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Abstract

Graph neural networks are frequently being trained and used on large scale graphs,
often in the magnitude of billions of nodes and edges. This creates the need to design
more efficient machine learning systems that can handle the large amount of graph data.
A popular strategy is to use distributed training by scaling out the amount of CPU or
GPU resources used and designing efficient ways of communicating between these
resources, in order to store and perform computations on large graphs. Moreover, GNN
systems have recently been adding support for using SSDs as a part of the training
pipeline. In order for efficient data movement to take place between the GPU, CPU, and
SSD, GNN frameworks often create GNN specific caches to cache graph components.

In this thesis we explore feature caching for large-scale temporal graphs. We first
analyze the temporal and topological properties of 4 temporal graphs, and hypothesize
how they affect the cache hit ratio. We propose various metrics to quantify these
properties of the graphs. With these properties in mind, we propose and evaluate
different caching strategies, and moreover explore how using temporal GNN models
affect our cache hit ratio. We also explore how both cache construction and graph
properties can affect the hit ratio. We find that different temporal graphs may exhibit a
diverse range of sampling patterns, and find that static out-degree caching, a popular
strategy used in various GNN systems[18][31] perform the worst on the 4 temporal
graphs investigated in this thesis, while adaptive caching strategies perform the best.
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Chapter 1

Introduction

1.1 Motivation

Graphs exist everywhere in the world. They are an important abstract data type that has
helped us define and describe an object by its connection with other objects. Graphs may
represent a large variety of different networks; we can use them to describe physical
networks, such as a street network or electrical wiring, and also virtual ones, such
as social media networks or even the internet, which is a large network that connects
computers all over the world. Given the versatility and power of what a graph can
express, there has always been an interest in developing neural networks which take
graph data as input. In the recent couple of years there has been an increase in the
amount of research done on graph neural networks (GNNs), whether this is from an
algorithmic perspective or a systems perspective. These recent advances have also come
coupled with the adoption of GNNs in the industry, whether that is in recommendation
systems, anomaly detection in cybersecurity, or traffic prediction.

Moreover, given the general increase in model size in machine learning systems and
the increase in the amount of data used as model input, there has been a growing
need to design more efficient frameworks and machine learning systems to process the
growing amount of data[24]. This is also the trend in graph neural networks, where we
notice the graphs used in industry becoming increasingly big. For example, Pintrest’s
recommendation system uses a GNN model whose graph has over 2 billion nodes and
17 billion edges[29]. These large scale graphs create the need for GNN systems that can
process the data effectively. When processing the data, we will often need to utilize both
the CPU, GPU, and SSD to store the graph data. A large bottleneck is the bandwidth of
data transfer between the different devices. A solution to this is to use a GNN specific
cache to cache graph data for each device, so that the quantity of data transferred is
reduced.

With these problems in mind, in the thesis we have 2 main objectives:

1. Given that GNN feature caching is shown to be effective on static models and
graphs[17], we want to investigate whether caching is also effective on temporal
GNN models and graphs.
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2. We want to evaluate which caching strategies work best for temporal graphs, and
also what factors affect their efficiency.

1.2 Contributions

A summary of our contributions are given here:

» Explored the temporal and topological properties of 4 temporal graphs and hypoth-
esized about their effects on the caching locality. Designed metrics to quantify the
sampling pattern of different graphs using the temporal and topological properties.

* Based on our evaluation of the properties of the temporal graphs, we propose
various caching strategies that can efficient capture the sampling locality.

* Evaluated different caching strategies on a temporal sampler, and analysed both
cache and graph properties that affect cache hit rate. Previous literature[19] on
feature caching only evaluates performance on static GNN/samplers.

* Investigated and evaluated the feasibility of static caching on temporal graphs.
Static out-degree based caching was evaluated in depth, given its adoption in
GNN frameworks and in literature. We also explored other forms of centrality
metrics for static caching.

1.3 Thesis Structure

In Chapter 2, we present a brief introduction to graph neural networks, and discuss the
current challenges faced when dealing with large graphs. We also give a discussion on
the related work in tackling these challenges, as well as how these challenges also apply
to temporal graphs.

In Chapter 3, we introduce the datasets used, and use them to explore the temporal
and topological properties of the graphs, and evaluate how these properties affect the
temporal locality that can be found in the datasets. We propose metrics to quantify the
temporal and topological properties of the graphs.

In Chapter 4, we propose and give an overview of the caching strategies we will be
exploring, and hypothesize which graph properties will result in a particular caching
strategy to be effective.

In Chapter 5, we first present how we designed our experiments for evaluating the
different caching strategies. This includes outlining the temporal sampler that was used.
We then evaluate how the cache, graph, and sampler properties affect the hit ratio, and
discuss how the metrics found in Chapter 3 correlate with our results.

We conclude our thesis in Chapter 6. We provide a summary of our results, then an
evaluation of the importance and difficulties that were faced. We finish by giving
suggestions on future work that can be done.



Chapter 2

Background

Our project targets the problem of making graph neural network model training and
inference more efficient when used on large scale graphs. In order to understand the
challenges of this problem, let us first given an outline of how graph neural networks
are trained and used.

2.1 Graph Neural Networks

We define a graph as a pair G = (V,E), where V is the set of graph vertices or nodes, and
E is the set of vertex pairs or edges. These edges can either be directed or undirected.
Directed edges mean for an edge between a source and destination node, information
can only flow from the source to the destination. Graphs with undirected edges can
have information flow in any direction between two nodes that share an edge. Finally,
for GNNs in addition to the graph structure, each node or edge can store additional
information/features. This information is usually in the form of low-dimensional vector
embeddings.

The graph structure, or adjacency matrix can be stored in multiple formats, some of
which allow for faster traversal and more compact storage. The adjacency matrix is a
graph representation where the matrix row and columns represent graph vertices. That
is, the matrix value at (i, j) is 1 if vertices i and j share an edge, otherwise it is 0. We
usually use a compressed sparse row (CSR) or compressed sparse column (CSC) format
to store our graph structure for efficiency of computation. This format compactly stores
the structure in 3 1-dimensional arrays.

As some broad intuition, we can regard GNNs as a generalization of the input data to
prior neural network models such as convolutional or recurrent neural networks[26].
CNNs primarily operate on data structured as a grid, such as images, which can be
thought of as a graph with a grid like structure. Similarly RNNs operate on sequences
of data, which can also be represented as a linear directed graph.
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2.1.1 Graph Learning Applications

Generally GNN s are used to solve 3 types of prediction tasks: node level, edge level,
and graph level tasks.

Node level tasks: These tasks involve labelling or making predictions for each individ-
ual node. This includes tasks such as node embedding, where we can use GNNs to learn
a low dimensional vector representation for each node. This vector representation can
then be used in other machine learning tasks. Another task is node classification, where
we can learn embeddings to classify/label nodes in the graph. Node classification also
includes other similar sub-problems such as node clustering, where we try to cluster
related nodes together, or node anomaly detection, where try to identify nodes with a
particular behaviour.

Link level tasks: The general goal is to predict/label individual edges in the graph. This
includes tasks such as edge classification and link prediction. For edge classification, we
use GNNs to learn edge or node embeddings, and then use these embeddings to make
predictions. For link prediction we try to predict whether an edge exists between two
nodes. This could be done by finding node embeddings for each node, then to predict
whether an edge exists between two nodes, we can pass the two node embeddings into
a binary MLP classifier.

Graph level tasks: The general goal is to predict properties that belong to the entire
graph. The input to these problems are usually a large collection of graphs. An
application for this type of prediction task could be to predict properties of chemical
molecules, where we represent each molecule as an individual graph.

While these 3 different tasks focus on predicting and labelling different parts of the
graph, the general process of creating embeddings remains the same for all the tasks.

2.1.2 Architectures

Having described some problems GNNs can solve, let us delve into how GNNs work.
In the previous sections we mentioned that GNNs will generate embeddings, which
can later be used in application specific tasks. Taking node embeddings as an example,
our goal is to create embeddings for each node such that they capture both the node’s
neighboring graph structure as well as its neighboring information, such as other node
and edge features. This is because in our new node embedding space, we want ’similar”
nodes to be close to each other.

GNNss use an idea called message passing[7] or neighbor aggregation to learn embed-
dings for its graph attributes. This is a method to propagate information across the
graph so that nodes have a way to update their own embedding by using information
from their neighbors. We can summarise message passing in 3 main components with
the formula below:

2.1
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where x? is the original node feature and x* is the updated node feature embedding for
node i for the k' layer. Let’s break the equation down:

1. Message function: ¢ is our message function. This function can take in the node
feature embedding Xé‘ at layer k, its neighboring feature embedding X];-, or the edge
embedding e’;_i. For simple GNN models the message passing function usually

only involves the neighbor feature embedding, such that ¢(x’;) = WX’]‘., where W
is a weight matrix.

2. Aggregation function: € cy(;) is our aggregation function. Its purpose is to
aggregate all the messages from the neighbors of node i, represented as N(i).
This function could be any order invariant function, such as an average or max
function. This is because the order in which we evaluate the neighbors of a node
should not matter.

3. Update function: 7y is our update function. This applies a final transformation to
the aggregated messages. This function is often the sigmoid function ().

Let us illustrate message passing through an example graph.

TARGET NODE

l

A

INPUT GRAPH

Figure 2.1: Message passing example. Taken from Stanford CS224w course notes[16]

Figure 2.1 shows a graph on the left, and its computational graph on the right. We can
use a computational graph to visualize the operations that are done in equation 2.1. In
the equation if we assume k = 1, we are using a GNN to do one layer of sampling. Thus
from the target node A we would be performing sampling on A’s neighbor nodes, which
would be nodes B, C, and D. For each neighbor node we use them to create a message,
then in the light grey box on the right we apply our aggregation function. We finally use
this to update the original node A. If we have more than 1 layer, we repeat this process
first for the neighbors of A’s neighbors.

Note that the message passing weights and aggregation weights are shared for each
layer for every computational graph generated. This means we can use the learned
weights to find an embedding for unseen graphs. To see message passing in practice,
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we will briefly discuss two classic GNN models: Graph Convolutional Networks[11]
(GCN) and GraphSAGE[S8]

» For GCN the embedding of a node i at the k" layer is defined as:
hk

Wl =6 | /——
P YR oIk

Note the message function multiplies the neighbor embedding hlj‘ by W and
normalizes it by the number of neighbors of node i.

» For GraphSAGE the embedding of a node i at the k" layer is defined as:
k+1 k k vy . k
hi "' = o(W"-CONCAT (AGG(h},Vj € N(i)), i)

GraphSAGE has a two aggregation steps. First we aggregate all the neighbors of
node i. The aggregation function could be the mean, max pooling, or an LSTM.
Lastly it concatenates the aggregated neighbors with the embedding of node i
from the previous layer so that the target embedding does not vanish.

Both of these models use node-wise sampling[20], where for each node we sample a
finite amount of neighbors.

GraphSAGE or GCN

Input Graph Output

Embedding
g > (node/edge) ,:>

Loss Function

Figure 2.2: Whole pipeline overview

Figure 2.2 show the whole training/inference pipeline for GNNs. All the components
of message passing are differentiable, which means we can apply standard machine
learning training through backpropagation through all the GNN layers. Note GNN's
often only have 2 to 4 fully connected layers, as each layer brings an exponential
increase to the number of neighbors sampled, as well as the problem of over-smoothing,
where the learned representations for node all become similar.

2.2 GNN serving

Now that we have a theoretical understanding on how GNNs work, let us now examine
how they are implemented in practice and some of the challenges that are faced when
working with large graphs. Compared to typical deep neural network model training,
GNN model training/inference is unique as we must collect the input data by sampling
the graph and collecting the node feature data.
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For sampling based GNN training there are broadly two main approaches, either full
batch or mini-batch training. Given how GNN training usually occurs on the GPU[15],
due to its ability to perform large-scale parallel computations, full batch training is often
infeasible for large scale graphs, since it requires the entire graph loaded into memory.
GPU memory is often much smaller than the graph data structure. GCN is an example
of a model used in full batch training.

Mini-batch sampling-based GNN training has been used as a workaround to this prob-
lem. An example of this is GraphSAGE, where instead of considering all the nodes in the
graph, it selects n target nodes to sample, where n is much smaller than the total amount
of nodes in the graph. Moreover, for each layer we sample a fixed number of neighbors.
All the selected target nodes and its sampled neighbors form a subgraph/sample, which
can be then used to train the model.

Popular GNN frameworks such as Pytorch Geometric[5] (PyG), and Deep Graph
Library[28] (DGL) both adopt a mini-batch training approach. The general approach is
shown in Figure 2.3.

CPU GPU
GNN +
Graph Structure Features downstream model
2. Retrive
features
A I
K j 3. Model
\\ computation
2. Using indices from subgraph \
1. Sample graph retrieve feature embeddings
A  — | —
| —
—
Subgraph —

J __

Sampler

Figure 2.3: GNN sampling process. Diagram adapted from BGL[19]

Before we describe the training/inference process, note that we are storing the graph in
CPU memory. Moreover, we are using two data structures to store the graph data. We
first store the adjacency matrix, or the graph structure. This is usually in the compressed
sparse row/column (CSR/CSC) format, for fast accesses. We store the feature vectors
for each node separately, in a feature table.

For each iteration in training, we perform the following operations:

1. Sample: We first choose a set of target nodes to sample, then we find their
neighbors indices from the adjacency matrix through sampling.

2. Gather: Secondly, having found the all the node indices, we then retrieve the
feature embeddings from the feature table.
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3. Transfer: Having sampled the indices and gathered the features for the mini-batch
on the CPU, we now transfer it into GPU memory.

4. Computation: Using this data, we perform model computation.

2.2.1 Challenges

Given this process, there are several challenges facing this pipeline when working with
large graphs. One of the main challenges is the overhead for transferring the data (from
sample and gather) to the GPU. Moreover, if main memory cannot fit the entire graph,
we would resort to storing the graph on SSD, which would further add the overhead of
transferring data from SSD to main memory, which is extremely slow.

Compared to other DNN models such as recurrent neural networks or convolutional
neural networks, GNN models are several of magnitudes smaller, given how they
typically only use a few layers. This means GNN model computation is fast, and thus
unlike for some CNN or RNNS, it is hard to overlap the compute time with the data
transfer for the next iteration, without increasing the PCle bandwidth. In fact, according
to a recent paper[10], when comparing GraphSAGE to a CNN ResNet50 model, we
would need 3 orders of magnitude of more bandwidth to overlap the data transfer time
with model computation.

This problem could be solved by either scaling up the number of GPUs or CPUs used,
so that the entire graph can fit inside either device. This is not a permanent solution, as
the real world datasets continue to grow larger, some of which are over 100TB in size
[19].

We instead focus on the approach of decreasing the amount of data transferred between
devices by caching the node feature embeddings. By caching feature embeddings that
are frequently accessed in the GPU, we do not need to use additional bandwidth to
transfer this feature embedding to the GPU. If we are using SSD as storage, this logic
also applies to caching feature embeddings in main memory. In fact, if both are used
we could try implementing a two layer cache system where we cache the embedding in
both a main memory and GPU cache. This could be a potential future work.

2.3 Prior Literature On Caching

There have been several works recently that have touched upon and implemented a
version of feature embedding caching. Let us briefly summarise their approaches.

PaGraph[18] proposes to use a static feature embedding cache. Static means that
the cache never be updated during run time, and that we fill in the cache pre-
computation. PaGraph selects embedding features to cache based on a heuristic
estimating how popular they are.

AliGraph[31] adopts the least recently used approach (LRU) for the feature embedding
cache, and also creates a cache for the adjacency matrix, by using a similar metric
to PaGraph.
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BGL[19] focuses on GNN training, and proposes using a FIFO cache in addition to
using a "proximity-aware ordering” for choosing nodes when creating mini-
batches, so that neighbor sampling will have a higher probability of requesting
the same nodes between mini-batches. They show this method has better hit ratio
than dynamic caching strategies such as LRU or LFU.

Ginex[23] also focuses on GNN training, and proposes a ’provably optimum” feature
cache, by grouping several batches into a ’superbatch”, and calculates the optimal
feature embeddings to evict from the cache so that the next batch will have a
minimal amount of cache misses.

In our work, instead of focusing on optimizing the cache efficiency through clever ways
of re-ordering the training data or pre-computing the cache replacements, we focus on
GNN inference/serving, where we cannot or do not necessarily have enough future data
to implement similar techniques. We instead focus on the caching strategies that don’t
require a large amount of future data, and see if we can find strategies that are effective
for temporal graphs. Let us give a description of temporal graphs and how they are used
in GNNss in the next section.

2.4 Temporal Graphs

Until recently, a majority portion of research in GNNs have been focused on static
graphs, which are graphs that do not change over time where the nodes and edges are
fixed. However, many real world graphs are dynamic, where for example the number of
edges a node has could change over time. This is the case in social networks, where if
users represented nodes, and edges represented interactions between two users, then we
would expect constant adding or deletion of edges, or even nodes.

2.4.1 Temporal Graph Neural Networks

In order to capture these new types of interactions and make predictions on them,
temporal graph neural networks have been introduced. The overall goal of temporal
GNNs (TGNNS) is the same as static models; by using a temporal graph we aim to
create node embeddings which can then be used in other downstream tasks such as link
prediction.

We can broadly classify TGNN models into two frameworks[6]:

1. Time-and-graphs/snapshot TGNNs: As a natural way of static graphs to represent
dynamic ones, this approach focuses on creating multiple consecutive static
”snapshots” of the dynamic/temporal graph, and using these sequence of snapshots
to capture the evolution of node embeddings over time in order to find a temporal
node embedding. Some current state-of-the-art snapshot TGNNs include Evolve-
GCN[22].

2. Time-then-graphs: In this framework, we first represent all the edges in a temporal
graph with a timestamp representing when it was created, which then can be
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thought of as an edge feature for a static graph. This results in the possibility of
multiple edges existing between two nodes, but at different time stamps.

An example of time-then-graphs include TGN[25]. In the TGN model the temporal
graph is modelled as a sequence of “interaction events”, where an interaction event is a
time-stamped temporal edge that occurs between nodes i and j. Moreover, interaction
events are also the inputs to this model; for each interaction event we want to predict
the likelihood of this event existing. TGN extends the message passing framework
by adding a memory module, where each node has a memory state which compactly
represents the node’s past interactions. This memory state of a node is updated whenever
an interaction event involves the node, usually by using an RNN such as a LSTM or
GRU. The memory module thus allows TGN to learn the temporal dependencies of
each node.

2.4.2 Temporal Graph Sampling

In the previous sections, we gave a brief description of how sampling is done for static
graphs. For node-wise sampling, we would specify a set number of neighbors we would
sample for each neighbor. For temporal graphs we must modify this strategy in order
to apply it to TGNNs. TGNNSs require training to be done chronologically in order to
preserve the temporal dependencies. Moreover, the chronological ordering also applies
to sampling. This is intuitive, since given a graph that includes edge interactions from
timestep O to t,, if we sample the graph at timestep #; where #; < t,,, we should only be
able to sample edges that occur before time #.

Implementing temporal samplers that can generalize to different TGNN models is not a
trivial problem, as new data structures for storing temporal neighbors will have to be
designed. In fact, most popular GNN frameworks such as PyG and DGL do not support
edge-based temporal sampling yet. Fortunately, a recent paper[30] has implemented
temporal sampling, even though the framework is still in development. We will discuss
this more in Chapter 5.

In our work we focus on data fetching, that is the sample and gather operations men-
tioned in section 2.2, and thus we don’t focus on the specific model used for computation.
Nonetheless we can assume the problem we are dealing with is a link prediction prob-
lem, where given an edge, we want to predict the strength of that connection. Our input
data is thus the timestamp ordered interaction events (edge creations), where for each
interaction we want to predict its strength. Given this timestamp ordered list of events,
we believe there exists temporal locality when sampling consecutive interaction events,
and therefore making temporal graphs suitable for caching.



Chapter 3

Locality in Temporal Graphs

Given the challenges addressed in the previous chapter, let us explore the characteristics
of temporal graphs and how we may exploit them to create more efficient caching
strategies. In this chapter we introduce the temporal datasets used, and analyse both the
graph topology as well as the temporal and topological sampling patterns present in the
data.

3.1 Datasets

Given how we want to study caching in temporal graphs, and especially how they can
solve problems that arise in large-scale graphs, we will use 2 large temporal graphs
and 2 smaller scale temporal graphs. While in general there is a lack of large-scale
open-source temporal graphs available in academia[15], we chose the Stack Overflow[1]
and Taobao[2] datasets, as they were two of the largest temporal graphs freely available
online. The two smaller temporal graphs are Reddit and Wikipedia, which are chosen
as they often appear in temporal graph literature[13][25][30].

Dataset # Nodes  # Edges/interactions Timespan
Stack Overflow 2,601,977 63,497,050 2774 days
Taobao 5,150,018 100,150,807 9 days
Reddit 11,000 672,447 30 days
Wikipedia 9,227 157,474 30 days

Table 3.1: Dataset Properties

Table 3.1 shows some basic properties of the graphs. Reddit, Wikipedia, and Taobao are
bipartite interaction graphs, where the nodes represent either a user or an item (Reddit
page, Wikipedia article, shopping item respectively). This means there exists edge links
between users and items, however no interactions between users or items themselves.
The Stack Overflow dataset represents a non-bipartite user-user interaction graph, where
each node represents a user, and edges between nodes represent an interaction (u;,u;)
represents an interaction between users u; and u;. In all our datasets, we notice that
there is an order of magnitude more edges than nodes. Furthermore, every edge has a

11
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timestamp which corresponds to when the edge interaction took place. In Table 3.1 the
time span corresponds to the difference between the earliest and latest edge interactions.

Before the datasets could be used we did some pre-processing. For the bipartite graphs
the edges are directed from the user to the item. We transform these edges to be
undirected, so that we can also traverse from an item to a user. This is done so that we
may perform multi-layer message passing. Additional pre-processing was done to the
datasets Taobao and Stack Overflow, as they were found online as .csv files, where each
row corresponded to a single edge interaction event. The source and destination node
indices were initially random integers, thus we first transformed the indices so that the
total range of the node indices corresponded to the total number of unique nodes, i.e.
we assign indices from [0,n — 1], where n is the total number of unique nodes. This
makes our data easier to iterate through in the future, as there are no gaps in the indices.
Lastly we sort the edges by timestamp, and save the dataset as a PyG Data object.

In our datasets each edge corresponds to an interaction, but we can also interpret each
edge as a new request for us to handle during serving. Before we start examining what
kind of temporal and spacial localities exist in these requests in our graph, let us first
visualize the frequency of the requests to understand our data better.

800000 -

600000 -

400000 -

Frequency

200000

26.11.17 27.11.17 28.11.17 29.11.17 30.11.17 31.11.17 01.12.17 02.12.17
Date of interactions

Figure 3.1: Taobao dataset’s edge interaction frequency with respect to time

In Figure 3.1, we notice a cyclic pattern in the number of edge interactions in the dataset
with respect to time. Since the timespan from which the data is collected is 9 days,
and the dataset is Taobao, a popular online shopping platform, it is clear that each of
the 9 peaks correspond to when the shopping activity was highest each day. Likewise,
the troughs are likely during the night when activity is the lowest. While we won’t be
analyzing how edge interaction frequency affects caching strategies, it is clear that our
datasets contain rich and large amounts of patterns to explore. For example, at different
times of the day we may expect to find different temporal or topological patterns in the
edge interactions. In the following sections we explore the datasets as a whole.
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3.2 Temporal Properties

Temporal locality generally refers to the tendency of data that has been used recently to
be reused again in the near future. In our graphs, the temporal property stems from the
fact that we perform sampling on edges based on when that edge interaction occurred.
Thus we hypothesize temporal locality exists in our data assuming recently accessed
nodes will be accessed again in the near future. If so, this provides us with an incentive
to use caching strategies that can capture temporal locality.

3.2.1 Consecutive Node Accesses

107 4 destination
source

106 §

Frequency

104 §

T T T T
0 2000 4000 6000 8000 10000
Time difference in seconds

Figure 3.2: Time difference between consecutive interactions of the same destina-
tion/source node in Taobao dataset

Figure 3.2 is a logarithmic graph which shows the time difference between consecutive
interactions in either a source or destination node. We only plot the time difference for
the Taobao dataset, and summarize the statistics for the other datasets in Table 3.2. The
other datasets follow a similar pattern. We note that the majority of time difference
values are small, with the median time difference for source nodes being 75 seconds.
Given the decreasing shape of the graph, we can conclude the time difference between
when the same node gets interacted with is usually small. Generally there seems to exist
temporal locality in our data - nodes that have been recently accessed have a higher
probability of being accessed again than after a long time.

In Table 3.2, we note unlike Taobao, the graphs Overflow and Reddit have a lower
median time difference for destination nodes. This could be explained through the
nature of the dataset; Overflow and Reddit datasets have a much larger proportion
of unique source nodes compared to destination nodes, which makes an interaction
with a destination node relatively more likely. In contrast the Taobao dataset has a
larger proportion of destination nodes. While our caching implementation does not
differentiate between source and destination nodes, if there is a large discrepancy in the
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access patterns between the two, it may be interesting to explore using different caching
strategies for the different nodes.

Metrics Overflow Taobao Reddit Wikipedia
median src time diff 2375 75 4617 311
median dst time diff 1252 1259 229 333
coefficient of variation 2.01 1.69 1.68 2.2
avg. requests/min 16 7680 15 3.5

Table 3.2: Temporal Properties

3.2.2 Graph Burstiness

Since all of our datasets follow the pattern visualized in Figure 3.2, let us find a more
precise way of comparing how much temporal locality different graphs contain. We
expect graphs which exhibit a “bursty”’[14] behavior to have more temporal locality.
This fits our intuition; suppose there is a post that goes viral on social media, then in a
short time span there will be a large number of queries related to the post. These types
of sudden and large bursts of traffic to specific content is what makes data temporal.

Let us further illustrate with an example. Suppose we have node A who has two different
access patterns. The first access pattern requests node A every 5 seconds. The second
pattern requests node A 12 times in the span of a second, however it only does this one
every minute. The second pattern exhibits more temporal locality, as the access pattern
1s more “bursty”’; after the node has been requested there is a very high probability it
will be requested again. Suppose in a scenario where during an interval of 5 seconds,
the number of unique nodes being requested is larger than the cache’s capacity. This
means that in our first access pattern, node A will be evicted from the cache before its
next request. In contrast, due to the burstiness of the second access pattern, node A may
still be cached. Let us capture this characteristic using the coefficient of variation.

CV:_
u

o and u are the mean and standard deviation of the differences in time between two
consecutive accesses of the same node. We can use this coefficient to measure how
dispersed a probability distribution is. In our case, we want to find how dispersed the
time differences between consecutively accessed nodes are.

In our discussion above about node A, our first data access pattern would correspond
to a constant random variable, as requests happen at a fixed rate. This produces a
coefficient of 0, since the standard deviation is 0. Suppose the requests are modelled
by a Poisson distribution, that is the likelihood for the next request is equal for any
interval of time. The time between events in a Poisson process is modeled by an
exponential distribution[4], where the mean is equal to its standard deviation, thus our
coefficient has a value of 1. In general, a higher value for the coefficient means the
more clustered/bursty our nodes are.
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It is important to note that even though a dataset may have a high average burstiness
coefficient, this does not necessarily mean this dataset will be easier to cache. Cache
efficiency does not depend on the burstiness of a single node, but on the access pattern
of all the nodes together, since it may be the case the amount of nodes that are bursty
at any given time exceeds the cache capacity, or when a node is bursty this results in
a large number of new unique feature nodes being requested which also exceeds the
cache capacity, both of these scenarios would result in suboptimal cache performance.
In Table 3.2, we calculated the average amount of requests/edges that occur per second.
Using these properties, we can give a rough formula on how cache efficiency is affected:

cE - ke
ko -tg-rg

¢y 1s the coefficient of variation, #; is the time difference between the same consecutively
sampled node, r, is the amount of node requests per second, and k; and k; are constants
which represent the effects of other hidden factors on cache efficiency. Generally large
¢y values, small z; and low ry values should increase cache efficiency. The hidden
constants represent various unknowns, one of which could be the effects of neighbor
sampling; if sampling results in a large number of nodes not in the cache, this decreases
cache efficiency.

3.3 Topological Properties

In addition to the information we can extract using timestamps of when the edges are
created, let us inspect the topology of the graphs. Both of these properties affect the
result of GNN sampling. Let us explore our graphs by plotting out the out-degree of
source and destination nodes, which can be interpreted as the number of ’interactions”
a node has. The out-degree of a node is the number of edges that node has that are
directed to other nodes.

Metrics Overflow Taobao Reddit Wikipedia
avg. dst out-degree 5 24 683 157
avg. src out-degree 3 101 67 19
avg. sampled distance 3.125 3.6 2.95 3.59

Table 3.3: Topological Properties

3.3.1 Node Out-degree Importance

In Figure 3.3 we notice destination nodes generally have much more total number of
interactions than compared to source nodes. Furthermore, the maximum number of
interactions for a source node does not exceed 1000. This fits our intuition, as in the
Taobao dataset each source node corresponds to a user, and an interaction corresponds
to a page view or a purchase during the span of 9 days when the data was collected.
Destination nodes correspond to shopping items, and thus have many more items that
are generally more interacted with. When caching we could expect a large number of
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Figure 3.3: Number of total interactions for the same destination/source node for Taobao
dataset

node features to be destination nodes. That being said, from Table 2 we note that the
average out-degree of destination nodes is lower than source nodes, with values 24 and
101 respectively. This could be because many shopping items are rarely interacted with.

Given our discussion on graph out-degree nodes, let us use a toy graph example to
show how can we take advantage of spacial locality that occurs during graph sampling.
Suppose we chose n nodes to be sampled on a random basis and that we sample all
the neighbors of the chosen node, then as n tends to infinity we should expect the
ranked frequency of nodes sampled to be equal to the ranking of nodes with the highest
out-degree neighbors. To see this, let us examine Figure 3.4.

Figure 3.4: Graph out-degree example

In this graph, we notice node 0 has an out-degree of 6 and an in-degree of 2. Nodes
3 to 8 have an in-degree of 1, and nodes 1 and 2 have an out-degree of 1. Suppose
we performed sampling on node 6. Since it only has one in-degree neighbor, it only
samples node 0. If we pick n random nodes to sample in this graph, it is clear that
node 0 will be sampled the most, since it has the highest out-degree. Various GNN
systems[31][18] have used this observation to design caching strategies. Let us evaluate
if this strategy may be used on our temporal graphs.
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3.3.2 Node degree and Access Probability Correlation

Given that we know there should be a correlation between our ranking for the most
sampled nodes and the nodes with the largest out-degrees, let us evaluate to what extent
this is true on our datasets. In order to evaluate the ordering/ranking of the most sampled
feature nodes, let us use the Spearman Rank Correlation coefficient, which finds how
correlated two variables are. The coefficient is defined as:

6X(RX) — RO
n(n?—1)

rg=1

where 7 is the number of feature nodes, R(X;) and R(Y;) are the ranking of nodes X; and
Y;, i.e. the node that is sampled the most will have a rank of 1. Spearman’s coefficient
ranges from [—1, 1], where 1 represents a perfect positive correlation, whereas 0 repre-
sents no correlation. If the out-degree and access frequency ranking is the same, we
would expect a correlation of 1.

In addition to finding out the coefficient for each of the datasets, let us also examine
how the number of neighbor nodes sampled affects the coefficient. We will plot how the
number of layers and the number of nodes sampled per layer will affect the correlation
coefficient. In practice, if we want to sample k neighbors per layer, this means at each
layer we pick k different edges and pick the nodes that are on the other side of the edge.
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Figure 3.5: Correlation between node out-degree and sampled node frequency rank

In Figure 3.5 we notice Overflow, Taobao, and Reddit datasets have a general positive
correlation between the coefficient and the number of neighbors sampled. This fits our
intuition, as when more neighbors are sampled nodes with higher out-degrees will be
sampled more, as shown in Figure 3.4. However, the Wikipedia dataset maintains a
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similar coefficient even as we increase the number of neighbors sampled. This could
be due to the nature of temporal graphs, as between two nodes there may be multiple
edges that appear at different timestamps. Therefore, even as we increase the number of
neighbors sampled (edges we pick) we may still be sampling the same nodes, albeit
through different edges. This results in similar ranking coefficients.

Moreover, Reddit and Wikipedia have low coefficients, on average they have a coef-
ficient of 0.23 and 0.52 respectively. This shows that there is not a strong correlation
between the ranking of out-degree and sampled nodes in these two datasets, and sug-
gests the access pattern does not favour popular nodes. In comparison, Taobao and
Overflow have a coefficient of at least 0.6 for nearly any configuration of the number
of neighbors or layers. For the Overflow dataset, when we only sample one neighbor,
there is low correlation, however the coefficient increases as we increase the number of
neighbors sampled. This suggests the access frequency of nodes for these datasets are
similar to their out-degree ranking. This shows that the access pattern for these datasets
is usually characterized by sampling high out-degree nodes.

3.3.3 Average distance between sampled nodes

In the previous section we discussed temporal locality and focused on how long it took
for the same node to get sampled again. Apart from that metric, it is also useful to
measure how “far apart” consecutively sampled edges are. We can define how far apart
two nodes are in a graph by the shortest path between them, which is the minimum
number of edges to get from one node to the other.

Calculating this metric provides us with two benefits. Firstly, it gives us a new way of
quantifying how much temporal locality a graph has, by using the topology of the graph.
Intuitively, the closer consecutively sampled edges are, the higher the probability the
nodes sampled from the next edge are already cached in our feature cache. Assuming
neighbor sampling is performed on nodes n; and n;, and these nodes are close, the
benefit comes from the fact that these nodes may share sampled nodes. Secondly,
assuming we find the shortest path between n; and n; to be of length /1, then f%} isa
lower bound for the number of layers needed to be sampled so that n and ny will share
a common node in their computational graph. This is illustrated in the figure below.

ni ns
ns3

ny ny

Figure 3.6: Neighbor sampling example

In Figure 3.6, the shortest path distance between n; and n; is 4. We expect at least
(%1 = 2 layers needed in order for n; and n, to share a common node. If our GNN
samples two layers, shown in green and red, we expect the two nodes to share n3. This
is a lower bound since during neighbor sampling, we do not sample all the neighbors of
a node, thus the shortest path route may not be included in the nodes that were sampled.
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We can therefore use this metric as a locality estimate in graphs. As an extreme example,
if the distance between consecutively sampled nodes is 30, we can assume there will
be no overlap in the nodes sampled from the two original nodes. For two consecutive
edges, to calculate this metric we apply the following formula:

p(elsrmezsrc) +P(elsrC7 ezdst) +p<eldst7 ezsrc) +p(eldst; ezdst)
4

v(el,e2) =

el and €2 are the edges that are consecutively sampled, and p() calculates the shortest
path between two nodes. Since each edge has two nodes in the equation above we
permute through all the combinations of two nodes and take an average. The results
for our datasets are summarized in Table 3.3. We note the datasets have similar values,
with Reddit having the lowest average shortest path at 2.95 whereas Taobao having a
metric of 3.6. However, while Reddit and Taobao had 0.5% and 0% of node pairings
that didn’t have a path between them respectively, for Stack Overflow and Wikipedia
7.7% and 3.9% of node pairings didn’t have a path respectively. When using this metric
these values should also be taken into consideration.
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Caching Techniques

Having examined the temporal and topological properties of our datasets, let us now
analyze different caching techniques, and hypothesize how well they may perform on
temporal graphs.

4.1 Static Caching

In various GNN systems and in literature, such as in PaGraph, a static caching method
has been proposed. We define static caching as a caching strategy where a cache is
pre-populated with a set of nodes, and when the cache gets queried it never updates
itself even if there is a cache miss.

4.1.1 Static Out-degree Caching

Based on our analysis in section 3.3, we noticed in some datasets there exists a correla-
tion between the sampling node access ranking and the node out-degree. This suggests
caching the top k out-degree nodes could be a viable strategy. We initially populate the
cache with the highest out-degree nodes of the current graph, and do not modify it after
construction. When there is a cache miss, that is when the requested node is not in the
cache, we do not update the cache, in contrast to dynamic caches, such as LRU or LFU.
Note in later sections out-degree caching will be referred to as static caching.

An advantage of static caching is that cache requests will have low latency, as the cache
does not need to be updated. That being said, there are several disadvantages. Firstly,
by definition a static cache is very poor in capturing temporal locality in data. For
example, if there is a sudden increase in activity on nodes with a low out-degree that
are not in the cache, these will always be cache misses. Moreover, when performing
serving/inference on temporal graphs, each new edge that we perform inference on will
be added onto the graph. This means the graph’s node out-degree that is calculated
beforehand may not reflect the current out-degree ranking after inference has been
running for some time. This suggests the performance may degrade over time, if we do
not periodically manually update the static cache. We further explore static out-degree

20
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caching in Chapter 5, and discuss the idea of periodically manually updating the cache
ranking more in depth.

4.1.2 Graph Centrality

Using the graph’s out-degree is one way of pre-populating the static cache. Moreover it
is also one of the simplest metrics used to calculate the centrality of a graph. Centrality
is an indicator which assigns an importance ranking to each node of a graph. Apart from
a graph’s node out-degree, there exists many other ways of assessing graph centrality.
Let us evaluate these other metrics, and evaluate how feasible they are when used as a
way of pre-populating static caches.

Closeness centrality: Unlike degree centrality which only considers the node’s imme-
diate neighbors, closeness centrality measures the average shortest path length from the
node to all other nodes in the graph:

n—1

S

n— 1 is the number of nodes that can be reached from node u, and d(v,u) is the length
of the shortest path from v to u. Since we need to find the shortest path for all pairs
of nodes, this algorithm has O(n?) complexity [2]. This may be too computationally
expensive, especially when evaluating large graphs with billions of nodes. If the dataset
we are using is not too large, we could apply this algorithm, and treat the computation
of the centrality ranking as a pre-computation one-time cost before initializing the cache
and running the model. However, as we discussed in the previous section, for temporal
graphs our ranking list may have to be updated in order to reflect the new graph structure
that is created as edges are being requested.

In the next chapter, we will discuss other alternative ways to approximate this centrality
metric so that large scale graphs can use this metric effectively.

Betweenness centrality: For a given node in the graph, this centrality metric measures
how many times node v is passed through when calculating the shortest path between
all possible pairs of nodes that are not node v:

o(s,t|v)

C(v) = ols.1)
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For all set of nodes (s,7) that don’t contain v in our graph, we find the ratio of the number
of shortest paths that contain v from s to ¢ over the number of shortest paths from s
to ¢. This metric suffers problems similar to closeness centrality, as it has O(n? - logn)
complexity [2]. This metric could be useful when analyzing temporal graphs, as we can
interpret the metric as which nodes regulate the “flow” around the graph the most. These
are not necessarily nodes with high out-degree, but rather nodes that are positioned at
the ’bridges” of the graph.
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Eigenvector centrality: The intuitive idea for this metric is that a node is deemed
important if it connects to other important nodes. Therefore, unlike degree centrality,
even though a node may have lots of connections, this does not imply it has a high
eigenvector centrality. This is a relatively popular centrality measure. In fact, Google’s
PageRank is a form of eigenvector centrality. We compute this metric using the power
iteration method[12], which has a complexity of O(n - m), where m is the number of
edges.

We hypothesize that these metrics may perform better than using out-degree, as they
capture global properties of the graph, rather than just the properties of a single node.
This is evaluated in the next chapter.

4.2 Simple Replacement Policies

4.2.1 Least Recently Used (LRU)

LRU is a dynamic caching strategy which evicts the least recently accessed node. This
is an ideal caching strategy if our data exhibits a lot of temporal locality, that is if a
node has been sampled recently it has a high likelihood of being sampled again. It can
be implemented straightforwardly by using a hash table and a doubly linked list, where
the hash table holds the keys for O(1) lookup and the doubly linked list used for O(1)
insertion.

The disadvantages of LRU are that the cache can be ”flushed” easily. In the extreme
case, suppose for a cache of size k, and k new unique nodes that aren’t in the cache are
queried. All the previous nodes in the cache will be cleared out and filled with the &
new nodes. If these k new nodes happen to only be queried this one time then may have
lost the previously cached values which may have been more useful. Furthermore, even
if there exist some nodes that are often queried periodically, if there are more nodes that
can fill up the cache and evict the existing node before the next consecutive node query,
then LRU will perform very poorly. This was briefly touched upon when discussing
node burstiness.

4.2.2 Least Frequently Used (LFU)

LFU is also a dynamic caching strategy which evicts the least frequently accessed node.
Each element in the cache has a counter for how many times it has been accessed. This
can be implemented with a hash table and two doubly linked lists, resulting in O(1)
for lookup and insertion. This may be an ideal caching strategy if the graph sampling
access pattern samples a set of popular nodes frequently. Unlike LRU, it does not flush
the entire cache when a consecutive number of unseen nodes are queried. LFU has
disadvantages similar to the static cache, for example if there is a change in access
pattern such that a previously popular node is now rarely queried, this node will stay in
the cache, due to its high frequency count.
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4.2.3 Custom Rankings

In addition to the two classic caching strategies mentioned above, we also designed two
new custom caching strategies to test.

1. As a natural extension to static out-degree caching, we modify LRU such that
we evict the node with the lowest out degree ranking. While this means we need
to keep track of the out-degree ranking of all the nodes, the memory used for
this will be negligible, as we only need to remember the indices. We expect this
strategy to partially solve the problem of not capturing increased activity from
nodes that are not in the cache. On the other hand, even if a low out-degree node
becomes popular, it will quickly be evicted since if it has the lowest out-degree in
the cache it will be the first to be evicted.

2. We explore the idea of using the number of neighbors that are sampled for each
unique node as a ranking. We find how many neighbors are sampled by first
specifying how many neighbors we want to sample at each layer. Suppose in the
first layer we choose to sample 50 neighbors, and in the second layer we sample
25. For nodes that are well-connected we may be able to sample the maximum
number of neighbors, that is for each 50 neighbors we can also sample 25 of their
neighbors, resulting in a sample size of 5025 = 1250 nodes. For nodes with
only a few neighbors, after sampling they will have a total sample size which is
much less than 1250 nodes. Similar to the first strategy, we also use an eviction
policy of removing the node with the lowest number of sampled neighbors.

4.3 Adaptive Caching

Given how LRU caching can exploit temporal locality and LFU caching is able to
adapt to the frequency of nodes sampled/topology of the graph, let us find a way to
combine the two caching strategies. Since we are performing inference on the edges
being requested, we would like to be able to use the caching strategy that best suits the
current data access pattern present in the graph. In practice this could mean we want to
change the importance we assign to the two different caching strategies dynamically.

A solution to this is the Adaptive Replacement Cache[27][3] (ARC). ARC is a caching
algorithm that keeps track of both the most recently and most frequently used nodes.
Let us demonstrate ARC with an example.

T1 grows to the left T2 grows to the right
<« _—>
p
G1 T1 (LRU) v T2 (LFU) G2
| |
cache size ¢

Figure 4.1: Adaptive Replacement Cache (ARC) illustration



Chapter 4. Caching Techniques 24

In Figure 4.1, initially the cache of size c is split evenly into two lists T1 and T2. While
both T1 and T2 use an LRU eviction policy, T1 is designed to capture “recency’” access
patterns whereas T2 captures “frequency” patterns. T1 will contain the node feature
embeddings that are requested exactly once, whereas T2 will contain all the embeddings
that have been requested more than once. As an example, when a node is first queried,
and it doesn’t exist in the cache, it is pushed into T1. Later, if this node is still in T1
and is queried again it will be moved onto the top of T2.

This caching strategy is adaptive since the size of T1 and T2 can change. We use a
number p to denote the split for how much space we should allocate to T1 and T2.
In the figure above, p initially splits T1 and T2 evenly, represented by the red line.
However, if our node query pattern suggests that using an LRU caching pattern is more
beneficial, p would conceptually shift to the right, so that T1 gets allocated a bigger
space than T2. Note that either T1 or T2 can be at maximum of total cache size c.

ARC determines how to adaptively calculate p/the size of T1 and T2 by using the
auxiliary queues (FIFO) G1 and G2. These two lists can be thought of as ”ghost/history’
lists, as they contain only the node indices that were recently evicted from the lists
T1 and T2. G1 and G2 are placed at the end of T1 and T2. When the last element in
T1 or T2 is evicted, it becomes the first element in G1 and G2 respectively. The idea
is that when we query a new node that results in a cache miss in T1 but a hit in G1,
this signifies that our T1 size is too small, and should allocate more space to T1. If
more space was allocated to T1 the node that was just missed may have still been in T1
(instead of being pushed into G1). Likewise is there is a miss in T2 but a hit in H2 this
means T2 should be bigger.

9

Equipped with some intuition, let us describe briefly how we change the size of T1 and
T2. In actual implementation, p represents the target size of T1. When there is a cache
miss, p is used to determine whether a node should be evicted from T1 or T2. There are
two scenarios:

1. There is a cache miss in T1 and T2, but a hit in either G1 or G2: If |T'1| > p, we
evict from T1, else T2. We add the new node that was missed into T2, and shift p
in the appropriate direction.

2. There is a cache miss in T1, T2, G1 and G2: If |T'1| > p, we evict from T1, else
T2. We add the new node that was missed into T1.

ARC has several advantages. Firstly, it can adapt to handle the current access pattern.
We thus hypothesize that ARC will perform at least as good as LRU and LFU. Secondly,
unlike LRU it is resistant to the cache getting flushed. While T1 may be cleared when a
sequence of nodes not in the cache get requested, T2 stays intact. Lastly, it has roughly
the same runtime as the LRU cache, as all the lists follow the LRU eviction policy.
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Cache Evaluation

In this section we evaluate the proposed caching strategies in the previous chapter. We
first give an overview of our methodology used when evaluating the caching strategies,
and then evaluate the various factors that affect the cache hit ratio. We first evaluate
cache size and number of neighbors sampled. We then focus on static caching, and
explore how the ranking of out-degree nodes are constructed and what centrality metrics
are used affect caching. Lastly we evaluate common sampling strategies that are specific
to temporal graph neural networks, and how they affect the cache hit ratio.

5.1 Methodology

In order to test our caching strategies on temporal graphs, we must use an appropriate
neighbor sampler. We initially tried to use the popular python library Pytorch Geometric
to perform sampling, however we found out PyG does not currently support edge
timestamp based sampling. Fortunately, TGL[30], a framework implemented by AWS,
proposes a temporal sampler that can be used on various TGNN models, including both
snapshot-based TGNNs and time-then-graph TGNNs. They implement the sampler
by introducing a new data structure to store the graph structure and edge timestamps,
which they call T-CSR. Let us illustrate how it works with an example.

In Figure 5.1, we have a root node A that has 4 neighbors, B,C, D, E. Each edge has a
corresponding timestamp of when this edge appears. We can compactly represent this
graph structure using the CSR format. Our index pointer array consists of all the nodes
in the graph. Each node in the index pointer array points to the starting position in the
indices array where the neighbors of the node are kept in consecutive indices, sorted by
timestamp.

Building on top of CSR, T-CSR adds a timestamp array, which stores the times when
the edges occur. In addition, assuming the TGNN model uses k snapshots, for each
index pointer we also store k + 1 pointers which separate the timestamp array into k
different sections. In Figure 5.1, we have two snapshots Sy and S;. These are separated
by 3 pointers, pty which points to the start of Sy, pt; to the end, and pt, to the end of
S1. Using these pointers it is possible to sample neighbors from a snapshot in O(1)
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index pointer | - |A B | |
indices | |B |C |D |E | |
time stamps | |t3 |t5 |t8 |t9 | |
W
So Si

Figure 5.1: T-CSR example, adapted from TGL paper

time. The total space complexity is O(2|E| + (n+2)|V|), since we have the indices and
timestamp array of size |E|, n+ 1 pointers for all V nodes, as well as the index pointer
array of size |V|. Let us briefly examine how the temporal sampler works through
pseudocode.

Algorithm 1: Temporal Sampler, adapted from TGL paper
Input: T-CSR graph G, root node array n, root node timestamp array t,, #layers L,
#neighbors sampled per layer k;, #snapshots S,
Output: Indices for sampled nodes
for [ in [0,L] do
for s in [0,5] do
set n and ¢, arrays to values from sampled neighbors in previous layer / — 1
foreach timestamp t in t, do
if t between snapshot S5 then
| set pointer p; to the index of t
else
| set pointer p; to end of S
end
end
foreach node in n do
| sample k; neighbors in each snapshot S; up to p;
end

end

end

We loop through each layer and snapshot we want to sample. In each snapshot, we
sample k; neighbors up to pointer p;, which signifies the largest index in the snapshot
which occurs at a smaller timestamp than the node being sampled. We can use this
sampler for non-snapshot based TGNNs, since time-then-graph TGNNSs can be viewed
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as having exactly 1 snapshot which includes all the timestamps in the temporal graph.
This temporal sampler was implemented in TGL with around 400 lines of C++.

To simulate how caching strategies will affect the cache hit rate, we pass in the last
k% of the edges in the data as input into the sampler. While we can use this sampler
to simulate GNN serving by evaluating it on previous edge interactions, we cannot
perform actual serving on new edges, as we should be adding them onto our graph after
the request. However, since the sampler stores the graph in a CSR format, it is there is
no efficient way to add the edge without rebuilding the graph each time.

Finally, regarding static caching, unlike the dynamic caching strategies we need to
first compute the out-degree ranking in order to pre-fill the cache. Assuming we start
sampling from the last x% of edge interactions in the dataset, we use all the edge
interactions from 0 to x% to create the out-degree ranking. That is, if we use the last
5% of edges (start sampling at 95% of data) we use edge interactions from 0 —95% to
create the ranking. In a later section we explore how the range and time frame of edge
interactions chosen to create the ranking affects the static cache hit ratio.

5.2 Factors that affect Cache Hit Rate

5.2.1 Cache Size

We vary the cache size from caching only 2.5% of all the node features to caching 80%.
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Figure 5.2: Wikipedia cache performance Figure 5.3: Overflow cache performance

We note the following observations from Figure 5.4 and 5.5:

e Cache hit ratio increases as the cache size increases. This is intuitive, as when the
cache can store more values there is a higher probability of a cache hit.

* Static caching performs worse than the other dynamic caching strategies for each
cache size. This suggests that the sampling pattern of these two temporal graphs
cannot be effectively captured by caching the nodes with highest out-degree.

— Even though the Spearman coefficient for Overflow was above 0.5, signi-
fying a positive correlation between out-degree ranking and the ranking
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of sampled nodes, compared to the other caching techniques it still per-
forms worse. Nonetheless this coefficient may still be used to evaluate the
effectiveness of static caching between different datasets. In fact, in the 4
datasets we notice an exact correlation between the coefficient ranking and
the average cache hit rate for static caching.

— In Table 3.2 Wikipedia and Overflow datasets had the highest coefficient
of variation, with a value of 2.2 and 2.01 respectively. This signifies the
datasets having bursty behavior, which could explain why LRU performs
well. This could also be an explanation to why static cache performs poorly.

* As hypothesized, ARC performs the best. ARC was successfully able to dy-
namically adapt its size to reflect the dominant sampling pattern in the datasets.
For example, in the Wikipedia dataset it is clear to see the access pattern of the
sampled edges favours LRU caching.
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Figure 5.4: Taobao cache performance Figure 5.5: Reddit cache performance

In Figures 5.4 and 5.5 we notice a similar trend where static caching performs the worst
and ARC performs the best. Reddit is the only dataset where LFU performs better than
LRU. This could be explained by Reddit having the lowest coefficient of variation, the
temporal metric found in section 3.2.2, which suggests that Reddit’s sampling pattern is
not as temporal/bursty as the other datasets.

The two custom caching ranking strategies discussed in section 4.2.3 were not included
in the graphs, given the results weren’t extremely significant.

* Qur first strategy used the out-degree ranking as an eviction policy. This resulted
in a performance nearly identical to the static cache. This implies this strategy
quickly filled the cache with the same ranking as the static cache, and was not
able to benefit from dynamic replacement.

* Our second strategy used the number of neighbors sampled by each node as an
eviction policy. It performed poorly for small cache sizes, and for dataset Reddit
and Taobao it performed slightly better than static for a cache size > 40%. We
chose to sample 50 neighbors in the first layer and 25 neighbors in the second.
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The poor performance could be because of the chosen neighbor sampling sizes,
which is a hyperparameter that needs to be tuned.

In our graphs ARC is the most effective caching strategy. Moreover, the popular static
out-degree caching strategy is shown to be the least effective. Nevertheless, given static
cache’s ease of implementation and low cache query latency, it is an important strategy
to consider. We later consider different centrality measures as a policy for cache rank
construction in static cache’s and evaluate if this results in an increase in performance.
When implementing strategies it is important to benchmark the caches overhead in an
end-to-end GNN inference/training scenario, as having a high cache hit ratio is not the
only component in improving cache efficiency. We leave this for future work.

5.2.2 Sampling Size

We use the neighbor sampling sizes of [1], [10], [5,2], [10,2], [5,5], [10,5], [10,10],
where the i’ element in the array represents the number of neighbors sampled in the
i"" layer. We set the cache size to 20% for all sizes. In the figures below we notice
there is not a shared general relationship between the cache hit ratio and the number of
neighbors sampled between all datasets.
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Figure 5.6: Reddit cache performance  Figure 5.7: Wikipedia cache performance

For the Reddit and Wikipedia dataset there is a general negative correlation between
number of neighbors sampled and cache hit ratio. Sampling more neighbors increases
the probability that new nodes will be sampled in each layer. For these two datasets
the negative correlation indicates the new nodes that are sampled are not creating more
cache hits. We also notice static caching has the worst performance. Moreover, from
these graphs we can notice similar patterns to the section on cache size, where LFU is
also the second-best strategy after ARC for the Reddit dataset.

In Overflow and Taobao below we notice a different pattern. Compared to Reddit
and Wikipedia both datasets have a higher average cache hit rate (both above 0.7) for
static caching. This could be explained by the Spearman ranking coefficient introduced
in section 3.3.2, which compared the out-degree and the node sampling ranking, as
Overflow and Taobao had on average the two highest coefficients.
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For Overflow there seems to be a general increase in cache hit ratio for static caching
as we increase the number of neighbors sampled. This could also be explained by
the Spearman coefficient graph 3.5, where we observed for Overflow the coefficient
increased as the number of neighbors sampled increases. We also found the coefficient to
be low and unchanging as we increased the sampled neighbors for Reddit and Wikipedia,
which could partially explain their poor and decreasing cache hit performance above.
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Figure 5.8: Overflow cache performance  Figure 5.9: Taobao cache performance

5.2.3 Ranking construction for static cache

Since static caching is a popular strategy used in existing GNN systems, let us explore
how the construction of the out-degree ranking affects the cache hit performance in
temporal graphs. During the cache evaluation in the sections above, the static cache
out-degree rank construction used 0 to x% of the edge interactions in the dataset, where
x is the percentage of interactions from the end of the dataset used to perform sampling.
However, in a realistic scenario as we continue to process new edge interactions, our
out-degree ranking will gradually become “’stale”, as our ranking will not have taken into
account the current edge interactions, which continuously change the graph connectivity.

Since both the start and end of when we collect edge interactions (starting at O or ending
at x in the example above) are hyperparameters that we can set, let us explore how they
affect the cache hit ratio. To do so let us answer two questions:

1. How long can we go without updating the out-degree rank, and how will it affect
the cache hit ratio? Concretely, if we sample the last x% of edge interactions and
calculate our rank using edges from 0 to x — k% in the dataset, how does k affect
the hit ratio?

2. How far back into our history of edge interactions do we need to consider to
still achieve a good hit ratio? If we sample the last x% of edge interactions and
calculate our rank using edges from x — k to x% how does k affect the hit ratio?

Our first question examines how stale our ranking can get, while our second question
examines how much edge interaction history we need to consider.
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Figure 5.10: Calculate rank using interactions from 0 to x — k%

Figure 5.10 shows how the cache hit ratio is affected when we start sampling from x%,
and calculate the ranking using edge interactions from O to x — k%. The hit ratio is the
highest when k = 0. This fits our intuition; the out-degree ranking is least stale when
we use all the edge interactions so far. As we increase the value of k, we effectively
increase the ranking staleness, and thus we see a degradation in hit ratio. We notice a
gradual drop-oft in hit ratio for all datasets, except Overflow, which drops off sharply
after k = 70. This signifies the overflow ranking is more sensitive to the recent edge
interactions. The lines for Reddit and Wikipedia stop at 70% since x was chosen to be
80% in order to have a large enough sample size, given the relatively small size of the
datasets.
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In Figure 5.11 the hit ratio increases the larger the value of & is. There seems to be a
sharp rise as k initially increases, but gradually plateaus off when k gets sufficiently
large. This can be used as an evaluation metric to how much past edge interactions we
need to save until we get a satisfactory hit ratio.

These graphs answer the question of how staleness affects the hit ratio, and how far
back we should start when collecting data to make the out-degree rankings. Finding out
when the cache ranking should be updated and deciding how much history to save may
be important properties to consider when evaluating GNN caching systems.

5.3 Static Caching Centrality Metrics

In section 4.1.2 we proposed 3 centrality metrics to compare against the default centrality
metric of using the out-degree. While we were able to use the basic algorithm to
calculate closeness centrality and betweenness centrality for our smaller temporal
graphs (Reddit and Wikipedia) provided by NetworkX, a python package to analyze
graphs, our large scale temporal graphs could not be processed in a reasonable amount
of time. This was because of the large time complexity of the two original algorithms -
O(n?) for closeness and O(n? - logn) for betweenness.

Fortunately, more efficient algorithms have been proposed[9] which approximate the two
centrality measures. What is more, they have already been implemented on ArangoDB,
an open-source graph database system. We thus imported the Overflow and Taobao
datasets into a ArangoDB server and ran the two algorithms, called effective closeness
and LineRank, for betweenness centrality.

* Effective closeness approximates the average length of the shortest path between
a node and all other nodes by iteratively estimating how many shortest paths pass
through the node.

* Linerank approximates betweenness centrality by using random walks through
the graph to find the probability of visiting a specific node.

We evaluate how well each centrality metric performs when it is used to pre-populate
the static cache. For the figures below we use a neighborhood sampling size of [10, 5].
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In the figures above out-degree centrality achieved the highest hit ratio in all the datasets.
The second best was betweenness centrality. For the datasets Overflow and Taobao,
there seems to be an approximation error while using ArangoDB’s effective closeness
algorithm, leading to the poor performance. This evaluation suggests for a neighborhood
sampling size of [10,5], for any cache size static cache ranking achieves the best
performance in comparison to the other centrality metrics. This suggests learning the
relationship between a node and all other nodes in the graph is not beneficial when
performing node caching in temporal graphs.

5.4 TGNN Sampling Strategy

There are many different types of TGNN models that are used on temporal graphs, and
moreover the types of sampling strategies employed by different TGNNs also vary.
These design choices influence how effective our feature cache will be. Let us examine
how our choice in TGNN sampling strategies will affect our cache hit ratio. We will
focus on a common sampling strategy that various TGNN models choose between,
which is to either sample neighbors uniformly from all the past edge interactions, or
sampling the most recent neighbors using the k most recent edge interactions.

TGNN models such as TGN have found that sampling by recency rather than uniformly
improves both its model accuracy as well as the time spent per training epoch. Using
the T-CSR, recency sampling can be implemented straightforwardly by taking the &
leftmost nodes in each snapshot in the indices array. Let us evaluate how these two
sampling strategies affect the total amount of nodes sampled, as well as how it affects
the number of cache misses for each of our caching strategies.

In Figure 5.16 we have plotted the number of cache misses as a ratio of the total
number of nodes sampled, indicated by the first bar on the left. We used the sampling
configuration that achieved the best performance in TGL’s paper, where we sampled 1
layer with 10 neighbors. The values were scaled to be a fraction of the total number of
neighbors sampled using the uniform sampling method, shown by the first blue bar on
the left, with a value of 100.
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Reddit and Wikipedia show a similar pattern when comparing the two strategies:

* The total amount of nodes sampled is greater when we use uniform sampling. In
fact Reddit and Wikipedia sample 15% and 26.4% less nodes when using recency

sampling, respectively.

* LRU performs the best when sampled by recency. This suggests caching strategies
that effectively capture the temporal locality perform the best. Moreover, in
the Reddit dataset we note that compared to uniform sampling, LRU performs
significantly better, where it produces 5.6 times less cache misses.

» The adaptive nature of ARC caching strategy is also illustrated; for recency
sampling ARC manages to adapt to the sampling pattern and produce a similar

low number of cache misses like the LRU.

* Static caching achieves the worst miss ratio in both recency and uniform sampling.
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For Overflow and Taobao datasets we notice a similar pattern to Reddit and Wikipedia.
However there are two main differences.

* We notice uniform sampling in these two datasets results in a relatively low cache
miss rate compared to the Reddit dataset, where uniform sampling results in poor
cache performance, given more than half of the requests are cache misses.

 Switching from uniform to recency sampling does not result in as significant of a
decrease in cache misses as the Reddit dataset. For Overflow and Taobao datasets
switching to recency sampling results in 2.86 and 1.6 times less cache misses,
compared to 5.6 for Reddit. This suggests for these datasets sampling from recent
neighbors does not increase the sampling locality as much as the Reddit dataset.

Overall, we notice from a feature caching perspective, using recency sampling benefits
the cache hit ratio. We observe a decrease in cache misses for all 4 datasets in all the
caching strategies we evaluated when switching from uniform to recency sampling.
Nevertheless, we must be aware feature caching is only one component in a GNN
training system, and thus we must evaluate the trade-offs (such as in model accuracy)
that any decision may potentially make.



Chapter 6

Conclusion

6.1 Results and Evaluation

We started by analyzing the temporal and topological properties of our 4 temporal
graphs.

* To evaluate how temporal a graph was we proposed the burstiness metric which
was found using the coefficient of variation. Using this metric, we found that
Wikipedia and Reddit were the most and least bursty datasets.

 For topological properties, we evaluated correlation between the graph’s out-
degree and the sampling ranking through Spearman’s ranking coefficient, and also
proposed a metric which measures the average distance between consecutively
sampled edges.

While the average distance metric of our datasets was similar, varying from 2.95
to 3.6, and we reasoned that this metric could in general be used as a rough
estimate for how much locality as graph has. Through the experiments conducted
in Chapter 4 we found that the Spearman’s ranking coefficient of the datasets
correlated perfectly in ranking with the average cache hit ratio for static out-degree
caching.

We then proposed and analyzed various caching strategies, including popular ones such
as out-degree caching, LRU, and LFU. New caching strategies proposed included:

 Using other centrality measures as a metric for pre-populating the static cache.

* Extending static out-degree caching by making it dynamic; we proposed using
the out-degree ranking as an eviction policy, such that we evict the node in the
cache with the lowest out-degree.

 Using the number of neighbors sampled from each unique node as a ranking for
the eviction policy. We hypothesized nodes with a larger number of neighbors
when sampled should be more important.

» Using ARC caching. Since our graph’s access patterns constantly change, we
hypothesize ARC is able to continuously adapt to the graph’s sampling patterns.

36
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Lastly, we evaluated the hit ratios of the caching strategies on the temporal graphs. We
found that using ARC caching resulted in the best cache hit ratio, regardless of the
cache size or number of neighbors sampled. The other caching strategies that were
proposed didn’t perform as well. We also found that static out-degree caching, which is
a popular choice for current GNN systems, performed the worst when caching using a
temporal sampler. Given the large number of variables that affected the cache hit rate,
it was challenging to justify and explain to what extent the graph properties we found
affected the hit rate.

We concluded our evaluation with some experiments on static caching and temporal
sampling parameters. We found that static caching achieved the best performance when
we use the most recent edge interaction history to construct the out-degree ranking.
Moreover, the more history we used the higher the cache hit ratio, however the ratio
plateaus once a certain amount of history is used. We also found that in temporal
sampler’s, recency sampling produced less cache misses than uniform sampling.

6.2 Future Work

* In addition to considering metrics which describe the temporal and topological
features of graphs separately, we can evaluate metrics that consider temporal and
topological features together, such as the temporal motifs of graphs. Temporal
motifs[21] are defined as a consecutive set of timestamped edges in which a
specific pattern of edge interactions occur. Recognizing and quantifying these
types of patterns may be useful as a heuristic when designing new caching
strategies.

* When running experiments to evaluate different caching strategies, we noticed
some runs took a long time to run. An interesting direction to explore would be
to evaluate the latency’s incurred by the different components of our system, for
example the temporal sampler or specific caching strategies.

* Apart from individual components, we could also evaluate the latency of an
end-to-end GNN system using our caching strategies, to see how well they work
together.

* Further explore how specific TGNN models affect the cache hit ratio. We could
for example evaluate how snapshot based TGNN’s and time-then-graph TGNN’s
differ in their sampling patterns.

* Since our cache hit ratio can be improved by increasing the cache size, we could
explore how to combine mixed-precision training or quantization to reduce the
size of embedding features so that more vertices can be stored in the cache.

* Implement a 3-layer caching system between SSD, main memory, and GPU
to analyze how different caching strategies could potentially be combined and
applied for different layers of the cache.
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