
An Analysis of the Ant Colony Optimization
Parameter Space

Javier Bosch
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Computer Science and Mathematics

School of Informatics
University of Edinburgh

2023

Abstract
This dissertation investigates the performance of the Ant Colony Optimization (ACO)
algorithm in solving the Travelling Salesperson Problem (TSP), with a focus on the
exploration of the parameter space. A simple, open-source Java implementation of
the ACO algorithm is developed and used throughout the project. The impact of key
parameters, such as the evaporation rate (ρ) and others, on the algorithm’s efficiency
and effectiveness, is examined in-depth.

The results reveal a functional dependence between the evaporation rate and the number
of iterations, which can be used to optimize the ACO algorithm’s performance. The
potential of a dynamic evaporation rate is also explored, showing promising results. The
applicability of the ACO algorithm to real-world optimization problems is discussed,
with urban waste management as an illustrative example. This research contributes
valuable insights for the development and improvement of ACO in solving complex
optimization problems.

i

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
Committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Javier Bosch)

ii

Acknowledgements
I would like to express my sincere gratitude to my supervisor, Michael Herrmann, for
his invaluable guidance and support throughout my dissertation. Without his expertise
and dedication, this work would not have been possible. Thank you to Angus Murdoch
and Gareth Barwell from The City of Edinburgh Council for providing me with some
information about Edinburgh. I also want to give a special shoutout to Helene, whose
sharp eye for detail and tireless efforts in proofreading greatly improved the quality of
this text.

Finalmente, quiero expresar mi agradecimiento a mi familia y amigos, en especial a
mi padre, mi madre y mi hermana, por su apoyo inquebrantable durante estos últimos
cuatro años. Su amor y ánimo han sido mi fuente de inspiración.

iii

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Project Goals and Contributions . 2
1.3 Project Structure . 3

2 Background 4
2.1 Biological Inspiration . 4

2.1.1 Stigmergy . 4
2.1.2 Double Bridge Experiment 5
2.1.3 Ant Systems . 5

2.2 Ant Colony Optimisation . 6
2.2.1 First Example . 6
2.2.2 Standard Variants . 6
2.2.3 Recent Advancements . 7
2.2.4 Applications . 7
2.2.5 Convergence Proof . 8
2.2.6 Criticality . 8
2.2.7 Use of Local Search in ACO 9

2.3 Travelling Salesperson Problem . 9
2.3.1 Theoretical Bounds . 9
2.3.2 Ant Colony Optimization for the TSP 10
2.3.3 ACO for the Waste Management Problem 11

3 Methods 12
3.1 ACO . 12

3.1.1 Definition of ACO . 12
3.1.2 ACO Parameters . 13

3.2 Java Implementation . 14
3.2.1 Test Files . 14
3.2.2 The Main and ACO Classes 14

3.3 TSP Problems . 15
3.4 TSP for Edinburgh Communal Bin Collection 16

4 Results 17
4.1 The Effects of Pheromones and Heuristic Bias 17
4.2 The Effects of a Noisy Heuristic . 21

iv

4.3 The Effects of an Innovation Reward 23
4.4 The Effects of the Evaporation Rate 23
4.5 Real-world Experiments . 26

5 Discussion 29
5.1 The Role of Metaheuristics . 29
5.2 The Role of the Exponents α and β 30
5.3 The Role of the Innovation Reward σ 31
5.4 The Role of the Evaporation Rate ρ 34
5.5 Reinforcement Learning and ACO 36
5.6 The Real World . 37

6 Conclusion and Further Study 39
6.1 Conclusion . 39
6.2 Further Study . 40

Bibliography 41

A Python and Java Code 47
A.1 Finding the Best ρ for Each Iteration 47
A.2 Creating TSP from the Communal Bins of Edinburgh 48
A.3 ACO in Java . 49

A.3.1 Move Probability from City to City 49
A.3.2 Pheromone Update Rule . 50

B Additional Figures 52

v

Chapter 1

Introduction

Metaheuristic algorithms are a valuable tool for solving complex and computationally
demanding optimization problems. Unlike exact algorithms, metaheuristics do not
guarantee the discovery of an optimal solution but provide near-optimal or good-enough
solutions within a reasonable amount of time. The value of metaheuristics lies in their
ability to tackle very challenging or NP-hard problems, such as combinatorial opti-
mization problems. By employing intelligent search strategies that involve exploration
and exploitation, metaheuristics can efficiently navigate large search spaces and find
high-quality solutions [41].

The Travelling Salesperson Problem (TSP) is a classical NP-hard optimization problem
that has been extensively studied in the field of computer science. Given a set of cities
and the distances between each pair, the goal is to find the shortest possible route which
visits each city once before returning to the starting city. TSP has numerous real-world
applications, such as vehicle routing, logistics, and circuit board manufacturing, among
others. Due to its computational complexity and practical relevance, TSP has become a
benchmark problem for evaluating the performance of various optimization algorithms,
including metaheuristics like Ant Colony Optimization (ACO), Genetic Algorithms
(GA) and Particle Swarm Optimization (PSO).

In the context of TSP, metaheuristics offer a viable means of finding near-optimal
solutions in a computationally efficient manner. ACO, in particular, has demonstrated
promise in tackling TSP and other optimization problems.

1.1 Motivation

ACO is an elegant and intuitive metaheuristic optimization algorithm that garnered
significant attention during the 1990s and early 2000s. Introduced by Marco Dorigo in
his seminal PhD thesis (1992) and further developed in collaboration with numerous
researchers in the field [15]. ACO is inspired by the natural behaviour of ants searching
for food. The algorithm mimics the ants’ ability to find the shortest path between
their nest and a food source by using pheromone trails as a form of communication
[21]. The ACO algorithm has since undergone several transformations, with various

1

Chapter 1. Introduction 2

modifications and improvements proposed to enhance its performance and applicability.
The versatility of ACO has led to its successful application in numerous real-world
domains, such as telecommunications [54], logistics [13], and manufacturing [45],
among others[26].

Despite its simplicity and ease of implementation, research interest in ACO has dwindled
in recent years. Most of the existing literature on ACO focuses on introducing new
parameters, developing hybrid algorithms, and applying ACO to various problem
domains[26]. These include the Vehicle Routing Problem (VRP), Quadratic Assignment
Problem (QAP), and others ([22, 25]). Despite the shift of academic interest from ACO
to other optimization techniques, such as Reinforcement Learning [59], ACO still holds
promise for addressing complex combinatorial optimization problems.

One of the challenges in applying ACO to real-world problems is finding and selecting
critical values for its parameter, such as pheromone evaporation rate and heuristic bias.
These parameters significantly affect the algorithm’s performance as they determine the
balance between exploration and exploitation [10]. Identifying the optimal parameter
settings remains an open question in ACO, which has motivated researchers to refine
and improve the algorithm over the years continuously.

In contrast to other metaheuristic algorithms, such as Particle Swarm Optimization
(PSO) [49, 28], which are thoroughly investigated and understood, there is still a
lack of comprehensive understanding of ACO’s parameters and their critical values
in the scientific community. This dissertation aims to address this knowledge gap
by conducting an in-depth study of ACO parameters and their implications on the
algorithm’s performance.

1.2 Project Goals and Contributions

The primary goal of this project is to achieve a deeper understanding of the parameters
involved in ACO and to identify their critical values, while simultaneously developing
an open-source implementation of the ACO algorithm. The aim is to provide insights
that can improve the performance of ACO algorithms by examining the behaviour
and significance of its parameters. Additionally, this dissertation will demonstrate a
real-world application of ACO by solving a routing problem in The City of Edinburgh,
showcasing the practical utility of the insights gained.

This dissertation aspires to revitalize interest in ACO as a powerful optimization tech-
nique by providing a comprehensive and systematic analysis of its critical aspects,
alongside the development of an open-source implementation, laying the groundwork
for future research and innovation. By examining the algorithm in this context, the hope
is that this work will inspire new ideas and further applications of ACO in real-world
scenarios.

Chapter 1. Introduction 3

1.3 Project Structure

This dissertation is organized into several chapters, each focusing on different aspects
of the project:

• Introduction, provides an introduction and motivation for the project, outlining
its goals and contributions.

• Background, presents the necessary background information, including the
biological inspiration for ACO, the development of various ACO variants, and
the theoretical bounds for the TSP.

• Methods, describes the methodology employed in this study, detailing the ex-
perimental setup for the process of investigating the critical values of ACO
parameters.

• Results, presents the results and analysis of the experiments and a real-world
application of ACO, where the algorithm is applied to a routing problem in The
City of Edinburgh.

• Discussion, discusses the results of the experiments and highlights the key in-
sights and relationships between ACO parameters and their impact on algorithm
performance.

• Conclusion and Further Study, concludes the dissertation, summarizing the
main findings, contributions, and potential directions for future research of ACO.

Chapter 2

Background

2.1 Biological Inspiration

In the mid-20th century, French entomologist Pierre-Paul Grassé made a series of
observations on the behaviour of select termite species. He noticed that these insects
responded to specific environmental stimuli, which influenced their actions and those
of other individuals in the colony. Grassé coined the term ”stigmergy” to describe this
unique form of communication, characterized by the fact that insects are stimulated by
the outcomes of their actions [34].

2.1.1 Stigmergy

Two main features distinguish stigmergy from other forms of communication:

• Stigmergy is an indirect, non-symbolic communication mediated by the environ-
ment. Insects exchange information by modifying their surroundings.

• Stigmergic information is localized, meaning that it can only be accessed by
insects that visit the specific location where the information was released or its
immediate vicinity.

The concept of stigmergy is critical to understanding the collective intelligence of social
insects, such as ants, bees, and termites. These insects exhibit complex behaviours that
emerge from individual interactions, despite their relatively simple individual cognitive
abilities. The study of stigmergy helps researchers gain insights into the mechanisms
behind self-organization and swarm intelligence in social insects, which can be applied
to artificial systems.

Ant colonies provide a compelling example of stigmergy in action. Many ant species
deposit pheromones on the ground while travelling to and from a food source. Other ants
sense the presence of these pheromones and are more likely to follow paths with higher
pheromone concentrations, ultimately leading to highly efficient food transportation to
the nest [34].

4

Chapter 2. Background 5

2.1.2 Double Bridge Experiment

Deneubourg and his colleagues conducted extensive research on the pheromone-laying
and the behaviour of ants [17]. In a well-known ”double bridge experiment” (Figure
2.1) a colony of Argentine ants was connected to a food source via two bridges of equal
lengths. In this setup, ants began exploring the area around their nest and eventually
discovered the food source. As they travelled between the food source and the nest, the
ants deposited pheromones along their paths. At first, each ant randomly chose one of
the two bridges. Over time, random fluctuations lead to one bridge accumulating more
pheromone trails than the other bridge, attracting more ants. This positive feedback
mechanism led to even more pheromone deposition on the favoured bridge, ultimately
converging the entire colony using the same bridge.

Figure 2.1: Experiment setup for ”double bridge experiment”. For (a), branches have the
same length. For (b), branches have different lengths.

This experiment highlighted the potential of stigmergy as an efficient communication
system and a powerful optimization process. By exploiting the collective intelligence
and decentralized decision-making of the ant colony, the ants were able to find optimal
or near-optimal solutions to complex problems in a relatively short period of time. This
observation sparked interest in the scientific community, particularly in the fields of
artificial intelligence and optimization, where researchers began exploring the possibility
of translating these natural mechanisms into computational algorithms.

This colony-level behaviour, which relies on autocatalysis or positive feedback, enables
ants to efficiently locate the shortest path between their nest and a food source. Goss et
al. further investigated this phenomenon in a variant of the ”double bridge experiment”,
where one bridge was significantly longer than the other [33]. In this case, random
fluctuations in the initial bridge choice were less pronounced, and ants that initially
chose the shorter bridge reached the nest more quickly. Consequently, the shorter bridge
received pheromone deposits earlier, increasing the likelihood that additional ants would
choose it over the long bridge.

2.1.3 Ant Systems

Drawing inspiration from these observations of ant behaviour and the concept of stig-
mergy, researchers sought to harness these biological principles to develop a novel

Chapter 2. Background 6

optimization algorithm. The ACO algorithm emerged as a population-based metaheuris-
tic that simulates the behaviour of a colony of artificial ants to find optimal solutions
to combinatorial optimization problems. ACO captures the essence of ant behaviour,
such as pheromone deposition, sensing, and evaporation, and translates these natural
phenomena into mathematical constructs [21].

In ACO, each artificial ant represents a potential solution to the problem at hand, and
their collective behaviour imitates the stigmergic communication found in real ants.
Artificial ants iteratively construct solutions by moving through a problem space, guided
by a combination of heuristic information and pheromone trails. As they construct
solutions, the ants deposit pheromone trails that correspond to the quality of their
solutions, effectively communicating this information to other ants in the colony. Over
time, this process leads the colony to converge towards high-quality solutions, with the
best-performing ants influencing the search direction of the entire colony.

2.2 Ant Colony Optimisation

In this section, an overview of the development of ACO will be presented, its variants
and recent advancements discussed and some notable applications explored.

2.2.1 First Example

The original algorithm [15], known as Ant System (AS), was designed to solve the TSP.
The success of AS in tackling TSP sparked interest in applying ACO algorithms to
other combinatorial optimization problems, such as the Quadratic Assignment Problem
[56], the Vehicle Routing Problem [9], and the Scheduling Problem [37].

2.2.2 Standard Variants

Following the introduction of the original Ant System, several variants have been
proposed to improve its performance and adapt it to different problem domains. Some
of the most well-known ACO variants include:

Ant Colony System (ACS) [24]: Proposed by Dorigo and Gambardella in 1997, ACS
introduces several modifications to the original Ant System, such as the use of a local
pheromone update rule and the exploitation of an additional heuristic. The ACS was
meant to enhance the exploration-exploitation balance and accelerate the convergence
towards optimal solutions compared to the original algorithm.

Max-Min Ant System (MMAS) [58]: Developed by Stützle and Hoos in 2000, MMAS
introduces an explicit pheromone trail limit, which helps to avoid premature convergence
and improve the search performance. This variant also employs a more aggressive
pheromone update strategy to promote exploring new solutions.

Rank-based Ant System (RAS) [12]: Introduced by Bullnheimer et al. in 1999, RAS
employs a rank-based pheromone update mechanism that takes into account the quality
of solutions found by individual ants. By rewarding high-quality solutions with stronger

Chapter 2. Background 7

pheromone updates, RAS encourages the search towards promising regions in the
solution space.

2.2.3 Recent Advancements

Recent advancements in ACO research have focused on enhancing the algorithm’s
performance, adaptability, and applicability. Some of these advancements include:

Hybrid ACO [11, 48, 66]: Combining ACO with other optimization techniques, such
as local search or other metaheuristics, has emerged as a popular approach to improve
the algorithm’s performance. These hybrid algorithms can exploit the complementary
strengths of the combined techniques, often resulting in more efficient and effective
solutions.

Dynamic and Multi-objective ACO [36, 3, 29]: Researchers have extended the ACO
framework to handle dynamic and multi-objective optimization problems, where the
problem’s constraints, objectives, or environment may change over time or involve
multiple conflicting objectives. These extensions often involve adapting the pheromone
update mechanisms and incorporating additional heuristics to effectively tackle the
increased complexity.

Parallel ACO [60, 64, 51]: To further improve the computational efficiency of ACO al-
gorithms, researchers have explored parallel implementations that leverage the inherent
parallelism found in the foraging behaviour of ants. These parallel ACO algorithms can
be executed on multi-core processors, distributed memory systems, or even specialized
hardware, such as GPUs, to significantly reduce the computation time required to solve
large-scale optimization problems.

2.2.4 Applications

ACO algorithms have been successfully applied to a wide range of combinatorial opti-
mization problems in various domains, demonstrating their versatility and effectiveness.
Some notable applications include:

Transportation and logistics [31]: ACO has been employed in solving Vehicle Routing
Problems, Fleet Management Problems, and other transportation-related optimization
tasks, leading to more efficient routing and resource allocation. These applications
contribute to reducing transportation costs, minimizing environmental impact, and
improving overall operational efficiency.

Telecommunications [19]: In the field of telecommunications, ACO has been applied
to problems such as network routing, channel assignment, and network design. By
optimizing the use of network resources and minimizing communication delays, ACO
algorithms can help enhance the quality of service and network reliability.

Scheduling [18]: ACO has been used to solve various scheduling problems, including
job-shop scheduling, flow-shop scheduling, and timetabling problems. These appli-
cations contribute to improved resource utilization, reduced production times, and
increased overall efficiency in industries and educational institutions.

Chapter 2. Background 8

Bioinformatics [43, 46]: In the realm of bioinformatics, ACO has been applied to
problems such as protein folding, gene expression analysis, and multiple sequence align-
ment. These applications can help advance our understanding of complex biological
systems and contribute to developing new drugs and therapies.

Overall, the Ant Colony Optimization algorithm has come a long way since its inception,
with numerous variants and advancements contributing to its success in tackling a wide
range of combinatorial optimization problems [26]. However, as with any optimization
algorithm, it is crucial to critically evaluate its performance and applicability, consider-
ing the specific characteristics and requirements of the problem at hand. Researchers
should continue to explore new ways to improve the algorithm, incorporate insights
from other fields, and maintain scientific rigour in the development and evaluation of
ACO.

2.2.5 Convergence Proof

The Convergence Proof for ACO establishes that ACO converges to the global optimum
under certain conditions. In this proof from 2002 Stützle and Dorigo [57] show that
ACO is guaranteed to find an optimal solution with a probability that can be made
arbitrarily close to one if given enough iterations. As the iterations increase, the proof
indicates that the likelihood of ants selecting the optimal path also increases, which
leads to stronger pheromone levels on that path. Hence, there is a positive feedback
loop, where ants are now more likely to choose the optimal path as the pheromone levels
get stronger, and the pheromone levels continue to increase as more ants follow that
path. This positive feedback mechanism eventually guides the algorithm’s convergence
to the global optimum.

This proof provides a greater theoretical foundation for ACO, as well as a better
understanding of the algorithm. Similar metaheuristic algorithms lack this kind of proof.
As a result, ACO is often preferred over other metaheuristic algorithms in applications
where convergence to the global optimum is critical.

2.2.6 Criticality

Criticality is a concept that originates from the field of physics, particularly in the study
of phase transitions and complex systems. In these contexts, criticality refers to the point
at which a system undergoes a transition from one state to another, often characterized
by significant changes in its properties and behaviour [40, 7]. The idea of criticality is
often borrowed and applied to various other disciplines, including computer science,
biology, and social sciences, to describe phenomena that exhibit similar transitional
behaviours.

In the context of metaheuristics, criticality plays a crucial role in determining the
algorithm’s performance. It is closely related to the balance between exploration and
exploitation during search, which is essential for avoiding premature convergence to
suboptimal solutions and ensuring the discovery of high-quality solutions [27].

For instance, criticality has been studied and better understood in the context of Particle

Chapter 2. Background 9

Swarm Optimization (PSO) [44, 28]. Researchers have identified critical parameter
values that govern the balance between exploration and exploitation in PSO, leading
to improvements in the algorithm’s performance and adaptability. These findings have
provided valuable insights into the role of criticality in the search process and its
implications on the algorithm’s efficiency.

However, in the case of ACO, criticality has not been as thoroughly investigated,
especially for real-world optimization problems. Most of the existing research on
criticality in ACO has focused on toy examples, as demonstrated by Herrmann et al.
[39]. This limited understanding of criticality in ACO has left a significant knowledge
gap that needs to be addressed to optimize the algorithm’s performance and adaptability.

2.2.7 Use of Local Search in ACO

The integration of local search techniques into ACO has been a significant area of re-
search, as it can lead to improved solution quality and enhanced algorithm performance,
for little computational cost. Many researchers, such as Stützle [58] and others [35, 61],
have recognized the value of incorporating local search into ACO algorithms to refine
and optimize the solutions generated by ants.

Local search methods, such as 2-opt or 3-opt moves, enable the exploration of the
immediate neighbourhood of a solution and can effectively fine-tune the solutions
generated by the artificial ants. By performing a series of small, localized modifications,
the algorithm can converge more quickly to high-quality solutions while still maintaining
the benefits of the global search process provided by the ACO framework [65].

To maintain a clear focus on the core ACO algorithm in this dissertation, we will
primarily focus on ACO algorithms without the incorporation of local search techniques.
While acknowledging the potential benefits of integrating local search methods, our
primary objective is to provide a comprehensive understanding of the fundamental
principles and mechanisms that drive the success of ACO algorithms.

2.3 Travelling Salesperson Problem

The TSP is a classical combinatorial optimization problem that aims to find the shortest
possible route for a salesperson who must visit a set of cities and return to the origin city,
ensuring that each city is visited exactly once. TSP is an NP-hard problem, which means
that finding an exact solution for large instances of the problem is computationally
intractable within a reasonable time frame. The difficulty of solving the TSP arises
from the fact that the number of possible solutions increases factorially with the number
of cities, leading to a combinatorial explosion as the problem size grows [4].

2.3.1 Theoretical Bounds

Given that the TSP is an NP-hard problem, finding optimal solutions for most of its
instances is infeasible. This raises the question of how to determine whether a solution is
good enough while analyzing the results of experiments in this dissertation. Fortunately,

Chapter 2. Background 10

for instances of the TSP that are confined within the unit square, it is possible to take
advantage of established lower and upper bounds to assess the quality of an optimal
TSP solution.

The theoretical lower bound for the TSP within the unit square was established by
Beardwood, Halton, and Hammersley in 1959 [8]. They derived a formula that provides
an asymptotic lower bound for the length of the shortest tour as the number of cities
increases. This bound can be used to compare the solutions generated by optimization
algorithms and to gauge their performance.

The upper bound for the TSP can be derived from various heuristic algorithms. For ex-
ample, Fiechter’s parallel tabu search algorithm, which is known to produce high-quality
solutions, can be used to establish an upper bound for the problem [30]. Additionally,
several approximation algorithms, such as the Christofides algorithm, can also provide
an upper bound for the TSP with guaranteed performance ratios [38, 14].

By taking advantage of these theoretical bounds, we can evaluate the performance of
ACO on instances of the TSP within the unit square. For the context of this dissertation,
we can assume that,

Lower bound = 0.7078
√

n+0.551

where n is the number of cities in the TSP instance, as shown by Christine L. Valenzuela
and Antonia J. Jones in [62].

2.3.2 Ant Colony Optimization for the TSP

ACO has been widely recognized as an effective metaheuristic algorithm for solving
various NP-complete optimization problems, including the TSP [24].

To apply ACO to the TSP, we first initialize a population of artificial ants. These ants
are randomly placed in different cities and tasked with constructing complete tours of
the given cities. The ants’ decisions on which city to visit next are influenced by the
distance between their current city and all other reachable cities and the pheromone
trails previously laid by other ants.

After each iteration, each ant lays pheromones on the path it took inversely proportional
to the total tour length. In subsequent iterations, a new population of ants is initialized,
again randomly placed in different cities. However, this time, their decisions on which
city to visit next are informed by both the distance between cities and the updated
pheromone levels [21].

The ants continue to construct tours, evaluate their quality, and update the pheromone
trails iteratively until a termination criterion is met, such as reaching a predefined
number of iterations or achieving a desired solution quality. By leveraging pheromone
trail updates and heuristic information, ACO effectively guides the search process
towards high-quality solutions to the TSP [58].

Chapter 2. Background 11

2.3.3 ACO for the Waste Management Problem

The Urban Waste Management Problem serves as an excellent example of a real-world
TSP instance, offering a balance between complexity and applicability. While it may
not be as intricate as some TSP problems found in the literature, it holds significant
practical value for cities and municipalities worldwide. Addressing waste management
challenges through the optimization of collection routes can lead to substantial cost
savings, reduced environmental impact, and improved efficiency of waste collection
services [52, 6].

The Travelling Salesperson Problem has found numerous practical applications in var-
ious domains, including the urban waste management problem. Waste management
plays a critical role in maintaining the cleanliness and sustainability of urban environ-
ments. Despite the importance of this application, research on heuristics for waste
management problems, particularly for ACO, has often been limited in scope. Most
studies in this area focus on optimizing shorter distances, such as a few streets or small
neighbourhoods in a continuous space [5, 42, 50].

Although these studies contribute valuable insights into waste management optimization,
there is room for expanding their applicability to more extensive urban areas. By
exploring ACO algorithms in the context of discrete points on a nonplanar map of
Edinburgh, this research aims to bridge the gap between academic studies and real-
world applications.

Chapter 3

Methods

This chapter comprehensively describes the ACO algorithm implementation, problem
instances, and experimental design employed in this project. Here, we justify the
design decisions made to ensure robustness and reliability in evaluating the algorithm’s
performance across various TSP instances.

3.1 ACO

3.1.1 Definition of ACO

We can explicitly define how we update the pheromones left by the ants every iteration;

Definition 3.1.1 (Pheremone update rule). Given a pheromone matrix τ, the pheromones
level between cityi and city j is given by:

τi j← ρ · τi j +(1−ρ) ·
m

∑
k

∆τ
k
i j

where ρ is the evaporation rate and

∆τ
k
i j =

Q · 1

Lk
, if ant k used edge (i, j) in its tour,

σ ·Q · 1
Lk
, if ant k used edge (i, j) in its tour and it is the best tour found,

0, otherwise,

where Lk is the length of the tour of ant k.

In this definition, we have introduced some new parameters Q and σ we will go over
the function of these later.

The way that ants construct solutions is given by:

Definition 3.1.2 (Construct tour). Given an ant k, the probabilty of ”moving” from cityi
and city j is given by:

pk
i j =

τα

i j·η
β

i j

∑
m
k τα

ik·η
β

ik

, if j is not already visited

0, otherwise

12

Chapter 3. Methods 13

where α is the pheromones bias, β is the heuristic bias and ηi j is the heuristic informa-
tion.

Remark. Mostly ηi j =
1

di j
, where di j is the distance between cityi and city j.

3.1.2 ACO Parameters

At this moment, we understand the main functions that drive ACO. However, we have
introduced many parameters, we can now walk through these parameters and how we
expect them to behave.

• ρ is the pheromone evaporation rate. This value directly affects how long the
colony retains information and how important new information is in relation to
previous. A low evaporation rate (ρ close to 1) means that the search strategy
will likely be based on exploitation, as most of the knowledge of the previous
iterations is kept. Similarly, a high evaporation rate (ρ close to 0) means that the
search strategy will likely be based on exploration, where when ρ = 0 ants will
only have the information of the last iteration on the pheromone matrix.

• m is the number of ants, for all experiments, this will be 20. Literature in ACO
shows how this is a near-optimal value for the algorithm [25], and fixing m allows
us to better focus on other parameters.

• Q is often used to scale the pheromones levels. However, as all instances of TSP
used in the experiments are normalized, Q will remain 1 in all experiments.

• σ is the innovation reward parameter, typically σ = m. This σ is useful to ensure
that no innovation goes unnoticed, no matter how small the improvement, the
information stays on the pheromones trails. However, for most experiments this
value will also be set to 1, to allow us to focus on more critical parameters such
as ρ.

• α is the pheromone bias. Higher values of α produce the search to be more
information-focused, ants tend to follow paths that other ants used previously
with good results. A lower value of α means that the search is more random
or greedy depending on β, but the search does not focus as much on previous
knowledge.

• β is the heuristic bias. A high β makes the search more greedy, as ants follow
paths that seem short; this makes ants more susceptible to a deceptive or noisy η.
A low value of β allows for more exploration, this is important when trying to
avoid local optima.

• η is the heuristic information. As explained before, for most experiments this will
be the inverse of the distance between the cities. However, on some occasions,
we will use a more noisy version of this to test the robustness of the algorithm.

• Max iterations, some of the decisions in the experiments on how many iterations
to wait might seem arbitrary, however, these are mainly made on the basis of ”Is
the average best solution at that point good enough?”.

Chapter 3. Methods 14

Now that we understand how ACO works and all the parameters around an instance of
ACO, let us go over the implementation in Java.

3.2 Java Implementation

The primary goal of the implementation is to provide a well-structured, efficient, and
easy-to-understand implementation that facilitates the reproducibility of experiments,
the development of new test cases, and the storage of results. This approach not only
promotes transparency and reproducibility but also encourages collaboration and knowl-
edge sharing within the research community. One key aspect of this implementation
is the use of multithreading, which accelerates the testing process by running several
instances of the ACO algorithm concurrently, each with different parameters.

3.2.1 Test Files

To define an experiment or test to run, we can use test files. These are .txt files with
the following format:

nCopies,1
maxIterations,100
nAnts,20
alphas,0,1,101
betas,0,1,101
Qs,1
rhos,0.8
sigmas,1
map_file,normal_att48.txt
output_file,normal_att48_output.csv

In this file, we are defining an experiment where we create 1 copy of 10,201 instances
of ACO. All of them will run for 100 iterations, have 20 ants, Q = 1, ρ = 0.8 and σ = 1.
The values of α and β are all possible pairs of the lists from 0 to 1 in 101 steps. Finally,
the TSP instance that we are using is normal att48.txt and we output the results on
normal att48 output.csv.

3.2.2 The Main and ACO Classes

The Main class parses the test file, which takes as an argument, and creates all the
necessary instances of ACO.

The ACO class represents an instance of ACO or colony. When an instance of the ACO
class is created, all ACO parameters are passed from Main, such as ρ or the maximum
number of iterations. This class contains a run function which iterates through the
maximum number of iterations, updating ants’ trails and pheromones, as described in
Definitions 3.1.1 and 3.1.2. It also implements the Runnable interface, which allows it
to run in multiple threads of a CPU [1].

The key code of this implementation is available in Appendix A.3.

Chapter 3. Methods 15

3.3 TSP Problems

We can now discuss the specific TSP problem instances used in this dissertation. This
first choice is the widely recognized and well-studied problem instance, the att48 TSP
map (see Figure 3.1), representing a 48-city problem instance derived from a real-world
scenario. The att48 instance has been extensively used in previous studies, making it
ideal for studying the performance of ACO.

Figure 3.1: Optimal (a) and ACO (b) solutions for att48, with lengths 4.31 and 4.36
respectively. ACO with 1000 iterations, 20 ants, ρ = 0.9, α = 1, β = 2, Q = 1, σ = 1.

However, to better understand the behaviour of ACO in various scenarios, we use a
normalized version of the att48 problem. In this normalized version, all points are
scaled to lie within the unit square. This normalization allows for a more straight-
forward comparison of results across different problem instances and simplifies the
implementation of ACO since there is no need to scale pheromones or heuristics.

In addition to the att48 problem and its normalized version, we consider three other TSP
problems, generated by randomly placing points within the unit square. These instances
consist of 50, 250, and 1000 points, respectively. The rationale behind selecting these
instances is to examine the scalability of the ACO algorithm and its ability to handle
problems of varying sizes and complexities. Moreover, using random points within the
unit square ensures that the problem instances are not biased towards any particular
configuration and can provide a more robust assessment of the algorithm’s performance.

Chapter 3. Methods 16

3.4 TSP for Edinburgh Communal Bin Collection

The City of Edinburgh presents an excellent example of a nonplanar instance of the
Travelling Salesperson Problem. Its streets, characterized by their historical layout and
hilly terrain, pose unique challenges for optimization algorithms. In this project, we
use the locations of all communal food waste bins in the City Centre of Edinburgh as
a highly nonplanar TSP instance. Additionally, we consider all communal clear glass
bins in the City as a larger but simpler tour.

In solving these problems, we explore two different heuristic approaches: using the
nonplanar real distances between bins and using Euclidean distances.

The data on the bin locations were extracted from The City of Edinburgh Council’s
website, while the maps were sourced from OpenStreetMap. With this information,
we can utilize Python to generate a TSP instance in the form of an adjacency matrix.
This process involves calculating the distances between bins and organizing them into
a structured format that can be efficiently processed by the ACO algorithm. To find
the fastest way to get from one bin to another we use the A* algorithm [20, 16]. The
instances of TSP are stored as .txt files. The Python code used for this data processing
and TSP instance generation is available in Appendix A.2.

By applying the ACO algorithm to these distinct TSP instances, we can gain insights
into the performance and adaptability of the algorithm for various problem sizes and
complexities. This analysis will help us understand the potential benefits and limitations
of using ACO for solving nonplanar instances of TSP, particularly in the context of
urban waste management.

Chapter 4

Results

In this chapter, we explore the outcomes of our experiments using ACO for various
TSP instances. This chapter aims to provide a comprehensive exploration of the impact
of different ACO parameters on the algorithm’s performance, efficiency, and solution
quality. Through the analysis of various plots and data visualizations, we will draw
insights into the relationships between the parameters and the effectiveness of the ACO
algorithm in solving TSP problems. Additionally, we will examine how the insights
gathered from these analyses can be applied to real-world scenarios, demonstrating
the practical implications of optimizing the ACO algorithm parameters for solving
complex TSP instances and showcasing the algorithm’s potential in addressing real-life
challenges.

4.1 The Effects of Pheromones and Heuristic Bias

The parameters α and β, pheromones and heuristic bias respectively, play a crucial
role in the ACO algorithm by determining the relative importance of pheromone trails
and heuristic information, given by Formula 3.1.2. α controls the influence of the
pheromone trail, while β controls the influence of the heuristic information (e.g., the
distance between two cities). By adjusting these parameters, we can modulate the
balance between exploration and exploitation in the ACO algorithm, ultimately affecting
its performance.

To examine the effects of varying α and β on the ACO algorithm’s performance, we
conduct a series of experiments using different combinations of these parameters. The
results are visualized as filled contour plots, where the y-axis represents the α values,
the x-axis represents the β values, and the colour indicates the quality of the solution
found (redder colours indicate better solutions).

It is generally expected that a lower α value would promote exploration, as ants would
be less inclined to follow existing pheromone trails and more likely to discover new
paths. Conversely, a higher α value would encourage exploitation, with ants more likely
to follow the stronger pheromone trails, potentially leading to faster convergence but a
higher risk of getting trapped in local optima.

17

Chapter 4. Results 18

On the other hand, a lower β value would cause ants to rely less on the heuristic
information, potentially making their search more random and less directed towards
shorter paths. Meanwhile, a higher β value would emphasize the heuristic information,
guiding ants towards shorter paths more effectively but possibly causing premature
convergence.

Let us now look at Figure 4.1. Here, we can see how after 10 iterations of ACO
when α = 2 and β > 2, seem to yield the best performance, striking a balance between
exploration and exploitation. Another important remark is how the value of α is critical
to the performance of the algorithm while β is a lot more forgiving.

Figure 4.1: Filled contour plot of the best length of each instance of ACO for each value
of α,β ∈ (0,10), after 10 iterations on normalised att48. Other parameter values are
ρ = 0.8, m = 20, Q = 1 and σ = 1.

Chapter 4. Results 19

Now, we can look at the same experiment stopping after 5, 10 and 50 iterations. From
Figure 4.2, we can see that:

• As iterations increase, higher values of α became acceptable. As ACO needs
more iterations for a more exploitation-based search to yield good results.

• As iterations increase, the critical point of α that splits good and bad solutions
seems to approach 1.

Figure 4.2: Filled contour plot of the best length of each instance of ACO for each value
of α,β ∈ (0,10), after 5 10 and 50 iterations on normalised att48. Other parameter
values are ρ = 0.8, m = 20, Q = 1 and σ = 1.

After looking at these results for att48, we might question if this behaviour is consistent
with a randomly generated map. We can see similar results in Figures 4.3 and 4.4.
Here instate of using att48 as the map for TSP, we use a randomly generated map with
50 cities. The only recognisable difference between the results for these two maps is
the decrease of noise in the plots and the lines that split the lines are straighter, likely
because att48 is more deceptive than 50 random points.

Figure 4.3: Filled contour plot of the best length of each instance of ACO for each value
of α,β ∈ (0,10), after 5 10 and 50 iterations on 50 random cities. Other parameter
values are ρ = 0.8, m = 20, Q = 1 and σ = 1.

Chapter 4. Results 20

Figure 4.4: Filled contour plot of the best length of each instance of ACO for each value
of α,β ∈ (0,10), after 10 iterations on 50 random cities. Other parameter values are
ρ = 0.8, m = 20, Q = 1 and σ = 1.

At this point, we may question if this parameter space of α,β ∈ (0,10) is sufficient.

In Figure 4.5 we can see an exploration of the negative values of α and β. The results
are in line with our expectations, for negative α values there is no exploitation and all
exploration is only led by the heuristic information. For negative values of β ACO does
not perform at all, this is very logical since ants would be attracted to choose paths with
a longer distance between cities.

All the plots in this section are produced in small instances of TSP instead of bigger
ones. This is because most of the tests done in this study are done in a smaller amount
of cities to allow for a faster runtime and smoother plots, when the size of the TSP map
does not affect the results. This is the case for all the tests in this section, we can see in
Appendix B how results for 250 cities look very similar.

Chapter 4. Results 21

Figure 4.5: Filled contour plot of the best length of each instance of ACO for each value
of α,β ∈ (−25,25), after 10 iterations on 50 random cities. Other parameter values are
ρ = 0.8, m = 20, Q = 1 and σ = 1.

4.2 The Effects of a Noisy Heuristic

It is also interesting to see the effect of a noisy distance function on the α and β filled
contour plots.

In Figure 4.6 we use a noisy heuristic function η′, which is defined by:

Definition 4.2.1 (Noisy heuristic function η′).

η
′
i j =

1
2 · r ·di j

,

where di j is the distance between cityi and city j and r is a uniformly random number
from 0 to 1.

Remarkably, Fig. 4.6 illustrates that there is no optimal value of α for which β can
change and the algorithm can still yield good results. Their relationship seems to be
similar to a one-to-one correspondence of α and β which maintains the best results.

Chapter 4. Results 22

When compared to Figures 4.1 and 4.4, α = β = 2 looks like the only common place
yielding good solutions.

Figure 4.6: Filled contour plot of the best length of each instance of ACO for each value
of α,β ∈ (0,10), after 50 iterations on normalised att48 with a noisy heuristic function.
Other parameter values are ρ = 0.8, m = 20, Q = 1 and σ = 1.

Chapter 4. Results 23

4.3 The Effects of an Innovation Reward

The parameter σ serves as an innovation reward as shown in Definition 3.1.1. Figure 4.7
depicts a comparison of σ = 1 and σ = 20 ACO instances, which remarkably illustrated
the disappearance of the critical line between good and bad solutions. The instances
where σ = 20 find the best solutions, as can be seem by the darker shade of in Figure
4.7 that does not appear when σ = 1.

Figure 4.7: Filled contour plot of the best length of each instance of ACO for each value
of α,β ∈ (0,10) and σ = 1 or σ = 20, after 50 iterations on 50 random cities. Other
parameter values are ρ = 0.8, m = 20 and Q = 1.

4.4 The Effects of the Evaporation Rate

The evaporation rate ρ is a key parameter in the ACO algorithm that governs the rate
at which pheromone trails decay over time. This parameter plays a crucial role in
balancing the exploration and exploitation of the search space by the algorithm. By
adjusting the evaporation rate, we can influence the algorithm’s ability to escape local
optima and converge to global optima.

A high evaporation rate (ρ closer to 0) causes the pheromone trails to decay rapidly,
promoting exploration and allowing the algorithm to escape local optima more easily.
However, this can also lead to slower convergence, as the pheromone trails do not
persist long enough to guide the ants effectively towards better solutions.

On the other hand, a low evaporation rate (ρ closer to 1) results in slower decay of the
pheromone trails, encouraging exploitation and potentially leading to faster convergence.
However, this increased exploitation can also increase the likelihood of the algorithm
getting trapped in local optima. The ants may become overly focused on a particular
area of the search space and less likely to explore new paths.

Chapter 4. Results 24

To investigate the effects of varying ρ on the ACO algorithm’s performance, we can
experiment using different evaporation rates while keeping the other parameters constant.
Based on the results from the previous experiments, let us fix α = 1 and β = 2. Now we
can run 100 instances of ACO with different values of ρ ∈ (0,1). If we stop at iteration
i, and plot the results as ρ against the length of the best path, we can see the value of ρ

for which ACO performs best. The specific method to find this value is accessible in
Appendix A.2. We can see in Figure 4.8; for lower iterations, lower values of ρ perform
best; for higher iterations, higher values of ρ perform best. This is already an interesting
phenomenon, indicating a clear trend tend on the values of ρ.

Now, that we see this trend, we can plot this best value of ρ for each iteration, as shown
in Figure 4.9. Here, we can see this functional dependency of ρ and the maximum
number of iterations. We will explore this further in the next chapter.

Figure 4.8: Line plots showing the best length for each value of ρ ∈ (0,1) for 5, 10, 25
and 100 iterations. Vertical lines show the midpoint of the lowest average area of the
line, this is the ”best value of ρ for i iterations”. The problem instance is 1000 random
cities, other parameter values are α = 1, β = 2, m = 20, Q = 1 and σ = 1.

Chapter 4. Results 25

Figure 4.9: Plot ”best value of ρ” for each iteration. The red markers are the ”best value

of ρ” found for each iteration. The blue line is the function 1− 4
x0.784 +2

plot on top to

estimate the behaviour of the ”best value of ρ”. The problem instance is 1000 random
cities, other parameter values are α = 1, β = 2, m = 20, Q = 1 and σ = 1.

Chapter 4. Results 26

4.5 Real-world Experiments

Let us look at the results of implementing ACO for Urban Waste Management. The
first instance of this problem is all communal clear glass bins in Edinburgh. For the
algorithm the is no real difference in approaching this practical problem or a theoretical
one, though the construction of the problem statement and the choice of heuristics
varies.

Figure 4.10 shows the use of the Euclidean distance between bins to construct the
problem. The calculation of this straight distance between the bins is based on their
actual geographic coordinates.

In 4.11 we first construct the adjacency matrix of the problem statement with the
real distance on the streets of Edinburgh as explained in Subsection 3.4. The paths
between these two approaches are similar and so is the tour length, 73.4km and 71.1km,
respectively. While the results do not differ greatly, the approach applying a non-planar
heuristic to solve this non-planar problem produces a more desirable outcome and is
favoured. This is not particularly surprising, as the bin locations form a route which is
not deceptive when using a Euclidean heuristic.

Perhaps more noteworthy are the results of the second experiment in which we look at
the city centre of Edinburgh instead of the whole city. The city centre of Edinburgh is
exceptionally nonplanar and deceptive; with tunnels, one-directional streets, bridges and
dead-end roads. The application of a non-planar heuristic to this real-world structure
significantly improves the algorithm’s solution from 37.9 km to 27.2 km, visible in
Figures 4.12 and 4.13

Chapter 4. Results 27

Figure 4.10: Communal clear glass bins in Edinburgh, size 29, 1000 iterations, α = 1,
β = 2, ρ = 0.8, Q = 1, σ = 1, 20 ants, heuristic Euclidean distance. The tour length is
73.4 km.

Figure 4.11: Communal clear glass bins in Edinburgh, size 29, 1000 iterations, α = 1,
β = 2, ρ = 0.8, Q = 1, σ = 1, 20 ants, heuristic real distance (non-planar). The tour
length is 71.1 km.

Chapter 4. Results 28

Figure 4.12: Communal food waste bins in the City Centre of Edinburgh, size 71, 1000
iterations, α = 1, β = 2, ρ = 0.8, Q = 1, σ = 1, 20 ants, heuristic real distance (non-
planar). The tour length is 27.2 km.

Figure 4.13: Communal food waste bins in the City Centre of Edinburgh, size 71, 1000
iterations, α = 1, β = 2, ρ = 0.8, Q = 1, σ = 1, 20 ants, heuristic Euclidean distance.
The tour length is 37.9 km.

Chapter 5

Discussion

The results of these experiments on the ACO algorithm for solving TSP provide valuable
insights into the impact of different ACO parameters on the algorithm’s performance
and solution quality. We will explore these insights in this chapter.

5.1 The Role of Metaheuristics

Metaheuristic optimization techniques have been instrumental in addressing complex
optimization problems that are often intractable using conventional methods. By intelli-
gently exploring the search space and exploiting accumulated knowledge, metaheuristics
deliver efficient and effective solutions to a broad range of optimization challenges.
However, it is crucial to maintain a critical perspective on their development process
and ensure that scientific rigour is preserved.

In his paper ”Metaheuristics—the metaphor exposed,” Kenneth Sörensen criticizes
the overreliance on natural or man-made processes as a source of inspiration for new
optimization algorithms [55]. According to Sörensen, the proliferation of metaphor-
based metaheuristics has led the field away from scientific rigour and resulted in the
development of algorithms that may not offer significant improvements over existing
methods. He contends that the extensive use of metaphors as inspiration and justification
for new methods has created a vulnerability in the metaheuristics field, making it
susceptible to unscientific practices and fallacies.

Despite these concerns, it is necessary to acknowledge that innovative and high-quality
research is still being conducted within the field of metaheuristics. The key to main-
taining scientific rigour lies in thoroughly understanding the underlying principles that
drive the success of natural systems, rather than merely replicating their superficial char-
acteristics. Moreover, the development of new metaheuristics should be supported by
rigorous empirical and theoretical analysis to demonstrate their effectiveness, efficiency,
and scalability across various problem domains.

Given the points raised by Sörensen, the discussion in this dissertation will attempt to
move away from heavy reliance on the ant metaphor and instead focus on the parameter
space and performance of the ACO algorithm. By conducting extensive experiments

29

Chapter 5. Discussion 30

and analyzing the impact of different parameter settings on ACO’s performance, re-
searchers can gain a deeper understanding of the algorithm’s behaviour, leading to
a more informed and efficient application of the algorithm in solving optimization
problems.

While it is vital to remain critical of the overreliance on nature-inspired metaphors
when developing metaheuristics, it is undeniable that some of these methods have made
significant contributions to the field of optimization, as discussed in the Background
chapter. The challenge for researchers is to strike a balance between drawing inspiration
from natural systems and maintaining scientific rigour by thoroughly understanding
the principles behind these systems and evaluating the performance of the resulting
algorithms. The following discussion aims to contribute to achieving this balance,
providing valuable insights into the parameter space and performance of ACO.

5.2 The Role of the Exponents α and β

Our experimental results offer valuable insights into the interplay between the pheromones
and heuristic bias in the ACO algorithm. Through a series of experiments, we have
observed the impact of varying α and β values on the algorithm’s performance in
solving the TSP. Our findings highlight the importance of striking a delicate balance
between exploration and exploitation for achieving optimal performance.

The filled contour plots serve as a visual representation of the quality of solutions
obtained for different combinations of α and β values. As hypothesized, lower α values
promote exploration by reducing the reliance on pheromone trails, while higher α values
encourage exploitation by increasing the influence of pheromone trails. Similarly, lower
β values diminish the impact of heuristic information, making the search process more
random, while higher β values accentuate the heuristic information, guiding ants more
effectively towards shorter paths.

The results indicate that the best performance is achieved when α = 2 and β > 2.
This balance between exploration and exploitation allows the algorithm to efficiently
search the solution space, while still benefiting from the accumulated knowledge of
the ants. The fact that the value of α has a more significant impact on the algorithm’s
performance than the value of β might be attributed to the critical role that pheromones
play in guiding ants’ decisions. This observation is consistent across different TSP
instances, including both the att48 and randomly generated maps with 50 cities.

Furthermore, our findings suggest that as the number of iterations increases, higher
values of α become more acceptable. This could be because a more exploitation-
based search requires more iterations to yield good results. The critical point of α that
separates good and bad solutions appears to approach 1 as the number of iterations
increases, which may indicate the algorithm’s adaptability to different stages of the
search process.

Our exploration of the effects of a noisy heuristic function on the performance of the
ACO algorithm is particularly interesting. The noisy heuristic function introduces
uncertainty in the distance information, which in turn affects the algorithm’s decision-

Chapter 5. Discussion 31

making process. In the presence of a noisy heuristic function, there is no single optimal
value of α that can yield good results for all values of β. Instead, we observe a more
complex relationship between α and β, with a one-to-one correspondence between the
two parameters that maintain the best results. This finding emphasizes the importance
of considering the quality and reliability of heuristic information when tuning the ACO
algorithm’s parameters.

Perhaps, some of the most surprising results are the ones shown in Figure 4.5, which
seems like a negative α can still produce good performance on ACO. However, we
should think about how these results are oblation, when α is negative ants are attracted
to paths with smaller pheromone levels. This means that these paths could not be
obtained by exploitation of good paths since the information that the pheromone matrix
holds is not accessible to ants for negative α. We can now hypnotise, these paths that
seem to be as good as the paths when α,β > 0 must have been found through random
and greedy search.

To test this we can use the length of the ”current best path” instated of the ”best path
found”. ACO can often lose information if the parameter values are not appropriate.
When we subtract the length of the ”current best path” to the length ”best path found”,
we get an estimated value for how much information are we retaining, where the closer
to zero the more information about the best path we are keeping on the pheromones
trails. The result of this is Figure 5.1, here we can clearly see, negative α values although
originally seemed to perform adequately, only produce results randomly and through
greedy search and should be avoided, particularly when working with larger and more
deceptive instances of TSP.

5.3 The Role of the Innovation Reward σ

In this section, we evaluate the impact of the innovation reward, controlled by the
parameter σ, on the performance of the ACO algorithm when solving the TSP. The
comparison of the quality of solutions obtained for different combinations of α and β

values when σ = 1 and σ = 20, as shown in Figure 4.7, offers interesting insights into
the role of innovation rewards in the ACO algorithm.

The disappearance of the critical line separating good and bad solutions, previously
observed in experiments without the innovation reward, suggests that a higher innovation
reward (σ = 20) may help the algorithm explore the solution space more effectively.
The increased exploration of new paths can potentially enable the ACO algorithm to
avoid local optima, ultimately leading to better solutions.

Furthermore, the darker shade of red in the plot for instances with σ = 20 implies that
higher innovation rewards result in the discovery of better solutions. It is possible that
the higher value of σ encourages ants to explore new paths more effectively, leading to
better solutions by escaping from local optima more easily.

It is worth considering the possible reasons for these observations. One hypothesis is
that the higher innovation reward promotes a more balanced exploration-exploitation
trade-off, allowing the algorithm to search for better solutions while still utilizing

Chapter 5. Discussion 32

Figure 5.1: Filled contour plot of the ”best current length”−”best length” of each instance
of ACO for each value of α,β ∈ (0,10), after 10 iterations on normalised 50 random
cities. Other parameter values are ρ = 0.8, m = 20, Q = 1 and σ = 1.

the accumulated pheromone information. Another hypothesis is that the increased
innovation reward may prevent the algorithm from getting trapped in local optima, as
ants are heavily rewarded for every small innovation.

However, it is crucial to critically assess the results and question whether the paths
generated with σ = 20 are genuinely better.

So from Figure 4.7 we can take the best instances of both plots and see how the path
they describe looks. This is what we find in Figure 5.2, and even though both paths look
very similar, the path provided by the instance of ACO where σ = 1 is a self-intersecting
path which is always suboptimal in a Euclidean version of TSP. The path provided
by the instance of ACO where σ = 20 is not a self-intersecting path, and it also has a
shorter length.

This already looks promising, σ = 20 provides better structured and shorter paths. To
look at this further, we can run 20,000 copies of ACO for 50 iterations, half of them for
σ = 1 and the other half for σ = 20. We can see the results of this experiment in Figure
5.3. In this Figure we see two plots, if we first focus on the left plot, we see how for a
small number of iterations (< 10), σ = 1 seems to yield better results on average, this is

Chapter 5. Discussion 33

Figure 5.2: Two different routes for att48. (a) is self-intersecting, (b) is not. In discontinu-
ous orange lines the optimal route.

likely because for not many iterations a greedy approach without much interest in the
pheromones trails is sufficient. However, as iterations pass, σ = 20 performs on average
better than σ = 1. If we now look at the right side of Figure 5.3, we find a probability
histogram of the ”best length” found for each instance of ACO after 50 iterations. This
histogram shows clearly how σ = 20 produces better results for ACO. Also, from this
histogram we find that σ = 1 seems to produce a normal distribution when plotted in
this manner; however, the distribution of σ = 20 seems to have a longer tail and favours
shorter solutions.

Figure 5.3: Comparison of 20,000 instances of ACO for 50 iterations on 50 random
cities, for σ = 1 and σ = 2. Other parameter values are α = 1, β = 2, m = 20, Q = 1
and ρ = 0.8.

These results highlight the importance of understanding the impact of varying the
σ value on the ACO algorithm’s performance and show promise for future research.
Further investigation is needed to determine the optimal range of σ values for different

Chapter 5. Discussion 34

problem instances and search scenarios and to better comprehend the role of innovation
rewards in the ACO algorithm.

5.4 The Role of the Evaporation Rate ρ

The evaporation rate, ρ, is a critical parameter in the ACO algorithm that determines
the rate at which pheromone trails decay over time. By modifying the evaporation rate,
we can affect the algorithm’s balance between exploration and exploitation, ultimately
influencing its ability to escape local optima and converge to global optima. A high
evaporation rate (ρ closer to 0) places greater emphasis on recent information, promoting
exploitation by reducing the influence of past information. On the other hand, a low
evaporation rate (ρ closer to 1) encourages exploration by allowing pheromone trails to
persist, guiding ants towards previously discovered promising paths.

We recall from Definition 3.1.1 that the pheromone update rule incorporates the evapora-
tion rate, ρ. With a high evaporation rate, the algorithm favours more recent information
from the ants’ tours, making it more adaptive to changes in the search space. This
adaptability can be particularly useful when the algorithm has not yet explored most of
the search space and should not over-commit to any solutions.

Our experiments have revealed an interesting relationship between the optimal evapora-
tion rate and the number of iterations. The function

1− 4
i0.784 +2

(5.1)

provides an estimation of the optimal evaporation rate, ρ, as a function of the number
of iterations, i. As the number of iterations increases, the optimal ρ approaches a higher
value, which minimizes the value of recent information and strikes a balance between
exploration and exploitation.

One possible explanation for this relationship is that in the early stages of the algorithm,
the ants have only explored a small portion of the search space and the knowledge
accumulated by the pheromone trails is not reliable or informative. In these early
iterations having a high evaporation rate allows the algorithm to avoid overreliance on
insufficient pheromone trails, while also giving the algorithm space for adaptability and
change.

As the number of iterations increases, the ants have explored a larger portion of the
search space, and their accumulated knowledge becomes more reliable. In this context,
a lower evaporation rate allows the algorithm to rely more upon pheromones trails and
exploit the small variations of already good paths.

It is essential to consider how these findings might generalize to smaller or larger
TSP instances. For smaller TSP instances, the search space is less complex, and a
greater emphasis on exploration might be beneficial. In such cases, the optimal ρ might
converge more slowly to a value further away from 1. Conversely, for larger TSP
instances, the search space becomes more complex, and a more balanced approach
between exploration and exploitation might be necessary. The optimal value of ρ might

Chapter 5. Discussion 35

converge to a number closer to 1 as iterations pass at a faster rate, as accumulating
information on larger instances of TSP becomes relatively more important than for
smaller ones.

Furthermore, the ants’ route construction process, as described in Definition 3.1.2, is
also influenced by the evaporation rate. A high evaporation rate leads to more volatile
pheromone trails, which can affect the ants’ decision-making process when choosing
the next city to visit. This increased volatility could, in turn, promote exploration and
help the ants avoid local optima.

Understanding the relationship between the evaporation rate and the number of iterations
is vital for optimizing the ACO algorithm’s performance. By adjusting the evaporation
rate according to the problem’s complexity, the desired balance between exploration
and exploitation, and the ants’ accumulated knowledge, we can fine-tune the algorithm
to perform effectively across various problem sizes and search space complexities. By
analyzing the relationship between ρ and the number of iterations and adapting it to
different problem instances, we can improve the efficiency and effectiveness of the
ACO algorithm in solving TSP and other optimization problems.

An interesting direction for future work is to investigate how the optimal evaporation
rate and its relationship with the number of iterations vary across different types of
problem instances, such as those with varying degrees of noise or constraints. By doing
so, we can develop a more comprehensive understanding of the role of the evaporation
rate in the ACO algorithm and potentially devise adaptive strategies for adjusting the
evaporation rate in response to the problem’s characteristics.

Lastly, it would be valuable to explore the impact of dynamic evaporation rates, where
the evaporation rate is adjusted over time according to the algorithm’s progress. We can
test this briefly; if we take the function that we defined in Function 5.1, we can compare
20 ACO instances, 10 have ρ = 0.8 and the other 10 have ρ as defined in Function 5.1.
The result of this comparison can be seen in Figure 5.4. This dynamic approach for
ρ seems very promising. Looking at both runs, the first thing that we realise is that
both lines behave the same for the first two iterations. This is because we can only use
the function defined in Function 5.1 when i > 2 so that ρ ∈ (0,1), else we use ρ = 0.8.
After these two iterations, it is clear that the dynamic approach significantly outperforms
ρ = 0.8 for the first ≈ 20 iterations. At this point, ρ = 0.8 produces better results, as
expected based on Figure 4.9, which shows that ρ = 0.8 performs best in this range.
It also seems that by the time ACO stops, reaching 100 iterations, both variants are
performing similarly. However, the dynamic approach has been continuously improving
meanwhile the constant approach has not.

This last experiment, even though inconclusive, as it only runs for 100 iterations and
has just 10 copies of each instance, shows a very real promise in a dynamic ρ approach.
Such a dynamic approach could enable the ACO algorithm to adapt more effectively
to various problem instances, further enhancing its performance in solving complex
optimization problems.

Chapter 5. Discussion 36

Figure 5.4: Comparison of constant and dynamic ρ values, 10 ACO instances for each
value. The problem instance is 1000 random cities, other parameter values are α = 1,
β = 2, m = 20, Q = 1 and σ = 1.

5.5 Reinforcement Learning and ACO

Reinforcement Learning (RL) is a subfield of machine learning that focuses on training
agents to make decisions by interacting with an environment. In RL, an agent learns
to choose the best actions based on the feedback it receives in the form of rewards or
penalties. The primary goal of the agent is to maximize the cumulative reward over
time [59].

One of the fundamental algorithms in RL is Q-learning, an off-policy, model-free
algorithm that estimates the expected value of taking an action in a specific state. Q-
learning enables the agent to learn an optimal policy for decision-making by updating
the estimated action values iteratively, based on the rewards received and the discounted
value of future states. The algorithm converges to the optimal policy when given enough
time [63].

Ant-Q is a variant of the ACO algorithm that incorporates concepts from Q-learning,
forming a hybrid between reinforcement learning and ACO. In Ant-Q, artificial ants act
as agents, learning to choose the best actions by updating a pheromone matrix based on
the quality of the solutions they find [32, 23].

Reinforcement learning has gained significant attention in recent years, thanks to its
success in various domains, such as robotics, game playing, and control systems [59].
However, with a better understanding of ACO and its parameters, the algorithm also
has the potential to deliver comparable results. Future research efforts could focus on
bringing recent insights from RL to ACO.

Chapter 5. Discussion 37

5.6 The Real World

In this section, we discuss the results of implementing the ACO algorithm for urban
waste management in The City of Edinburgh, focusing on two instances: communal
clear glass bins and communal food waste bins. Our objective is to understand the
performance of the ACO algorithm in real-world applications and compare its solutions
to those provided by the current software used by The City of Edinburgh, RouteSmart
[47].

As detailed in Subsection 3.4, we experimented with two different heuristics for con-
structing the problem: Euclidean distances and non-planar real distances. Figures
4.10 and 4.11 show the tours generated by the ACO algorithm using these heuristics
for the communal clear glass bins in Edinburgh. The non-planar heuristic yields a
slightly better tour length of 71.1 km compared to 73.4 km with the Euclidean heuristic.
This improvement suggests that incorporating real-world distances into the problem
statement can result in more accurate and efficient routes.

In the second experiment, we focus on the City Centre of Edinburgh, a highly non-
planar and complex area characterized by tunnels, one-directional streets, bridges, and
dead-end roads. In this case, using a non-planar heuristic significantly improves the
results from 37.9 km to 27.2 km, as shown in Figures 4.12 and 4.13. This substantial
improvement underscores the importance of using accurate heuristics for problem
instances with a high degree of non-planarity.

When comparing the ACO algorithm’s solutions to those provided by RouteSmart, the
current software used by The City of Edinburgh, it is essential to consider several factors.
RouteSmart is a commercial software package that has been specifically designed
and optimized for waste collection routing [2]. It incorporates advanced algorithms
and heuristic approaches, as demonstrated in [53] The last public information on
RouteSmart’s functionality dates back to 2008, and it is expected that the software may
not have changed significantly since then.

RouteSmart is proprietary software, thus its underlying algorithms and methods are
not openly accessible. Furthermore, RouteSmart performs multi-objective optimization
that caters to various objectives in waste collection routing (e.g. such as avoiding
certain times). It is important to note that the ACO algorithm can be extended to
handle multi-objective problems through scalarization techniques, offering a more
comprehensive optimization solution. Additionally, the software package may include
numerous features that may not be necessary for a city the size of Edinburgh, potentially
leading to increased complexity and cost.

The ACO algorithm developed in this dissertation is open-source, allowing for trans-
parency and the possibility of community-driven improvements. While the ACO
algorithm has demonstrated its ability to generate efficient routes in our experiments,
it may not yet be on par with the performance of a dedicated routing software like
RouteSmart. However, the results obtained in the experiments suggest that there is
potential for improvement and further development of the ACO algorithm to tackle
real-world urban waste management problems effectively.

Chapter 5. Discussion 38

The impact of this work lies in demonstrating the applicability of the ACO algorithm
to real-world problems, particularly in the context of urban waste management. By
exploring different heuristics and problem instances, we have gained valuable insights
into the performance and adaptability of the ACO algorithm. These insights can be
used to guide future research and development efforts aimed at improving the efficiency
and effectiveness of ACO and other metaheuristics for solving complex, non-planar
optimization problems.

Future work in this area may include exploring additional heuristics, refining the
ACO algorithm for improved performance, and extending the algorithm to handle
multi-objective optimization through scalarization techniques. By considering multiple
objectives in the optimization process, the ACO algorithm can better cater to the
diverse needs and constraints of urban waste management systems. Additionally, further
research can be conducted on integrating ACO with other optimization algorithms or
techniques, such as local search or hybrid algorithms, to achieve even better results.

Chapter 6

Conclusion and Further Study

6.1 Conclusion

In this dissertation, we investigated the ACO algorithm and its application to TSP and
real-world urban waste management problems. Through a series of experiments, we
gained valuable insights into the impact of various parameter values, heuristics, and
problem instances on the performance of the ACO algorithm.

The experiments on the TSP revealed the importance of understanding the role of
parameters such as α, β, ρ, and σ in the ACO algorithm. By carefully tuning these
parameters, we were able to optimize the algorithm’s performance and improve its
ability to solve the TSP. We also examined the effect of varying the number of iterations
on the performance of the algorithm and discovered an interesting relationship between
the optimal evaporation rate and the number of iterations.

The real-world application to urban waste management has demonstrated the potential
of the ACO algorithm in generating efficient waste collection routes for The City
of Edinburgh. We found that using non-planar heuristics significantly improved the
algorithm’s performance, particularly in complex, non-planar areas such as the city
centre. Although this ACO implementation may not yet rival the performance of
dedicated routing software like RouteSmart, the open-source nature and adaptability of
the algorithm provide a promising foundation for further development and improvement.

This work contributes to the understanding of the applicability and potential of meta-
heuristics, particularly ACO, for solving real-world optimization problems in the context
of urban waste management. Our findings can be used to guide future research and
development efforts aimed at enhancing the efficiency and effectiveness of ACO and
other metaheuristics for solving complex, non-planar optimization problems.

39

Chapter 6. Conclusion and Further Study 40

6.2 Further Study

There are several avenues for further research in this area. One direction is to explore
additional heuristics and refine the ACO algorithm for improved performance in solving
the TSP and other optimization problems. This includes investigating the impact of
dynamic parameter values, such as the evaporation rate, on the algorithm’s performance
and adaptability. Additionally, the development of more sophisticated heuristics for
real-world problems, such as urban waste management, may lead to even better results.

Another area of interest is the extension of the ACO algorithm to handle multi-objective
optimization problems through scalarization techniques. By considering multiple
objectives in the optimization process, the ACO algorithm can better cater to the
diverse needs and constraints of urban waste management systems and other real-world
applications.

Further research can also focus on integrating ACO with other optimization algorithms
or techniques, such as local search or hybrid algorithms, to achieve even better results.
With a better understanding of the effect of the parameters of ACO, the combination
of different optimization approaches may lead to the development of more powerful
and versatile metaheuristics, capable of solving a wide range of complex optimization
problems.

Lastly, the application of ACO to other real-world problems beyond urban waste
management, such as other vehicle routing, logistics, and supply chain optimization,
offers the opportunity to explore the versatility and potential of the algorithm in various
domains. By demonstrating the effectiveness of ACO in different settings, we can
contribute to the broader understanding and application of metaheuristics for real-world
optimization challenges.

Bibliography

[1] Interface runnable. https://docs.oracle.com/javase/7/docs/api/java/
lang/Runnable.html. Accessed: 2023-04-07.

[2] Routesmart - intelligent routing software. http://web.archive.org/web/
20230406081257/https://www.routesmart.com/. Accessed: 2023-04-07.

[3] Daniel Angus and Clinton Woodward. Multiple objective ant colony optimisation.
Swarm intelligence, 3:69–85, 2009.

[4] David L Applegate, Robert E Bixby, Vašek Chvátal, and William J Cook. The
traveling salesman problem. In The Traveling Salesman Problem. Princeton
university press, 2011.

[5] Erfan Babaee Tirkolaee, Iraj Mahdavi, Mir Mehdi Seyyed Esfahani, and Gerhard-
Wilhelm Weber. A hybrid augmented ant colony optimization for the multi-
trip capacitated arc routing problem under fuzzy demands for urban solid waste
management. Waste management & research, 38(2):156–172, 2020.

[6] Brian W Baetz. Optimization/simulation modeling for waste management capacity
planning. Journal of Urban Planning and Development, 116(2):59–79, 1990.

[7] Per Bak. How nature works: the science of self-organized criticality. Springer
Science & Business Media, 2013.

[8] Jillian Beardwood, John H Halton, and John Michael Hammersley. The short-
est path through many points. In Mathematical Proceedings of the Cambridge
Philosophical Society, volume 55, pages 299–327. Cambridge University Press,
1959.

[9] John E Bell and Patrick R McMullen. Ant colony optimization techniques for the
vehicle routing problem. Advanced engineering informatics, 18(1):41–48, 2004.

[10] George Bilchev and Ian C Parmee. The ant colony metaphor for searching
continuous design spaces. In Evolutionary Computing: AISB Workshop Sheffield,
UK, April 3–4, 1995 Selected Papers, pages 25–39. Springer Berlin Heidelberg,
1995.

[11] Christian Blum. Beam-aco—hybridizing ant colony optimization with beam
search: An application to open shop scheduling. Computers & Operations Re-
search, 32(6):1565–1591, 2005.

41

https://docs.oracle.com/javase/7/docs/api/java/lang/Runnable.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Runnable.html
http://web.archive.org/web/20230406081257/https://www.routesmart.com/
http://web.archive.org/web/20230406081257/https://www.routesmart.com/

Bibliography 42

[12] Bernd Bullnheimer, Richard Hartl, and Christine Strauss. A new rank based
version of the ant system - a computational study. Central European Journal of
Operations Research, 7:25–38, 01 1999.

[13] Joao L Caldeira, Ricardo C Azevedo, Carlos A Silva, and Joao MC Sousa. Supply-
chain management using aco and beam-aco algorithms. In 2007 IEEE Interna-
tional Fuzzy Systems Conference, pages 1–6. IEEE, 2007.

[14] Vašek Chvátal, William Cook, George B Dantzig, Delbert R Fulkerson, and
Selmer M Johnson. Solution of a large-scale traveling-salesman problem. 50
Years of Integer Programming 1958-2008: From the Early Years to the State-of-
the-Art, pages 7–28, 2010.

[15] Alberto Colorni, Marco Dorigo, Vittorio Maniezzo, et al. Distributed optimization
by ant colonies. In Proceedings of the first European conference on artificial life,
volume 142, pages 134–142. Paris, France, 1991.

[16] Rina Dechter and Judea Pearl. Generalized best-first search strategies and the
optimality of a*. Journal of the ACM (JACM), 32(3):505–536, 1985.

[17] J L Deneubourg, Serge Aron, Simon Goss, and Jacques M Pasteels. The self-
organizing exploratory pattern of the argentine ant. Journal of insect behavior,
3:159–168, 1990.

[18] Wu Deng, Junjie Xu, and Huimin Zhao. An improved ant colony optimiza-
tion algorithm based on hybrid strategies for scheduling problem. IEEE access,
7:20281–20292, 2019.

[19] Gianni Di Caro and Marco Dorigo. Ant colony optimization and its application to
adaptive routing in telecommunication networks. PhD thesis, PhD thesis, Faculté
des Sciences Appliquées, Université Libre de Bruxelles . . . , 2004.

[20] James E Doran and Donald Michie. Experiments with the graph traverser program.
Proceedings of the Royal Society of London. Series A. Mathematical and Physical
Sciences, 294(1437):235–259, 1966.

[21] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization.
IEEE computational intelligence magazine, 1(4):28–39, 2006.

[22] Marco Dorigo and Christian Blum. Ant colony optimization theory: A survey.
Theoretical computer science, 344(2-3):243–278, 2005.

[23] Marco Dorigo and Luca Maria Gambardella. A study of some properties of ant-q.
In Parallel Problem Solving from Nature—PPSN IV: International Conference on
Evolutionary Computation—The 4th International Conference on Parallel Problem
Solving from Nature Berlin, Germany, September 22–26, 1996 Proceedings 4,
pages 656–665. Springer, 1996.

[24] Marco Dorigo and Luca Maria Gambardella. Ant colony system: a cooperative
learning approach to the traveling salesman problem. IEEE Transactions on
evolutionary computation, 1(1):53–66, 1997.

Bibliography 43

[25] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Ant system: optimization
by a colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 26(1):29–41, 1996.

[26] Marco Dorigo and Thomas Stützle. Ant colony optimization: overview and recent
advances. Springer, 2019.

[27] A.E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary
algorithms. IEEE Transactions on Evolutionary Computation, 3(2):124–141,
1999.

[28] Adam Erskine and J Michael Herrmann. Crips: Critical particle swarm optimisa-
tion. In Artificial Life Conference Proceedings, pages 207–214. MIT Press One
Rogers Street, Cambridge, MA 02142-1209, USA journals-info . . . , 2015.

[29] Md Hasanul Ferdaus, Manzur Murshed, Rodrigo N Calheiros, and Rajkumar
Buyya. Multi-objective, decentralized dynamic virtual machine consolidation
using aco metaheuristic in computing clouds. arXiv preprint arXiv:1706.06646,
2017.

[30] C-N Fiechter. A parallel tabu search algorithm for large traveling salesman
problems. Discrete Applied Mathematics, 51(3):243–267, 1994.

[31] C Fountas and A Vlachos. Ant colonies optimization (aco) for the solution of the
vehicle routing problem (vrp). Journal of information and optimization sciences,
26(1):135–142, 2005.

[32] Luca M Gambardella and Marco Dorigo. Ant-q: A reinforcement learning ap-
proach to the traveling salesman problem. In Machine learning proceedings 1995,
pages 252–260. Elsevier, 1995.

[33] Simon Goss, Serge Aron, Jean-Louis Deneubourg, and Jacques Marie Pasteels.
Self-organized shortcuts in the argentine ant. Naturwissenschaften, 76(12):579–
581, 1989.

[34] P P Grassé and Ch Noirot. L’évolution de la symbiose chez les isoptères. Experi-
entia, 15:365–372, 1959.

[35] Şaban Gülcü, Mostafa Mahi, Ömer Kaan Baykan, and Halife Kodaz. A parallel
cooperative hybrid method based on ant colony optimization and 3-opt algorithm
for solving traveling salesman problem. Soft Computing, 22:1669–1685, 2018.

[36] Michael Guntsch and Martin Middendorf. Solving multi-criteria optimization
problems with population-based aco. In Evolutionary Multi-Criterion Optimiza-
tion: Second International Conference, EMO 2003, Faro, Portugal, April 8–11,
2003. Proceedings 2, pages 464–478. Springer, 2003.

[37] Walter J Gutjahr and Marion S Rauner. An aco algorithm for a dynamic re-
gional nurse-scheduling problem in austria. Computers & Operations Research,
34(3):642–666, 2007.

[38] Michael Held and Richard M Karp. The traveling-salesman problem and minimum
spanning trees. Operations Research, 18(6):1138–1162, 1970.

Bibliography 44

[39] J Michael Herrmann, Adam Price, and Thomas Joyce. 3. ant colony optimization
and reinforcement learning. In Computational Intelligence, pages 45–62. De
Gruyter, 2020.

[40] Pierre C Hohenberg and Bertrand I Halperin. Theory of dynamic critical phenom-
ena. Reviews of Modern Physics, 49(3):435, 1977.

[41] Kashif Hussain, Mohd Najib Mohd Salleh, Shi Cheng, and Yuhui Shi. Metaheuris-
tic research: a comprehensive survey. Artificial intelligence review, 52:2191–2233,
2019.

[42] Nikolaos V Karadimas, Katerina Papatzelou, and Vassili G Loumos. Optimal
solid waste collection routes identified by the ant colony system algorithm. Waste
management & research, 25(2):139–147, 2007.

[43] R Kavitha, D Kiruba Jothi, K Saravanan, Mahendra Pratap Swain, José Luis Arias
Gonzáles, Rakhi Joshi Bhardwaj, Elijah Adomako, et al. Ant colony optimization-
enabled cnn deep learning technique for accurate detection of cervical cancer.
BioMed Research International, 2023, 2023.

[44] Morten Lovbjerg and Thiemo Krink. Extending particle swarm optimisers with
self-organized criticality. In Proceedings of the 2002 Congress on Evolutionary
Computation. CEC’02 (Cat. No. 02TH8600), volume 2, pages 1588–1593. IEEE,
2002.

[45] Oscar Montiel-Ross, Nataly Medina-Rodriguez, Roberto Sepulveda, and Patricia
Melin. Methodology to optimize manufacturing time for a cnc using a high
performance implementation of aco. International Journal of Advanced Robotic
Systems, 9(4):121, 2012.

[46] Jonathan Moss and Colin G Johnson. An ant colony algorithm for multiple
sequence alignment in bioinformatics. In Artificial Neural Nets and Genetic
Algorithms: Proceedings of the International Conference in Roanne, France, 2003,
pages 182–186. Springer, 2003.

[47] Angus Murdoch. Request for edinburgh waste management information, Apr
2023. Email communications.

[48] Dheeraj Pal, Pratima Verma, Divya Gautam, and Priyanka Indait. Improved opti-
mization technique using hybrid aco-pso. In 2016 2nd International Conference
on Next Generation Computing Technologies (NGCT), pages 277–282. IEEE,
2016.

[49] Riccardo Poli. Analysis of the publications on the applications of particle swarm
optimisation. Journal of Artificial Evolution and Applications, 2008:1–10, 2008.

[50] Sarifah Putri Raflesia and Anugrah K. Pamosoaji. A novel ant colony optimization
algorithm for waste collection problem. In 2019 4th International Conference
on Information Technology, Information Systems and Electrical Engineering
(ICITISEE), pages 413–416, 2019.

Bibliography 45

[51] Teng Ren, Tianyu Luo, Binbin Jia, Bihao Yang, Ling Wang, and Lining Xing.
Improved ant colony optimization for the vehicle routing problem with split pickup
and split delivery. Swarm and Evolutionary Computation, 77:101228, 2023.

[52] Surya Sahoo, Seongbae Kim, Byung-In Kim, Bob Kraas, and Alexander Popov Jr.
Routing optimization for waste management. Interfaces, 35(1):24–36, 2005.

[53] Robert Shuttleworth, Bruce L Golden, Susan Smith, and Edward Wasil. Advances
in meter reading: Heuristic solution of the close enough traveling salesman
problem over a street network, 2008.

[54] Eric Sigel, Bruce Denby, and Sylvie Le Hégarat-Mascle. Application of ant
colony optimization to adaptive routing in a leo telecommunications satellite net-
work. In Annales des télécommunications, volume 57, pages 520–539. PRESSES
POLYTECHNIQUES ROMANDES, 2002.

[55] Kenneth Sörensen. Metaheuristics—the metaphor exposed. International Trans-
actions in Operational Research, 22(1):3–18, 2015.

[56] Thomas Stützle and Marco Dorigo. Aco algorithms for the quadratic assignment
problem. New ideas in optimization, 33, 1999.

[57] Thomas Stutzle and Marco Dorigo. A short convergence proof for a class of ant
colony optimization algorithms. IEEE Transactions on evolutionary computation,
6(4):358–365, 2002.

[58] Thomas Stützle and Holger H Hoos. Max–min ant system. Future generation
computer systems, 16(8):889–914, 2000.

[59] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[60] E-G Talbi, Olivier Roux, Cyril Fonlupt, and Denis Robillard. Parallel ant colonies
for the quadratic assignment problem. Future Generation Computer Systems,
17(4):441–449, 2001.

[61] Ahamed Fayeez Tuani, Edward Keedwell, and Matthew Collett. Heterogenous
adaptive ant colony optimization with 3-opt local search for the travelling salesman
problem. Applied Soft Computing, 97:106720, 2020.

[62] Christine L Valenzuela and Antonia J Jones. Estimating the held-karp lower bound
for the geometric tsp. European journal of operational research, 102(1):157–175,
1997.

[63] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–
292, 1992.

[64] Fanlei Yan. Autonomous vehicle routing problem solution based on artificial
potential field with parallel ant colony optimization (aco) algorithm. Pattern
recognition letters, 116:195–199, 2018.

[65] Yuru Zhang, Chenyang Wang, Hui Li, Xiaodong Su, Ming Zhao, and Nan Zhang.
An improved 2-opt and aco hybrid algorithm for tsp. In 2018 Eighth International

Bibliography 46

Conference on Instrumentation & Measurement, Computer, Communication and
Control (IMCCC), pages 547–552, 2018.

[66] Xiangbing Zhou, Hongjiang Ma, Jianggang Gu, Huiling Chen, and Wu Deng.
Parameter adaptation-based ant colony optimization with dynamic hybrid mecha-
nism. Engineering Applications of Artificial Intelligence, 114:105139, 2022.

Appendix A

Python and Java Code

A.1 Finding the Best ρ for Each Iteration

In the given code snippet, two Python functions are used to analyze a DataFrame df in
order to find the best rho values that minimize the bestLength for each iteration. The
code is as follows:

def average(df, pos, step):
tmp = df.loc[pos:pos+step]
return (pos, tmp[’bestLength’].mean())

def best_rho_for_all_iters(step, df):
best_rhos = []
for i in range(2, df.iteration.max()+1):

df_i = df[df[’iteration’] == i]
df_i = df_i[[’rho’, ’bestLength’]].set_index(’rho’)
l, pos = [], 0
while pos + step <= 1:

pos += 0.01
l.append(average(df_i, pos, step))

best_rhos.append(min(l, key=lambda t: t[1])[0])
return best_rhos

The first function, average(df, pos, step), takes a DataFrame, a position, and a
step size as input. It calculates the mean of the bestLength values within a specified
range in the DataFrame. The range is determined by the position pos and the step size
step.

The second function, best rho for all iters(step, df), processes the DataFrame
df to compute optimal rho values that minimize bestLength for all iterations and
returns a list containing the best rho values.

47

Appendix A. Python and Java Code 48

A.2 Creating TSP from the Communal Bins of Edinburgh

This is the structure of the Python script that creates and saves two types of adjacency
matrices for a set of geographical locations, where each location represents a bin. The
script takes optional command-line arguments for bin type and ward name to filter bins.
It uses the OSMnx library to handle OpenStreetMap data and NetworkX for graph
manipulation.

create graph():

def create_graph():
return ox.load_graphml("data/edinburgh_graph.graphml")

Loads a pre-built graph from a GraphML file and returns it.

heu(node, goal):

def heu(node, goal):
return ox.distance.euclidean_dist_vec(G.nodes[node][’x’],

G.nodes[node][’y’], G.nodes[goal][’x’], G.nodes[goal][’y’])

Calculates the Euclidean distance between two nodes in the graph as a heuristic function
for the A* algorithm.

create map nonplanar(node ids):

def create_map_nonplanar(node_ids):
...
adjacency_matrix = np.zeros((len(node_ids), len(node_ids)))
...
adjacency_matrix[i, j] = nx.algorithms.shortest_paths

.astar.astar_path_length(G, node_ids[i], node_ids[j],
heuristic=heu , weight=’length’)

...
return (normalize(adjacency_matrix, axis=1, norm=’l1’), node_ids)

Builds a non-planar adjacency matrix using the A* algorithm to find the shortest path
lengths between nodes in the graph. Normalizes the adjacency matrix.

create map(node ids):

def create_map(node_ids):
adjacency_matrix = np.zeros((len(node_ids), len(node_ids)))
...
adjacency_matrix[i, j] = ox.distance.euclidean_dist_vec(

G.nodes[node_ids[i]][’x’], G.nodes[node_ids[i]][’y’],
G.nodes[node_ids[j]][’x’], G.nodes[node_ids[j]][’y’])

...
return (normalize(adjacency_matrix, axis=1, norm=’l1’))

Constructs a planar adjacency matrix using Euclidean distances between nodes, and
normalizes the matrix.

Appendix A. Python and Java Code 49

main():

def main():
...
global G
G = create_graph()
...
node_ids = list(set(ox.distance.nearest_nodes(G, lon, lat,

return_dist=False)))
adjacency_matrix_nonplanar, node_ids =

create_map_nonplanar(node_ids)
adjacency_matrix_euclidean = create_map(node_ids)
...
np.savetxt(save_file_euclidean, adjacency_matrix_euclidean,

fmt=’%1.8f’, delimiter=",")
np.savetxt(save_file_nonplanar, adjacency_matrix_nonplanar,

fmt=’%1.8f’, delimiter=",")
...

Parses command-line arguments for bin type and ward name, loads the graph, filters
bins based on input, obtains node IDs for the bins, calls create map nonplanar() and
create map() to generate adjacency matrices, and saves the matrices along with node
IDs to CSV files.

The script first filters bins based on the bin type and ward name (if provided) and then
computes the nearest nodes for these bins. Next, it generates a non-planar adjacency
matrix using the A* algorithm for shortest paths and a planar adjacency matrix using
Euclidean distances. The matrices are normalized and saved to separate CSV files,
along with the node IDs.

A.3 ACO in Java

A.3.1 Move Probability from City to City

The MoveProb function calculates the probability of an ant moving from the current
city cityX to all other cities in the problem domain, given a boolean array visited that
indicates whether a city has been visited.

private double[] MoveProb(int cityX, boolean[] visited)
{

double[] attractiveness = new double[numCities];
double sum = 0.0;
for (int i = 0; i <= attractiveness.length - 1; i++)
{

if (i == cityX)
{

attractiveness[i] = 0.0;
}

Appendix A. Python and Java Code 50

else if (visited[i])
{

attractiveness[i] = 0.0;
}
else
{

attractiveness[i] = Math.pow(pheromones[cityX][i],
alpha) * Math.pow((1.0 / Distance(cityX, i)), beta);

if (attractiveness[i] < 0.0001)
{

attractiveness[i] = 0.0001;
}
else if (attractiveness[i] > (Double.MAX_VALUE

/ (numCities * 100)))
{

attractiveness[i] = Double.MAX_VALUE
/ (numCities * 100);

}
}
sum += attractiveness[i];

}

double[] prob = new double[numCities];
for (int i = 0; i <= prob.length - 1; i++)
{

prob[i] = attractiveness[i] / sum;
}
return prob;

}

The function initializes an array attractiveness of length numCities and iterates
over all cities. If the city is the current city or has been visited, its attractiveness is
set to 0. For unvisited cities, attractiveness is calculated based on pheromone levels
and the inverse of the distance between cities, raised to the powers of alpha and beta,
respectively. The calculated attractiveness is then clamped between a minimum value
of 0.0001 and a maximum value derived from Double.MAX VALUE and the number of
cities. The sum of all attractiveness values is calculated in the process.

Afterwards, a prob array is created to store the probability values for each city. These
probabilities are obtained by dividing the attractiveness value of each city by the sum of
attractiveness values. Finally, the prob array is returned, representing the probability
distribution for an ant to move from the current city to all other cities.

A.3.2 Pheromone Update Rule

The UpdatePheromones function is responsible for modifying the pheromone matrix
after each iteration to guide the ants towards more promising solutions.

Appendix A. Python and Java Code 51

private void UpdatePheromones()
{

for (int i = 0; i <= pheromones.length - 1; i++)
{

for (int j = i + 1; j <= pheromones[i].length - 1; j++)
// change if graph is directed

{
double sum = 0.0;

for (int k = 0; k <= ants.length - 1; k++) {
double length = Length(ants[k]);
if (EdgeInTrail(i, j, ants[k])) {

double add = Q * (1.0 / length);
if (length <= bestLength) {

add *= sigma;
}
sum += add;

}
}
pheromones[i][j] = rho * pheromones[i][j] + (1 - rho) * sum;

if (pheromones[i][j] < 0.00001)
pheromones[i][j] = 0.00001;

else if (pheromones[i][j] > 1000000.0)
pheromones[i][j] = 1000000.0;

pheromones[j][i] = pheromones[i][j];
// change if graph is directed

}
}

}

The function iterates over all pairs of cities and calculates the total pheromone deposit
by all ants for the given pair of cities. If the edge between the cities is part of an ant’s
trail, the pheromone deposit is calculated based on the inverse of the trail’s length,
scaled by a constant factor Q. If the trail’s length is smaller than or equal to the best
length found so far, the pheromone deposit is further multiplied by a scaling factor
sigma.

The pheromone matrix is then updated using a weighted sum of the existing pheromone
value and the calculated pheromone deposit. The weight is determined by the evapo-
ration factor rho. The updated pheromone value is clamped between a minimum of
0.00001 and a maximum of 1000000.0. The pheromone values for the reverse direction
are set to be equal to the forward direction, assuming an undirected graph. This can be
changed for directed graphs.

Appendix B

Additional Figures

52

Appendix B. Additional Figures 53

Figure B.1: Filled contour plot of the best length of each instance of ACO for each value
of α,β ∈ (0,10), after 20 iterations on 250 random cities. Other parameter values are
ρ = 0.8, m = 20, Q = 1 and σ = 1.

Appendix B. Additional Figures 54

Figure B.2: Filled contour plot of the best length of each instance of ACO for each value
of α,β ∈ (−25,25), after 10 iterations on 250 random cities. Other parameter values
are ρ = 0.8, m = 20, Q = 1 and σ = 1.

Appendix B. Additional Figures 55

Figure B.3: Filled contour plot of the best length of each instance of ACO for each
value of α,β ∈ (−25,25), for different ρ after 10 iterations on 250 random cities. Other
parameter values are m = 20, Q = 1 and σ = 1.

	Introduction
	Motivation
	Project Goals and Contributions
	Project Structure

	Background
	Biological Inspiration
	Stigmergy
	Double Bridge Experiment
	Ant Systems

	Ant Colony Optimisation
	First Example
	Standard Variants
	Recent Advancements
	Applications
	Convergence Proof
	Criticality
	Use of Local Search in ACO

	Travelling Salesperson Problem
	Theoretical Bounds
	Ant Colony Optimization for the TSP
	ACO for the Waste Management Problem

	Methods
	ACO
	Definition of ACO
	ACO Parameters

	Java Implementation
	Test Files
	The Main and ACO Classes

	TSP Problems
	TSP for Edinburgh Communal Bin Collection

	Results
	The Effects of Pheromones and Heuristic Bias
	The Effects of a Noisy Heuristic
	The Effects of an Innovation Reward
	The Effects of the Evaporation Rate
	Real-world Experiments

	Discussion
	The Role of Metaheuristics
	The Role of the Exponents and
	The Role of the Innovation Reward
	The Role of the Evaporation Rate
	Reinforcement Learning and ACO
	The Real World

	Conclusion and Further Study
	Conclusion
	Further Study

	Bibliography
	Python and Java Code
	Finding the Best for Each Iteration
	Creating TSP from the Communal Bins of Edinburgh
	ACO in Java
	Move Probability from City to City
	Pheromone Update Rule

	Additional Figures

