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Abstract
Liquidating loans on decentralised lending protocols requires significant domain knowl-
edge, preventing most decentralised finance users from participating in this vital process.
A pool-based protocol can provide users with access to this process regardless of their
technical expertise. The protocol - operated and governed by users who do not necessar-
ily trust each other - utilises an off-chain oracle to discover liquidation opportunities and
trigger liquidations on-chain, earning a profit for the protocol participants. The proposed
scheme consists of DeFi users depositing their funds into a community-governed and
managed smart contract that will liquidate unhealthy lending positions on the Aave pro-
tocol based on the identification of a liquidation opportunity by a community-delegated
off-chain program that searches the blockchain for unhealthy lending positions. Loan
liquidations are a relatively secretive aspect of Ethereum development (since they can be
highly profitable) and so it is a challenge to find useful information on how to perform
them effectively. The scheme proposed in this paper is a gas-efficient and secure system
that facilitates this functionality, exploring the design choices that must be made to
create a community-run system in the context of decentralised finance. Whilst the
development of this scheme was a success, there is still a large scope to expand on this
work, particularly in the efficient identification of liquidation opportunities.
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Chapter 1

Introduction

1.1 Context and Motivation

After the advent of crypto-tokens on the Ethereum blockchain, capital poured into the
ecosystem and just like the assets of the traditional finance world, these cryptocurrency
tokens necessitated corresponding financial infrastructure.

In the same manner as lending in traditional finance (TradFi), decentralised lending is a
major aspect of decentralised finance (DeFi) on the Ethereum blockchain. Whether it be
for accessing liquidity without having to sell their current holdings or to construct some
trading position, decentralised lending protocols provide decentralised finance users
with access to similar financial tools to the traditional finance world in a permissionless
fashion.

Many decentralised lending protocols exist, though, this paper focuses on Aave [16]
- the largest lending protocol on the Ethereum blockchain by market capitalisation -
which had more than 18 billion US dollars in its lending pools at its peak on the 29th of
October 2021 [13]. Loans on Aave are overcollateralised - meaning that the collateral
that a user has must be more than what they are borrowing - and a user’s lending position
condition is measured by what is called a “health factor”. When the “health factor” of a
loan falls below 1, it is deemed too risky and it must be liquidated. Liquidation of a
loan is the process of selling assets or collateral pledged by the borrower to recover the
outstanding loan amount when the borrower is unable to repay the loan.

In traditional finance, loans are managed by a bank that ensures they are sufficiently
collateralised and healthy, liquidating their customers’ lending positions as they see fit.
Aave is a decentralised protocol with no intermediary between borrowers and lenders,
hence, the loans are liquidated in a decentralised manner by incentivising third parties
to liquidate unhealthy loans via a liquidation bonus.

Whilst liquidating these loans can be lucrative, doing so requires a considerable un-
derstanding of the underlying protocol as well as the technical ability to produce an
effective liquidation system. Liquidators must understand how loans work on the proto-
col as well as carry out the process of actually executing the liquidation on-chain which
can prove to be a costly and not profitable process if performed incorrectly.

1



Chapter 1. Introduction 2

Due to this, the rewards earned via the liquidation process are captured by a small
portion of the market with esoteric expertise. This is undesirable since one of the core
principles of blockchain technology is decentralisation and the degree of decentralisation
of the resources - in Ethereum’s case the crypto assets and therefore the liquidation
rewards - is the dominant metric for assessing the level of decentralisation within a
blockchain [22].

Research carried out by Qin et al. on DeFi liquidations confirms that only a small
percentage of the market is earning from the liquidation process with 1,039 Aave V2
loans being liquidated by only 125 unique liquidators over the two-year period of their
study. The overall findings showed that the $63.59 million profit earned via liquidations
over the period was spread among only 2,011 unique liquidators all making $31.62K
on average with the most profitable liquidator making $5.84 million in profits from
liquidations [28]. Considering that this study uses data from a few years ago, it is not a
mental leap to suggest that the profits earned via liquidations now are far larger due to
the increased capital deposited in such protocols.

Furthermore, partitioned liquidations are less economically efficient due to the gas fees
incurred from multiple liquidation calls rather than just one. Facilitating DeFi users
without sufficient capital to individually liquidate the loan to pool their resources with
others in the same position to collectively liquidate the loan, each paying a fraction
of the gas fee that they would have. This also allows DeFi users to allocate smaller
amounts of capital to the system that otherwise would prove to be pointless due to fees.

A trustless, pool-based system can address these problems, democratising access to
loan liquidations in a decentralised way. Users can come together, pooling their funds
to liquidate unhealthy loans on the Aave protocol. They can participate regardless of
their wealth and understanding, depositing an amount of their choosing and can treat
the system like a black box.

The proposed scheme is comprised of two main systems, the Liquidation Opportunity
Oracle (LOO) and the Community Pool Protocol (CPP). The LOO - which operates
off-chain - searches the blockchain for unhealthy loan positions that can be liquidated.
It does this by aggregating all of the lending positions on the Aave protocol and
reconstructing their health factor, identifying users with health factors below 1 since
this means that they have collateral that can be acquired at a discount by liquidating
their debt position. Once an unhealthy lending position has been found, this information
is sent to the CPP which handles the execution of the liquidation on-chain and enables
the decentralised governance of the protocol. The CPP is a smart contract which
facilitates the on-chain aspect of the system, allowing users to deposit funds to be used
for liquidations. The smart contract carries out the loan liquidation on Aave based on
information sent to it from the LOO which it itself verifies on-chain. The CPP smart
contract also enables the system to be governed proportionately by the participants of
the pool. This helps ensure the integrity of the system and allows the system to be
malleable in adverse situations or even just changes in the directional beliefs of the
stakeholders of the system.

The democratisation of the liquidation process, promoting decentralisation of earnings
and therefore decentralisation of the whole Ethereum blockchain, heavily motivates the
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work of this paper in an attempt to advance the vision of blockchain enthusiasts who
anticipate a decentralised future.

1.2 Objectives

The main objectives for this project are to propose a design for a system that:

• Allows DeFi users to collaborate in a trustless manner to liquidate loans on the
Aave protocol by pooling their funds.

• Operates in a decentralised manner, creating solutions to the trade-off in the level
of centralisation that is required for the system to run efficiently.

• Explores and justifies design choices relating to the system by considering the
context of decentralised finance and detailing the best methods to:

◦ Identify unhealthy user lending positions.

◦ Determine whether a liquidation opportunity is likely profitable or not.

◦ Manage users’ deposited funds.

◦ Avoid unnecessary risk.

◦ Help stakeholders govern the system in a decentralised manner.

• Implements a secure and gas-efficient smart contract design.

• In a more general sense demonstrates how systems can be designed to enable
DeFi users to collaborate in a trustless manner when aspects of centralisation are
required.



Chapter 2

Background

2.1 Ethereum

Ethereum is an open-source blockchain that runs on a decentralised network of comput-
ers, making it more resistant to censorship and downtime than a centralised network.
The term, “smart contract” is heavily associated with the Ethereum blockchain, though,
this is actually a misnomer [21] as they are not necessarily “smart” or “contracts”, rather,
they are just programs that run on the Ethereum network.

The state, in Ethereum, is made up of objects known as “accounts”. There are two types
of accounts [11]:

• Externally Owned Accounts (EOA)

◦ Managed by a private key.

◦ Tends to be operated by an individual.

◦ Does not have code associated with it.

• Contract Accounts

◦ Managed by smart contract code.

◦ Can execute code.

Smart contracts can be used to develop things like decentralised applications (dApps)
- such as the decentralised finance applications discussed in this paper - and cryp-
tocurrency tokens. These cryptocurrency tokens differ from the native currency of the
Ethereum blockchain which is called ether (ETH) and is used to pay for transaction fees
on the network and as a store of value. The cryptocurrency tokens are fundamentally just
smart contracts that follow the ERC-20 standard [27] which sets rules and functionality
that allow the tokens to be compatible with the Ethereum ecosystem allowing Ethereum
accounts to own, store and transfer these tokens between other accounts.

ERC-20 tokens are extremely important on Ethereum, representing various types of
assets, from highly volatile speculative tokens to stablecoins pegged to the US Dollar or
even tokens representing ownership of an organisation or protocol.

4
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The rise of these tokens meant that capital flowed into the Ethereum ecosystem requiring
the financial infrastructure to allow users to fully utilise the tokens whether it be lending,
trading or insurance.

2.2 Aave: A Decentralised Lending Protocol

Aave is a decentralised liquidity protocol built on the Ethereum blockchain that allows
users to borrow and lend various cryptocurrencies in a trustless, open-source and
non-custodial manner; no intermediary party is required to facilitate the loans.

This system is built around lending pools which allow users to pool their funds so
that other users can then borrow from these lending pools at an interest rate that is
algorithmically determined based on the supply and demand of a given pooled asset.
Lending pools are technically implemented as smart contracts. Borrowing assets on the
Aave protocol is perpetual with no repayment schedule; partial and full repayments of
borrows can be made at any time.

Users are incentivised to lend their money on the platform by depositing their assets to
the pool since they will earn interest by doing so. On the other end of this, a borrower
may withdraw the asset from the pool, paying interest.

Aave has two types of interest rates: a stable rate and a variable rate. The stable rate
is fixed in the short term, although, can be rebalanced in the long run depending on
the condition of the market. This will appeal to users that wish to have a stronger idea
about the amount of interest they will have to pay on their loan, though, the variable
rate may end up being the optimal rate over a period of time. The variable rate is the
rate that is determined based on the supply and demand for a lending pool as well as its
collateralisation ratio - the ratio of the value of the collateral to the value of the loan.

Aave makes use of aTokens in its protocol, which represents the balance of the underly-
ing asset that a user has provided a lending pool with. When a user deposits an asset
into a lending pool they receive an equivalent amount of aTokens in return. The number
of aTokens that they own is continually increased in their wallet balance based on the
yield earned by providing their capital to the lending pool.

Unlike loans in traditional finance, there is no strong credit rating system that lenders
can use to determine how trustworthy a user is as a borrower. This is because users’
accounts are not necessarily linked to a real-world identity. Since loans are not made
based on a credit score, loans on the Aave protocol are overcollateralised i.e. the amount
borrowed is less than the collateral that a user has. (Note: Flashloans on Aave are
undercollateralised, though this is a separate mechanism and the utility of the borrowed
funds is limited.) The value that can be borrowed using a specific asset as collateral
is determined by its loan-to-value ratio (LTV) - which is expressed as a percentage -
and is dependent on the perceived riskiness of the asset. For example, an asset with
LTV = 75% would mean that the user could borrow up to 75% of the value of that
specific collateral asset.

Only certain assets - determined by Aave’s governance - can be used as collateral.
Assets that are too volatile or are not deemed to be sufficiently decentralised are not
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USDC Lending Pool

Receive USDC
ATokens 

Lend USDC at
8% APY

Borrow USDC at
10% APY

Figure 2.1: An example of a lending pool on the Aave protocol. User 1 (left) deposits
USDC into the lending pool which offers an interest rate of 8% APY and in return receives
the interest-bearing USDC ATokens that represent their deposit to the lending pool. User
2 (right) can borrow USDC from this lending pool (provided they have sufficient collateral)
at an interest rate of 10% APY.

used as collateral as their risk could have an adverse impact on the overall health of the
protocol.

To ensure the protocol remains solvent the loan positions must be managed, liquidating
any loans that become sufficiently undercollateralised. Thus, assessing the state of a
loan is an essential process of the protocol and is measured on Aave using what is called
a health factor. The health factor of a loan position is defined by [5] :

H f =
Σi (Collaterali in ET H ×Liquidation T hresholdi)

Total Borrows in ET H
(2.1)

• Where i is an asset that the user has deposited to a lending pool.

• Note: Both the collateral and borrow amount are valued in ETH.

The health factor is equal to the sum of the value of each collateral asset that the user
has deposited multiplied by the asset’s respective liquidation threshold all divided by
the total amount borrowed. Essentially, the health factor expresses the combined health
of all lending positions that a user currently has on the protocol.

The liquidation threshold, which varies by asset dependent on its associated risk, is
defined as the percentage at which a position is considered undercollateralised and
could be liquidated. The liquidation threshold is similar to LTV, though, it is often
larger by a few per cent. The difference between an asset’s LTV and its liquidation
threshold provides the borrower with some protection.

When a borrower’s health factor, H f , falls below 1, up to 50% of their debt is available
to be liquidated to bring their health factor back above 1. Aave is a decentralised
protocol so there is no central controlling party that actively manages the health of these
loans but loans still must be liquidated to ensure that the Aave protocol remains solvent.
To carry this out in a decentralised manner, the protocol uses liquidation bonuses to
incentivise DeFi market participants to carry out the liquidations. The liquidation bonus
of an unhealthy loan is the percentage reward that is earned when liquidating a loan
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and varies asset by asset. For example, a liquidation bonus value of 8% means that
liquidating 10 ETH worth of debt would result in receiving 10.8 ETH worth of the
collateral asset.

2.3 Chainlink: A Decentralised Data Feed

In many ways, the Ethereum blockchain is isolated from the world but many decen-
tralised applications require reliable real-world data to operate correctly. Chainlink acts
almost as an intermediary between the blockchain and the real world, allowing DApps
to have access to definitive real-world data such as price feeds for financial market data
including commodities, stocks, fiat currencies as well as cryptocurrencies by simply
calling the functions of the Chainlink protocol’s smart contracts. Chainlink provides
a system that incentivises parties to provide this data reliably and in a decentralised
manner, discouraging dishonest behaviour through economic incentives.

Real-time, accurate price data is extremely important, particularly in financial settings
since the numbers being slightly off can lead to significant knock-on effects. For this
reason, Chainlink is utilised throughout the design of the system as a reliable source of
unbiased information.

2.4 Uniswap: A Decentralised Exchange (DEX)

An extremely important aspect of the DeFi ecosystem is the exchanges that allow
cryptocurrencies to be traded similarly to the traditional financial (TradFi) markets.
Uniswap is the largest decentralised exchange (DEX) on the Ethereum blockchain with
around 10 billion dollars in total value locked at its peak in May 2021 [14]. Created in
2018 by Hayden Adams, Uniswap was the first decentralised exchange to make use of
an automated market maker (AMM).

An automated market maker model enabled the exchange of various cryptocurrency
tokens on the Ethereum blockchain in a way that is significantly different to how markets
are made in traditional finance.

In TradFi, markets typically use an order-book system to manage trades. Though order
books are generally the method used in centralised financial systems there have been
some attempts made to bring this system on-chain, however, a system like this requires
a high number of transactions per second (TPS) that most decentralised blockchains
cannot currently facilitate. As well as this, the relatively low volume that is traded on
decentralised order-book exchanges such as Serum means that large industry players
cannot utilise the exchange effectively. In the order-book model, a list of buy and sell
orders for specific assets are stored digitally in descending order by price. Whenever
a buyer wishes to purchase an asset, they bid at a specific price. This price is then
matched to a seller that will sell at the required price and the trade is executed - if there
is a matching order. Similarly, when one wishes to sell an asset, they place an ask order
at a specific price and again, this price is matched to an order in the order book (if a
match exists) and the trade is executed. In both cases, if there is no matching order, the



Chapter 2. Background 8

bid/ask is added to the order book until a matching order is added. In this system, many
large TradFi firms put their capital to work by becoming “market makers” providing
liquidity to the market by placing orders on both sides of the book and earning the
spread (the difference between the bid and ask prices). This helps ensure that there is
always a buyer and seller for a given asset even when there are not necessarily enough
buyers/sellers in the general market. They do this by employing various algorithms that
determine the prices at which they are willing to buy and sell considering the market
conditions. This is extremely difficult to do profitably and thus only large financial
firms can perform it efficiently due to the large amount of data and quality of algorithms
required.

DeFi is different. The AMM model allows users with any amount of capital and no
significant expertise to participate in a similar market process by providing liquidity to
the liquidity pools that AMMs utilise. These liquidity pools usually hold a pair of tokens
(though there are some instances of multi-token liquidity pools). For example, for a
USDC/WETH liquidity pool, liquidity providers provide an equal amount (in USD) of
USDC and WETH. They are incentivised to do this as they can earn a proportion of the
fees earned by the liquidity pool when users swap tokens. The proportion that they earn
in fees is based on the proportion of the liquidity that they have provided to the pool.
This process is not entirely risk-free though, since liquidity providers are exposed to the
risks of impermanent loss - the loss in value of a liquidity position in comparison to
holding the original assets as the price changes [18].

Instead of holding a list of orders and trying to match them, automated market makers
use an invariant equation to determine the price at which an asset pair should be traded.
The first and most basic type of AMM is a constant product market maker which
calculates the exchange rate based on the following formula [7]:

x · y = K (2.2)

where x and y are the amounts of each token in the token pair’s liquidity pool and K is
the pool constant. The relationship of x and y can be plotted on a graph as shown in
(Fig. 2.2).

This formula produces the following ’bonding curve’ (Fig. 2.2) for the buy/sell price
of the token pair. When a trade is made on Uniswap the price is updated based on the
invariant formula above (2.2), not based on the price as determined by other external
markets. When a user wishes to withdraw (buy) an amount of token x, they must deposit
(sell) a proportional amount of token y to maintain the constant value K. The exchange
rate for token x can be calculated using the following formula:

Px =
y
x

(2.3)

Similarly, the exchange rate for token y is calculated using:

Py =
x
y

(2.4)
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x

y

P  

P  0
Liquidity Function: x y = K

Figure 2.2: The bonding curve for the liquidity function: x ·y = K. The relative amounts of
the two tokens x, y and the constant K determine the position on the curve and therefore
the price.

A user attempting to purchase an amount ∆y of tokens, hence reducing the liquidity in y,
would have to input an amount ∆x of tokens that satisfies the market-making functions
constraint. The current amounts of tokens (x and y) in the pool the amounts after the
purchase (x+∆x and y−∆y) must satisfy equation 2.2 with their product equalling K.
Hence, the following equation [7]:

x · y = (x+∆x) · (y−∆y) (2.5)

Rearranging this equation, ∆x is the amount of tokens that would need to be paid for ∆y
tokens,

∆x =
∆y

y−∆y
· x (2.6)

When using a DEX such as Uniswap, price impact must be considered. Price impact is
the change in token price directly caused by your trade [20]. The price equations above
(2.3 and 2.4) show the price for the marginal token, although often, trades are for many
tokens at once. In this case, every token costs more than the previous one as the reserve
amounts in the pool are altered and the price moves along the bonding curve [17]. This
is described in equation 2.6 above; notice that as ∆y is increased, the ∆x that is required
increases rapidly if ∆y is more than just a small fraction of y. Hence, the size of a trade
compared to the overall liquidity of the asset pair in the pool is what determines the
magnitude of the price impact. Pools with high liquidity will have a lower price impact
(unless the trade is very large) than trades in pools with low liquidity.
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The price is kept at (or very close to) the actual market price by market participants
through arbitrage. If the price on Uniswap is higher than the real market price then
arbitrageurs are incentivised to purchase the token on another exchange at the market
price and then sell it at the higher price on Uniswap, and vice versa. When this happens
either from a single large arbitrageur or a group of smaller trades, the price is driven
along the bonding curve closer towards the market price until the arbitrage is no longer
profitable. Overall, this ensures that the price on the AMM closely tracks the true
market price [8].

As the Uniswap protocol has developed over the years, it has made some optimisa-
tions concerning how it works. The Uniswap V3 protocol introduces the concept of
concentrated liquidity allowing users to allocate their funds to a pool within a custom
price range [6]. This means that a Uniswap V3 liquidity pool can operate with higher
liquidity using fewer resources than a pool on a previous version of Uniswap.

Though the optimisations made in Uniswap V3 mitigate the price impact problem they
certainly do not solve it, thus, it is still an important factor that must be considered
before executing a trade.

2.5 The Graph: A Decentralised Indexing Protocol

The Graph [30] is a decentralised indexing protocol that allows decentralised applica-
tions (dApps) to query on-chain data simply and efficiently. It provides this data in the
form of subgraphs which are structured representations of related data submitted to The
Graph network. For example, Aave has its own subgraph which can be queried to fetch
reliable data about various aspects of the Aave protocol such as the lending pools or the
loan positions of users. Without a protocol like this, dApps would have to accumulate
data manually by calling smart contract view functions and fetching historical data from
emitted events on the blockchain. Through this system, reliable data is available in an
efficient, well-documented and decentralised manner for dApps to use.

2.6 Related Work

The work of this paper continues and expands on a small paper written for the UKPEW
2022 Workshop [24]. The short paper briefly describes the motivations for such a system
and gives a rough overview of how to implement the scheme. The work presented in
this project delves much deeper, exploring the design choices further, implementing the
system, and experimenting with and evaluating it.

Loan liquidations on decentralised lending protocols are a relatively new research area
and therefore there is not much literature exploring how to implement systems that
effectively liquidate decentralised loans and there is certainly nothing related to how
to do this in a collective and decentralised manner. The work in this project presents
a unique and original system to allow untrusting DeFi users to collaborate on the
liquidation of loans. There is currently nothing like this on the market, nor is there any
research exploring how a system like this would work. Whilst loan liquidation bots do
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exist (just private programs that solely carry out the liquidation part), none are known
to exist that work in a community-run manner allowing for the layperson to participate
and earn from the process.

Most of those who understand decentralised loan liquidations are generally unwilling to
publish information about it since superior knowledge on the subject is a competitive
advantage and in the nascent markets, this can lead to substantial profits. The single
entity-run liquidation bots that do exist are not yet covered in academic literature or the
general web. The systems that people develop and the design decisions that they make
are secret knowledge that they’re unwilling to share. This work navigates some of the
decisions that are required when developing such systems and explains the reasoning
behind these design decisions in the decentralised finance context.

Whilst this secretive nature is unfortunate, it leaves a lot of avenues for ingenuity when
working with decentralised loan liquidations as there is no “standard” way to do things;
design choices are still being explored.

Though there is not any directly related work, there does exist some research in the
general space of decentralised lending. One particularly impactful paper would be
that of Qin et al. [28] which researched various decentralised lending protocols on the
Ethereum blockchain such as Aave, MakerDAO, Compound and dYdX. The research
acquired data from all of the protocols which it presented, this data and exploration
helped inform the work of this project by providing insight into the general liquidation
activity within the Ethereum blockchain. That being said, their work is more concerned
with the efficiency and fairness of the liquidation mechanisms used by these protocols.
This focus is shared by another influential paper in the area by Perez et al. [26] which
investigates liquidation efficiency on Compound.

Furthermore, another important related paper is the work carried out by Bartoletti et al.
[9] which offers a formal model of lending pools, describing their interactions. This
paper was useful in understanding the DeFi lending systems allowing the work of this
project to make informed design decisions.



Chapter 3

Design and Implementation of
Decentralised Liquidation System

In this chapter, the design and implementation of the decentralised liquidation scheme
are explored. The system consists of two main components:

• The Liquidation Opportunity Oracle (LOO).

• The Community Pool Protocol (CPP).

These two components combine to make the whole system, though, the majority of the
system relies on the Community Pool Protocol which runs on the Ethereum blockchain.
Throughout this chapter, the general requirements of the system are considered, the
LOO design is described and justified, and the architecture and reason for the design
decisions of the CPP smart contract are detailed. Finally, the design and implementation
of the governance abilities of the system are presented.

3.1 General System Requirements

Presented below is a brief overview of the general requirements that the system must
satisfy. The system must:

• Periodically fetch and store data about users’ lending positions on the Aave
protocol.

• Calculate the health factor of users’ lending positions to identify those that can
be liquidated.

• Call the smart contract, from an off-chain program, with the relevant data to
execute the loan liquidation.

• Allow users to pool their funds in a decentralised and trustless manner.

• Validate, on-chain, that an identified loan is likely to be a profitable liquidation
opportunity.

12
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• Acquire the debt asset through a decentralised exchange so that it can be used to
execute the liquidation.

• Execute the liquidation on the Aave protocol.

• Sell the collateral asset at its market price via a decentralised exchange.

• Calculate and distribute loan liquidation profit.

• Facilitate governance of the system allocating voting power proportionately to
each participant’s stake in the system.

3.2 Liquidation Opportunity Oracle (LOO)

To liquidate a loan, the account that has an unhealthy position in the protocol must be
known. Such accounts can be found via two main methods; either by looking directly
at on-chain data, namely, the emitted events of the Aave protocol or by using GraphQL
to query Aave’s subgraph on The Graph [30] (an indexing protocol for querying the
Ethereum network). The proposed system uses The Graph to fetch on-chain data.

There are a few reasons that The Graph is the method of choice for the system. The
benefits to using The Graph rather than working directly with emitted events are:

• The Graph offers a scalable solution for fetching large amounts of data efficiently,
whereas, emitted events can be slow and resource intensive.

• The Graph is a developer-friendly protocol that uses a GraphQL style API, making
it simple to query and index data. This reduces implementation time and prevents
the code base from becoming cumbersome to work with.

• Aave has created its own subgraph, optimising it, so that it makes for a suitable
method to fetch the data that is needed.

• Data standardisation on The Graph is important since it allows for easy access
compared with data that is potentially partitioned into many confusing types of
emitted events.

The LOO system periodically makes requests to Aave’s subgraph on The Graph to fetch
the data required to reconstruct the lending positions of users. The periodicity of the
calls is a topic that requires dedicated research to determine the optimum frequency at
which to fetch data efficiently.

It fetches all of the borrows that an account has made, collecting data such as the
address of the token, its current price (denoted in ETH) and its liquidation threshold.
Furthermore, it fetches similar data for the assets that an account has deposited into
lending pools and therefore can be used as collateral (depending on the specific asset).

From the collected data, the overall lending position can be reconstructed allowing for
the calculation of an account’s health factor. The health factor is calculated according
to the equation (2.1) detailed in the background chapter and loans with a health factor
less than 1 are identified as liquidation opportunities.
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The general architecture for the Liquidation Opportunity Oracle as well as its relation
to the on-chain Community Pool Protocol is described in figure 3.1.

Figure 3.1: Liquidation Opportunity Oracle (LOO) Architecture.

When a liquidation opportunity is identified by the LOO, its profitability is analysed to
ensure that it is worth liquidating. The LOO determines if the liquidation is worthwhile
based on the following criteria:

• Is the amount to liquidate sufficient to make a meaningful profit after gas fees?

• Is the liquidation amount for the asset within the minimum and maximum liqui-
dation amounts for that asset set by governance?

◦ As detailed in the background chapter, price impact can affect the overall
profitability of the process since trying to market sell too much of the
discounted collateral asset - relative to the overall liquidity of the token
in Uniswap pools - could lead to money being lost overall. This is why
maximum liquidation amounts are set.

◦ Too low of a liquidation amount would be unprofitable due to fees.
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• Is the collateral asset that will be received from the liquidation on the governance
determined allowlist? This is detailed more comprehensively in subsequent
sections but it is based on the perceived risk associated with a particular asset.

After identifying a liquidation opportunity and confirming its suitability the LOO will
utilise the Community Pool Protocol to call a function within the smart contract that
executes the liquidation logic. This adds a level of centralisation to the design, however,
it is necessary to construct the LOO in a centralised manner as a fully decentralised
implementation would not currently be viable due to gas fees and the nature of how
smart contract functions are called on the Ethereum blockchain. The impact of this
centralised point of the system is mitigated by the protocol architecture (detailed in
section 3.3.3) which restricts the power of the LOO, incentivises the desired behaviour
and allows it to be governed by the decentralised stakeholders of the system.

3.3 Community Pool Protocol (CPP)

3.3.1 Executing the Loan Liquidation

When the LOO makes a call to the protocol to execute a loan liquidation, the parameters
of the call are used to verify (on-chain) that it is indeed a valid liquidation opportunity.
This is carried out by first retrieving the price of the debt asset via a decentralised price
feed from Chainlink [10], fetching the Aave user account data to verify that the health
factor is below 1 and finally, performing the necessary calculations to estimate the
profitability of the liquidation i.e. verifying the amount of debt asset to liquidate as well
as ensuring the amount is within the minimum and maximum liquidation amounts set
by governance.

Following this, the appropriate amount of the debt asset is purchased on Uniswap
[6] - a decentralised exchange - because Aave liquidations require that the liquidator
already have a sufficient balance of the debt asset to be used to pay back the debt when
executing the liquidation. Once the debt asset has been acquired, the liquidation can
be executed by calling the relevant function within the Aave protocol’s smart contract.
The CPP smart contract directly calls Aave’s “liquidationCall” function to carry out the
liquidation on the protocol.

Aave loan liquidations allow the liquidator to receive either the underlying collateral
asset or the aToken after a successful liquidation call. To avoid market risk, due to
price movement, the underlying asset is chosen to be received so that it can be market
sold as soon as possible on Uniswap. Once the liquidation process is complete and the
discounted asset has been sold, the profit is calculated and distributed proportionately
between the funders of the pool.

If for any reason, the liquidation does not work properly then the transaction is reverted
and it is as though the whole execution of the loan liquidation stage had never happened
in the first place. This functionality is due to Solidity’s revert operation which reverts
all changes to the state. Fig. 3 shows a flow chart representing the high-level overview
of the smart contract with its revert functionality.
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Moreover, it should be noted that the functionality of the protocol is restricted in that
although the liquidation is triggered by a centralised oracle, the actions that it can
perform are limited to only allow using the pool’s funds to liquidate a loan - a loan that
is verified on-chain to be worthwhile liquidating. This is of paramount importance for
minimising the centralisation risk of the LOO and is bolstered by the capabilities of the
governance system.

The general architecture of the Community Pool Protocol and its relation to the Liqui-
dation Opportunity Oracle is shown in figure 3.2.

Figure 3.2: Community Pool Protocol (CPP) Architecture.

3.3.2 Smart Contract Architecture

The smart contract is the Ethereum program that handles the on-chain logic to verify
and liquidate an unhealthy loan identified by the LOO. The CPP smart contract also
facilitates the governance capabilities of the system as well as managing and storing the
funds that the users of the protocol deposit into it.

The main function of the CPP smart contract is the “executeLiquidation” function which
encapsulates the main purpose of the whole smart contract. The overall flow of the
function is shown in figure 3.3.

The function “executeLiquidation” can only be called by the LOO whenever it identifies
a liquidation opportunity. The following pieces of data are passed into the function
from the LOO:



Chapter 3. Design and Implementation of Decentralised Liquidation System 17

Figure 3.3: CPP Liquidation Call Overview Flow Chart.

• The address of the collateral asset.

• The address of the debt asset.

• The address of the user that has the related unhealthy lending position.

• An unsigned 256-bit integer representing the amount of debt that we would like
to cover when liquidating the loan.

Straight away the “executeLiquidation” function ensures that the collateral asset that
would be received on a successful liquidation is on the governance-determined allowlist.
Once it performs this check, it then takes note of the current USDC balance of the
contract; this is required for profit calculations at the end of the liquidation process.

Following this, the smart contract can now start to verify the liquidation opportunity
on-chain by fetching the user’s reserve data for the debt asset directly from Aave. Only
a few of the data points related to the user’s reserves are relevant for this verification:
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• The total amount of liquidity borrowed at a stable rate represented in debt tokens
[5] for the specific debt asset (SDasset).

• The total amount of liquidity borrowed at a variable rate represented in debt
tokens [5] for the specific debt asset (V Dasset).

The amount of debt that can be covered in the liquidation is calculated according to the
following formula:

debtToCover =
(
SDasset +V Dasset)×LiquidationCloseFactorPercent (3.1)

where the LiquidationCloseFactorPercent is the maximum percentage of the debt that
we can liquidate. This value is set by the protocol to currently be 0.5.

The reason this data is fetched on-chain as well as previously being fetched off-chain
is to ensure that the passed-in data to the smart contract is still valid and has been
passed with integrity by the Liquidation Opportunity Oracle. This heavily mitigates
decentralisation risk preventing the Liquidation Opportunity Oracle from making false
or malicious calls that do nothing else but waste users’ funds in an attempt to disrupt the
protocol. This form of on-chain verification reduces the power of the off-chain element
of the system making it less susceptible to disruption by restricting functionality and
verifying the integrity of the operation.

Once the contract has verified the lending position on-chain and the amount of debt that
can be liquidated, it must acquire the required amount of the debt asset since the Aave
protocol requires that the calling smart contract already has the asset when liquidating
a loan. A couple of methods were considered when deciding how to implement such
functionality.

One method of handling this would be to store reserves of the various assets that are
predicted to be needed for future loan liquidations, however, this is a flawed approach
for two reasons.

1. The risk associated with keeping reserves of volatile assets.

• Consider a user that deposits 1000 US Dollars worth of some volatile
cryptocurrency token that is to be used for liquidations. Users deposit
into the pool with the expectation of earning a return based on the profit
derived from the liquidation of loans. If volatile assets are allowed to be
deposited then users may end up with less money overall even if there are
successful liquidations due to the price movement of the volatile asset. This
system design aims to allow users to earn a return solely from the liquidation
process.

2. Reduced size of liquidations.

• The profit earned from a loan liquidation is related to the overall size of
the liquidation. If the funds controlled by the system are partitioned into
various cryptocurrency tokens then this reduces the size of liquidation that
can be performed at once and therefore the potential profits.
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Another method - and the chosen solution - is to purchase the debt asset when it is
required, though, this means that the CPP smart contract must have access to funds
that can be used to purchase the debt asset on-chain. This functionality is facilitated by
storing the reserves of the CPP smart contract in a stablecoin. These stablecoin reserves
that have been deposited into the CPP smart contract by the pool participants can then
be used to purchase the debt asset required for a liquidation providing benefits such as:

• Less exposure to volatility risk. Volatile assets are more likely to be viable since
the system would only use/hold them for short periods of time.

• Stablecoins tend to be highly liquid in automated market maker pools meaning
that it is relatively easy to purchase a variety of assets that may be debt assets for
liquidations using them.

• Increased size of liquidations. The amount of debt asset acquired is only limited
by the CPP’s funds and the availability of the asset to be purchased rather than
relying on the CPP smart contract to keep the asset itself.

This leads to the question, “which stablecoin should be used in the system?”.

According to Moin et al., “Stablecoins are a class of cryptoassets created to provide the
stability money needs to function. As the name implies, they are designed to be price
stable with respect to some reference point, such as USD.” [23]. Whilst there are many
types of stablecoin [29], two of the most prominent cryptocurrency stablecoins are
US Dollar Tether (USDT) and US Dollar Coin (USDC) - which are fiat-collateralised
stablecoins, both pegged to the US Dollar - with respective market caps of $70.5 billion
and $42 billion according to CoinMarketCap on the 21st of February 2023 [12].

The scheme detailed in this paper opts to use USDC as its stablecoin due to controversies
surrounding USDT’s collateral [25] with Stuart Hoegner who is general counsel for
Tether stating in the Supreme Court of New York that USDT was only 74% collateralised
[19]. The under-collateralisation of USDT poses a de-pegging threat (the risk of the
value not being linked to 1 US dollar) to the stablecoin which could have massive
knock-on effects for the proposed system had it chosen to use it.

Storing the pool’s funds in USDC means that the system has a stable store of value that
generally can be converted to another token with minimal price impact due to the high
liquidity of stablecoin-paired pools on exchanges like Uniswap.

Now that the system has a stable store of funds, the “executeLiquidation” function can
use these stable funds to acquire the debt asset by purchasing it through a decentralised
exchange.

Xu et al. present a comparison table (table 3.1) in their paper regarding decentralised
exchanges (DEXs) with automated market makers (AMMs) [31]. This table details
some important aspects to consider when determining which decentralised exchange to
use for the system.

Uniswap is the DEX of choice for this system for a few reasons, such as, it being
the largest DEX by market share, it having the highest number of governance token
holders and it having the most trading volume. These attributes mean that Uniswap is a
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Protocol Value locked ($bn) Trade volume ($bn) Market (%) Governance Token Governance token holders Fully diluted value ($bn)
Uniswap 6.15 11.4 66.7 UNI 269,923 21.1
Sushiswap 3.92 2.9 14.2 SUSHI 71,007 2.4
Curve 11.64 1.8 6.4 CRV 44,654 4.0
Bancor 1.37 0.4 2.5 BNT 38,124 0.8
Balancer 1.74 0.5 2.2 BAL 37,613 1.0
DODO 0.07 0.4 2.1 DODO 11,330 1.2

Table 3.1: “Comparison table of discussed DEX: value locked, trade volume of the past 7
days, the market share by the last 30 days volume, the governance token, the number of
governance token holders and the fully diluted value, as on 21/09/2021. Data retrieved
from DeFi Pulse and Dune Analytics.” [31]

well-documented protocol that is suitable for the CPP smart contract to interact with as
well as having highly liquid pools meaning that large volumes of assets can be traded
with minimal price impact. In addition to this, the high number of governance token
holders suggests that it is a highly decentralised protocol which helps to preserve the
degree of decentralisation of the proposed system.

Uniswap has two functions within the smart contracts of its protocol that are relevant to
the proposed system:

1. “exactOutputSwap”: This allows a token to be purchased, specifying the exact
number of tokens that must be received.

2. “exactInputSwap”: This allows a token to be purchased, specifying the exact
number of tokens that will be used to purchase the other token.

Due to the AMM mechanism - detailed in the background chapter of this paper (2.2) -
the price that is paid for a single unit of a token is not the same throughout the purchase
of another token on Uniswap. This is due to things such as price impact and slippage.
Often, systems need to spend a certain amount of tokens or receive a certain amount of
tokens; Uniswap provides these options via the two aforementioned functions.

When acquiring the debt asset for the Aave lending position liquidation, the system
requires an exact amount of the debt asset; the amount of debt asset to cover. For this
reason, “exactOutputSwap” is used to receive the exact amount of output tokens.

This function has a parameter, “amountInMaximum”, that determines the maximum
amount that is willing to be paid for the given exact amount of output tokens. This
is to avoid massively overpaying for a trade. If no limit was given then the trade is
susceptible to being front-run (described in the evaluation chapter (section 4.4) or a
poor price being paid due to rapid price fluctuations in the market. It is much safer to
set the “amountInMaximum” value based on recent price data to avoid these risks and
that is why the proposed system sets this value using a price oracle.

To set the “amountInMaximum”, recent price data is required from a decentralised
price oracle. For this, the CPP smart contract uses Chainlink and calls their price feed
oracle requesting real-time price data for the debt asset in USDC. Chainlink provides
various data feeds for the price of tokens. The address for the Chainlink oracle is stored
in a struct - named AssetParameters - defined in the CPP smart contract that contains
information such as the minimum and maximum liquidation amounts and whether the
asset is allowed or not.
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Once this price value has been received, the CPP smart contract multiples this price by
the amount of debt asset required and adds a 2% leeway value to allow for small market
fluctuations increasing the probability that the token swap is successful.

the “executeLiquidation” function can now call “exactOutputSwap” on the Uniswap
protocol to receive the debt asset. After this, the contract can begin to liquidate
the unhealthy lending position. Due to how ERC-20 tokens work on the Ethereum
blockchain, the CPP smart contract must approve the transfer of its debt asset token.
There are a couple of methods that can be used to do this, the proposed design makes
use of the “safeApprove” function. This function is from the SafeERC20 library which
provides wrappers around the ERC20 token functions.

SafeERC20 was used here (and also in other parts of the CPP smart contract code)
since its functions increase smart contract security by performing checks that ensure the
tokens were “approved” and “transferred” properly. As well as this, using SafeERC20
saves development time compared with manually writing these checks ourselves in the
smart contract.

After the CPP smart contract has approved the Aave protocol’s lending pool address to
take the debt asset tokens from it, the liquidation is started by calling the “liquidationCall”
function of the Aave lending pool smart contract. The relevant data is passed into the
“liquidationCall” function, specifically:

• The token address of the debt asset.

• The token address of the collateral asset.

• The address of the Aave user with the unhealthy lending position.

• The amount of debt asset to liquidate.

• A boolean value representing whether to receive the AToken balance for the
collateral on successful liquidation.

The CPP smart contract sets the last argument to “false” since one of the design decisions
is to receive the actual collateral asset so that it can be market sold as soon as possible.
This is desirable as it avoids market risk from fluctuations in the price of the collateral
asset by selling it at the market price straight away.

At this stage, provided the information passed to the “liquidationCall” function call was
correct - which it should be since it has been verified - the liquidation will be successful
and the CPP smart contract will receive the discounted collateral asset. If, for any
reason, the liquidation fails then the “executeLiquidation” will take advantage of the
revert functionality in Solidity and revert the whole transaction so that none of the state
changes executed in the function will be written to the blockchain. This prevents the
system from being left with the debt asset after a failed liquidation, instead, it is as
though the “executeLiquidation” function was never called in the first place (minus the
gas fee paid for partial execution).

It is now time for the collateral asset to be sold. For this, the other Uniswap function
mentioned previously, “exactInputSwap” is used. This allows the exact amount of
the collateral asset that has been acquired via the liquidation to be sold. The CPP
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smart contract checks its balance of the collateral asset by calling the “balanceOf”
function of the ERC20 token. Since the CPP smart contract stores its funds in the
stablecoin, USDC, the collateral asset will be sold for USDC. Similarly to purchasing
the debt asset on Uniswap, the “exactInputSwap” function takes a parameter called,
“amountOutMinimum”, which determines the minimum amount of the token that would
be accepted for the given exact amount of input tokens. Again, this value must be set
based on recent price data fetched from Chainlink. The process is the same as described
for the purchase of the debt asset with a 2% leeway value.

Finally, the “executeLiquidation” function checks its USDC balance and compares it
with the value recorded at the start of the function call, allowing for the calculation
of the overall profit of the process. This profit must be distributed between the pool
participants of the system proportional to their stake i.e. their deposit. This could
be performed by looping through all of the pool participants, calculating their share
and allocating it to them but this would be highly inefficient as explained in section
4.3.2. Instead, a uint256 variable named “poolMultiplier” is used to store the relative
growth of the CPP smart contract’s pooled funds due to liquidation profit. This is the
method chosen for the design of the CPP smart contract since it is significantly more
gas efficient and thus more economically viable.

The “poolMultiplier” value is effectively set at 1 at the inception of the smart contract.
As the system grows and makes a profit, this value will grow i.e. if the pool had made
20% profit from a liquidation call, the new “poolMultiplier” value would be 1.2. Solidity
doesn’t fully support floating point numbers so it must be stored as an integer value with
a set number of decimal places. For description purposes, the example shown here just
deals with the floating point representation, though, the CPP smart contract implements
the same functionality using fixed decimal calculations.

The “poolMultiplier” variable is important for understanding how the profit and funds
of the system are tracked as well as for explaining how the system handles deposits and
withdrawals.

To demonstrate how the “poolMultiplier” works, consider a scenario such that the CPP
smart contract pool has a total of 9000 USDC in it from several depositors and previous
operation of the system has caused the “poolMultiplier” to be 1.1. Bob deposits 1000
USDC to the CPP smart contract meaning they have a 10% share of the pool. The
“deposit” function of the CPP smart contract accepts the transfer of funds to it and
adjusts internal variables to store the user’s participation in the system. Bob’s share of
the pool will be stored relative to the “poolMultiplier” and calculated as follows:

poolShareuser =
depositAmountuser

poolMultiplier

=
1000
1.1

= 909.09

(3.2)

The “withdraw” function of the CPP smart contract only lets a user withdraw their share
of the pool and calculates the withdrawable amount similarly to the “deposit” function
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again making use of the “poolMultiplier”. If the user were to withdraw their funds, the
amount they could withdraw is calculated as follows:

withdrawableAmountuser = poolShareuser · poolMultiplier
= 909.09×1.1
≈ 1000

(3.3)

Consider that the user has deposited and not withdrawn, the system then liquidates an
unhealthy loan earning 500 USDC in profit. Bob’s earnings would be 50 USDC i.e.
10% of the profit so his new pool share is 1050 USDC. To update the share so that it
reflects this earning, the “poolMultiplier” must be updated according to the following
equation:

newPoolMultiplier =
TotalPoolValueA f ter · currentPoolMultiplier

TotalPoolValueBe f ore

=
10,500×1.1

10,000
= 1.155

(3.4)

If Bob now wanted to withdraw his funds and receive his earnings, the withdrawable
amount would be calculated using equation 3.3 with the new poolMultiplier value
(909.09×1.155 ≈ 1050). This means that the share that the user owns of the pool can
be dynamically calculated at the time it is needed and lots of expensive computational
power is saved. This is why this method was chosen over the expensive looping method.

Figure 3.4 details a UML sequence diagram for the typical flow of the Liquidation
Opportunity Oracle and the Community Pool Protocol. The LOO discovers an unhealthy
lending position by querying The Graph, and passes the information to the CPP which
verifies the data on-chain, acquires the debt asset on Uniswap, liquidates the loan on the
Aave protocol, sells the collateral asset on Uniswap and finally updates the CPP smart
contracts internal data.

3.3.3 Governance Abilities

To allow stakeholders to maintain the integrity of the system and ensure it acts in
their collective best interest, pool participants are given voting rights weighted on the
proportion of their share of the pool. Governance abilities include:

• Determining the Liquidation Opportunity Oracle (LOO) caller address. The
stakeholders have the power to change the address that is allowed to execute
liquidations on behalf of the community. Reasons for doing so could be:

◦ The current LOO is making incorrect or malicious calls.

◦ The community have developed a better implementation of the LOO and
wants to switch it out for the new one (the LOO is modular in this sense).
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Figure 3.4: UML sequence diagram for the liquidation process of the proposed system.

• Altering the parameters used for calculating a profitable liquidation. For example,
governance may decide that loans below a certain value are not worthwhile
liquidating.

Governance is carried out via a voting system that delegates voting power proportion-
ately to a stakeholder’s share of the pool. This voting power is calculated using the
share of the pool which comes from the “poolMultiplier” variable previously discussed.

Governance votes can be proposed by stakeholders, however, proposing a change
requires a monetary deposit, encouraging only necessary proposals. The fee amount set
in the CPP smart contract is 0.01 ether (approximately 18$). This is a sufficient amount
to discourage bad actors from attempting to DOS attack the system by needlessly
calling governance proposals since it would cost them every time to do so but not so
much to discourage genuine participants from making a needed governance proposal.
Furthermore, the design of the CPP smart contract implements functionality to allow
proposers to reclaim this fee if their proposal is successful. Again, this promotes honest
usage of the proposal system.

To implement the governance system, the CPP smart contract makes use of an enum
to store the different types of governance proposals. The values of the “ProposalType”
enum are as follows:

• ALLOWLIST UPDATE - This represents the update of the boolean value repre-
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senting whether a specific asset is allowed in the system.

• UPDATE LOO - This represents the update of the LOO address.

• UPDATE MIN LIQUIDATION - This represents the update of the minimum
liquidation amount associated with a specific asset.

• UPDATE MAX LIQUIDATION - This represents the update of the minimum
liquidation amount associated with a specific asset.

In addition to this, the design uses an array of struct to store the proposals made for the
system. The struct stored in the array is called “Proposal” and has the following fields:

• proposedChange - One of the ProposalType enums.

• votingPeriodEndBlock - The block number at which voting on the proposal will
end.

• forVotes - The number of votes for the proposed change.

• voted - A mapping that is used to store which addresses have voted for the
proposal to avoid double voting.

• accepted - A boolean representing whether or not the proposal has been accepted.

• implemented - A boolean representing whether or not the proposal has been
accepted.

• feeCollected - A boolean representing whether or not a successful proposal’s fee
has been reclaimed by the proposer.

• proposer - The address of the proposer.

• relatedAddress - The address related to the proposed change. Used for certain
proposal types.

• relatedValue - The value related to the proposed change.

• minForVotesRequired - The minimum number of for votes required for the
proposal to be passed by governance.

The Proposal struct and the ProposalType enum are shown in figure 3.5.

When a user wishes to propose a change to the system, they must call the “createPro-
posal” function, passing it the values related to the change as well as paying the 0.01
ether fee. This creates a Proposal struct with the relevant data, setting the minimum
number of for votes to 50% of the voting power of the system. Essentially, for a given
proposal to be passed by governance, more than 50% of the CPP smart contracts stake-
holders (measured by the size of their stake) have to vote for the change. This means
that whatever the majority of the system’s stakeholders want will be passed. When
calling the “createProposal” function the return value is the ID of the proposal, which
other users can use when voting.

Once a proposal has been created the participants of the system can vote on the proposal
by calling the “castForVote” function and passing the “proposalId”. The function
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«enumeration»
ProposalType

ALLOWLIST_UPDATE
UPDATE_LOO
UPDATE_MIN_LIQUIDATION
UPDATE_MAX_LIQUIDATION

«struct»
Proposal

ProposalType: proposedChange

uint256: votingPeriodEndBlock

uint256: forVotes
mapping(address => bool): voted
bool: accepted
bool: implemented
bool: feeCollected
address: proposer
address: relatedAddress
uint256: relatedValue
uint256: minForVotesRequired

Figure 3.5: UML class diagram for the Proposal struct and the ProposalType enum.

ensures that the voter has not already voted and that the voting period is still active.

The block that the voting period will end at is calculated by adding the number of
blocks that a voting period should last to the block number when the proposal is created.
The CPP design chooses to set the “votingPeriodEndBlock” value by adding 40,320 to
the current block number since 40,320 blocks at an average block time of 15 seconds
on the Ethereum mainnet is roughly 1 week. This value is chosen since it is not too
short to make it difficult to vote in time but not too long that the voting period runs on
needlessly.

When the voting period has ended and if the number of “for” votes for a proposal was
sufficient, the “implementProposal” function can be called by anyone. The decision
to allow the function to be called by anyone increases the chance that it will be called.
This is useful since if a proposal passes, it has been deemed to be what the stakeholders
of the system want. Restricting the calling of this function to, for example, only be
callable by the proposer means that they can change their mind after the fact or for any
other reason not call the function and the change wouldn’t be implemented.

The “implementProposal” function figures out the type of proposed change using the
related ProposalType enum and updates the system accordingly.

Finally, the proposer of a successful vote can recoup their proposal creation fee by
calling the “withdrawSuccessfulProposalFee” function which sends them back their
0.01 ether.

The governance system of the CPP smart contract allows for the decentralised manage-
ment of the protocol and bolsters the level of decentralisation of the entire proposed
scheme.

Some of the anticipated reasons that the community of the system would propose a
change, particularly, related to the parameters for an asset that the system deals with
would be:

• The volatility of the asset.
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◦ Volatile assets are riskier to deal with, so the governance of the system
may decide to not allow these assets to be used in the system to protect its
stakeholders.

• The amount of liquidity and accessibility of the token on Uniswap.

◦ If an asset is not very liquid on a decentralised exchange on Uniswap, a trade
executed to purchase or sell it could be heavily vulnerable to substantial
losses due to price impact and so the governance of the system may opt
to protect from this by either banning the asset or carefully selecting the
amount of the asset that can be handled in one liquidation.

• The overall risk of the token to catastrophic events such as decentralisation risk
which could cause the token to completely collapse.

• General perceived risk due to technical implementation or the team that manages
the token design.

A UML class diagram is presented in figure 3.6 that shows more detail regarding the
implementation of the Community Pool Protocol.
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CPP Smart Contract 

+ LOO_ADDRESS: address
+ usdc: IERC20 
- usdc_usdPriceFeed: 
AggregatorV3Interface
+ lendingPoolAddressProviderAddress: 
address constant
+ protocolDataProviderAddress: address 
constant
+ swapRouter: ISwapRouter
+ poolShare: mapping(address => 
uint256)
+ poolMultiplier: uint256
+ scalingFactor: uint256
+ minDepositAmount: uint256
+ uniswapPoolFee: uint24 constant
+ allowlist: mapping(address => 
AssetParameters)
+ votingPeriodBlocks: uint256 constant
+ proposalFeeBalance: mapping(address 
=> uint256)
+ proposals: Proposal

constructor(address, address)
+ createProposal(ProposalType, address, 
uint256): uint256
+ castForVote(uint256)
+ implementProposal(uint256)
+ deposit(uint256)
+ withdraw()
+ getBalance(address)
+ withdrawSuccesfulProposalFee()
- executeLiquidation(address, address, 
address, uint256)
- getAaveUserReserveData(address, 
address): AaveUserReserveData
- getOraclePrive(address): (uint256, 
uint256)
- uniswapAcquireDebtAsset(address, 
uint256, uint256): uint256
- uniswapSellCollateralAsset(address, 
uint256, uint256): uint256
+ getContractUSDCBalance(): uint256

«enumeration»
ProposalType

ALLOWLIST_UPDATE
UPDATE_LOO
UPDATE_MIN_LIQUIDATION
UPDATE_MAX_LIQUIDATION

«struct»
Proposal

ProposalType: proposedChange

uint256: votingPeriodEndBlock

uint256: forVotes
mapping(address => bool): voted
bool: accepted
bool: implemented
bool: feeCollected
address: proposer
address: relatedAddress
uint256: relatedValue
uint256: minForVotesRequired

«struct»
AssetParameters

bool: allowed
uint256: decimals
uint256: minLiquidation
uint256: maxLiquidation
address: usdPriceFeedAddress

«interface»
AggregatorV3Interface

+ latestRoundData(): int
+ decimals(): uint256

«interface»
IERC20

+ balanceOf(address): uint256

«interface»
ILendingPoolAddressesProvider

+ getLendingPool(): address

«interface»
ILendingPool

+ liquidationCall(address, 
address, address, uint256, 
bool)

«interface»
IProtocolDataProvider

+getUserReserveData(address: 
asset, address: user): uint256,
uint256, uint256, uint256, 
uint256, uint256, uint256, 
uint40, bool

«interface»
ISwapRouter

+ ExactOutputSingle(address, 
address, uint24, address, 
uint256, uint256, uint256, 
uint160) : uint256
+ ExactInputSingle(address, 
address, uint24, address, 
uint256, uint256, uint256, 
uint160) : uint256

«interface»
TransferHelper

+ ExactOutputSingle(address, 
address, uint24, address, 
uint256, uint256, uint256, 
uint160) : uint256
+ ExactInputSingle(address, 
address, uint24, address, 
uint256, uint256, uint256, 
uint160) : uint256

Figure 3.6: UML class diagram for CPP smart contract.



Chapter 4

Experiments and Evaluation

In this chapter, the experimental setup is described and the results are discussed and
evaluated. Testing complex interactions between various Ethereum protocols is a
challenging endeavour due to the documentation for the protocols tending to only cover
extremely basic scenarios. A significant amount of time was dedicated to reading
through the smart contracts of these protocols to design an experimental environment
that facilitated the testing of the proposed system. The experimental setup consists of
creating a local fork of the Ethereum mainnet and simulating the required Ethereum
blockchain conditions required for a loan liquidation to take place. The latency of the
“executeLiquidation” function is explored and the gas efficiency of the smart contract is
analysed and evaluated. Furthermore, the security- and decentralisation-design of the
system is evaluated.

4.1 Experimental Setup

4.1.1 Experimental Environment

To test the performance of the smart contract a local environment was set up. The
Ethereum development environment, Hardhat [3], was used to create an instance of
the Hardhat Network that forks the Ethereum mainnet allowing the experiments to
operate in an environment that simulates having the same state as the mainnet but works
as a local development network. This is required when working with smart contracts
that need to interact with deployed protocols as it facilitates the testing of complex
interactions in a local environment.

To create a mainnet fork, a network provider is required, thus an Infura [1] node was
used. Once the local mainnet fork was set up a Hardhat project was created with the
Community Pool Protocol smart contract code.

A test suite was set up using ethers.js [2] to interact with the smart contract and mainnet
fork, and Mocha [4] was used as the test runner.

The local mainnet fork was run on a 2021 MacBook Pro with an Apple M1 Pro chip
and 16 GB of memory.

29
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4.1.2 Simulating a Price Drop

To test the loan liquidation functionality of the CPP smart contract, the relevant
Ethereum network conditions on various protocols had to be simulated. As detailed
previously, a loan position is available to be liquidated when the health factor of a user
drops below 1. The Aave protocol calculates this health factor according to equation
2.1 which is dependent on the value of the debt and collateral assets that a user has.

Ethers.js was used in the test suite to impersonate a signer (note: this is a testing method
that can only be performed in local blockchains) for the Ethereum address of the Aave
protocol, namely the PoolDataProvider. This address manages the data that the Aave
protocol uses to calculate attributes such as the health factor. The PoolDataProvider was
impersonated to sign a change to the oracle address that is used by the Aave protocol to
fetch price data about WETH - an ERC-20 token.

The oracle address for WETH was changed on the Aave protocol to an address that re-
turned a significantly lower value than the actual price of the WETH token, thus, making
the Aave protocol think that the price of the WETH token had dropped massively.

This impacts the health factor of users that are using WETH as a debt or a collateral
asset on Aave. Users that are using WETH as a collateral asset will have their health
factors impacted negatively and in some cases reduced below 1 so that their position is
now unhealthy and can be liquidated.

As of writing, the real price of WETH - which is linked 1-to-1 with ETH - is around
1,700$. The experimental setup changes the oracle for WETH to the oracle for MKR -
another ERC-20 token - which is currently priced at around 600$ (a roughly 65% drop).

4.1.3 Testing the Liquidation Call

To test the liquidation of a loan position via the CPP smart contract some basic prereq-
uisite steps were taken.

The test environment first deploys the CPP contract to the local mainnet fork calling
the constructor method of the contract and setting the address of the LOO. Once this is
done, the contract can be accessed in the local environment as though it was actually
on-chain.

An Ethereum address to be used as a test pool participant address was transferred
1,000,000 USDC from a USDC whale account (an account with a large number of
tokens) on the mainnet fork. The whale account was identified on Etherscan [15] by
looking at the top holders (by volume) of the USDC token. This address was then
impersonated using ethers.js and used to send the USDC to the test pool participant
address. This test address then deposited the 1,000,000 USDC into the CPP smart
contract via the deposit function.

The Liquidation Opportunity Oracle was used to identify a user that had used WETH as
collateral and therefore their health factor had dropped significantly once the WETH
oracle address was altered.
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The tests then call the “executeLiquidation” passing in the appropriate data to liquidate
the unhealthy Aave loan position of the user. Some sanity checks are made within the
tests to ensure that the loan was liquidated correctly and a profit was made.

Carrying out this process allowed for the exploration of the gas efficiency of the smart
contract as well as the latency of the “executeLiquidation” function.

4.2 Latency of the executeLiquidation Function

Speed is important when it comes to the liquidation of loan positions since it could be
a sharp drop in price that triggers the unhealthy position but this price drop will not
necessarily sustain. An efficient liquidation system must execute the liquidation swiftly
to maximise its earning potential.

For this reason, the latency of the “executeLiquidation” function is of interest. To
measure the latency, the testing environment measured the time taken for a liquidation
execution function to be called and executed in the mainnet fork.

The latency value for the “executeLiquidation” function of the CPP smart contract was
compared to the latency value for manually calling the core Aave “liquidationCall”
function directly with the input data. Both methods were run 10 times each on fresh
local Ethereum mainnet forks at a specific block number to ensure the results were
comparable and not impacted by network congestion. The block number used was
16928579.
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Figure 4.1: Comparison of latency values for manual liquidation and liquidation via the
CPP smart contract.
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It is clear that the CPP smart contract’s “executeLiquidation” function has a higher
latency than the latency of manually calling Aave’s “liquidationCall” function. This
is expected since the “executeLiquidation” function calls “liquidationCall” within it.
“liquidationCall” had an average latency of 1035.27 milliseconds whereas “executeLiqui-
dation” had an average latency of more than twice that at 2583.13 milliseconds. Whilst
“executeLiquidation” does significantly add to the latency value, the trade-off must be
considered in the context. “executeLiquidation” performs an on-chain verification of
the liquidation parameters ensuring that the liquidation is viable, as well as this, it must
also safely acquire the debt asset and safely sell the discounted collateral in this time.
This makes for a much safer liquidation by performing sanity checks as well as market
selling the collateral asset to avoid market risk. The added latency overhead is a small
price to pay for the benefits received and required by the proposed system.

4.3 Gas Analysis

Gas efficiency is the most important performance aspect of a smart contract. Gas
is a measure of the computational resources required for the execution of a specific
operation or transaction in a smart contract [32]; it is the unit of measurement for the
amount of work that must be done by the Ethereum network to execute the given code.

Furthermore, the gas efficiency of a smart contract is also important since gas has
economical value. The more gas it costs to execute a function, the more money it costs
to run that function on the Ethereum network. This is a mechanism of the Ethereum
blockchain to incentivise the efficient usage of the shared and rivalrous computational
power.

In the context of the proposed system, gas efficiency is particularly important since the
amount of computational power used to execute a liquidation will impact the overall
profit earned by the system. Moreover, if the success rate of the liquidation aspect is
not great enough relative to the gas cost - even for a failed execution - then the overall
system would be unprofitable.

Many methods are employed to strengthen the gas efficiency of the smart contract
design of this system.

4.3.1 Early Exit Require Statements

The smart contract makes use of early exit require statements. Require statements in
solidity ensure that a certain condition is met and if not, will revert the transaction and
stop the execution of the code.

Require statements are used throughout the smart contract code to validate inputs and
ensure conditions for liquidations are met. These require statements are gas efficient
since they are placed at the beginning of the functions (where applicable) so that they
can be evaluated as early as possible and reverted (if need be). Reverting early means
that the rest of the code after the require statement does not need to be executed as it
would be pointless anyway since the transaction would ultimately fail but use up gas.
This can end up saving a large amount of gas, particularly in the “executeLiquidation”
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function which makes use of a few early require statements to ensure governance
parameters are met and the liquidation is valid. One example of this is shown below
in which a require statement is used at the very beginning of the “executeLiquidation”
function to ensure that the collateral asset is marked as allowed by governance. This
stops the function from carrying out unnecessary computations since it would eventually
not work due to the asset not being allowed.

1 function executeLiquidation(
2 address collateralAsset ,
3 address debtAsset ,
4 address user ,
5 uint256 debtToCover
6 )
7 external onlyLOO
8 {
9 require(allowlist[collateralAsset].allowed == true, "

Collateral asset is not allowed.");
10
11 // The rest of the executeLiquidation function.
12 // ...
13
14 }

The choice to use require rather than assert for such functionality is also gas efficient
since require statements refund the gas on a failed require compared to assert which
when it fails uses up the remaining gas.

4.3.2 Data Structure and Variable Usage

Another way that the smart contract was designed with gas efficiency in mind was
through the careful usage of appropriate data structures.

One of the most computationally expensive processes in Solidity is using loops to iterate
through data. For example, when storing the allowlist for the assets that the CPP smart
contract deals with, a mapping from an address to a struct - called AssetParameters - has
been used to map the token address of an asset to its relevant data such as the minimum
and maximum liquidation amounts.

1 struct AssetParameters {
2 bool allowed;
3 uint256 decimals;
4 uint256 minLiquidation;
5 uint256 maxLiquidation;
6 address usdPriceFeedAddress;
7 }
8
9 mapping(address => AssetParameters) public allowlist;

This is more gas efficient than using an array to store a list of AssetParameter structs
since to use this structure the code would need to iterate through the list attempting to
match the given token address to the relevant struct in the array. The length of this array
could be very large meaning it would cost a significant amount of gas to find tokens
that are far into the array.
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Using a mapping allows the AssetParameters to be identified by directly passing in the
address to the mapping variable, as shown below. For example, if the smart contract
needs to find the “usdPriceFeedAddress” for the USDC token - USDC token address:
0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48 - it would access it as shown
below.

1 // Accessing the usdPriceFeedAddress for the USDC token.
2 address UsdcUsdFeed = allowlist[0

xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48].usdPriceFeedAddress;

This technique is used in various other parts of the CPP smart contract to reduce the
computational complexity and therefore the gas used.

Moreover, another technique that the CPP smart contract employs to improve the
overall gas efficiency is by using the “poolMultiplier” variable to track the economical
performance of the system. The earnings that the system makes via loan liquidations
could be tracked by just looking at the overall assets that it owns, though, this value is
not representative or useful when calculating what an individual user’s share of the pool
is since they can deposit and withdraw at different times of the system’s lifespan. When
the CPP smart contract liquidates an unhealthy lending position it will make a profit
and this profit must be shared proportionately between the pool participants based on
their stake.

One method the smart contract could use to handle this functionality would be to calcu-
late the share of the profit earned via a liquidation event for each individual user relative
to their deposit amount as soon as the profit is calculated in the “executeLiquidation”
function. For a system with many depositors, this would be highly computationally
inefficient and reduce the overall profitability of the system due to gas fees. It would
have to iterate through each depositor, calculate their share and update their balance.

The method chosen for the system is far more gas efficient as it instead uses the
“poolMultiplier” variable to track the fluctuations in the pool value so that a user can
dynamically calculate their share of the pool’s funds. Instead of having to iterate
and distribute earnings, the “poolMultiplier” can just be updated at the end of the
“executeLiquidation” function so that the share of the funds owned by a user can be
calculated using this value.

The calculation used to determine the balance that a specific user has in the system
is shown in equation 3.2. The end of the “executeLiquidation” function updates the
“poolMultiplier” as follows.

1 // Update pool multiplier
2 // getContractUSDCBalance() is effectively the poolBalanceAfter
3 poolMultiplier = (getContractUSDCBalance() * scalingFactor) /

poolBalanceBefore;

4.3.3 Further Gas Efficiency Techniques

Some further gas efficiency techniques utilised in the design of the smart contract
include:
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• Use of constants.

◦ Constants have been used for address values that will never change such as
“lendingPoolAddressProviderAddress” and“protocolDataProviderAddress”.
Doing this tells the Ethereum Virtual Machine (EVM) that these values will
never change and allows it to perform gas optimisations.

• Use of memory variables.

◦ Declaring variables as “memory” instead of “storage” means that the EVM
knows to just store the data in the transaction memory rather than executing
read and writes to storage which costs a lot more gas.

• Reusing variables.

◦ Twice in the “executeLiquidation” function oracle price data must be fetched
from Chainlink. From the oracle data, two values are received each time:
the “price” and the number of “decimals” for the price value. Instead of
using separate variables to store these values, they can just be reused since
by the time the second Oracle call is made the first values are no longer
required. This is more gas efficient than using multiple variables.

• Usage of SafeERC20.

◦ The CPP smart contract uses functions from SafeERC20 rather than the
original ERC20 functions. For example, the function “safeApprove”is a
gas-efficient method for approving an ERC20 token transfer since it checks
if the token already has an allowance and avoids overwriting if it does.

4.3.4 Gas Values for CPP Smart Contract Functions

The testing environment was used to execute and calculate the gas used for the main
public functions of the CPP smart contract.

Figure 4.2 shows the difference between the gas used for the functions. Clearly,
“executeLiquidation” uses the most gas but this is to be expected since it is undoubtedly
the most computationally costly function of the smart contract. The second highest
gas used by a function was the “createProposal” function which has to set and store a
lot of data in storage and so uses a fair amount of gas. The other four functions use
significantly less gas since they are less complex.

Gas fairness is an important aspect of a smart contract that will be used by a community
of users. The CPP smart contract was designed with this in mind, making sure to
spread the gas cost of the operation of the system between the users as fairly as possible.
Whilst the “executeLiquidation” function uses significantly more gas, this gas cost is
spread between the many users of the CPP smart contract so the burden does not lie
on one individual party. Furthermore, there is a small amount of gas unfairness for the
“createProposal” function but this is unavoidable. The “createProposal” function is used
to allow the system’s users to propose a change to the system. This is required to ensure
the system acts with integrity and operates efficiently, so it is a small price to pay to be
able to change aspects of the system. Further work could improve the gas fairness of
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the design by adding functionality so that the creator of a successful proposal can claim
a gas rebate and gain back some of their funds spreading the cost among the rest of the
pool’s participants.
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Figure 4.2: Gas used for the main CPP smart contract functions.

4.3.5 Gas Efficiency’s Impact on Profitability

To demonstrate the impact of gas efficiency on the overall profitability of the liquidation
system consider a lending position liquidation that yields a profit of 2260$. This average
profit value is calculated from data collected by Qin et al [28] who explored liquidations
over a period of two years from 2019 to 2021 across multiple Ethereum-based lending
protocols. This is a conservative value since the average value for Aave liquidations
appears to tend to be higher than that of most other protocols.

Testing showed that the “executeLiquidation” function in the CPP smart contract used
on average 831,050 gas. According to Etherscan [15] the average gas price over the last
7 days was 21.86 Gwei. The current price for 1 Gwei is 0.0000018 USD. This means
that with current network conditions calling the “executeLiquidation” function would
cost:

Gas Cost = 831,050×21.86×0.0000018
= 32.70$ (USD)

This means that the system can make 69 failed loan liquidations - for any reason - in a
row (on average) and still be profitable in the long run (⌊2260÷32.70⌋= 69).

Computational performance is vital since increased gas usage would impact the overall
economical profitability of the system. Had the CPP smart contract design not employed
the aforementioned techniques and used computationally expensive data structures and
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loops, the gas usage would eat into the profitability of the system. Doubling the gas
usage would half the number of failed loan liquidations that the system could handle
and still remain profitable in the long term.

In practice, a failed loan liquidation would use less gas than discussed here due to the
early exit require statements that prevent unnecessary computations from taking place.
This is a worst-case scenario analysis, though, it is still a relevant metric.

4.4 Security and Decentralisation Evaluation

Security is crucial in smart contract code design. In the case of the proposed system,
large amounts of valuable assets in the form of tokens are stored and utilised by the
system making it an appealing target for an adversary. It is important to use relevant
security techniques when designing such smart contracts since it protects against bad
actors and also promotes a greater level of trust from users leading to wider adoption.

A function modifier (shown below) was utilised in the CPP smart contract to protect the
“executeLiquidation” function from being called by any address that is not the address
of the designated Liquidation Opportunity Oracle. This modifier effectively wraps
itself around the function and ensures that not just anyone can make the smart contract
attempt to liquidate a loan since if they could they would be able to waste the pool’s
funds by repeatedly calling the function with incorrect liquidation information so that it
would fail.

1 modifier onlyLOO() {
2 require(msg.sender == LOO_ADDRESS);
3 _;
4 }

In addition to this, the smart contract validates the liquidation opportunity information
passed into it on-chain to ensure that the liquidation opportunity is a valid one. It does
this by fetching real-time on-chain data from the Aave protocol and performing the
necessary calculations such as verifying the correct amount of debt token to liquidate.
This also promotes the decentralisation of the system and reduces the power of the LOO
address. Even if the LOO address somehow became malicious, it would not be able
to execute fake liquidations. This is also related to the previously discussed fail-safe
mechanisms that revert the transaction if conditions are not met, minimising the scale
that an adversary can attack the system and providing the genuine pool participants time
to make a governance proposal and alter the LOO address to a safe one.

The CPP smart contract is also security-aware when it comes to acquiring and selling
tokens on the Uniswap protocol. A common problem with the Uniswap protocol is that
trades can be front-run: Front-running is when an adversary exploits information about
an upcoming transaction in Ethereum and carefully constructs a related trade to profit
from the victim’s trade. It can happen when the Uniswap protocol is not used safely and
recent price data is not used to set a maximum amount to pay for a trade. To counter
this vulnerability, the CPP smart contract fetches current price data on the asset that is
attempting to swap so that can appropriately set the maximum amount to pay (within a
small range). The smart contract fetches this value and leaves a 2% leeway to account
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for any slippage during the trade but not so much as to be vulnerable to an attack. The
code for this mechanism is shown below.

1 (
2 uint256 priceUSDC ,
3 uint256 decimals
4 ) = getOraclePrice(allowlist[debtAsset].usdPriceFeedAddress);
5
6 // Purchase the debt token via Uniswap.
7 uniswapAcquireDebtAsset(debtAsset , verifiedDebtToCover , (((

verifiedDebtToCover) * uint256(priceUSDC)) / (10**
combinedDecimals)) * 102 / 100); // 2% leeway

Reentrancy attacks are notorious on the Ethereum blockchain. The attack is a malicious
exploit that consists of a smart contract repeatedly calling itself before it has completed
prior operations and thus allowing the attacker to do things such as drain the smart
contract of its tokens. This attack relates particularly to the “withdraw” function of
the CPP smart contract. The code protects itself from this attack by making any state
changes before transferring any funds out of the contract, this is why the internal smart
contract variable that stores a user’s stake in the pool is altered before the funds are
actually transferred to the user. The code below details the “withdraw” function.

1 function withdraw() public {
2 uint256 userWithdrawable = (poolShare[msg.sender] *

poolMultiplier) / scalingFactor;
3
4 // Make all state changes before transferring funds.
5 poolShare[msg.sender] = 0;
6
7 bool success = usdc.transfer(msg.sender, userWithdrawable);
8 require(success , "Withdrawal was unsuccessful.");
9 }

The system makes use of a governance system to allow the stakeholders to ensure its
security by agreeing on the types of assets that are safe to work with, as well as, how
those assets should be treated i.e. the minimum and maximum liquidation amounts.
Again, this encourages decentralised management of the system.

Finally, the general architecture of the CPP smart contract promotes decentralisation by
restricting the powers of the centralised aspect of the system, namely the Liquidation
Opportunity Oracle. Its functionality is clearly written in the code and various validation
and fail-safe mechanisms take place to ensure that whenever it does make a call to
“executeLiquidation” it cannot severely impact the system for an extended period of
time if it attempts to act maliciously.
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Conclusion and Further Work

In this paper, a decentralised loan liquidation scheme was presented. The proposed
system democratises the loan liquidation process of the Aave lending protocol, providing
a technique for DeFi users to come together, pooling their funds in a trustless manner to
collaboratively liquidate unhealthy lending positions and collectively earn a profit.

The design decisions of the proposed system were justified given the context and the
environment in which it operates. A trade-off had to be made between the performance
and viability of the scheme against the decentralisation of the whole system, in particular,
the Liquidation Opportunity Oracle introduced a required level of centralisation, though,
this was mitigated by the architecture and design decisions made in the Community
Pool Protocol such as the governance system and the hard-coded limited powers of the
LOO.

The work conducted in this paper achieves the set objectives set out in section 1.2. The
system does:

• Allow DeFi users to collaborate in a trustless manner to liquidate loans on the
Aave protocol by pooling their funds. This is facilitated by the design of the CPP
smart contract.

• Operate in a decentralised manner, offering solutions to mitigate the level of
centralisation that is required. The governance system and limited power of the
LOO address help to achieve this objective.

• Explores and justifies various design choices in the context of decentralised
finance. Some of the main design choices described in this paper are:

◦ The best way to identify unhealthy user lending positions. The LOO program
utilises Aave’s subgraph on The Graph to fetch this information.

◦ How to determine whether a liquidation opportunity is likely profitable
or not. This is performed using estimate calculations and governance-set
parameters.

◦ The best way to manage users’ deposited funds. The chosen solution was to
store funds in USDC and use Uniswap to swap these funds for the required
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tokens as they are needed.

◦ How to avoid unnecessary risk by performing validation checks before
carrying out on-chain code execution as well as constructing the correct
parameters when performing tasks such as purchasing a token on Uniswap.

◦ How to let stakeholders govern the system in a decentralised manner. This is
achieved via the proportional governance system described in section 3.3.3.

• Implement a secure and gas-efficient smart contract design.

• Demonstrates how systems can be designed to enable DeFi users to collaborate
in a trustless manner when aspects of centralisation are required. This is shown
through the design decisions that handle the LOO aspect of the scheme effectively
without exposing the system to a large degree of centralisation risk.

Furthermore, DeFi loan liquidations are complex and an area for further work. Some
areas of further work directly related to the proposed system of this project are:

• Exploration of optimal liquidation opportunity discovery.

◦ Due to activity on the Aave protocol and the price movement of many of
the assets used as collateral or borrowed (therefore affecting the health of
users’ positions), the LOO must periodically fetch information and use it to
try to identify liquidation opportunities. There is no set way to determine
when and what information to fetch, thus, there is an opportunity to develop
more efficient and intelligent solutions than blindly brute-force searching.

• Improvement of governance capabilities.

◦ Whilst the governance system presented in this project is sufficient, it would
be worthwhile to investigate the improvements that could be made by im-
plementing a more complex system. One direction would be more granular
types of votes such as emergency votes that are quick changes used in urgent
times such as a malicious LOO address.

• Use of a token to represent pool participation.

◦ The proposed system just internally tracks the stake of the pool participants.
This could be changed to utilise a token that tracks and represents partic-
ipation. Delving into this area may lead to further usage of these tokens
within other protocols similar to how aTokens on Aave can be used in other
protocols to earn further yield.

Overall, this paper proposes a community-run decentralised loan liquidation scheme
that runs on the Ethereum blockchain allowing DeFi users to collaboratively liquidate
loans on the Aave protocol without needing to understand the intricate workings of the
liquidation method.
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