Parsing Heraldic Blazons

Alexandra Purcarea

4th Year Project Report
Artificial Intelligence and Computer Science
School of Informatics
University of Edinburgh

2023

Abstract

This paper presents a natural language processing approach to parsing blazons, a
language which describes heraldic figures. Three main priorities were addressed:
handling unknown words, identifying blazon components and their positions, and
resolving blazon ambiguity. Using part-of-speech tagging, 641 previously unknown
words were successfully assigned tags. Context-free grammar rules were implemented
to build a hierarchical blazon structure that identified various blazon components.
Blazon ambiguity was resolved by implementing an elimination system that tracked
color dependencies and ruled out incorrect parses, resulting in an average decrease from
7.66 to 2.81 parses per blazon.

Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Alexandra Purcarea)

Acknowledgements

Firstly, I would like to thank my supervisor, Julian Bradfield. Always understanding,
he gave me a great deal of flexibility and allowed to take ownership of this project and
shape it according to my vision. Our discussions on blazonry were always interesting
and inspired me to improve my writing.

I am also grateful to my flatmates and friends, who really made this year great. Their
encouragement and companionship helped me through some challenging times, and I
will miss them dearly when I move to London.

Special thanks go to my boyfriend, Owen, for being my rock throughout this year. His
kindness and assistance were invaluable, and his moral support helped me overcome
some of the toughest obstacles.

Finally, I want to thank my family, including my beloved dog, Choco. Although they
were far away, they always showed their love and curiosity for my work, and their
encouragement was a source of motivation throughout this journey.

Table of Contents

1 Intr 1

2 Background|

[2.2 Grammar, vocabulary, and structure|
2.3 Existingstudies|
2.4 NLP 1n the context of blazonry|

[2.4.1 Part-of-speech tagging methods|

R

[2.4.2 Context-free grammar|

3 Desig

@4 Part-of-speech Tagging|

M1 Tntroductionl v v i
4.2 Datasets and pre-processing|
4.3 Methods and implementation|
B4 Results and evaluationl
S Discussionl.
(S Building Blazon Structure with Context-free Grammar|

5.1 Introduction|,

5.2 TImplementation|
Results an luation|

4 I 100/, e e e e e e

[0 Disambiguation for Blazons|

(B Full list of context-free grammar rules and select terminals|
[B.1 Words with manually defined tags|

32

34
34
35
35

36

Chapter 1

Introduction

Natural language processing (NLP) is a field that has greatly evolved in recent years,
and its parsing methods are now used for many tasks, from text generation to machine
translation and image captioning. A large part of the subject’s success has been due
to its deep understanding of language grammar and syntax. In the case of commonly
spoken languages, there are numerous models which parse lexical categories of words
and chart the dependencies between them. Understanding the structure and meaning of
a sentence is aided by processes such as word sense disambiguation, which identify the
sense of a word within its larger context.

Low-resource languages as well as constructed languages unfortunately do not have a
similar amount of resources that understand their grammatical structures and specific
vocabulary - while progress is being made with models such as multilingual BERT [9],
they do not always perform ideally. Moreover, constructed languages in particular are
lacking in documentation and pre-trained corpora that can be used for NLP tasks.

One such constructed language that has been widely used throughout European history
is the language of blazonry. It refers to the description of heraldic figures, most notably
coat of arms, and consists of highly specialised vocabulary and grammatical structure.
Blazons are descriptions that have been traced to the 13th century and are still very
much in use today, as many institutions (nations, army regiments, universities etc.) and
families have their own coat of arms. However, this language illustrates the limited
reach of natural language processing: as its grammar differs from English grammar to
some extent, parsing it is not an intuitive or straightforward process.

This is where the project aims to improve the current state of natural language processing
for the language of blazonry. While previous studies on this topic exist, they make use
of bounded methods such as regular expressions, which limit their understanding of
words that they have not documented themselves. Blazonry is an evolving language,
as coats of arms have been using modern visual elements (e.g. planes), and therefore
a hard-coded approach which handles each word manually can have shortcomings, in
addition to it being time-consuming.

Chapter 1. Introduction 2

The primary aim of my dissertation is to parse blazons using natural language processing
methods that allow me a greater deal of flexibility in parsing new words from the
language. I divide this task into three main priorities which lend themselves to different
sections of the project:

1. Handling unknown words. By using natural language processing methods, I do
not have to manually label all words in blazons, which although fairly finite,
are still numbered in the thousands. I aim to create a model which assigns a
lexical tag to each word it encounters, even those that pre-trained models do not
recognise.

2. Identifying blazon components and their positions. Blazons are representations of
visual elements, which are divided into specific sections (such as the background
of the shield, or its division), and therefore do not lend themselves well to common
syntactical relationships such as subjects or predicates. I aim to create custom
categories and build hierarchical structures for blazons.

3. Resolving blazon ambiguity. There may be different interpretations of a blazon
in terms of structure, such as dependencies that are inferred in multiple ways. |
aim to eliminate ambiguity in blazons by having processes in place that rule out
incorrect parses.

1.1 Outline

Following the introduction, Chapter [2| discusses the background of blazonry, including
its history, structure, previous works, and context within natural language processing.
Chapter [3|discusses the design of the implementation, justifying choices that were made
for the three main aspects of the implementation.

The first section of the implementation can be found in Chapter 4| and explores part-of-
speech tagging for blazons, preceded by finding and pre-processing input data. It is
followed by context-free grammar rules and chart parsing in Chapter [5| The final part
of the implementation is disambiguation, which can be read in Chapter [6]

Finally, the conclusion in Chapter [/|provides a summary of the achievements of this
project, its strengths and weaknesses, as well as discussion of future work.

Chapter 2

Background

2.1 An introduction to blazons

Heraldic blazons are formal written descriptions of heraldic figures, most importantly
coats of arms and flags. The language employed in blazonry - the art of creating blazons
- is ”concise, (...) definite, and explicit” and also has a very specific nomenclature of
Norman-French origin” [S]. As such, blazons can be seen as a constructed language
with highly specialised vocabulary, grammar, and syntax [14].

According to archaeologist Charles Boutell, heraldic language became systematised in
the reign of Henry III (1216-1272), and continued spreading until the Tudor dynasty
[S]. In the second half of the nineteenth century, heraldry saw a renewed interest and
increase in documentation: many sources, such as Boutell’s Heraldry and Parker or
Elvin’s heraldic dictionaries, originate from that time period. The rise in popularity of
heraldry during the Victorian era may be explained by the Gothic Revival, a Romantic
movement that encouraged self-expression through heraldry, historical re-enactments,
and widespread medieval imagery in everyday objects and art. [21]]

Blazonry remains significant to this day, being used to describe military heraldry, coats
of arms of families or municipalities, as well as national emblems. In addition to it being
preserved, new symbols have been added to blazonry that reflect change in society and
how communities represent themselves. Figure [2.3|represents a common new symbol
in heraldry - an airplane.

Blazons can range from very simple to very complex. Figure shows a coat of arms
with a blazon consisting of a single word: Gules, translating to red. In contrast, Figure
@ shows a coat of arms with a longer blazon, in which elements of different colours
and positions are represented in the concise style of the language.

The following section outlines particularities of and useful terminology for the grammar,
vocabulary, and structure of blazonry.

Chapter 2. Background 4

Figure 2.1: The coat of arms of
the Albret family of Landes, France.
Blazon: Gules.

2.2

».“4”«0.“%”.0."4”.1

Figure 2.2: Coat of arms of Paris.
Blazon: Gules, on waves of the sea
in base a ship in full sail Argent, a

chief Azure semé-de-lis Or.

Figure 2.3: Coat of arms of the town of Orly in France.

(1]

Grammar, vocabulary, and structure

As previously mentioned, blazons consist of highly specialised terminology; both the
names of components and the words used to describe them have been in use for over
eight centuries, and many of them originate from Old French and Anglo-Norman [10]].
Below is a concise introduction of common terminology that will be used throughout
this dissertation, with examples of common vocabulary words for each component.

A blazon may contain one or more of the following:

Field: the *background’ of the coat of arms.

Divisions of the field: lines of partition that divide the field in two, three, or more
sections. Examples: Per pale, tierced-in-fess, quarterly.

Variations: patterns that cover the field, more complex than simple divisions.
Examples: Chequy, lozengy, semé.

Tinctures: chosen from a limited palette of colours and patterns (furs), they
describe all of the elements of a blazon. Examples: Or, azure, ermine.

Ordinaries: simple geometrical features running across the shield. Examples:
Chief, cross, saltire.

Charges: graphical features such as geometric shapes, animals, plants, or objects
(weapons, tools, royal symbols). Examples: Lion, fleur-de-lys, crown.

Attitudes: the position of a heraldic figure, usually an animal. In this project, we

Chapter 2. Background 5

will treat attitudes as both the direction that they are facing and the stance they
are assuming. Examples: Rampant, couchant, regardant.

* Positions of charges: less well-defined than other categories, this describes words
that mark the positions of charges in relation to one another, or in terms of their
alignment on the field. Examples: In bend, between, on.

Appendix [A] provides examples of common instances of many of the elements described
above.

It is important to note that variations are not as well-documented as other categories
listed above - Boutell defines varied fields as “’surfaces [that] are usually tinctured of
some one metal and some one colour alternating” [5]]. However, the term ’variation’
seems to only appear in more modern texts, and will be used for practical reasons.

As a constructed and semi-structured language, blazons possess certain particular
grammatical features and conventions [[14]:

* Asin the French language, colour descriptors come after the element they describe.
3 choughs sable translates to 3 black choughs.

* Colours for elements are inferred. A chief and 3 choughs sable implies that both
the chief and the 3 crows are black. The economy of the language is emphasised
in this feature, which although not enforced, is often used. However, due to
this, there may be slightly different blazons for the same coat of arms, leading to
ambiguity when parsing them.

* There are rules of tincture to follow, mainly that ”metal shall not be placed upon
metal, nor colour upon colour” [10]. Metals refer to Argent (silver) and Or (gold).
For very complex blazons, these rules help disambiguate the position of elements
such as charges.

The order of a blazon is generally the following: field (partitions/variations if any,
then tincture), ordinaries (and any charges on or around them), then finally charges.
Following the French grammatical style, a colour is given after the item they refer to.

It is important to note that in this dissertation, I will only discuss the escutcheon (shield)
in a heraldic achievement; blazons can also describe other heraldic elements, such as
mantles, supporters, or badges.

Chapter 2. Background 6

2.3 Existing studies

Formal academic studies that attempt to parse blazons are limited, while projects by
heraldry enthusiasts are more widespread.

In 2021, Michael Mulder at the University of Twente created a compiler for blazons
[17] that uses a method of semi-parsing called Iterative Lexical Analysis (ILA) in order
to parse blazons into an intermediate representation, which is then used for graphical
rendering. ILA encodes tokens as strings, then using pattern matching, it translates them
into a generalised intermediate language until the entire blazon is parsed. An example
of a translated blazon would be "PARTITION COMMA COLOUR AND COLOUR?”,
represented in a parse tree where each token is matched with its respective text. The
author acknowledges that grammatical inferences discussed in Section [2.2] such as
describing two elements with a single colour, were not correctly interpreted by the
regular expressions in his algorithm.

Token SHIELD
Text per bend azure or
Children
R
¥
Token FIELD
Text per bend azure or
Children
A 4 v \ 4
Token PARTITION Token COLOR Token COLOR
Text per bend Text azure Text or
Children Children: Children:
I | |

h J ¥ ¥ 4
Token: | PER Token: |ORDINARY| | Token: | TINCTURE Token: | METAL

Text per Text bend Text azure Text or

Figure 2.4: Intermediate representation of a blazon in Mulder’s study.
[17]

Iterative Lexical Analysis was created by A. Cox and C. Clarke to better detect syn-
tactical irregularities in code by repetitively using regular expression matching. A
syntax tree is constructed from the bottom up by identifying smaller elements which
then build up to larger ones, as seen in Figure 2.4] Clarke and Cox only test their
method on error-free code, with high precision and recall, and recognise the need to
“improve its tolerance for irregular code” [7]. However, although it is a constructed,
semi-structured language, blazonry is not as precise as a programming language. As
previously mentioned, grammatical features and conventions are sometimes used, al-
though not enforced, therefore leading to ambiguity. Therefore, using Iterative Lexical
Analysis for longer, more ambiguous blazons could prove unsuitable.

While researching the topic, one of the most comprehensive resources has been the
DrawShield website created by Karl Wilcox [23]]. The website renders a shield from a
blazon and covers a wide variety of divisions, edge types, charges, and other elements.
The parser behind the website is open source and converts heraldic blazons to Abstract
Syntax Trees - in addition, it uses the Levenstein algorithm for spelling corrections. In

Chapter 2. Background 7

comparison to Mulder’s project, Wilcox’s parser correctly interprets colour inferences:
Gules, a chief and chevron or correctly renders a red shield with a golden chief and
golden chevron.

Abstract Syntax Trees are used as representations of the syntax of a blazon, similar to
Figure In his parser, Wilcox first applies a complex tokeniser on the blazon, then
matches words to patterns using regular expressions, as seen in Mulder’s algorithm. The
reason for the correct interpretation of colour inferences is the function lookAhead() that
checks the colour modifiers of the next graphical element in case the current element
lacks one. The downside of using regular expressions for pattern matching is that,
save for known irregularities such as colour inferences, the algorithm will not know
how to classify unknown elements or partitions. Wilcox’s codebase contains thousands
of examples of charges, colours, and other elements, with new ones being constantly
added. However, manually classifying a non-exhaustive list of blazon elements is
time-consuming, and can produce a biased notation.

Chapter 2. Background 8

2.4 NLP in the context of blazonry

2.4.1 Part-of-speech tagging methods

Part-of-speech (POS) tagging is a process that assigns lexical categories to tokenized
words in a sentence, and is an important component of many NLP projects such as
speech synthesis, analysis of a corpus’ word usage, or predicting behaviours of unknown
words [4].

In this task, the Viterbi algorithm is often used to calculate POS tags for the entire
sentence by calculating the most likely sequence of tags [20]. As seen in Figure [2.5]
the algorithm starts from the beginning of the sentence and calculates probabilities
by multiplying the observation likelihood (the probability that it is a certain tag given
the word) and the transition likelihood (the probability that it is a certain tag given the
previous tag). After the probabilities are calculated across the sentence, the best path is
calculated backwards using backpointers in order to maximise the total probability.

The advantages of the Viterbi algorithm are its efficiency, accuracy, and ease of use.
Pre-trained corpora allow the algorithm to calculate highly accurate observation and
transition likelihoods, creating a versatile model that takes context into consideration
and looks at the sentence as a whole when assigning tags. On the other hand, the
algorithm has certain setbacks - for one, it only looks backwards for context, possibly
missing out on additional meaning in the sentence. Moreover, unless smoothing is used,
the observation likelihood of an unknown word will be 0 across all lexical categories.

Janet will back the bill

A sketch of the lattice for Janet will back the bill, showing the possible tags (g;)
for each word and highlighting the path corresponding to the correct tag sequence through the
hidden states. States (parts of speech) which have a zero probability of generating a particular
word according to the B matrix (such as the probability that a determiner DT will be realized
as Janet) are greyed out.

Figure 2.5: Viterbi lattice representation.
[12]

A model that has been shown to be effective in various language processing tasks is
BERT (Bidirectional Encoder Representations from Transformers), whose creators
intended for it to be beneficial even for ”low-resource” tasks [9]. BERT builds on
top of transformer architecture by adding multiple layers of transformer blocks and
bidirectional self-attention. Transformer blocks consist of encoder and decoder stacks -
an encoder maps a sequence of word vectors to feature vectors of smaller dimension,

Chapter 2. Background 9

whereas a decoder does the opposite. Encoding can also be seen as generating a
contextual representation of all words in a sentence.

The encoder and decoder are connected through an attention mechanism, which combats
the drawbacks of the encoder-decoder model by directing focus to a small set of words
that convey the most information in a sentence. The attention model also adapts its
context vector to each time step, in order to predict the next word. In the first transformer
model proposed by Vaswani et al., attention is defined as:

Attention(Q,K,V) ft (QKT)V
ention(Q,K,V) = softmax(———
V.

given the set of queries Q, keys K, and values V (all matrices).

Using self-attention has proved successful in ”a variety of tasks including reading com-
prehension, abstractive summarization, textual entailment and learning task-independent
sentence representations” [22].

As the model’s name suggests, it uses bi-directional pre-training, incorporating context
from left-to-right as well as right-to-left directions, unlike OpenAI’s GPT model in
which “every token can only attend to context to its left” [9]. BERT has been shown to
not only perform well in part-of-speech tagging, but also infer dependencies between
said parts of speech within a sentence. In Jawahar et al.’s 2019 study, determiner-noun
and subject-verb dependencies “are captured accurately” [[11]. As such, BERT can not
only be used for word tagging, but it can also operate at the higher level of a sentence
by detecting dependencies.

Alongside its versatility, BERT has the advantage of taking into account the entire
context of the sentence and selecting words through its attention mechanism that
may aid correct tagging. On the other hand, the model is so large that it might need
significantly more data for training than a simpler one such as Viterbi in order to achieve
similar success rates.

woa () (o) (2 ()) ())Y) () ()

Token

E E E E E

E

ESIE

‘ E“‘\ng

Eu\ay

IE

Embeddings [CLS] my dog is cute [SEP] he likes [SEP]
+ + + + + + + + + + +

Segment

cowangs | B | [B]| B0][B0][B0 |[&0 || o][e | [&) [&][B0 |
+= -+ -+ -+ -+ -+ -+ =+ += += =+

Position

Groeaanes | Eo || B || &][B J[& J[& [& [& | & || & || By |

Figure 2.6: BERT Input Representation.
[9]

Chapter 2. Background 10

2.4.2 Context-free grammar

Context-free grammars (CFG) were formally defined by Noam Chomsky in 1956 as
“phrase-structure grammar” [6] and refer to a logical series of rules that could describe
any phrase in a given formal language. They are defined by a finite vocabulary, a finite
set of initial strings” (often called terminals), and a finite set of rules. All rules can be
written as:

X =Y

where X and Y are strings that belong to the vocabulary. Y can be written as a series
of variables, terminals, or a combination thereof. All rules for X may be written on
the same line, separated by vertical lines. Rules may be recursive, in the sense that a
variable could refer to itself, allowing for any number of strings to follow it such as in
this example:

X—=XY

meaning that X might be followed by an endless number of Y instances. The final goal
is to match the entire sentence to an end node often denoted as S.

Several efficient parsing algorithms exist that determine whether a string can be gener-
ated from CFG rules and if so, what that parse might look like. The algorithm we will be
using in this project is chart parsing, which uses well-formed substring tables (WFST)
[4]. A WEST essentially consists of a triangular matrix that records the positions of
words on its axes. Consider the grammar rule:

A—BC

Each substring cell in the matrix is evaluated and populated with nonterminal A, if
the substring can be split in such a way that it matches B and C. The parse continues
upwards through the matrix, and is considered complete and successful if the entire
string is matched to a full sentence S.

Context-free grammars have the advantage of creating a strict, hierarchical structure of
language on as many levels as needed. They provide a convenient tree structure which
is simple to understand visually but which also contains dense information about each
sentence. Nevertheless, it does not come without some drawbacks - the accuracy of a
parse highly depends on the rules to be written strictly, so as not to allow any ambiguity.
In addition, CFGs are not sensitive to how frequent grammatical structures are, and
judge all possible parses to be equal.

Chapter 3

Design

As seen in Mulder’s and Wilcox’s projects, there are still areas for improvement when
it comes to parsing blazons. Considering their achievements as well as their short-
comings, three priorities arise in order to successfully parse various blazons: handling
unknown words, identifying blazon components and their positions, and resolving
blazon ambiguity.

Parsing heraldic blazons is a task that requires multiple steps, each with their data
processing, experiments, results and interpretation. The following chapters will each
treat an individual step in detail. The overall goal of the project, as previously stated,
is to parse heraldic blazons and provide a logical representation of their language.
That description alone allows for some degree of interpretation and personal decision-
making. Knowing that the techniques for processing and interpreting data were up to
my discretion, I will provide justification for my decisions, which took into account the
information at my disposal at the time.

Sections 2.1 and [2.2] background chapter provide information on the context and struc-
ture of blazons, from which we conclude that while blazons are constructed using highly
specific methods and terminology, the size of their vocabulary is not small, nor is it
fixed. As new words are being added to blazons (words for charges, in particular), a
parsing tool needs to learn how to deal with unknown words. Moreover, writing an
exhaustive list of manual labels for each word would be incredibly time-consuming
and arguably redundant, given the accuracy of machine learning models. For all of the
reasons stated above, it was natural that the first step of the project was part-of-speech
(POS) tagging for each word in a blazon. This matches our first priority of the project:
handling unknown words is made possible using probabilistic tagging models.

Once we have a part-of-speech label for every word, it becomes easier to derive hier-
archical structure from the blazon. A simple example would be a charge followed by
its colour - while part-of-speech tagging might point that there is a noun followed by
an adjective, a tree structure would show the relationship between the two words, as
well as their location in a coat of arms. I achieve a tree representation for each blazon
by creating my own context-free grammar (CFG) rules, starting from rules involving
individual terminals up to the large components of a blazon (e.g. a field followed by a

11

Chapter 3. Design 12

charge). The custom CFG rules derive significant meaning and allow for a great deal of
flexibility in parsing blazons on many levels. The second requirement of the project,
which is identifying blazon components and their positions, is therefore met.

Finally, we want to consider the third priority of our project: resolving blazon ambiguity.
This section was designed after the results of the previous CFG outputs, which pointed
to a large number of parse trees caused by an inevitably ambiguous logical language
for blazons. In the context of ambiguous language, clarifying blazon representations
meant reducing the number of parses returned for each blazons, and more specifically
removing objectively incorrect parses. The introduction of Chapter 6] explains the use of
filters for disambiguation - rather than creating a function that chooses a singular correct
parse tree, I created one that selectively removes blazons that do not obey a specific
set of rules. This difference in approach means that I can write more generalised rules
about dependencies in blazons, and also accept that sometimes there may be more than
one correct parse - or that, at least, the ambiguity of the blazon cannot be resolved
without more context from the blazon’s writer.

The final result of the project will be parse trees returned by a blazon that has been
tokenized into separate words with POS tags. Tree structures convey a significant
amount of information - their leaves can be labelled with names of blazon components
and sub-components, down to terminals, and their hierarchy can be seen from the
intuitive visual representation.

This project was written in Python, within a singular Jupyter notebook that contains
all steps of the implementation. A virtual environment was used to keep track of all
libraries used, which are imported at the top of the file. While some cells in the notebook
are used for computing large structures (such as parsing all blazons into CFG trees),
others serve the purpose of illustrating examples of various parts of the implementation.

Chapter 4

Part-of-speech Tagging

4.1 Introduction

The first section of the project aims to obtain and pre-process blazon data, then imple-
ment part-of-speech (POS) tagging for each separate word in our blazon list. After
finding a blazon database, the data needs to be converted into a list of separate blazons,
which in turn will be tokenized sentence by sentence in order to calculate POS tags.
Tokenization can be achieved in multiple ways, and will be discussed further in the
implementation section.

Part-of-speech tagging is done with a preset list of tags: in our case, the Penn Treebank
tagset, containing 36 distinct tags [2]. These tags are returned by models that are
pre-trained on the English language. Table 4.1{below shows examples of tags that I will
discuss in this section.

Tag Description
CC Coordinating conjunction
DT Determiner
IN | Preposition/subordinating conjunction
1 Adjective
NN Noun, singular
NNP Proper noun, singular
VB Verb, base form

Table 4.1: Commonly occurring Penn Treebank POS tags.

13

Chapter 4. Part-of-speech Tagging 14

4.2 Datasets and pre-processing

Finding a reliable blazon database proved to be one of the more challenging aspects
of the project. While many resources on blazonry exist, they are often in the form of
scanned books that lack easily searchable lists of blazons to parse. Additionally, works
such as A. de Sainte-Marie’s Histoire généalogique de la Maison Royale de France
contain not only blazons of noble families, but also lengthy information about family
trees and other text which would be difficult to remove in order to extract only the
blazon [8]]. Historically, blazons were often included in the context of a noble family’s
history, genealogy, or participation in wars, which makes it challenging to find blazons
in isolation.

Fortunately, a newer source solved the problem. The Ordinary and Memorial of the
Society for Creative Anachronism’s search engine provides access to 64,547 blazons.
Accessing the database for private use is allowed under “fair use” copyright laws [3].
The blazons from the website are generated by users, making it an unofficial corpus;
however, the SCA has its own blazon guidelines that draw from Boutell, Fox-Davies,
and other established references on the subject [16].

To extract the blazons, a query for all blazons was performed using the term ”.”, and the
first 1000 results were scraped as HTML code from the website. The page’s code was
then processed to separate individual blazons and remove all HTML tags. Blazons that
began with the string ”(Fieldless)” or ”(Tinctureless)” were excluded from the corpus,
the justification being that historically blazons would always have a field, making this a
modern addition. This filtering reduced the number of blazons by 129.

Chapter 4. Part-of-speech Tagging 15

4.3 Methods and implementation

BERT was initially used to implement part-of-speech tagging for blazons. The case-
sensitive version of multilingual BERT was chosen for tokenization and tagging, which
is pretrained on the Penn TreeBank and achieves an F1-score of 96.69 [[19].

The first attempt at tokenization made some issues apparent. Consider the example of
the blazon ”Argent, a square weaver’s tablet purpure.” Its tokenization resulted in the
following sequence:

9 99999 b

[A’, *##rgent’, ’), ’a’, ‘square’, ‘we’, '##aver’, , ’s’, “tablet’, 'pu’,
“H##rp’, “#iture’|

In this tokenized blazon, the words argent, weaver, and purpure are incorrectly split,
and the latter is even divided into three tokens. The only correct separation is the
possessive pronoun following “weaver”, which is a feature that occurs in around 5%
of blazon inputs. As all blazons contained similar words being incorrectly separated,
POS tagging would clearly suffer from inaccuracies. This is partially caused by BERT
not recognising French-origin words such as argent”, and therefore not knowing their
root. The question arises whether tokenization should try to find the roots of words at
the expense of excessively splitting them until they become unrecognizable.

The solution to this problem was to add all words to the tokenizer’s vocabulary, leading
to no word splitting at all. A total of 641 new words were added, including words like
“argent” but also derivative forms of a known word root, such as “lilies”. Derivative
forms included plurals, possessive pronouns, past participles, and hyphenated words.
While the lack of separation in derived words may be detrimental to POS tagging, the
inclusion of 300-400 French-origin words in the vocabulary is arguably more significant
towards a POS tagger that understands words in their context.

In summary, tokenization in our case consisted of splitting words from a sentence,
though not separating any plural, possessive, or hyphenated forms. The comma was
kept in blazons, but not the full stop at the end.

After finalizing the tokenization process, the multilingual, cased BERT model and
its tokenizer were utilized as parameters in a classification pipeline. The pipeline
then produced part-of-speech tags for each word in a given sentence, along with
corresponding confidence scores for each token. BERT returns tags for one sentence at
a time, leading us to look at how individual blazons were tagged.

The results of BERT’s POS tagging, which will be discussed in the next section,
prompted new experiments using a different model. NLTK’s recommended part-of-
speech tagger uses the Viterbi algorithm trained on Hidden Markov Models to calculate
the most likely sequence of tags [15]. This model tokenizes by splitting contractions
(e.g. they’ll), treat commas as a separate token, and remove end-of-line periods. In
practice, though, tokenization is the same as in the BERT model, as blazons do not use
pronouns and will therefore not have contractions. Moreover, this tokenizer does not
separate possessive forms, making it identical to the previous one. After tokenization,
NLTK’s pre-trained pos_tag function is called, returning tagged blazons. The results
will be compared and contrasted between the BERT and NLTK models.

Chapter 4. Part-of-speech Tagging 16

4.4 Results and evaluation

Both the BERT and NLTK model return part-of-speech tags for individual blazons;
moreover, the NLTK model does not return confidence levels for its tagging. For these
reasons, presenting results is more difficult to do on a larger level across the entire data.

The table below compares the part-of-speech tags of the BERT model compared to the
NLTK model - it can be seen as anecdotal evidence for larger issues with the models.

Token | BERT tag | NLTK tag
Or CC CC
in IN IN
fess NN JJ
two CD CD
lettuces NN NNS
vert NN VBP

Table 4.2: Blazon example tagged by two models.

In terms of inaccuracies, two distinct types can be identified: one is model-specific, the
other is general inaccuracy caused by the distinctive language of blazons. The clearest
example of the latter would be the word “or””, which in blazonry represents the colour
yellow, but which in modern English is a coordinating conjunction. A model-specific
inaccuracy related to the BERT model is that it assigns the adjective tag to far fewer
words than the NLTK model, in cases where the words are in fact adjectives. In general,
the distribution of POS tags differs across the two models, as illustrated in the figure
below.

4000
4000
3500
3500

3000

3000

22500

g

£ 2000
1500

. 2500

22000

4
1500

1000
500

1000
500

NN FW DT IN NN DT .)] cc IN NNS NNP CD VBD

Part-of-speech tags

CC NNP CD NNS

Part-of-speech tags

Figure 4.1: The 10 most frequent POS tags for BERT (left) and NLTK (right) models.

Figure[.T|illustrates significant differences in part-of-speech tagging between the BERT
and NLTK models. BERT’s second most frequent tag is FW (foreign word), whereas it
does not figure at all in NLTK’s top 10 tags. In addition, it tags fewer determiners with
the DT tag, and correctly identifies less than half the number of adjectives compared to
the NLTK model. In contrast, the NLTK model features a verb tag (VBD) in its top 10
list, and has a more equal spread between different tags following the NN category. As
will be seen in the interpretation section, these differences informed the final choice
between the two models.

Chapter 4. Part-of-speech Tagging 17

BERT tag | NLTK tag | Count
FW NN 660
NN JJ 597

NNP NN 438
NN NNS 431
IN NNP 256
FW JJ 239
NN VBD 237
1 NN 161
FW DT 106
NN NNP 105

Table 4.3: Most common occurences of tag differences between the two models.

Building on previous results, I wanted to more discretely track differences between
POS tags between the two models, in order to understand what gets 'mistagged’ by the
two models. Table [4.3]illustrates the high frequency of BERT assigning the FW tag
where the NLTK model assigns nouns, adjectives, or determiners. Moreover, BERT can
misunderstand adjectives, plural nouns, verbs, and proper nouns and assign the NN tag
to many of them.

Not only do the tags differ significantly, but so do the runtimes of the two models.
BERT initially requires a TokenClassificationPipeline object to be initialised, after
which tokenized blazons can be passed as inputs to the pipeline. The first tagged line
therefore requires significantly more time to compute, at 1.6 seconds. After the pipeline
is established, it can be used for every blazon, reducing the runtime to 0.6 seconds
per blazon. However, NLTK does not require anything to be initialised before running
its pos_tag function, which has an average runtime of 0.2 seconds per blazon. These
differences compound across the selected corpus of nearly 900 tokenized sentences
and amount to a difference of approximately 6 minutes when tagging all blazons. The
relative slowness of the BERT model prompted me to explore other tagging options,
hence why I also experimented with NLTK.

Chapter 4. Part-of-speech Tagging 18

4.5 Discussion

Overall, part-of-speech tagging solves the pressing issue of how to handle unknown
or unexpected words in blazon - by assigning a tag to every word, it becomes easier
to handle words and create rules for blazons. As opposed to hundreds or thousands
of words to parse, we now have a finite list of 36 tags that builds our initial, low-level
structure of a blazon.

However, as was seen in the results section, not every tag is assigned correctly. Ad-
jectives in particular pose a problem to the NLTK, and especially to the BERT model.
As adjectives follow the noun in blazonry, models trained on English would more
reluctantly assign a JJ tag after a NN one. This was a compromise that had to be made,
since training BERT or any other model on French grammar would solve the word order
problem, but would not understand most words as they are of English origin. Initially
in this part of the experiment, incorrect tags (such as “or’ almost always tagged with
CC) were kept the same - however, in the next chapter’s experiments, they had to be
changed in order to correctly create a higher-level parse for blazons. Unfortunately,
evaluating the accuracy of tagging adjectives would require manually checking hundreds
of blazons, as there are no pre-tagged blazons to test on.

Adding a new part-of-speech tagging method proved to be instrumental to the project -
while the BERT model offered confidence scores for each of its tags, the NLTK model
had more nuance in its tagging and gave only 4 words the FW (foreign word) tag.
While foreign words may be important to detect in other natural language tasks, in our
case most blazon words could be considered foreign as they are not in modern English
language dictionaries, making this tag significantly less meaningful. The most important
difference in terms of tags was the number of adjectives, as they are the second most
important category after nouns in a blazon - a model that distinguishes better between
nouns and adjectives can then describe a charge and its colour in a blazon more easily.
Considering the better distribution of tags in the NLTK model, as well as its shorter
runtime, I made the decision to only use that model.

The difference in performance between BERT and NLTK is not intuitive, as they were
both trained on the same Penn TreeBank corpus, and use the same part-of-speech
tagset. However, Section [2.4.1| might provide insight into the problem - we established
that BERT may need a larger dataset in order to return results as good as a Viterbi
algorithm. The lacking additional data, in combination with the large amount of
unknown words, may have caused its attention model to underperform. This may
explain the large amount of words labelled FW, as the model may have needed more
context and more pre-training before understanding how to handle the specific language
of blazonry. NLTK, on the other hand, uses a Viterbi algorithm which relies on transition
and observation probabilities alone to infer tags. This means that even if it does not
intuitively understand what a word is, it follows the rules of English grammar, e.g. it
knows that a noun would follow a preposition.

Chapter 5

Building Blazon Structure with
Context-free Grammar

5.1 Introduction

Given the part-of-speech tags extracted from blazons in the previous chapter, we have
the building blocks necessary to build up a hierarchical structure of a blazon using
context-free grammar (CFG). As the structure of a blazon is highly specific, typical
CFGs that deal with the grammar of a sentence are impractical for our purpose, calling
for custom rules to be created. The rules that will be implemented are on several
levels: the lowest-level ones will label terminals or combinations of terminals, while the
highest-level ones will complete the construction of an entire blazon from recognizable
components such as fields, divisions, and charges.

As an end result, we want to see complex blazons being parsed correctly from top to
bottom, using chart parsing and returning a tree structure. Moreover, we want the parser
to correctly identify dependencies and relationships between different components
of the blazons. This section’s experiments show an iterative process of adding rules,
starting with simple ones and building up to complex, recursive patterns. As this part of
the project is implemented manually, evaluating the CFG itself is potentially difficult
- it is easier, however, to judge the experiments’ accuracy based on the output (trees)
across the entire corpus.

19

Chapter 5. Building Blazon Structure with Context-free Grammar 20

5.2 Implementation

The implementation of the context-free grammar rules was a gradual process, starting
with rules for the simplest type of blazons: ones where the field (consisting of a tincture)
is followed by a simple charge (a determiner followed by a noun). At the beginning,
words such as colours were quite loosely defined as multiple parts of speech, such as
proper nouns, adjectives, or coordinating conjunctions.

As the blazon structures became more complex, these less strict definitions led to
incorrectly parsed blazons. This prompted me to rethink the tags around words that
belonged to ’fixed’ categories such as divisions and tinctures. For instance, tinctures
have a fairly short set of words, with no unexpected additions to their category. On that
account, I thought it suitable to manually change the word tags of some words in order
to assign them to stricter categories.

Blazon component (tag) Examples
Tincture (JJ) Or, ermine
Charge (NN) Chief

Variation (VAR) Chequy, lozengy
Division (DIV) Party, quarterly

Attitude (ATT) Sejant, passant

Position (POS) In, between

Table 5.1: Manual overrides to fixed blazon categories.

As previously mentioned in Section [2.2] variations are a less well-defined term in
blazonry; however, due to their distinct grammatical structure, they have been added as
a component type for practical reasons.

Table lists the blazon components whose words received newly created tags, with
the only exception being tinctures who were changed into adjectives - this change had
two main benefits. Firstly, words that were consistently labelled wrongly, such as ’chief’
as an adjective instead of a noun, could now be parsed into the structure correctly. This
had previously caused problems with words like *Or’ which was given the same tag
(CC) as ’and’, but which needed to be parsed as a colour instead of a conjunction in
between two charges or tinctures, and oftentimes led to no parse tree at all. Secondly,
the addition of new categories separate frequently occurring specialised words from
the usual nouns and adjectives, aiding the process of distinguishing a higher number of
blazon categories. For instance, without custom tags, per fess and in fess would have to
be parsed as the same category, even through the former is a division and the latter is
the positioning of charges. Appendix [B|contains a full list of the manually overwritten
words.

Once the additional categories were added, it became simpler to create higher-level
rules for elements such as the variation of a field or the attitude of a charge. In some
cases, rules are made to be recursive, like with charges where a great number of words
can follow them in no particular order. This creates the need for relative flexibility
in blazon construction, and writing patterns that allow for an unspecified number of

Chapter 5. Building Blazon Structure with Context-free Grammar 21

elements describing a main one. Instead of creating highly specific rules about how
many words can follow a charge, we can instead define CFG rules such as:

CHARGE — NUMBER CHARGE

Appendix [B|contains a list of all CFG rules that were used to build tree structures for
blazons. The rules are parsed from the bottom up, making the order crucial to a correct
parse, and begin with defining the terminals. As we are building up the tree structure
from tags rather than specific words, tags are seen by the ChartParser algorithm as the
words’ in this scenario. These rules are parsed in a strict order, from left to right on a
line, and from bottom to top in order to build hierarchical structure. For this reason, and
for recursion to work, I occasionally found the need to define components on multiple
levels. On the bottom line, there would be more terminals, while the top would contain
higher-level patterns as well as rules that I wanted to enforce at the very end of parsing
for a specific category. For instance, knowing that the main components of a division
are a division name and its colours, I added that rule above the rules that define divisions
using terminals such as DIV, NN, or CD.

The blazon_tree() function links each blazon word to its tag, and allows it to be printed
under the parse tree generated by the context-free grammar. This was a fairly compli-
cated workaround to implement, and it relies on deconstructing the parse tree, manually
removing the part-of-speech tag to its corresponding word, and then reconstructing the
tree. Moreover, the function returns all possible trees returned by the parser, in the
case where the grammar rules allow for multiple interpretations, but only graphically
displays the first one. Using the pretty_print() function from NLTK shows a readable
hierarchical structure of a blazon.

Chapter 5. Building Blazon Structure with Context-free Grammar 22

5.3 Results and evaluation

Figure |5.1|illustrates how blazons were processed and returned as parse trees with the
help of CFG rules. In terms of qualitative evaluation, it is important to note that not
only is correct labelling of components important, but also their position in hierarchy in
relation to other elements. For instance, in the figure, we want the words ’azure’ and
’Or’ to be on the same level, as they are joined by a coordinating conjunction. Moreover,
the determiner should immediately join the charge following it, which I have ensured
by adding the rule first when defining charges.

BLAZON

DIVISION

DIVISION COLOUR

| CHARGE
|
|
|
DIV NN 1 cc 73 COMMA DT NN 1
|
;

CHARGE COLOUR

Per saltire azure and or a bordure gules

Figure 5.1: Tree Representation of a Blazon using CFG.

When it comes to quantitative evaluation, we can assess the success of the CFG grammar
based on their coverage, as well as on the number of parses generated for each blazon.
Coverage is calculated as the number of blazons that are parsed without errors by the
CFG function compared to those with errors, and initially in the experiments it was a
very unequal 6/865 split. Currently, the coverage stands at 285/586, having significantly
improved partly due to the introduction of the new tags. Each additional rule also led to
the number of successful blazons growing at an increasingly faster rate, as their various
permutations would account for more types of blazons.

The other evaluation method calculates the average number of parses returned by the
grammar for each blazon. This number stands at a surprisingly high 7.66 parses per
blazon, meaning that there could be around 8 trees returned for a blazon that the
grammar considers to be correct’. Upon closer inspection, while some trees are equally
"correctly’ parsed (the differences being arbitrary, in what follows a charge first for
instance), others are clearly incorrect but still technically follow the grammar rules.
Figure 5.2} illustrates an example for the latter scenario - it assigns the colour ’azure’ to
both the chief and the martlet, even though the chief already has argent as its assigned
colour. The other parse tree of this blazon shows the correct dependency between the
last charge and its colour.

Chapter 5. Building Blazon Structure with Context-free Grammar 23

BLAZON

CHARGE

CHARGE

|
|
|
|
FIE

LD CHARGE |

COLOUR CHARGE COLOUR CHARGE COLOUR
| | I S [S |
1] COMMA POSITION DT NN]3] DT NN 1]
| | I | | [\ [|
vert B on a chief argent a martlet azure

Figure 5.2: Example of an incorrect tree parse.

5.4 Discussion

Manually adding tags, or changing already existing ones, may arguably be counterpro-
ductive to the part-of-speech tagging we have seen previously; ideally, we would have a
highly accurate tagger that could identify old Anglo-Norman words, but seeing as to
how that is unlikely, there was a need to manually change a select few tags. Moreover,
tagging is most useful for identifying previously unseen words, which would likely be
more obscure charges or adjectives describing them - manually overriding the tags for
the most frequent words seen in blazons does not make the previous section of the im-
plementation futile. In fact, POS tagging greatly helped this part of the implementation,
as more blazons could be parsed than if I had had to manually tag each word myself.

There are many advantages to creating context-free grammar for blazons - the parse trees
seen in the two figures convey a great deal of information about a blazon’s components,
and how they further break up into smaller sections down to the word level. The tree
structure also allow us to understand the different levels and where different words
interact with each other - as previously mentioned, we want to make sure that words
that are of equal meaning should be on the same hierarchical level, and similarly with
larger sections of a blazon.

On the other hand, individually defining custom context-free grammar rules leaves
room for bias. My process of writing rules was based on rules of blazonry from well-
established sources, starting with defining the colour of the field. However, the process
also required iterative development, and refining rules had to be based on individual
blazons. This might add more error to parsing - consider the case of trying to fit the
parser around one unusual blazon by adding a less-than-strict rule which then could
generate too many trees for other blazons (some of which will be incorrect). Moreover,
I had to make compromises between creating highly specific rules and trying to fit
wrongly tagged words into the picture. In the case of colour, I added proper nouns
(NNP) as a possibility, though if I’d had better tagging, that would not have been
necessary.

The number of trees returned by each blazon was higher than I had conjectured, and led
to further thinking about what disambiguation might look like for blazons. It is clear

Chapter 5. Building Blazon Structure with Context-free Grammar 24

that the more parse trees there are for a blazon, the less meaning could be extracted
from it and the more ambiguous the structure becomes. For this reason, selectively
ruling out incorrect parses may be the way forward for disambiguation of blazons.

Chapter 6

Disambiguation for Blazons

6.1 Introduction

Klint and Visser define an ambiguous context-free grammar as “a language in which
some sentences have multiple interpretations” [[13]. While previous works propose
methods that specify the correct parse for a sentence, they introduce a “framework of
filters” defined by rules that eliminate parse trees, instead of selecting them.

In a similar manner, I considered that disambiguating blazons made more sense in terms
of elimination rather than selection - the latter would arguably be more arbitrary, as
some of the parse trees are equally valid. As such, disambiguation would focus less on
the idea of "correctness’ - which is difficult to check externally for the specific language
of blazons - and more on ruling out parses with incorrect dependencies. This idea could
take several forms, though not all of them are equally effective. Adding CFG rules
before parsing has the potential to multiply parse trees, but changing their order may
prioritise a correct parse first. Removing CFG rules may decrease the number of tree
parses, but in doing so, would also decrease the number of blazons that are parsed at all.

In the end, I decided on adding elimination rules for parse trees after generating all tree
parses. Doing so would keep the blazon_tree function intact, and would take its trees as
the input, returning a list of the trees that passed the elimination rules. Similarly to the
context-free grammar section, writing the rules was an iterative process - after writing
an elimination pattern, I would check the statistics returned by the disambiguation
function and move on to another rule by looking at blazons with many parse trees. I
chose the output to remain a list of trees, as I have found they are the most "readable’
format and pack substantial information about a blazon’s structure.

25

Chapter 6. Disambiguation for Blazons 26

6.2 Implementation

Figure shows an example of one parse tree out of two returned by the blazon_tree
function for the blazon Azure, a fleur-de-lys argent and a bordure gules. In this example,
the parse is incorrect, as it assigns the colour gules to both the fleur-de-lys and the
bordure, even though the former is assigned a colour.

(BLAZON
(FIELD (COLOUR (33 33)))
(comma ,)
(CHARGE
(CHARGE
(CHARGE (CHARGE (DT DT) (NN NN)) (COLOUR (33 13)))
(cc cc)
(CHARGE (DT DT) (NN NN)))
(COLOUR (37 33N

Figure 6.1: Text representation of a parse tree.

I implemented the disambiguate_trees function to traverse the lines of the text, which
are the leaves of the parse tree, and to determine whether criteria for a correct tree are
met given previous lines. The first two rules were:

* If a charge is followed by a colour on the same line, the charge on the next line
should also be followed by a colour.

« If given a position, the charge afterwards should be assigned a colour.

These rules were chosen based on analysing a series of blazons and identifying com-
monly occurring inaccuracies across the entire corpus. The overarching issue present
in many parse trees had to do with colour dependencies - for instance, a charge being
assigned two or more colours, or none at all. However, the first two elimination filters
did not catch all of the faulty trees, especially in the case of longer, more complex
blazons. An additional rule had to be introduced in order to solve the issue adequately:

* If a charge is followed by a colour on the same line, the next charge regardless of
position should be assigned a colour. If a charge is not followed by a colour on
the same line, the next colour will be assigned to it.

This rule introduces a long-range dependency rule for colours that tracks the most
recent charge in the blazon and decides on the validity of the tree based on whether the
following charge has a colour or not. Unlike the previous two rules, this rule does not
follow specific lines, but instead looks for the next charge in a tree.

All three rules are implemented with the use of booleans as flags (which keep track of
whether a colour rule is met or not) which change as they iterate through the lines of the
tree. Each line is checked for 5 conditions, which include the presence of a charge, a
position, and the presence or absence of a colour. The flags change accordingly on each
line based on these checks, and trees are ruled out if a rule is broken. For instance, one
if statement checks if a line does not contain a charge but has a colour - if the previous
charge was already assigned a colour, this is not a valid tree, and will not be added to
the list of trees returned by the function.

Chapter 6. Disambiguation for Blazons 27

6.3 Results and evaluation

Table |6.1| charts the average number of trees returned for each blazon in the corpus (of
the blazons that were parsed successfully by the CFG function). Initially, we start at
7.66 parses, which decreases by over 2 parses once the first two rules are implemented,
and which sees an even more significant change once the long-term dependency rule
is introduced. Our final disambiguation implementation scales down the number of
parses to 2.81 per blazon. With these three rules implemented, 42 out of 295 blazons
are reduced to zero tree representations, meaning that the function ruled out all their
possible parses.

Implementation step Average parses per blazon
Before implementing rules 7.66
After short-range colour and position rules 5.24
After long-range colour dependency rule 2.81

Table 6.1: Average parses per blazon at various steps of the implementation.

As blazon lengths vary significantly, it may also be useful to look at the average parses
per blazon across blazon lengths. Figure[6.2]shows the average parses before (orange)
and after disambiguation (blue). The number of parses is shown on a logarithmic scale
in order to better visualise small and large numbers in the same chart. As blazons get
longer and more complex in terms of clauses, disambiguation rules down more parse
trees, as can be seen by the increased gap between averages starting at around a length
of 18 words in a blazon.

® new averages
102 4 old averages

10" 4] ° L]

Number of parses (log)

10° 4 L

T T T T T T T T
5.0 7.5 10.0 125 15.0 17.5 20.0 225
Blazon length

Figure 6.2: Average number of parses per blazon length, before and after disambiguation.

Of the remaining parses for each blazon, many can be considered to be ’technically
correct’ - for instance, as charges are defined so broadly, there may be more than one
correct interpretation of a blazon, where dependencies within a charge may happen at
different levels but still be valid interpretations. Evaluating this, however, would need
to be done manually, and introduces a level of bias. In the blazon Purpure, a camel
rampant and a mount Or, the colour Or could arguably belong to just the mount or the
camel as well as the mount. The disambiguation algorithm does not eliminate either
parse, leaving it up to individual interpretation.

Chapter 6. Disambiguation for Blazons 28

6.4 Discussion

When [initially implemented the disambiguation rules, I got an average number of
under 2 parses per blazon - however, that came at the cost of success rate, as 112 blazons
had 0 parse trees after disambiguation. This was a clear sign that there were trade-offs
to make between the strictness of disambiguation rules and the number of successful
parses. In the end, getting to below 3 parses per blazon was a significant improvement
compared to the beginning of implementation.

Evaluating the correctness of this algorithm proves difficult, as previously stated. We
might evaluate parses as correct or not, but are disambiguation failures necessarily a
fault of the function, or do they reveal underlying problems with a blazon? On one
hand, we want to rule out as many incorrect parse trees as possible and still keep correct
ones; on the other hand, the blazons themselves could be written in such a way that
they don’t obey typical rules of blazonry. Azure, on a heart Or a brown bear statant
proper is an example of a blazon where the colour brown precedes its noun, rather than
following it as per usual blazonry guidelines. It could be seen as an adjective-noun
compound noun, although that would mean we cannot technically infer the colour of the
bear. Disambiguation fails in this instance, as it does not identify a colour following a
charge. The question then arises whether we should allow rules to accept such blazons,
but that would come at the expense of disambiguation being much less effective.

Overall, this section of the implementation is arguably the most "hardcoded’ one, as
I had to manually define highly specific rules about what strings should be on a line
for the tree to count as a 'valid’ parse. Moreover, we mostly looked at whether colours
follow charges, whether that was on the same line or on a longer range, but more
rules could potentially be implemented to disambiguate trees. In the case of divisions,
we could track the number of colours that should follow them; we could also track
variations as they occur in a charge, to ensure that they are not followed by colours.

Chapter 7

Conclusion

Chapter] states that the primary purpose of this project was to parse blazons using
NLP methods. Moreover, three main priorities arose when defining the task. I will
present my achievements in relation to these three goals, and subsequently evaluate my
findings.

1. Handling unknown words. Along all other tokens, 641 words that were previously
unknown to the corpus were assigned part-of-speech tags.

2. Identifying blazon components and their positions. Main blazons such as tinc-
tures, charges, variations etc. were introduced as non-terminals in a context-free
grammar. Using them, I built a hierarchical blazon structure that successfully
parsed one third of the blazon corpus.

3. Resolving blazon ambiguity. The high number of CFG parses returned for each
blazon required filtering, which was implemented using flags that tracked colour
dependencies across the blazon, and ruled trees out if the dependencies did not

make sense. From an average of 7.66 parses per blazon, we saw a decrease to
2.81.

To sum up, all three priorities of the project were met using natural-language processing
methods, and with demonstrable success.

29

Chapter 7. Conclusion 30

7.1 Strengths and weaknesses

Some of the strengths of this project lie in the successful combination of NLP methods
with manual functions or overrides, whenever necessary. As a constructed language,
blazonry lies somewhere between a finite logical representation and natural language,
and a hybrid language may require hybrid methods. There were certain areas where
NLP did not contribute enough insight into the problem - for instance, POS tagging
for specific words like ”or” - and I had to discern where and to what extent I should
overwrite or rewrite parsing.

In Chapter [} I had to make a significant decision that determined the direction of the
entire project - switching from the BERT model to NLTK for part-of-speech tagging.
Although studies reinforced BERT’s accuracy and ability to track dependencies [[11]], in
practice it did not perform as well as I had expected it to, and I had to reorient towards
a different model. This, in my opinion, demonstrates flexibility and an ability to adapt
my methods based on results.

In addition, some tasks required to be implemented without relying on a previously
existing model. In Chapter 3] I was constrained by pre-existing CFG rules that were
modelled on the English language and had to write my own hierarchical rules from
scratch, which was a lengthy iterative process that required a lot of trial and error.
Although sources such as Boutell’s Heraldry mention the general order of elements in
a blazon, it is by no means an exhaustive resource, nor does it consider all possible
combinations of elements in the algorithmic manner that I require.

In terms of weaknesses, many initial struggles were caused by the sparsity of resources
on blazons. While numerous older books exist on the topic, they are not indexed and do
not contain easily parseable lists of blazons that I could use as input. The same lack of
sources made CFG parsing more difficult to implement, as previously mentioned.

Another area for improvement throughout the project would be the evaluation methods
in each section. Due to the lack of pre-trained corpora of blazons, it was difficult to
find quantitative methods for evaluation, as accuracy can only be calculated when there
is a “correct’ set of worked examples for the task that we can compare our results to.
Many quantitative measurements track whether a method is ’successful’ at parsing
rather than “accurate’. If I were to calculate precision or accuracy, I would have to
manually annotate tags with correct POS tags, for example, which would have inbuilt
bias. Moreover, it would be impossible to manually evaluate hundreds of parsed blazons,
so these measurements would have to be calculated on a smaller subset of the input
data, introducing more potential problems.

Chapter 7. Conclusion 31

7.2 Future work

Moving forward, there are several directions for future work that one can pursue. Firstly,
after achieving successful results from using CFG rules to identify blazon components
and their relationships, it would be interesting to explore dependency parsing as an
alternative approach. This method might allow for more accurate complex blazons and a
more robust recursion system, though it requires hand-written dependency formalisms.

Secondly, incorporating graphical elements in blazon parsing would mean that a user
can input a blazon and receive a drawn shield in return, similar to the function of the
DrawShield website. Creating a front-end framework to display blazons would make
the parsing easier to understand than previously, and it would provide an intuitive and
user-friendly experience. Moreover, it is easier to visually understand the relationships
between components than it is to read a parse tree, particularly in the case of a long
blazon.

Finally, building on the previous point, future work can improve on the model’s ability
to infer the position of charges within the shield. While the position within a larger
component is marked using CFG rules, we can move beyond this to build an intuitive
understanding of the locations using key words (e.g. words such as ’sinister’ or ’in
chief”).

Bibliography

[1] Histoire et patrimoine. Ville d’Orly.

[2] Penn treebank P.O.S. tags. University of Pennsylvania School of Arts and Sciences,
2003.

[3] Search forms for the SCA armorial, Dec 2022. https://oanda.sca.org/.

[4] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with
python. O’Reilly, 2009.

[5] Charles Boutell. Heraldry, historical and popular. R. Bentley, 3 edition, 1864.

[6] N. Chomsky. Three models for the description of language. IEEE Transactions
on Information Theory, 2(3):113-124, Sep 1956.

[7] A. Cox and C. Clarke. Syntactic approximation using iterative lexical analysis.
In /1th IEEE International Workshop on Program Comprehension, 2003., pages
154-163, 2003.

[8] A. de Sainte-Marie. Histoire généalogique et chronologique de la Maison Royale
de France, des pairs, des grands officiers de la Couronne & de la Maison du Roy
& des anciens barons du Royaume, page 207. Compagnie des libraires associez,
1730.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding, 2018.

[10] Arthur Charles Fox-Davies and Graham Johnston. A complete guide to heraldry.
T.C. & E.C. Jack, 1925.

[11] Ganesh Jawahar, Benoit Sagot, and Djamé Seddah. What does BERT learn about
the structure of language? In ACL 2019 - 57th Annual Meeting of the Association
for Computational Linguistics, Florence, Italy, July 2019.

[12] Dan Jurafsky and James H. Martin. Speech and language processing. Pearson
Prentice Hall, 2014.

[13] Paul Klint and Eelco Visser. Using filters for the disambiguation of context-free
grammars. April 1997.

[14] R. Lee Humphreys. From blazonry to policespeak. English Today, 7(3):37-39,
1991.

32

https://oanda.sca.org/

Bibliography 33

[15]

[16]

[17]

[18]
[19]

[23]

Edward Loper, Steven Bird, and Ewan Klein. 5. Natural Language Processing
with Python.

Bruce Miller. A grammar of blazonry, Jul 2018. http://heraldry.sca.org/
armory/bruce.html.

Michael Mulder. Creating a Compiler for the Semi-Structured Language of
Blazons, January 2021.

City of Paris. ”Fluctuat nec mergitur”, I’histoire de la devise de Paris. Nov 2020.

Hassan Sajjad, Nadir Durrani, Fahim Dalvi, Firoj Alam, Abdul Rafae Khan,
and Jia Xu. Analyzing encoded concepts in transformer language models. In

North American Chapter of the Association of Computational Linguistics: Human
Language Technologies (NAACL), NAACL °22, Seattle, 2022.

Luz Abril Torres-Méndez. The Viterbi algorithm. McGill University Centre for
Intelligent Machines.

Jack Turton. The social and cultural significance of Victorian heraldry. The
Victorian Web, Aug 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

Karl Wilcox. DrawShield. https://drawshield.net/.

http://heraldry.sca.org/armory/bruce.html
http://heraldry.sca.org/armory/bruce.html
https://drawshield.net/

Appendix A

Examples of blazon elements

All pictures are sourced from Heraldry, an introduction, an educational resource on the
DrawShield website [23]].

A.1 Tinctures

Colours:

Azure (Az) Gules (Gu) Purpure Sable (Sa) Vert
Metals:
|

Argent (Arg) Or

Figure A.1: Common colours and metals.

180
ll“l %
<' ﬂ e?:.a ;

Vair Counter-Vair Potent Counter-Potent

Figure A.2: Common tinctures.

34

Appendix A. Examples of blazon elements

A.2 Divisions and variations of the field

Party per Fess

per Bend sinister

“ \w"‘h

Figure A.3: Common divisions.

=N
PRI

Figure A.4: Common variations of the field.

A.3 Charges

Ve
\"5 w

Figure A.5: Common ordinaries.

35

Appendix B

Full list of context-free grammar rules
and select terminals

BLAZON — FIELD

— FIELD COMMA CHARGE

— FIELD COMMA CHARGE COMMA CHARGE
— FIELD VARIATION

— DIVISION

— DIVISION CHARGE

— DIVISION COMMA CHARGE

— VARIATION COLOUR

— VARIATION CHARGE

— VARIATION COMMA CHARGE

FIELD — COLOUR

VARIATION — VARIATION COLOUR
— COLOUR VARIATION

VARIATION — VAR
— VAR IN CHARGE
— VAR IN NNS

— VAR VAR

— VAR NN

DIVISION — DIVISION COLOUR

DIVISION — DIV NN
— DIV IN CD
— DIV

CHARGE — POSITION CHARGE

CHARGE — CHARGE POSITION COLOUR
— CHARGE POSITION CHARGE
— POSITION CHARGE CHARGE

36

Appendix B. Full list of context-free grammar rules and select terminals

— POSITION CHARGE
— CHARGE NN

— CHARGE NNS

— CHARGE COLOUR

— NUMBER CHARGE

— CHARGE VERB

— CHARGE CC CHARGE
— CHARGE ATTITUDE
— CHARGE VAR

CHARGE — DT NN
— DT NNS

— DT JJ NN

— NUMBER NN

— NUMBER NNS
— NN COLOUR

— NNS COLOUR

POSITION — POSITION NN
— DT POSITION IN

POSITION — POS

COLOUR — NNP
— 1)
—JJCCll

VERB — RB VERB

VERB — VBD
— VBN
— VBZ

NUMBER — CD

B.1 Words with manually defined tags

New tag (abbreviation)

Manually selected words

Noun (NN)
Adjective (JJ)

Variation (VAR)

Division (DIV)
Attitude (ATT)

Position (POS)

Chief, bend, fess, fleur-de-lys

Or, gules, vert, sable, azure, argent, purpure,
ermine, erminois, pean

Gyronny, semy, wavy, annuletty, lozengy,
semy-de-lys, goutty, increscenty, checky
Per, party, quarterly

Sejant, rampant, passant, couchant, dor-
mant, statant

In, within, to, on, between, orle

	Introduction
	Outline

	Background
	An introduction to blazons
	Grammar, vocabulary, and structure
	Existing studies
	NLP in the context of blazonry
	Part-of-speech tagging methods
	Context-free grammar

	Design
	Part-of-speech Tagging
	Introduction
	Datasets and pre-processing
	Methods and implementation
	Results and evaluation
	Discussion

	Building Blazon Structure with Context-free Grammar
	Introduction
	Implementation
	Results and evaluation
	Discussion

	Disambiguation for Blazons
	Introduction
	Implementation
	Results and evaluation
	Discussion

	Conclusion
	Strengths and weaknesses
	Future work

	Bibliography
	Examples of blazon elements
	Tinctures
	Divisions and variations of the field
	Charges

	Full list of context-free grammar rules and select terminals
	Words with manually defined tags

