining one bat echolocation call with dimensions of 128 by 32.

Similar to [22], we add noise samples to the training data to increase the robustness to
background noise. The noise samples are extracted from the space between adjacent
calls in training data (i.e., after the end of the last call, before the start of the next call).
All noise samples undergo the exact same preprocessing steps as the training data, with
one exception: when cropping the spectrogram, we start cropping 20ms before the start
of the call instead of at the call’s ending. This approach is chosen because some bat
calls exceed 20ms in duration. To make the noise sample representative, we collect 70
noise samples from each data source of the dataset, ensuring that each noise sample
is collected from a different file. This results in 420 noise samples, which serve as
the 18th class ’noise’ of our classification task. It is important to note that these noise
samples are only added to the training data and not the testing data.

4.3 Data Split

In this study, we have split our dataset into non-overlapping training and testing datasets
with an 80:20 ratio in order to train and evaluate our models. To ensure that the training
and testing data remain distinct, we have performed a file-level split, meaning that the
calls from the training dataset and calls from the testing dataset always come from
different files. This could prevent information in the testing dataset from leaking into
the training dataset, ensuring the reliability of the evaluation of the model performance.
To split the dataset on a file level while maintaining a similar class distribution in the
training and testing data, we randomly assigned recording files to the training dataset
while keeping track of the number of calls per species added. Once the number of calls
of a species added to the training dataset reaches the desired threshold, all other files
containing calls of this species are added to the testing dataset. This could maintain
the species distribution in both datasets, which makes the evaluation of the model
performance fair. Consequently, our dataset consists of 25,944 calls in the training set
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and 6,496 calls in the testing set. A detailed breakdown of the class distribution in the
training and testing datasets is shown in Table 4.1. It is important to note that, data from
class “bat” will only be used for unlabelled pretraining, thus no data from class “bat”
will be split into a test dataset.

To prevent class bias and generalise well on new data, we balanced our training dataset
by downsampling each class’s data to 300 data per class. This results in a balanced
labelled dataset containing 5,270 bat calls in total, by adding 300 noise samples from
training data, we result in a balanced labelled dataset containing 5,400 spectrograms. To
be noted, this balanced dataset will only be used to train the fully supervised model and
fine-tune/linear-evaluate the self-supervised model. The entire training dataset (without
the balance) will be used for self-supervised pretraining.

To simulate the condition with limited labelled data, we created a subsampled version
of the training dataset where each has 1%, 5%,10%, and 50% of data from the balanced
training dataset. The subsampled versions are selected uniformly at random for each
class. The subsampled version datasets with increasing size are nested, i.e. the version
with 50% of the data will contain all the data in the version with 10% of the data. To
make the result comparable, the dataset is static across the experiments of different
models, i.e. the exact same data will be fed to three models for each set of experiments.

In the end, we have 7 datasets in total, one testing dataset contains 6,496 calls to
evaluate the model performance, an unbalanced training dataset contains 25,944 calls
to do the self-supervised pretraining, a balanced dataset contains 5,400 spectrogram
and 4 subsampled versions of the balanced dataset which contains 2,700, 540, 270, 54
(50%, 10%, 5% 1%) of calls respectively, the balanced dataset will be used to train
the fully supervised baseline and fine-tune/linear evaluate the models trained using a
self-supervised manner.
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Experiments and Results

In this chapter, we discuss the settings for each experiment, the rationale behind
conducting them, and the results obtained. Additionally, we provide an analysis of the
results to offer insights into the performance of the models and the implications of the
findings.

We conduct the first experiment to compare the classification performance between
supervised baseline and pretrained self-supervised models under different amounts of
labelled data. We aim to investigate the effectiveness of self-supervised pretraining
under different sizes of labelled dataset in this experiment.

The second experiment is conducted to assess the quality of the visual representation
learnt by the two self-supervised models during pretraining. We compare the visual
representation learnt by two self-supervised models to that learnt by the supervised
baseline and a randomly initialised baseline model without any training.

5.1 Implementation Details

In this report, all experiments have been carried out on the University of Edinburgh’s
teaching cluster. Each task within the cluster operates on the Ubuntu 20.04 LTS
operating system, equipped with an NVIDIA GTX 1060 GPU 6GB and 16GB of
RAM. The open-source PyTorch library [31] has been used for the development of all
associated scripts.

5.2 Fully Supervised Baseline Experiment

In this report, we refer to the ResNet-18, which is a CNN-based model proposed in
[14], as the baseline model.

During training, the model’s weights are updated for each input batch of 32 samples,
leveraging backpropagation to minimize cross-entropy loss. An Adam optimiser [23]
with an initial learning rate of 1e-3 and a weight decay of 1e-3 is used. A cosine decay

25
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Dataset Size Macro-averaged Metric
Number Percentage Accuracy (%) Precision (%) Recall (%) F1-Score (%)

54 1% 37.23 35.53 36.52 33.29
270 5% 52.60 48.24 50.12 47.51
540 10% 58.15 53.25 56.73 53.84
2700 50% 71.15 62.62 67.26 62.51
5400 100% 75.92 66.96 72.02 66.04

Table 5.1: The macro-averaged metrics for the baseline model trained fully supervised
on balanced datasets of varying sizes. The dataset size column displays the number of
samples in the dataset and its percentage relative to the full balanced dataset.

learning rate scheduler [25] is also applied during training. The model is trained for 40
epochs.

The ResNet-18 model is trained on the full balanced training dataset (300 calls per
class) and its subsampled versions, which contain 50%, 10%, 5%, and 1% of data from
the balanced training dataset (i.e., each subsampled version contains 150, 30, 15, and 3
calls per class, respectively). All training is then tested on the testing dataset mentioned
in section 4.3, comprising 6,496 calls while maintaining the original class distribution
(i.e., the testing dataset is not balanced).

We run the experiments five times and the average results are displayed in Table 5.1,
with the confusion matrix for the model trained on the full balanced dataset (300 samples
per class) shown in Figure 5.1.

The confusion matrix reveals that most misclassifications occur in species with minimal
inter-class differences, primarily within Myotis, Nyctalus, and Plecotus genera. For
example, 37% of calls from Nyctalus noctula are misclassified as Nyctalus leisleri,
19% of calls from Myotis bechsteinii are misclassified as Myotis brandtii, and 14% of
calls from Pipistrellus pipistrellus are misclassified as Pipistrellus pygmaeus. Based on
average call images shown in Figure 4.1, these genera exhibit very subtle inter-class
differences, which we interpret as the primary cause of the misclassifications.

5.3 Self-Supervised Experiments

This section explains the training details and the two self-supervised models (SimCLR
and autoencoders), and the results of the experiments carried out on these two models.

5.3.1 SimCLR Model

To evaluate the SimCLR’s performance on the task of bat echolocation calls, we applied
a two-phase training approach. In the first phase, we trained the SimCLR model in a
self-supervised manner using unlabelled data. Subsequently, in the second phase, we
fine-tuned the model with labelled data to evaluate its classification performance.

The SimCLR model was pre-trained in a self-supervised fashion using the 25,944 calls in
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Figure 5.1: Confusion Matrix of the baseline model trained fully supervised on the
complete balanced dataset (300 calls per class).

the training dataset, with only call data and no class labels. Model weights were updated
per batch of 32 samples. Although both [6] and [7] indicated that the SimCLR model
greatly benefits from larger batch sizes for more negative pair sampling, we opted for a
batch size of 32 due to graphics card memory constraints. Furthermore, since our dataset
contains only 18 classes, increasing the number of negative samples would raise the
likelihood of same-class calls being labelled as negative samples, causing the contrastive
loss to drive apart the representations of these same-class calls. We pre-trained the
model for 200 epochs in a self-supervised manner, utilizing an Adam optimiser with an
initial learning rate of 1e-3 and a weight decay of 1e-3. A ReduceLROnPlateau learning
rate scheduler is also employed with a patience of 5 epochs. The temperature constant
for the NT-Xent loss function is set to 0.5.

We proceed to fine-tune the pre-trained SimCLR network for the downstream task of
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Dataset Size Macro-averaged Metric
Number Percentage Accuracy (%) Precision (%) Recall (%) F1-Score (%)
54 1% 43.83 41.26 41.22 38.03
270 5% 61.18 57.33 69.67 56.89
540 10% 66.19 60.91 63.20 67.14
2700 50% 75.49 68.32 71.89 68.31
5400 100% 76.56 69.77 72.73 70.85

Table 5.2: The macro averaged metrics of the pretrained SimCLR model fine-tuned on
the balanced datasets of varying sizes. The dataset size column displays the number of
samples in the dataset and its percentage relative to the full balanced dataset.

bat echolocation call classification. Following the methods in [7], we fine-tune the
network from the first dense layer of the projection head, discarding the remainder of
the projection head. Subsequently, we add a dense layer to classify the output from the
SimCLR network. The model is fine-tuned for 40 epochs with a batch size of 32 to
minimise the cross-entropy loss. During training, we employ the Adam optimiser and
CosineAnnealingLR scheduler, with an initial learning rate of 1e-3 and a weight decay
of 1e-3.

Similar to baseline experiments, the pre-trained SimCLR model is fine-tuned on a
balanced training dataset and its four subsampled versions (50%, 10%, 5%, 1%). The
model is then tested on the testing dataset, which includes 6,496 calls.

Due to the limitation of computational power and the computational complexity of the
pre-trained model. We only pretrained the model once and fine-tune on the pretrained
model five times to collect results. The average results are presented in Table 5.2, and
the confusion matrix for fine-tuning on the complete balanced dataset is displayed in
Figure 5.2.

From the confusion matrix, we found that most of the misclassification still happens
within the genus with small inter-class differences, where 33% of calls from Myotis
bechsteinii are misclassified to Myotis brandtii, 22% of calls from Nyctalus leisleri
are misclassified to Nyctalus noctula. However, 10% of Eptesicus serotinus calls are
misclassified into Plecotus genus, which is not within the species group with small
inter-class differences.

5.3.2 Autoencoder Model

Similar to SimCLR network, the autoencoder network is pre-trained using the 25,944
calls in the training dataset, with only call data and no class labels. The model weights
are updated every batch with the objective of minimising the Mean Square Error between
the input call spectrogram and recreated call spectrogram, where the batch size is 32.
The model is trained with an Adam optimiser with an initial learning rate of 1e-3 and
weight decay of 1e-3. A ReduceLROnPlateau scheduler is also employed with a patient
of 5. The autoencoder model is trained for 200 epochs.



Chapter 5. Experiments and Results 29

Figure 5.2: Confusion Matrix of the pretrained SimCLR model finetune on the complete
balanced dataset (300 calls per class).

The pre-trained autoencoder network is then fine-tuned on the balanced training dataset
and its four subsampled versions and tested on the testing dataset includes 6,496 calls.
During fine-tuning, the decoder network is replaced with a classification layer. An
exact same fine-tuning setup described in section 5.3.1 is used. Similar to the SimCLR
model, the autoencoder model is also only pretrained once and fine-tuned five times.
The average result is present in Table 5.3, and the confusion matrix when fine-tuning on
the complete balanced dataset is shown in Figure 5.3.

From the confusion matrix, we found most of the misclassifications all happen within
the species group which has less inter-class difference. 26% of the calls belonging to
Myotis brandtii are misclassified to Myotis mystacinus, 20% of Plecotus austriacus
calls are misclassified to Plecotus auritus.
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Dataset Size Macro-averaged Metric
Number Percentage Accuracy (%) Precision (%) Recall (%) F1-Score (%)
54 1% 42.19 39.27 41.64 38.62
270 5% 60.30 55.84 57.76 54.48
540 10% 65.18 59.72 52.64 58.14
2700 50% 74.11 69.40 70.01 68.79
5400 100% 77.02 70.41 73.85 71.51

Table 5.3: The macro averaged metrics of the pretrained autoencoder model finetune on
the balanced datasets of varying sizes. The dataset size column displays the number of
samples in the dataset and its percentage relative to the full balanced dataset.

Figure 5.3: Confusion Matrix of the autoencoder model trained fully supervised on the
complete balanced dataset (300 calls per class).
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5.4 Comparison of the Different Models

A summary of the macro accuracy for each model trained on varying dataset sizes is
presented as line plot in Figure 5.4 with the error bar presenting the standard division.
The line plot demonstrates that the two self-supervised models consistently outperform
the baseline ResNet-18 network across all dataset sizes, with SimCLR emerging as
the top-performing model. The performance gap between models decreases as the
training dataset size increases. The gap between SimCLR and the baseline is 6.5%
when training with 1% of the dataset, which narrows down to 1% when training on the
full dataset. Moreover, we observe that the self-supervised models achieve comparable
performance to the fully supervised baseline while utilizing a significantly smaller
amount of labelled data, particularly in the case of the SimCLR model. The SimCLR
model, when trained on 50% of the dataset, attains performance similar to the fully
supervised baseline trained on the entire dataset. The SimCLR model achieves a macro
accuracy of 66% when trained on just 10% of the dataset, which is only 9% lower than
the fully supervised baseline trained on 100% of the dataset.

In the previous sections, we identified that the primary challenge in this dataset is
distinguishing bat species with small inter-class differences, as most misclassifications
occurred within groups of bat species with minimal inter-class variations. From the three
confusion matrices Figure 5.1, Figure 5.2 and Figure 5.3, we found that, compared to
the fully supervised baseline, both self-supervised models exhibit better performance in
differentiating calls belongs to species within genera with minor inter-class differences.
For instance, the average accuracy of Nyctalus genus of the baseline model is 65%, the
SimCLR and autoencoder achieved an average accuracy of 70% and 81% across the
Nyctalus genus. For Myotis genus, which is the most challenging genus to differentiate,
the baseline model achieved an average accuracy of 65%, while the SimCLR and
autoencoder rise this to 68% and 66% respectively. However, self-supervised models fail
to perform better on Plecotus genus, where the baseline achieved 82%, the SimCLR and
autoencoder achieved 81% and 76% respectively. It is worth noting that the confusion
matrices of the three models when trained on 100% of the dataset are compared since the
differences in macro metrics are the smallest (up to 1%), allowing for the identification
of differences in each class’s performance through comparison.

5.5 Linear Evaluation of the Learnt Representations

We have compared the fine-tuning performance of the two self-supervised models in
the downstream task of bat echolocation classification. In this section, we further
evaluate the quality of the visual representation learnt by each self-supervised model
by performing linear evaluation on the representation extracted by the self-supervised
pretrained models. We then analyze the linear evaluation performance with the aid of
t-SNE plots of the extracted representations to provide better insight.

The linear evaluation method involves training a linear classifier on the representations
extracted by the pretrained models to produce the final classification model. Unlike the
end-to-end fine-tuning in the previous sections, the linear evaluation does not change
the pretrained model weights during the training process. Instead, only the weights of
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Figure 5.4: Macro average accuracy of supervised ResNet-18 training from scratch,
pretrained SimCLR, and autoencoder when fine-tuning on datasets with different sizes.
The error bar shows the standard division.

the linear classifier are adjusted.

We applied a multinomial logistic regression as the linear classifier to classify the
visual representations extracted by the pretrained models. For the autoencoder, the
output of the encoder hi is used as the representation being evaluated. For SimCLR, the
output of the encoder network hi is used instead of the output of the projection head
zi, as [6] found classes represented by hi are better separated. We implemented the
multinomial logistic regression classifier using the LogisticRegression classifier from
the sklearn.linear model package. We trained and tested the classifier on the visual
representations extracted by the pretrained models. We trained the classifier on the full
balanced dataset (300 calls per class) and its four subsampled versions (50%, 10%, 5%,
and 1%). The classifier was then tested on the testing dataset containing 6,496 calls.

To make the performance of the two self-supervised models comparable, we assessed the
visual representation extracted by a ResNet-18 model with randomly initialised weights
without any training. The performance of the end-to-end finetuned baseline ResNet-18
is also added to make the performance of the self-supervised models comparable.

5.5.1 Species Level Performance

The multinomial logistic regression is applied to classify the representations extracted
by the pretrained SimCLR, pretrained autoencoder, and randomly initialized ResNet-18
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model. Species-level labels are used during training. The average test macro accuracies,
along with the standard deviation, for the logistic regression classifier applied to the
representations extracted by the three models, are shown in Figure 5.5. The performance
of the end-to-end trained supervised baseline is also included for comparison.

From Figure 5.5, we observe that both the SimCLR model and autoencoder achieve
significantly better performance compared to the randomly initialised ResNet-18 net-
work. This implies that both self-supervised models have learnt meaningful visual
representations without using any labels. Compared with the supervised baseline, both
self-supervised models outperform the supervised baseline when training using 1%
and 5% of the labelled data. The baseline start outperforms the SimCLR model when
training with 10% of the labelled data, and starts outperforms the autoencoder model
when training with 50% of the labelled data. The performance difference keeps increas-
ing until training with 100% of the labelled data. The performance gap between the
supervised baseline and self-supervised methods suggests that though a meaningful
representation has been learnt, there is still a gap compared with the representation
learnt by the supervised baseline.

We also generated t-SNE plots for the representations extracted by the four models
from the testing data. The t-SNE plots were generated using the TSNE function from
the sklearn.manifold package, with the n component parameter set to 2. A detailed
explanation of how the t-SNE processes and how t-SNE plots are generated is in
Appendix 7.1. The resulting t-SNE plots are shown in Figure 5.7.

From the t-SNE plots, we found that compared to the randomly initialized ResNet-18,
both autoencoder and SimCLR models have learnt meaningful representations that can
differentiate most bat species without any labels. In the t-SNE plot for autoencoder,
though most of the classes have been separated, the distribution between data is relatively
loose and no distinct clusters are formed. In the t-SNE plot for SimCLR, a few distinct
clusters can be observed. However, unlike the t-SNE plot for the supervised baseline,
some clusters in the t-SNE plot for SimCLR contain multiple species within the same
genus, such as Pipistrellus pygmaeus and Pipistrellus pipistrellus, which are species
with small inter-class differences. This makes it difficult for the logistic regression
classifier to separate calls from these classes. This can be further explained by Figure
5.5, where the SimCLR outperform the autoencoder by 3% when trained with 1% of
the dataset, but the autoencoder starts to outperform the SimCLR from training with
5% dataset with the performance gap keeps increasing as the amount of training data
increase. We interpret this as the distinct clusters formed by SimCLR can be easily
classified with a small amount of data. But as the amount of training dataset increase,
the close clusters formed by the SimCLR make it difficult for the logistic regression
classifier to classify, but the loose distribution in the t-SNE plots for autoencoder allows
the logistic regression classifier to draw a more complex decision boundary when more
data is used in training.

However, during end-to-end fine-tuning, the SimCLR model outperforms the autoen-
coder across all dataset sizes, which contrasts with the trend in logistic regression
accuracy. We explain this observation by noting that pretraining helps the SimCLR
model differentiate between genus groups with large inter-class differences. When
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Figure 5.5: The species level macro average accuracy of the logistic regression classifier,
when trained on the representations extracted by the randomly initialized ResNet-18,
SimCLR, and autoencoder with datasets of various sizes. Additionally, the macro average
accuracy of the ResNet-18 baseline model, which is trained end-to-end on datasets with
different sizes, is shown. The error bars represent the standard deviation of the accuracy
measurements.

fine-tuning, the SimCLR model can focus on differentiating calls with small inter-class
differences. For the autoencoder, no clear clusters are formed during pretraining, so
when fine-tuning, the autoencoder still has to differentiate calls with large inter-class
differences. Considering during pretraining, the autoencoder model has a model size
which is nearly double that of SimCLR, the result suggests that the SimCLR model is
more effective and efficient in learning meaningful representations that can be fine-tuned
for the downstream task of bat echolocation call classification.

5.5.2 Genus Level Performance

As we found that, through self-supervised pretraining, both self-supervised models clus-
ter some bat species within the same genus closely. Especially for the SimCLR model,
many distinct clusters containing multiple species within the same genus have been
formed during pretraining. Thus, we further explore the linear evaluation performance
of the self-supervised models at the genus level.

The trained models utilise the species-level labels from the above section are used,
but instead of reporting the species-level accuracy, the performance at the genus level
is reported, i.e., the misclassification within the genus will be considered correct
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classification. The genus-level macro average accuracies of the four models (SimCLR,
autoencoder, randomly initialised ResNet-18 and supervised ResNet-18) are shown in
Figure 5.6.

From Figure 5.6, we find that both self-supervised models significantly outperform the
randomly initialised baseline, indicating a meaningful representation has been learnt
at the genus level. We observe that compared with species-level performance, the
self-supervised pertaining has a more significant effect at genus-level performance.
At the genus level, the SimCLR outperform the supervised baseline for 16% when
training with 1% of the dataset. but at the species level, the SimCLR only outperform
the baseline for 3%. The SimCLR model outperforms the supervised baseline for
all the dataset sizes below 100%. Even when training with 100% of the dataset, the
supervised baseline only outperforms the SimCLR model by 2%. This shows the
SimCLR model has learnt a competitive representation compared with the supervised
baseline without using any labelled data. In contrast with species-level performance, the
SimCLR outperforms the autoencoder under all dataset sizes, which could be explained
by the more distinct clusters at the genus level has been formed during the pretraining
for SimCLR.

We also generate t-SNE plots at the genus level for the visual representations extracted
by the four models (SimCLR, autoencoder, fully supervised ResNet-18, and randomly
initialized ResNet-18) to further analyze their performance. The t-SNE graphs are
shown in Figure 5.8 Compared with the randomly initialised ResNet-18 network, both
self-supervised models have learnt meaningful representations at the genus level. We
observe that SimCLR produces distinct, high-quality clusters that are competitive with
those of the fully supervised model. These results demonstrate the effectiveness of
SimCLR in learning discriminative visual representations at the genus level, even in
the absence of labelled data. This is also shown in Figure 5.6, where there is only a 2%
performance difference between SimCLR and supervised baseline when training with
100% of the dataset. In contrast, the autoencoder also produces clear clusters at the
genus level, but these clusters are not as well-separated as those generated by SimCLR
or the fully supervised model. Most of the genus clusters in the autoencoder’s t-SNE
plot interact with each other, indicating that the model might struggle to distinguish
between different genera effectively. This could be further explained by SimCLR
outperforming the autoencoder under all dataset sizes for genus-level linear evaluation
accuracy shown in Figure 5.6.
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Figure 5.6: The genus level macro average accuracy of the logistic regression classifier,
when trained on the representations extracted by the randomly initialized ResNet-18,
SimCLR, and autoencoder with datasets of various sizes. Additionally, the macro average
accuracy of the ResNet-18 baseline model, which is trained end-to-end on datasets with
different sizes, is shown. The error bars represent the standard deviation of the accuracy
measurements.
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Figure 5.7: The t-SNE plots on species level for the visual representation extracted
by Supervised ResNet-18, Randomly initialised ResNet-18, autoencoder and SimCLR
model from the testing dataset.
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Figure 5.8: The t-SNE plots on genus level for the visual representation extracted by
Supervised ResNet-18, Randomly initialised ResNet-18, autoencoder and SimCLR
model from the testing dataset.



Chapter 6

Conclusions

6.1 Summary of Result

In this report, we applied self-supervised learning to the task of bat echolocation call
classification for the 17 bat species that breed in the UK. Specifically, we implemented
two self-supervised learning architectures: SimCLR and autoencoder, trained them on
the bat call spectrogram database we established for this purpose, and compared their
end-to-end finetuning performance with a fully supervised ResNet-18 baseline. By
comparing the end-to-end finetuning classification performance on bat echolocation
calls, we found that the SimCLR model achieved a test accuracy of 75.49% using 50%
of the labelled dataset. This is very close to the testing performance achieved by the
baseline model using 100% of the labelled dataset (75.92%). However, compared to the
baseline, both self-supervised models only achieved a marginal performance improve-
ment (around 1%) when using a complete labelled training dataset. By comparing the
linear evaluation performance of visual representations learnt by the self-supervised
models through pretraining with those of the supervised baseline model, we found
that, at the species level, both self-supervised model have learnt a meaningful repre-
sentation through self-supervised pertraining. At the genus level, the self-supervised
pretraining has shown a larger effect, where the SimCLR model can learn to produce
visual representations that are competitive with those learnt by the supervised baseline
without using any labelled data. This is also shown by the linear evaluation accuracy of
the SimCLR model when training with 100% of labelled data is only 2% lower than
that of the supervised baseline trained end-to-end. We identify that the primary reason
for misclassification in species discrimination tasks is the low inter-class differences
between species, and self-supervised pretrained models have demonstrated improved
performance in addressing this challenge.

In conclusion, we have achieved the goal of this project while addressing the four
research questions proposed in section 1.2. The findings demonstrate the potential of
self-supervised learning approaches for bat echolocation call classification and provide
valuable insights for future research in this area.

39



Chapter 6. Conclusions 40

6.2 Limitations and Future Work

One limitation of the experiments in this report is that we tested our model on a single
dataset, which raises questions about the generalisability of our conclusions to bat
echolocation call datasets collected from geographically distinct areas. Therefore, it
would be worthwhile to investigate whether the same conclusions hold when tested on
datasets collected from different geographical locations.

Another limitation of the pipeline proposed in this report is its reliance on a large
annotated dataset containing information about the starting and ending time of each call.
To reduce this dependency, a self-supervised approach could be applied to detect bat
echolocation calls without requiring any labelled data. Such as the method proposed by
Bermant et al. [4], which using self-supervised learning in detecting sperm whale coda
click.

For future work, it is essential to consider the limited computational power of most
devices used for audio-based monitoring tasks, such as Raspberry Pi. In many cases,
these devices may not have sufficient computational resources to run a model with
a ResNet-18 architecture in real-time, especially considering the preprocessing steps
required to convert raw audio into spectrograms. Thus, it would be valuable to test the
proposed pipeline on smaller neural network architectures (e.g., MobileNet [16]) to
determine if self-supervised pretraining remains effective under resource-constrained
settings.
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Chapter 7

Appendix

7.1 T-SNE (t-distributed Stochastic Neighbour Embed-
ding)

T-distributed Stochastic Neighbour Embedding (t-SNE) is a dimension-reduction method,
which could represent high-dimensional data in low-dimensional space (usually 2 or 3
dimensions) while preserving the cluster structures and distance between data points.

There are three main steps in t-SNE to convert high-dimensional representation into
low-dimensional space:

1. Calculating pairwise similarity pi j in high dimensional space using Gaussian
distribution. The similarity pi j is calculated using the formula shown below.

pi j =
exp(−||xi − x j||2/2σ2)

∑k ̸=l exp(−||xk − xl||2/2σ2)
(7.1)

Where xi and x j in the formula are the data points, sigma is the standard division
of the Gaussian distribution.

2. Optimising the low-dimensional representation. We first randomly initialise
the low-dimensional representation yi and y j, which are the low-dimensional
counterpart of the high-dimensional data points xi and x j. Then the pairwise
similarity qi j is calculated in low dimensional space using t-distribution. The
similarity qi j is calculated using the formula shown below.

qi j =
(1+ ||yi − y j||2)−1

∑k ̸=l(1+ ||yk − yl||2)−1 (7.2)

The low-dimensional representations are then optimised with the objective to
minimise the divergence between similarity in high and low dimensional space
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(qi j and pi j). Kullback-Leibler (KL) divergence is applied to calculate the diver-
gence, the divergence is optimised using gradient descent. The formula for KL
divergence is shown below.

KL(P||Q) = ∑
i

∑
j

pi j log
pi j

qi j
(7.3)

In this report, t-SNE is employed as a visualization technique to evaluate the quality of
representations extracted by the models. By examining the t-SNE plots, we can discern
whether distinct clusters are formed for different bat species. Well-separated clusters
indicate that the models have learnt meaningful representations that can distinguish
between the various species.

However, t-SNE plots have its limitation in representing high-dimensional data. The
t-SNE algorithm attempts to preserve the cluster information while compressing high-
dimensional data into a low-dimensional space. Despite its effectiveness in maintaining
cluster structure, some information will inevitably be lost during the dimensional-
ity reduction process. As a result, t-SNE plots may not represent the original high-
dimensional data entirely.
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