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Abstract
Scaling Transformer-based large language models (LLMs) has resulted in massive
improvements in natural language processing tasks. However, this scale has resulted
in a corresponding increase in computational complexity. Sparse models, inspired by
the Mixture of Experts method, offer a promising way to keep scaling language models
without affecting their computational cost. Improving their inference-time speed and
making them deployable on GPU-memory-constrained machines would significantly
reduce the barrier to entry for the adoption of sparse LLMs. This project aims to deploy
Switch Transformer, a sparse LLM, on any memory-constrained machine, understand
the effects of reduced GPU memory on throughput, and propose a batching algorithm
to reduce the impact.
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Chapter 1

Introduction

In recent years, there has been a proliferation of large language models (LLMs) that
have demonstrated remarkable performance in various natural language processing
(NLP) tasks. Very recently, LLM-powered services like ChatGPT[20] and Github
Copilot[14] have made LLMs accessible to millions of users. However, the success
of these models has come at the cost of high computational requirements during
inference, leading to significant resource demand. As these models become more
complex, the need for improvements in inference-time efficiency becomes increasingly
critical. One promising method to keep scaling LLMs without significantly affecting
their computational complexity is through sparsity - Google AI’s Switch Transformer
achieves comparable downstream task performance to significantly larger dense models.

Sparse models present many challenges when it comes to deployment and typically
lag behind dense models in inference performance. This thesis aims to improve the
inference throughput of Switch Transformer’s sparse layer when deployed on Nvidia’s
state-of-the-art inferencing server. Additionally, LLMs have grown so much that they
commonly do not fit in a single GPU’s memory, which presents further inferencing
challenges. Improving inference throughput on GPU-memory-constrained machines
would reduce the barrier to entry for on-premise and edge deployments of LLMs.

Specifically, this paper proposes a fetching engine to enable the deployment of Switch
Transformer on GPU-memory-constrained machines. Moreover, the thesis proposes a
batching algorithm to reduce the impact of loading and unloading parts of the model to
the GPU.

1



Chapter 2

Background

2.1 Mixture of Experts and Switch Transformer

Mixture of Experts (MoE) is a divide-and-conquer machine learning method where the
problem space is divided and each subset of the problem space is served by a different
machine learning model - an expert. When an input is provided to the system, a gating
model decides which expert (or experts) should be used [18]. An example application
of this would be a multilingual sentiment analysis language where a gating model first
decides which language the input corresponds to and then dispatches it to the expert
specializing in that particular language [7]. A recent application of the MoE method is
Google’s general-purpose language model: the Switch Transformer [13]

In the following subsections, I introduce the Switch Transformer and simultaneously
explain some of the details of the MoE method.

2.1.1 Motivation

Many of the recently successful large language models (LLMs), such as BERT, T5,
GPT3, or LLaMA are all based on the transformer architecture which was first proposed
in Vaswani’s famous paper Attention Is All You Need [26]. Improvements in downstream
task performance have mainly been achieved by using more data and larger models [6].
Although scaling the parameter count of models has been an effective approach, the
associated computational costs have also risen drastically [24]. Switch Transformer
authors proposed using MoE to achieve the same performance as previous LLMs, but at
a reduced computational cost.

2.1.2 Architecture

I will first introduce the transformer block, the fundamental building block of trans-
former models, and then contrast it with the Switch Transformer’s MoE-inspired trans-
former block.

2



Chapter 2. Background 3

2.1.2.1 Representing input

I think it is helpful to understand how transformer-based LLMs represent inputs. Similar
approaches extend to non-language tasks such as computer vision or even biomedical
applications, but for brevity’s sake, I will focus on representing written text.

Since text is symbolic in nature, it is required to convert it to a representation that a
machine learning model can operate with - real-valued vectors. Firstly, the input text
is tokenized, which means that each word is potentially split into substrings called
tokens. Next, each token has a 1:1 mapping to a real-valued vector of a fixed di-
mension - 768-dimensional embeddings are common. These vectors are subject to
multiple transformations throughout a neural network. They are commonly called
hidden representations, latent representations, and feature vectors.

Hence, given a textual input of N words, the embedding forms an (M,d) matrix, where
d is the embedding dimension and M ≥ N. [26]. As mentioned, it is common for
transformer tokenizers to split a single word into sub-word tokens so the resulting
matrix is bigger than the length of the original sentence. This is a technicality so to
simplify examples, in this paper, I will assume each word corresponds to one token
which maps to one feature vector.

2.1.2.2 Transformer Block

At a high level, the transformer block is a sequence of matrix multiplications interleaved
with non-linear functions. What makes it a block is the fact that this sequence of
operations is often sequentially repeated in a typical transformer model - for instance,
BERT is composed of 12 transformer blocks [12] while the more recent GPT3 is
composed of 96 transformer blocks [6].

Figure 2.1: Transformer Block diagram adopted from Attention is All You Need paper[26]

Describing the operations of a transformer block in detail is beyond the scope of this
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project, but I think it is illustrative to at least provide a high-level explanation.

We can think of the block as a function fi that accepts as its input the matrix representa-
tion of a natural language query1. This input matrix is of dimensions (N,d), where N is
the input length and d is the embedding dimension. fi’s output has the same dimension
as its input.

What each fi does is it takes some latent representation of the original input text and
processes it to create a more refined representation. This process has two main parts:
multi-headed self-attention and a feed-forward neural network.

The self-attention mechanism contextualizes every token in the input text by updating
each token as a weighted average of all of the other tokens in the text. Concretely, given
the sentences ”I want to eat an apple” and ”I work at Apple” (let’s assume cases are
not distinguished as that tends to be the case with language modeling), the meaning
of the word ”apple” is heavily dependent on context. The self-attention mechanism
will imbue the representation of the token ”apple” with the representation of the token
”work”, where this new representation will be closer in meaning to the company Apple
than to the fruit.

The Feed-forward neural network takes as input each of the individual tokens and
updates their representation. This is done through equation 2.1, where Wk is a weight
matrix, bk is a bias vector, and x is the latent representation of a token - a d-dimensional
vector [26]. Crucially, the same weight matrices are used for all tokens in a given block
and each block has its own set of weight matrices. This will be the key difference
between a normal transformer block and Switch Transformer’s approach.

FFN(x) = max(0,xW1 +b1)W2 +b2 (2.1)

I have skipped over some parts like the residual connections [15] and the layer-wise
normalization [5]. These methods are employed to stabilize the training process and
allow deeper models to be trained.

2.1.2.3 Combining transformers and MoE

The main difference between Switch Transformer and the generic transformer block
introduced in section 2.1.2.2 lies in how the feed-forward network (FFN) layer is
implemented. In the default transformer block, the FFN layer applies the function given
in 2.1 to every token in the sequence provided to it. Notably, the same weight matrices
are shared for all inputs in a given transformer block. In contrast, Switch Transformer’s
switching layer makes the following change:

Instead of a single FFN layer shared by all inputs in a given transformer block, train
N different FFN layers (experts) and introduce a router to route individual tokens to
specific experts.

1Originally, Transformers were mostly used for language modeling but the architecture has been
successfully used for other modalities.
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Figure 2.2: Switch Transformer’s transformer block. FFN layer is replaced by a switching
FFN layer. Graphic taken from [13]

Previously, the model would apply the same FFN layer to every token. In Switch
Transformer, the router function takes in the latent representation of the input and for
each token, calculates its probability of being routed to experti, i ∈ {1...N}. For each
token, it chooses the expert with the highest routing probability using argmax. This is
illustrated in figure 2.2. The routing process is illustrated in figure 3.1.

Earlier works [23] conjectured that routing each token to multiple experts was necessary
to properly train the routers, but Switch Transformer authors proposed routing each
token to at most one expert. This reduces computational complexity and communication
overhead in distributed settings.

Replacing the FFN layer with the sparse switching layer increases the model’s capacity
without significantly increasing its computational complexity. During inference, only
one expert in each layer lies on the critical path. In contrast, the traditional scaling
approach with dense models increases the number of transformer layers, which adds
computations to the critical path - affecting training and inference times. Switch
Transformer authors show that their approach yields comparable or better performance
with faster training times at the same computation budget (measured in FLOPS).

While the Switch Transformer paper does not conduct an ablation study to interpret the
kinds of specializations achieved by individual experts, others have started exploring this
area in relation to MoE neural networks. Chen et. al. in their Towards Understanding
Mixture of Experts in Deep Learning [7] formally prove in their setup that each expert
specializes in a specific portion of the data (a cluster) while the router learns to route to
individual clusters. They support their findings empirically in both vision and language
tasks.
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2.1.3 Training

The focus of this project is on the inference of machine learning models, that is, making
predictions with an already trained model. While understanding how training of neural
networks works is not critical for our purposes, to make the work accessible to readers
without a background in machine learning, this section briefly introduces how the
weights (parameters) of a neural network are obtained during training. Additionally, I
will introduce the most common pre-training task used for training LLMs.

The algorithm used to train neural networks is called back-propagation and it relies on
gradient descent. Let us illustrate how gradient descent works by using it to do linear
regression.

Suppose we are given some training data and want to fit a linear regression model
using gradient descent. The model f is shown in 2.2 and we initialize the weights (also
sometimes called parameters) a,b randomly, for instance, a = 1 and b = 1.

f (x) = ax+b (2.2)

Our training data is given by pairs (x, ŷ), where x is the input value and ŷ is the
corresponding output value. Suppose our training set is {(0,3),(1,5),(2,7),(3,9)}. We
choose squared error as our loss function L(y, ŷ) = (y− ŷ)2.

Let us compute the forward pass of gradient descent using the input (1,5).

f (1) = ŷ = 1×1+1 = 2 (2.3)

L(2,5) = (2−5)2 = 32 = 9 (2.4)

Next, in the backward pass, we determine how much the weights a,b should be modified
given the loss from the forward pass.

dL
dy

= 2(ŷ− y)
∣∣
y=5,ŷ=2 = 2(−3) =−6 (2.5)

By the chain rule,
dL
da

=
dL
dy

dy
da

,
dL
db

=
dL
dy

dy
db

(2.6)

dy
da

=
d

da
(ax+b) = x,

dy
db

=
d

db
(ax+b) = 1 (2.7)

Finally, evaluating the derivatives,

dL
da

=
dL
dy

dy
da

=−6×2 =−12 (2.8)

dL
db

=
dL
dy

dy
db

=−6×1 =−6 (2.9)
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To update the weights a,b we use the update equation in 2.10, where W represents any
parameter (weight) of the network. The step size α is a hyper-parameter, a parameter
not optimized through gradient descent.

W =W −α
dL
dW

α ∈ R+ (2.10)

Note, we subtract the gradient because dL
dW is the direction maximizing the increase in

L, so we negate it to minimize it.

Let us pick a commonly used α = 0.003 and apply equation 2.10 with the partial
derivatives computed earlier.

a = a−0.003×−12 = a+0.036 = 1.036 (2.11)

b = b−0.003×−6 = a+0.018 = 1.018 (2.12)

When we look at our training data, we notice that all the points lie on the function
g(x) = 2x+ 3, while we initialized f (x) as f (x) = x+ 1, so the increase in both a,b
in equations 2.11 and 2.12 corresponds to the data pushing our weights towards the
function g(x). With enough iterations and training data, a,b would closely approach 2
and 3 respectively.

An interesting observation is that we computed the value dL
dy only once, but used it

to compute the updates for both a and b. Indeed, this is one of the core ideas of the
backpropagation algorithm and it is what allows gradients to be computed efficiently
even in large networks. [21]

2.1.3.1 Training language models

To extend this approach to language modeling, we would need to design a training
task and a corresponding loss function to guide the weight updates. A common NLP
pre-training task is masked language modeling (MLM): given some text, randomly
mask some of the words, and have the model predict which word from the vocabulary
was masked [12]. This can be modeled as a classification task, where the model is
trying to maximize the probability of the correct word out of all the possible options in
the model’s vocabulary.

To compute the loss, we take the outputs of the model, a vector of numbers, normalize
them so that each entry is in the range [0,1], and then compute the negative logarithm
of the probabilities. If the model is very wrong and assigns a low probability p to the
correct word, the corresponding error is limp→0− log(p)→ ∞. Given a large volume
of data and a model with sufficient parameter count, the model will learn language rules
to improve its performance on the MLM task. It has been shown that models trained
with MLM can be quickly fine-tuned (a process called transfer learning [4]) on more
specific language tasks, such as sentiment analysis.
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Figure 2.3: Illustration of the masked language modeling pre-training task. [CLS] and
[SEP] are extra tokens used by BERT to indicate the start and end of a sequence. The
figure is taken from Finnish Language Modeling with Deep Transformer Models[16].

2.2 Deployment Methods

In some settings, deploying a model can be as simple as making a Jupyter notebook[17]
available to colleagues. In other settings, it can mean exposing a trained model on
an API endpoint on a simple web server, such as Flask. Yet another option is to
use optimized inferencing servers such as TorchServe[2], TensorFlow Serving[19], or
Nvidia Triton Inference Server[10].

In the next subsection, I show how to deploy a model with Flask and in doing so
highlight this approach’s limitations to motivate the use of specialized inferencing
solutions, such as Nvidia’s Triton Inference Server (TRTIS) which I later use in the
practical section of this project

2.2.1 Simple web server

To make a trained ML model available to end-users, I can write, for instance, a Flask
server that receives POST requests at /api/<model_name>/predict and responds
with the model’s output.

Listing 2.1 shows an illustrative example of a cat and dog image classification API,
that I wrote. User sends a base64 encoded image through a POST request to the
/api/cat-or-dog/predict route. The catOrDog() function decodes the image,
loads the corresponding model, calls the model with the decoded image, and responds
with the model’s output. In this case, the output is a probabilities array of length
two where each index is the probability of the image being of a cat or a dog. I skipped
some technicalities, like error handling or image pre-processing for brevity.

Listing 2.1: Deploying a model with Flask

1 from flask import Flask, jsonify, request
2 import torch
3 import torchvision.transforms as transforms
4 import base64
5 from PIL import Image
6
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7 app = Flask(__name__)
8

9 @app.route(’/api/cat-or-dog/predict’, methods=[’POST’])
10 def catOrDog():
11 b64_image = request.data
12 decoded_image = base64.b64decode(b64_image)
13 image = Image.open(io.BytesIO(decoded_image))
14 image_tensor = transforms.ToTensor()(image).unsqueeze_(0)
15

16 model = torch.load("/models/cat_or_dog.pt")
17 predictions = model(image_tensor).tolist()
18 return jsonify({’probabilities’: predictions})

While the above approach can work, it has some limitations worth discussing.

2.2.1.1 Productivity

If a developer wants to deploy a new model, they need to upload the model to the
\models\ folder, create a new route, and write its controller. On top of that, in a larger
company, we would not expect a data scientist to also do backend development, so
they would either need to divert resources to learn new tooling or they would delegate
deployment to a different team - leading to communication overheads.

It would be more productive if all the data scientist had to do was upload the trained
model to a model repository along with a configuration file specifying details like model
format. The deployment server could then automatically generate an API endpoint.

2.2.1.2 Efficiency

The second main concern relates to speed and efficient use of resources. Looking again
at the Flask example, we can notice that for every request the function loads a model
from memory into ram (or to GPU memory with a slight modification). Since this
is a fairly slow operation, even a handful of requests could make the application feel
unresponsive.

To alleviate this issue, we could cache popular models so that the loading speed is
reduced. Additionally, we might queue multiple requests for the same model and then
run a single inference to exploit parallelism.

2.2.1.3 This is getting pretty complicated

What started off as a simple solution would quickly turn complicated if we tried to
address the above-mentioned shortcomings. Luckily, there is a solid selection of ML
inference servers out there whose developers have already done this work. Let’s look
more closely at how Nvidia’s Triton Inference Server works and the user experience.
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2.2.2 Triton Inference Server

Triton Inference Server (TRTIS) is Nvidia’s open-source ML inference server written in
C++[10]. It allows users to deploy AI models trained using many of the popular ML
and DL frameworks, such as PyTorch, TensorFlow, ONNX, Nvidia’s own TensorRT,
and more. TRTIS can be deployed in the cloud, on-prem, and on edge devices. It can
execute models on Nvidia GPUs, x86 and ARM CPUs, and some hardware accelerators,
such as AWS Inferentia.

TRTIS supports communication through HTTP and gRPC, where gRPC is generally
the more performant option, largely due to its use of Protocol Buffers[1].

The server also supports pipelines, where the output of one model is forwarded as input
to another model. More complicated routing logic can be defined using custom scripts.
Triton also provides dynamic batching, automatic performance tuning, and a variety of
diagnostic tools.

2.2.2.1 Deploying model to Triton

The recommended way to run TRTIS is as a docker container. One of the required
start-up arguments is a path to the folder containing your models. To deploy a new
model, we simply need to add the model and its configuration file to this directory.
Figure 2.4 shows the structure of a model repository with two models: a PyTorch model
model_A and an ONNX model model_B.

model repository

model A

config.pbtx

1

model.pt

model B

config.pbtx

1

model.onnx

Figure 2.4: Structure of model repository

A minimal configuration must specify the platform, the maximum batch size, and the
input and output tensors of the model. For the PyTorch model from figure 2.4, an
example minimal configuration file is shown in listing 2.2.

The platform option is guided by the format of our saved model, which is PyTorch in
this case. The input option specifies the number of inputs for the model, their names,
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types, and dimensions. In this case, the model expects two inputs input0 and input1,
which are both 16-dimensional vectors of 32-bit floating point numbers. The model
outputs output0, which is again a 16-dimensional FP32 vector. For the full list of
options, refer to TRTIS’s documentation.

Listing 2.2: Triton configuration file example

1 platform: "pytorch_libtorch"
2 max_batch_size: 8
3 input [
4 {
5 name: "input0"
6 data_type: TYPE_FP32
7 dims: [ 16 ]
8 },
9 {

10 name: "input1"
11 data_type: TYPE_FP32
12 dims: [ 16 ]
13 }
14 ]
15 output [{
16 name: "output0"
17 data_type: TYPE_FP32
18 dims: [ 16 ]
19 }]

2.2.2.2 Inferencing on deployed models

When starting TRTIS, we can choose at which ports it will be listening for HTTP and
gRPC requests. The most convenient way to make requests to the server is through
Triton’s client library, which provides a simple API for interacting with the server. This
library is available in multiple languages, including Python.

Listing 2.3 shows an example of using the Python library to make a single request to
the server.

Listing 2.3: Triton client example

1 import numpy as np
2 import tritonclient.grpc as grpcclient
3

4 triton_client = grpcclient.InferenceServerClient(
5 url="localhost:8001")
6

7 inputs = []
8 outputs = []
9 inputs.append(grpcclient.InferInput(’input0’, [1, 16], "FP32"))

10 inputs.append(grpcclient.InferInput(’input1’, [1, 16], "FP32"))
11

12 # Randomly generate data for the two input tensors

https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md
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13 input0_data = np.random.random(shape=(1, 16))
14 input1_data = np.random.random(shape=(1, 16))
15

16 # Initialize the data
17 inputs[0].set_data_from_numpy(input0_data)
18 inputs[1].set_data_from_numpy(input1_data)
19

20 outputs.append(grpcclient.InferRequestedOutput(’output0’))
21

22 # Test with outputs
23 results = triton_client.infer(
24 model_name="model_A",
25 inputs=inputs,
26 outputs=outputs)
27

28 # Get the output arrays from the results
29 output0_data = results.as_numpy(’output0’)



Chapter 3

Experimental setup

In this chapter, I describe the setup used for experiments. This setup aims to measure
the overhead of dynamically loading and unloading Switch Transformer experts to/from
Triton. For this reason, I only work with the first switching layer which was introduced
in section 2.1.2.3.

3.1 Deploying Switch Transformer on Triton Inference
Server

Switch Transformer was built around Mesh TensorFlow, Google’s open-source library
for distributed deep learning [22]. Its main use case is for training large models that
cannot fit on a single machine. While Mesh TensorFlow can be used for inference, we
would like to run Switch Transformer on Nvidia’s Triton Inference Server to benefit
from a fully-fledged inferencing solution.

3.1.1 Splitting Switch Transformer into PyTorch models

To deploy Switch Transformer on Triton, the Mesh TF model needs to be converted to a
supported format. A Ph.D. student in the same lab converted the Switch Transformer
experts into standalone PyTorch files. After this conversion, each expert is a standalone
PyTorch model that can be loaded in Triton as shown in section 2.2.2.1. Each expert
expects a (k,768) real-valued matrix, where k is the batch size. This is so that if in a
single input sentence, multiple tokens are dispatched to the same expert, we can stack
the corresponding feature vectors and make a single inference request. The return shape
is identical.

3.1.2 Triton Custom Backend Dispatcher

Now that experts can be deployed, we need a way to receive requests, dispatch them
to corresponding experts, and return the results back to the caller. We can achieve this
with Triton custom backend [11]. These can be deployed just like any other model but

13
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can run arbitrary code. Notably, the backend can be configured to forward requests to
other models according to a custom routing function.

Leyang Xue, a PhD student working in the same lab, wrote a Python backend that
serves as a dispatcher to experts. In this project, I extend Leyang’s dispatcher. The
dispatcher requires each request to provide three inputs:

• hidden_states with shape (128, 768)

• routes with shape (128, 128)

• route_prob_max with shape (128, 1)

Figure 3.1 illustrates how the dispatcher receives requests and dispatches them to
experts. When the dispatcher receives input, it inspects the routes matrix, which
specifies for each token to which expert (if any) it is to be dispatched. If multiple
tokens are dispatched to the same expert, their feature vectors are stacked into an
(k,768) matrix so there is only one inference request. Once all experts return, the
hidden_states matrix is updated and the size of the update is scaled down by the
route_prob_max scalar. The updated matrix is then returned back to the original caller
of the dispatcher.

In a full deployment, routes and route_prob_max would be determined by a router
as explained in section 2.1.2.3. Instead, we are working without a router and specify the
routes manually when making a request. To be able to run experiments with realistic
routing decisions, a PhD student in the same lab traced the routing decisions made by
the routers in a full Switch Transformer.

3.2 Adding Fetching Engine

Triton supports three control modes for determining which models from the model
repository are loaded in memory.

None control mode attempts to load all models in the model repository at startup. If
a model fails to load (due to lack of memory, incorrect configuration, or otherwise)
Triton will not re-attempt to reload the model. Any updates to the model repository will
require an explicit restart to take effect.

Explicit control mode requires the user to specify which models from the repository
should be loaded at startup. Further loading and unloading of models has to be done
through the model control protocol. Triton provides a Model Repository Extension
API with support for both gRPC and REST/HTTP. To load a new model with the
REST/HTTP API, it is sufficient to make a POST request to
v2/repository/models/${MODEL_NAME}/load. Similarly, one can unload a model
this way.

Poll control mode periodically checks the model repository for changes and tries to load
newly added models. This mode does not allow the use of the loading/unloading API.

Since our focus is on deploying Switch Transformer on systems without sufficient
memory to fit the whole model in GPU memory, we will need to use the explicit
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Figure 3.1: This figure illustrates how the dispatcher handles an inference request.
hidden states is shown as an array of words (tokens), but this is just to simplify the
notation. In reality, each word would be a real-valued 768-dimensional feature vector
representing the given word. Notice how the dispatcher only makes three inference
requests to individual experts by stacking together feature vectors dispatched to the
same experts. The route probabilities are used when updating hidden states with the
outputs of individual experts but it is not shown on the diagram. In this project, I work
with a Switch Transformer with 128 experts in its switching layer.
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control mode and manage which models are loaded in GPU memory through the Model
Repository Extension API. Because experts need to be loaded and unloaded dynamically
depending on the routing decision, it is necessary to implement a fetching engine to
handle it.

3.2.1 Designing the Fetching Engine

The role of a fetch engine is to dynamically load and unload experts on demand while
ensuring that the number of experts loaded in memory does not exceed the allowed
memory capacity. Additionally, we want it to collect fetching metrics so that we can
measure the impact of fetching on performance.

The key parts of the fetch engine I designed are shown in listing 3.1. The key method is
load_model(), which is called by the router before a request can be dispatched to a
particular expert. The method does one of three things depending on the GPU state:

• Model is already loaded in GPU memory and so no further work needs to be
done.

• Model is not in memory and there is free capacity so the model can be immediately
loaded.

• Model is not in memory and memory capacity is full. First, a different model
must be evicted after which the requested model can be loaded. The eviction
policy can have a significant impact on performance. I take a FIFO approach,
where the oldest loaded model will be evicted first.

Depending on which case a given load falls under, the engine correspondingly updates
the metrics it tracks. The load_model() method is called by the dispatcher before it
forwards a request to the corresponding expert. During experiments, the fetch engine
allows me to control how many experts can be loaded in GPU memory at any given time,
which will effectively simulate running this setup on a memory-constrained machine.

I chose to use the First In, First Out eviction policy. Other viable options include LRU
or even random replacement. Future studies could investigate the impact of different
fetch engines on memory hit rates.

Listing 3.1: Fetch Engine Implementation

1 class FetchEngine:
2 def __init__(self, mem_capacity, num_experts, client):
3 #<--redacted-->
4

5 def load_model(self, expert_num):
6 self.num_requests += 1
7 if self.is_model_loaded(expert_num):
8 self.num_hits += 1
9 return True

10

11 while self.get_model_count() >= self.mem_capacity:
12 model = self.load_history.popleft()
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13 self.client.unload_model(f"switch-base-128
_encoder_expert_1_{model}")

14 self.num_evictions += 1
15

16 self.client.load_model(f"switch-base-128_encoder_expert_1_{
expert_num}")

17 self.num_fetches += 1
18 self.load_history.append(expert_num)
19 return True
20

21 def is_model_loaded(self, model):
22 model_name = f"switch-base-128_encoder_expert_1_{model}"
23 return self.client.is_model_ready(model_name)

3.3 Data

The dataset I used for this project was collected by tracing the routing decisions of a full
Switch Transformer Base with 128 experts per switching layer. The inputs consisted of
English queries. This dataset was generated by a Ph.D. student from the same research
lab.

3.4 Setting Triton parameters

The bash script in Listing 3.2 shows the configuration used for running the server when
running experiments.

Listing 3.2: Triton start-up script

1 docker run --rm --gpus=’"device=2"’ \
2 --name triton_michal -p 8000:8000 -p 8001:8001 -p 8002:8002 \
3 --shm-size=10gb --ulimit memlock=-1 \
4 -v /mnt/raid0nvme1/michal:/models \
5 futurexy/tritonserver_batcher:0120 tritonserver \
6 --model-repository=/models/model_repo_switch-base-128 \
7 --model-control-mode=explicit \
8 --load-model dispatcher \
9 --log-error=1

3.5 Hardware and software

All work and experiments have been done on the gala1 server running Ubuntu 20.04
LTS. The machine is equipped with 8 NVIDIA RTX A5000 each with 24GB of VRAM,
a dual-socket motherboard housing two AMD EPYC 7453 28-Core processors, and
1TB of RAM. For experiments, only one GPU card is used. The available memory is
controlled through the fetch engine.
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Since the server is shared by multiple researchers, it is impossible to completely
eliminate the effect of other users on the testing performance. To mitigate this, a
completely unused GPU was chosen to run experiments, and experiments were repeated
multiple times to account for random variations.

3.6 Building a strong baseline system

To evaluate whether my proposed changes improve the system performance, let us start
with a strong baseline. In this case, the only difference will be the batching algorithm
used. For the strong baseline, we can use Triton’s dynamic batcher[9]. This can be
enabled as an option in a model’s configuration file. For our purposes, it makes sense to
enable batching in front of the Python dispatcher.

3.6.1 Dynamic Batcher

Dynamic Batcher by default waits until it receives
max_batch_size requests or until a default timeout period expires and then sends a
batched request to the model. Optionally, we can specify preferred_batch_size,
a list of integers representing which batch sizes are preferred. This might make a
difference when working with specific hardware, i.e. it might be advantageous to use
powers of two batch sizes.

We can also specify max_queue_delay_microseconds, which will queue requests
until either max_batch_size is met or the oldest request’s queue time exceeds this delay.
This is especially useful for latency-sensitive systems, such as content recommender
systems on websites like YouTube, where the latency of the model affects the page load
time. Akamai Technologies, Inc. in their The State of Online Retail Performance 2017
report showed that optimal load times for peak conversion rates ranged from 1.8 to
2.7 seconds while increases in load time positively correlated with bounce rates and
reduced conversion rates [3].

At the time of writing, there is an open issue on Triton’s GitHub mentioning that Triton
does not combine batched inference requests into a single tensor for Python backends
but rather provides the batch as an array of inference requests. Because of this, a
dedicated experiment will measure the effect of stacking batched inference requests into
a single tensor as opposed to executing each one sequentially. Figure 3.6.1 illustrates
how the dynamic batcher with stacking implemented interacts with the dispatcher.
Notice how apples, berries, and oranges are all routed to expert 1 and executed as a
single inference request.

https://github.com/triton-inference-server/server/issues/3984
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Figure 3.2: Dynamic Batcher with request stacking implemented.

3.7 Code and Reproducibility

All code and testing scripts are stored in a private GitHub repository. Because the
repository is shared by other research students, there is no current plan to make the
whole repository public. However, access can be given on request.
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Experiments

4.1 Baseline

To measure the default throughput of the switching layer, let us run baseline experiments
without any batching. For throughput experiments, we can use the
triton_client.async_infer() method to quickly send the entire dataset. As men-
tioned in the previous chapter, I will be running experiments with just a single layer
of the Switch Transformer, as this will allow me to run more experiments and results
should be extrapolate-able to the full model.

In this section, I conduct experiments with the following settings:

• Dispatcher without batching

• Dispatcher with dynamic batching (batch size 64)

• Dispatcher with dynamic batching and stacking (batch size 64)

For each of these settings, the allocated memory capacity is varied which limits how
many experts fit in memory at a given time. This will let us see the effect of decreasing
memory on throughput. The expected decrease in performance is caused by the addi-
tional IO overhead of loading and unloading experts to and from the GPU. Reduced
memory also affects how many experts can be executing in parallel. For each setting,
the same 2000 requests from the routes dataset are used. Three runs are used and the
routes are shuffled before each run to get a representative behavior. The random seed is
fixed at 42 so that different experiments use the same route orderings.

4.1.1 Discussion of baseline results

Figures 4.1 and 4.2 show the effect of reducing memory capacity on the system’s
throughput and the number of resulting expert load operations (unloads are not included,
but the numbers are strongly correlated). The time for throughput is measured as the
duration from the first inference request until the final inference response returns.

It is notable how quickly throughput degrades for the dispatchers without batching
and the default dynamic batcher. When the memory capacity is reduced from 128 to

20
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100, where 128 is the total number of experts in our system, the throughput drops from
53.3 to 5.9 for no batching and from 57.5 to 6.1 with dynamic batching. Subsequent
reductions in memory capacity still reduce performance, but the relative decrease is
considerably smaller in comparison.

On the other hand, the dispatcher with stacking implemented not only has a much higher
throughput at full memory capacity but its performance degradation as memory capacity
decreases is considerably less severe. As explained under figure 4.1, this performance
increase is both due to increased parallelism and due to a reduction in the number of
load requests.

Figure 4.1: As mentioned in section 3.6.1, the dynamic batcher does not automatically
stack batched requests into a single tensor, but rather simply passes batched requests
as an array. This explains why No Batching and Dynamic Batching exhibit the same
performance degradation as this type of batching does not improve parallelism. Dynamic
Batching Stacked is a version of the dispatcher that takes the provided array of
requests and stacks these into a single NumPy tensor. This allows the dispatcher to
group together tokens destined for the same expert and only make a single inference
call for each group, hence vastly improving parallelism. Simultaneously, this reduces the
number of expert loads and unloads.
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Figure 4.2: This figure shows the reduction in load operations resulting from stacking
batched inference requests into a single tensor. Without stacking, when the dispatcher
received a batch of requests where some of them activated the same experts, the
dispatcher would sequentially go through each request and load/unload experts as
necessary. This meant that in any given batch, the same expert might be unloaded only
to be immediately reloaded for the next request. With the stacked implementation, all
tokens corresponding to the same expert can be grouped together, resulting in at most
one load per expert for the whole batch.
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Figure 4.3: This figure shows how the memory hit rate of the fetch engine varies with
memory capacity. Although the absolute number of memory loads is significantly higher
for the dispatcher without stacking implemented, as shown in figure 4.2, the hit rates
are comparable for both dispatchers. Hit rate might not be the best metric to use as it is
hard to keep it representative when comparing sequential and parallel implementations.
Hit rate can be useful for comparing the same type of dispatchers but with a different
batching algorithm used, for instance.

4.2 Proposed batching algorithm

Having seen the massive uplift in performance from stacking the batches provided by
the dynamic batcher into a single tensor to exploit parallelism, this section attempts to
modify the behavior of the default dynamic batcher to further improve throughput.

4.2.1 Understanding performance bottlenecks

The section 4.1.1 clearly shows that reduced memory capacity significantly affects
throughput. This section dives deeper into how exactly memory capacity causes reduced
throughput.

When an inference request arrives at a dispatcher running with high memory capacity, it
is more likely that the activated experts are already loaded in the GPU memory. The top
part of figure 4.4 illustrates that in such a case, the dispatcher can asynchronously for-
ward feature vectors to the specified experts, resulting in high expert-level parallelism.

With low memory capacity, the likelihood that all of the experts for a given request are
in memory is small. If an expert is not in memory, the fetch engine has to load it, which
blocks the dispatcher until the expert is loaded. Because each expert only executes for
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a short amount of time, the loading overhead is significant and reduces the effective
expert-level parallelism. This is visualized in the bottom section of figure 4.4.

Figure 4.5 illustrates a more direct way in which memory capacity hampers performance.
The fetch engine’s memory capacity limits how many experts can be loaded in GPU
memory at any given time. If a request activates more experts than fit in memory, the
dispatcher has to dispatch parts of the request to only those that do fit, wait for those
to return, and only at this point can these experts be unloaded from GPU memory
in favor of the remaining ones. This process might have to be repeated multiple
times. This directly limits the system’s maximum expert-level parallelism as at most
max_memory_capacity experts can be executing in parallel.

As it stands, reduced memory capacity can severely limit the system’s parallelism. At
the same time, we have observed massive performance uplift from batching requests by
improving token-level parallelism. This is illustrated in figure 3.2. However, simply
increasing batch size does not necessarily improve performance. In my tests, going
beyond 64 in fact degraded it. If increasing the batch size does not improve performance,
can we instead improve the batching algorithm to group requests that activate the same
experts? This idea is discussed in the next section.

Figure 4.4: The top part of this figure shows expert-level parallelism when all involved
experts are already loaded in GPU memory. When this is the case, the dispatcher can
asynchronously dispatch requests to the experts and multiple experts run in parallel.
The bottom part shows the same situation, but when none of the involved experts are in
GPU memory. The fetching engine has to load each expert before the dispatcher can
dispatch a request to it. This significantly affects the achievable expert-level parallelism
and hence the end-to-end latency and throughput.
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Figure 4.5: Memory capacity limits the maximum number of experts executing in parallel.

4.2.2 System description

Figure 4.6: This figure depicts a simplified stream of requests in which each request is
illustrated as the expert it activates. In practice, each request activates multiple experts.
For the sake of the example, assume the memory capacity is 1 and that the maximum
batch size is 2. The dynamic batcher batches requests in what is essentially the arrival
order. However, the arrival order is not always optimal. As seen in the figure, the
dynamic batcher groups together two requests each activating a different expert. The
expert-aware batcher instead groups together requests which activate the same experts
- reducing the total number of model IO operations necessary and improving parallelism.

This section discusses a proposal for an expert-aware batcher. An illustration of this
idea is shown in figure 4.6. In essence, instead of just batching requests by arrival order,
it might be beneficial to cluster requests by the experts they activate.

The key is to find a suitable distance function to use for clustering such that the number
of additional expert load operations is minimized. We can represent which experts are
loaded by the current batch as an N-dimensional binary vector v⃗b, where N is the total
number of experts1. Activations of a single request can be similarly expressed by v⃗r.

1In our experiments we use Switch Transformer Base with 128 experts.
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Summing the vector gives the total number of unique activated experts, as shown in
equation 4.1.

Unique activated experts by a batch =
N

∑
n=1

v⃗n (4.1)

A simple approach to clustering is to use the Manhattan distance. Given a batch and a
set of candidates, add the candidate with the smallest Manhattan distance from the batch.
However, this has a major weakness as it also penalizes candidates for not activating
all of the experts already activated by the batch. Equation 4.2 shows the Manhattan
distance between a batch activating experts 1 and 2 and a request activating just expert
2. The Manhattan distance is 1 in this case, as the vectors only differ in the first entry.
Equation 4.3 shows that a request activating experts 1, 2, and 3 also has a distance of 1
from the same batch. This is problematic, because in 4.2 the request is a subset of the
batch and results in no additional expert loads, whereas 4.3 demands an additional load
for expert 3.

Manhattan
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1
1
0

 , v⃗r

0
1
0

= 1 (4.2)

Manhattan

v⃗b =

1
1
0

 , v⃗r

1
1
1

= 1 (4.3)

Clearly, we need a better metric that only penalizes additional loads. In equation 4.4
I introduce a custom metric I call the PositiveManhattan. It differs from the normal
Manhattan distance in that a request is only penalized for additional loads not already
included in a batch. Because of this, the order of arguments matters. Equations 4.5
and 4.6 show how the new metric can differentiate between the requests that simple
Manhattan distance could not.

PositiveManhattan(v⃗b, v⃗r) =
N

∑
i=1

max(v⃗ri − v⃗bi,0) (4.4)
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1
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0
1
0

= 0 (4.5)

PositiveManhattan
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1
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1
1
1

= 1 (4.6)
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4.2.3 Implementation

This subsesection provides implementational details for my expert-aware batching
algorithm. Listing 4.1 shows how the batcher operates with pseudocode. The worst-
case time-complexity of the algorithm is O(N2), where N is the number of queued
requests.

This paragraph provides some clarifications around the algorithm. The
calculateDistances() function calculates the PositiveManhattan distance for every
candidate in the queue from the current batch. The initializeBatch() randomly
selects one queued request as the origin of the batch. I also tried other implementations
for initializeBatch(), one where the first element of a batch is determined as the
request with the smallest PositiveManhattan distance from the experts currently loaded
in GPU memory. Another approach simply picked the expert activating the fewest
experts. Regardless, all approaches behaved almost identically so only results from
random initialization are reported.

I considered implementing my batcher as an extension to Triton’s Dynamic Batcher.
Triton allows programmers to extend the functionality of the Dynamic Batcher by
implementing a set of predetermined methods in a header file and linking it as a shared
library [8]. However, this only allows for relatively limited modifications to Dynamic
Batcher’s behavior - mostly related to when should a batch be ended but does not allow
any re-ordering of requests.

I could have implemented my batcher by forking the Triton core repository and over-
writing their definition of Dynamic Batcher for full control, but this would be quite a
challenging undertaking under the time-limited conditions. As a proof of concept, I
decided to implement my batcher inside of the dispatcher and use NumPy to achieve
reasonable performance. This approach gives up some performance and hence through-
put but should allow me to determine the merits of this batching strategy by analyzing
any reduction in memory load operations.

In my implementation, I rely on the Dynamic Batcher to queue requests but increase the
batch size. Inside my batcher, I read a large batch provided by the Dynamic Batcher and
reorder it into smaller batches (bs=64 for a fair comparison with previous approaches)
before passing them onto the dispatching logic. While doing this, I need to keep a
mapping of the original order of requests so that when responses are sent back, I send
them in the correct order.

Listing 4.1: Pseudocode for expert-aware batching

1 queue = getQueuedRequests()
2 batch = initializeBatch()
3 batches = []
4 while queue:
5 distances = calculateDistances(batch, queue)
6 idx = argmin(distances)
7 batch.add(queue[idx])
8 queue.remove(idx))
9 if batch.isFull():

10 batches.add(batch)
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Figure 4.7: This figure reports the throughput of expert-aware batching strategies with
different queue sizes and compares them against the strong baseline.

11 batch = initializeBatch()
12 if batch:
13 batches.add(batch)
14 return batches

4.2.4 Results

This section discusses the experimental results of my expert-aware batcher. Figure 4.7
shows that my expert-aware batcher did not improve the end-to-end throughput of the
system, regardless of the queue size. There are two main reasons why changing the
batcher might negatively affect performance: new batches result in more expert load
operations or the time it takes to execute the batcher itself adds to the total execution
time.

To determine whether the expert-aware batcher produces batches that result in more GPU
memory load operations, we can examine figure 4.8. We notice that the expert-aware
batcher produces batches that result in the same or marginally fewer load operations.
The degree of improvement is proportional to the queue size. The largest effect is
observed at the memory capacity of 20 experts, where a 4% reduction in loads for the
queue size of 256 is observed. Although the improvement is marginal, it is consistent
across multiple experiments and different memory capacities. This shows that the
batcher is at least as good as the dynamic batcher which relies purely on arrival order.
However, the computational complexity of the expert-aware batcher is O(n2), and any
gains from reduced memory loads are nullified by the higher computational cost.

The hit rate is unchanged by the change in a batching algorithm.
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Figure 4.8: This figure highlights how expert-ware batching can achieve a lower number
of total expert load operations but the reduction is marginal. The largest observed
reduction is around 400 loads at 20 memory capacity, a 4% improvement.

Figure 4.9: There are effectively no changes in hit rate as a result of the batching
algorithm. I only report for one queue size as larger queue sizes behaved comparably.
Any improvements as a result of expert-aware batching are already accounted for as a
decrease in the total number of loads as shown in figure 4.8.
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Figure 4.10: Evaluating the impact of expert-aware batching on the number of load
operations by the fetch engine using synthetic requests. Memory capacity is limited to 1
expert.

4.3 Analysis

In this section, I analyze why the expert-aware batcher does not improve performance as
expected. I focus the analysis on changes in the number of expert load operations. My
starting hypothesis is that expert activations (routes) do not group into nicely separable
clusters. First, I test whether the expert-aware batcher can improve performance for
synthetically generated routes which do separate into non-overlapping clusters. Next, I
explore the distribution of routes in the dataset used for testing.

4.3.1 Analyzing synthetically generated routes

This subsection explores the performance of the expert-aware batcher under idealized
conditions on synthetically generated routes. These routes were generated such that
each request only activates one expert. I vary the number of experts from which requests
are uniformly sampled.

Figure 4.10 shows the impact of the distribution of requests on the average number of
load operations. Using the expert-aware batcher significantly reduces the number of
expert loads compared to the baseline dynamic batcher. The large reduction in expert
loads reinforces the starting hypothesis that the expert-aware batcher can significantly
reduce IO overhead but the original dataset does not separate into non-overlapping
clusters.
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Figure 4.11: The average time it takes to prepare batches given a queue size. As
expected given the quadratic time complexity of the expert-aware batcher, doubling the
queue size roughly quadruples the batching time. This does not include the queuing
time itself which also grows as queue size increases.

4.3.2 Overhead of expert-aware batching

Figure 4.11 highlights the computational overhead of the expert-aware batcher. Al-
though the batcher was written to take advantage of NumPy’s vectorization, likely,
implementing the batcher in a more performant language could significantly reduce
these batching times.

4.3.3 Exploring routes distribution

This subsection analyzes the distribution of routes in the original dataset and attempts
to determine if the dataset is separable into clusters. The activation patterns produced
by Switch-Transformer’s routers are fairly complex. Each request can activate up to
128 different experts at the same time.

An average request activates 27.8 unique experts. The probability of any individual
expert being activated by a given request ranges from 10% up to 45% with the mean
and median sitting at 20%.

To visualize how easily the data would cluster, I used a dimensionality reduction method
t-SNE[25] to project the routes dataset down to two dimensions. Additionally, I used
the same technique to visualize the synthetically generated routes for comparison. The
plots are shown in figure 4.12. Dimensionality reduction methods can be misleading so
the plots serve mainly an illustrative purpose. However, notice how noisy the original
dataset is compared to the synthetically generated data. This would limit the expert-
aware batcher’s ability to group requests into clusters that activate similar experts.
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Figure 4.12: t-SNE visualization of routes in the original dataset and synthetically
generated routes. The variable n controls how many clusters the synthetic dataset
should generate. All datasets are of the same size. In the synthetic plots, each cluster
corresponds to roughly 2000

n routes, because the datasets were constructed to cluster
well. In comparison, the original dataset is a lot noisier.
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Conclusions

This thesis has focused on reducing the IO overhead of fetching expert models for the
Switch Transformer architecture and more broadly for large Mixture of Experts neural
networks. The main contributions of the work are:

• Making deployment of Switch Transformer possible on memory-constrained
devices using a fetching engine

• Showing massive performance improvement through request stacking, a feature,
at the time of writing, missing in Triton’s Python custom backends

• Analysis of reduced memory on Switch Transformer’s parallelism

• Proposal of expert-aware batcher and showing its limited impact on IO overhead

• Analysis of expert-aware batcher using synthetic data

Although the proposed expert-aware batcher failed to improve real-world throughput,
it lead to an informative investigation into the distribution of request routes. Future
work could investigate replacing Triton’s dynamic batcher entirely. The fetch engine
allows the deployment of sparse models on memory-constrained devices. It would be
interesting if this functionality was incorporated into Triton’s core feature set.

It appears to be the case that the current distribution of expert activations is noisy and
not conducive to request-level batching. However, the router making routing decisions
is a learned neural network so it might be interesting to consider constraining the router
at training time to generate specific activation patterns that would be more conducive to
batching.

In conclusion, this has been an interesting exploration under time-constrained circum-
stances. The current explosion of large language models and their rise to the mainstream
requires advances on the inference side. This project proposed a fetching engine to
make the deployment of sparse LLMs possible on low-resource machines and analyzed
the performance penalty incurred for reducing the available memory.
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