

Veterinary CPR Mobile
Application

Gabriel Jones

4th Year Project Report
Computer Science
School of Informatics
University of Edinburgh

2023

Abstract

The goal of this dissertation is to design and implement software that serves as a digi-
tal assistant to veterinarians during cardiopulmonary resuscitation (CPR) in veterinary
medicine. CPR is a crucial procedure that is performed when patients enter cardiopul-
monary arrest (CPA). However, the survival rate in veterinary settings is much lower
than in human medicine due to the variability of treatments between different patient
types. Additionally, record-keeping of CPR sessions in clinical settings can be a diffi-
cult task due to the large amount of variables needing to be captured. This project aims
to solve these problems by designing software, including a back-end database, web
application and mobile application, to be used by veterinarians in a clinical setting.

Acknowledgements

Many thanks to Heather Yorston (heather.yorston@ed.ac.uk) for her invaluable feed-
back and time throughout the project.

Also, many thanks to Craig Breheny (craig.breheny @ed.ac.uk) for his domain exper-
tise and feedback during the project, as well as creating the original idea and require-
ments for the application.

Table of Contents

Introduction 1
Background 3
2.1 RECOVER veterinary guidelines 3
2.1.1 Evidenceanalysis[1] 3
2.1.2 Basiclifesupport [2] 3
2.1.3 Advanced life support [5] 4
2.1.4 Clinical guidelines [8] 5
2.2 Non-veterinary CPR software 6
2.2.1 RevivR software (https://revivr.bhf.org.uk/) 6
2.2.2 Effects of metronome toolonCPR[9] 6
2.2.3 Audio-visual prompt device improves CPR performance [10] . 6
Design 8
3.1 Requirements 8
3.2 Datamodelsand UML 9
3.3 User interface prototypes 10
3.3.1 Designprinciples oL 11
3.3.2 Client feedback on prototypes 12
Implementation 14
41 Backend APl 14
4.1.1 Webframework Lo 14
4.1.2 Database 15
4.13 Endpoints L 17
414 Defaultdata. 18
42 Mobileappcreationo 20
42.1 Platform 20
42.2 Projectoutline 21
4.2.3 Interacting withthe API 23
Evaluation 25
5.1 Application demonstration 25
5.2 Mobile application user interface 27
5.3 Evaluation of initial requirements 27
5.4 User interface heuristic evaluation 30

5.4.1 Visibility of system status 30

5.4.2 Match between system and the real world 30

54.3 Usercontrol and freedom. 31

5.4.4 Consistency and standards 32

545 Errorprevention 32

5.4.6 Recognition rather thanrecall 32

5.47 Aesthetic and minimalistdesign 33

6 Deployment 34
6.1 APl hosting platform 34

6.2 Mobile applicationbeta, 35

7 Conclusion 36
7.1 Final feedback and futurework 36

Chapter 1

Introduction

Cardiopulmonary resuscitation (CPR) is a crucial procedure in veterinary medicine. It
is performed when patients enter cardiopulmonary arrest (CPA) which can occur for a
variety of reasons, such as a heart attack, hypoxia, or a drug overdose.

In human medicine, a much higher survival rate occurs in CPA compared to veteri-
nary settings. One of the biggest challenges faced by veterinarians during CPA is the
variability of treatments between different patient types. Dosages of medicine admin-
istered and the methods for chest compression are highly dependent on the patient’s
weight to achieve optimal success rates. However, calculating dosages on the fly can
be difficult in time-sensitive situations, leading to approximations and inaccuracies.

Another difficulty encountered by staff in clinical settings is in record-keeping. Some
clinics keep paper records of post-session checklists or debriefs, however these lack the
depth and breadth of data which can be enabled by software-driven solutions. Depth
is lacked in the details of the information of the CPR session, such as the dosages
of medicine, exact time of administration, or other smaller actions performed during
the session. Furthermore, querying large sets of data by some custom filter (such as
finding all CPR sessions using a certain medicine) is time-intensive if the data isn’t
stored digitally.

The goal of this project is to design and implement software which can solve these
problems as a digital assistant to veterinarians during CPR.

For the background (chapter 2), I researched existing medical procedures and the con-
sensus of the veterinary community through various studies, including non-veterinary
software applications relating to CPR for further domain knowledge.

For the design (chapter 3), I used the research from the background, in addition to
requirements gathered from the University of Edinburgh Royal (Dick) School of Vet-
erinary Studies, to design data models to be implemented in a back-end database and
web application, which would serve a mobile application for veterinarians to use in
clinical settings. I designed the user interface prototypes, and collected feedback from
the veterinary school before continuing.

For the implementation (chapter 4), I go into detail surrounding the technology used

Chapter 1. Introduction 2

to develop the database, back-end web application, and front-end mobile application,
as well as the integration between the different layers of the software.

For the evaluation (chapter 5), I demonstrated the implemented software to the vet-
erinary school and gathered feedback to be used in a final revision of the software.
Additionally, I used a series of heuristics for evaluating the user interface.

For the deployment (chapter 6), I describe the platform used for deployment of the web
application and database, and the configuration and development operations practices
used to enable seamless continuous integration of the application.

For the conclusion (chapter 7), I discuss the results of the project and look into future
work for the development of the software application.

Chapter 2

Background

2.1 RECOVER veterinary guidelines

In this section, I explore the existing guidelines for treating CPA in veterinary medicine,
with the goal of developing an algorithm for medical procedures during CPR. Devel-
oping such an algorithm enables the development of software which can used in a
clinical setting, which has many procedures and practices which need to be translated
into clearly defined logic for a computer.

2.1.1 Evidence analysis [1]

RECOVER [1] is a set of guidelines created by an organization of volunteers with
specialty knowledge and accreditation in veterinary medicine. Each article is com-
posed of multiple PICO questions (population, intervention, control group, outcome)
which recommend (or advise against) treatment strategies for CPA. For this part of the
background, I will explore the suggested treatments at a high level for the purpose of
defining a CPR algorithm to be used in the CPR software, such that it is inline with the
best clinical practices to date.

According to the RECOVER guidelines analysis article [1], fewer than 6% of veteri-
nary patients survive CPA in a hospital setting, compared to approximately 20% of
human patients. The discrepancy between these two statistics in survival rate is pro-
posed by RECOVER to be a lack of consensus between veterinary clinicians on the
most effective strategies to employ during CPA.

2.1.2 Basic life support [2]

Basic life support (BLS) includes the recognition of cardiopulmonary arrest, airway
management, provision of ventilation, and chest compressions. They are separated
from advanced life support as they are possible to be applied outside of a clinical
setting. These steps are associated with an increased survival rate of arrest victims,
and in a clinical setting would be performed at the same time as advanced life support.

Chapter 2. Background 4

2.1.2.1 Ventilation

Although there are some studies of compression-only CPR in humans, no evidence-
based recommendations can be made on this matter from the RECOVER guidelines.
Therefore, intubation and ventilation should be attempted during compressions. For
dogs and cats with respiratory arrest, the RECOVER guidelines recommend mouth-to-
snout (or bag-mask, if available) ventilation. Although there are no veterinary studies
that confirm the effectiveness of these methods, the recommendation is made due to
case reports documenting successful resuscitation following mouth-to-snout ventila-
tion.

2.1.2.2 Chest compressions

An experimental study on dogs [3] found that the ideal chest compression depth is be-
tween 25 and 60 mm. The RECOVER guidelines analysed similar studies to conclude
that a compression depth of one-third to half the patient’s width in lateral recumbency
is reasonable.

Although the optimal ratio of chest compressions to ventilation (C:V ratio) has not
been determined, substantial evidence from human clinical studies show that the C:V
ratio should be higher than 30:2. If the patient is intubated, chest compressions need
to be continuous.

One high-quality experimental canine study [4] showed that 100-120 compressions
per minute have superior survival rates compared to a slower rate of 60 compressions
per minute. Additional studies show that even higher rates of 120 - 150 compressions
per minute still lead to stable results but had no evidence of improved survival rates
compared to 100 compressions per minute.

During CPR, allowing the chest wall to completely recoil is also recommended by the
RECOVER guidelines. Incorporating all the guidance on chest compressions into the
CPR software in a basic visual way would be beneficial in time-sensitive situations.

2.1.3 Advanced life support [5]

Advanced life support (ALS) includes the application of drug therapy and specialty
equipment which are usually only found in a clinical setting. The RECOVER guide-
lines outline a list of recommended treatments, including administration of epinephrine
and defibrillation.

2.1.3.1 Drug treatments

Epinephrine (adrenaline) is recommended by the RECOVER guidelines in doses of
0.01 mg/kg IV every 3-5 minutes during CPR. This is defined as a low dosage of
epinephrine, while 0.1 mg/kg IV would be a high dosage. The studies reviewed by
RECOVER found no apparent difference in survival rates between low- and high-dose
epinephrine, so the official recommendation is to use the lower dosage. In a study on
drug treatments during CPR for dogs [6], epinephrine is shown to improve survival
rates past 1 hour when administered, in comparison to vasopressin, an alternative drug

Chapter 2. Background 5

used during CPR. This study is reviewed in the RECOVER guidelines, which comes
to the conclusion that while there is no additional harm caused by vasopressin, it’s
benefits aren’t widely studied so it cannot be recommended yet.

Other drug treatments, including atropine, naloxone, corticosteroids, and antiarrhyth-
mic drugs have limited evidence supporting their usefulness during CPR. Although
there might be specific situations in which they can help (for example, naloxone in the
case of an opioid overdose), for the purpose of a routine CPR strategy, they should be
excluded and left to the provider.

2.1.3.2 Defibrillation

The advanced life support section of the RECOVER guidelines [5] recommends rapid
defibrillation for animals who progress to pulseless ventricular tachycardia (VT) or
ventricular fibrillation (VF), using a biphasic (BP) defibrillator. A 2000 study on the
effects of defibrillation on veterinary patients [7] showed that defibrillation causes a
marked increase in survival rates of veterinary patients. The guidelines also specify
that one cycle of CPR should be administered prior to defibrillation if pulseless VT or
VF is unwitnessed, or known to have occurred for longer than 4 minutes.

If defibrillation fails, progressively escalating the defibrillation energy could prove to
be effective. Although the evidence is less clear, the RECOVER guidelines recommend
considering this in cases where defibrillation proves ineffective.

In some cases, CPA might occur during anaesthesia. RECOVER guidelines [5] rec-
ommend aggressive reversal of the anaesthetics, as this greatly improves the chances
of survival.

2.1.4 Clinical guidelines [8]

Based on the studies and recommendations in the RECOVER guidelines, the following
treatment protocols are suggested:

1. Initiate chest compressions at a rate of 100-120 per minute, with lateral recum-
bency and a depth of one-third to one-half the chest width

2. Ventilate via intubation with simultaneous compressions OR via mouth-to-snout
with a C:V ratio of 30:2

3. Monitor using an electrocardiogram, and end tidal CO, flow

4. Administer reversals of anaesthetics or opioids if patient was previously admin-
istered them

While CPR cycles are being done, the patient’s ECG should be checked continuously.
If the patient enters into pulseless VT or VF:

* Defibrillators should be used in increasing dosages if prolonged VF/VT
e Administer 0.01 mg/kg IV epinephrine after every other BLS cycle

If the patient enters asystole or PEA:

Chapter 2. Background 6

e Administer 0.01 mg/kg IV epinephrine after every other BLS cycle
* Atropine should be considered every other BLS cycle

If prolonged CPA of more than 10 minutes, increasing the dose of epinephrine and
using bicarbonate therapy can be considered.

RECOVER guidelines [8] uses the flow diagram in figure 2.1 to represent the CPR
algorithm specified by the requirements above.

2.2 Non-veterinary CPR software

In this section, I review software developed for CPR outside of a veterinary environ-
ment. Although they will have distinct differences from specialized veterinary soft-
ware, there are still valuable insights to be gained from software applications devel-
oped in a similar domain.

2.2.1 RevivR software (https://revivr.bhf.org.uk/)

RevivR is a CPR training tool created with the goal of educating laypersons to im-
prove outcomes of CPA situations in real-world. It includes a series of training videos
and scenarios, covering information around the good Samaritan act, procedures to call
emergency services, and physical CPR compression and ventilation practices. It serves
as a good example of an intuitive piece of software for conveying the most important
aspects of CPR in an easily digestible way for users.

2.2.2 Effects of metronome tool on CPR [9]

A study on a software-based metronome tool for CPR on humans found that the tool
helped to achieve the target compression rate of 100/min compared to a control group
of 89/min (P=.013). This suggests that having an active metronome can help in CPR
scenarios, including in a veterinary setting.

2.2.3 Audio-visual prompt device improves CPR performance [10]

A study on using audio-visual software with prompts for each chest compression and
ventilation also found that the tool helped to keep EMTs closer to the target compres-
sion rate of 100/min. This study also shows, compared to the previous section’s study
[9], that these tools can be useful for not just laypersons but for medical professionals
to ensure accuracy of CPR procedures.

Chapter 2. Background 7

CPR Algorithm

Unresponsive, Apneic Patient

Initiate CPR Immediately

Basic Life Support

1 full cycle = 2 minutes
uninterrupted compressions/ventilation

: I
I |
I 1
| |
I 1
I |

|
. Chest Compressions Ventilation 1
I 3 VN b & |
! \s | AL AL I
: WS T D 2 N b L TN 1
e = -«-4;#%\ . AN o s) |

100-120/min 10/min C:V 30:2 1

1 * Lateral recumbency * Intubate in lateral * Interpose compressions 1
I * Y- % chest width * Simultaneous compressions 1
|

1
I .
i Advanced Life Support :
I
I E Initiate Monitoring E Obtain E Administer Reversals :
1 * Electrocardiogram (ECG) + Opioids — Naloxone
| | * EndTidal co, (ETCO,) Vascular Access | - a2 agonists - Atipamezole !
1 = >15 mmHg = good compressions | * Benzodiazepines — Flumazenil I

|

Evaluate Patient

Check ECG
VF / Pulseless VT Asystole / PEA
* Continue BLS, charge defibrillator « Low dose Epinephrine and/or Vasopressin

or Precordial Thump if no defibrillator

» With prolonged VF/VT, consider
* Amiodarone or Lidocaine

« Consider Atropine every other BLS cycle
* With prolonged CPA > 10 min, consider

* Epinephrine / Vasopressin every other cycle . hi_Bh dose Epinephrine
« Increase defibrillator dose by 50% * Bicarbonate therapy
Basic Life Support

Change compressor ¢ Perform 1 full cycle = 2 minutes

Figure 2.1: CPR Algorithm from [8]

3.1

Chapter 3

Design

Requirements

The University of Edinburgh School of Veterinary Studies provided the following list
of functional requirements for the mobile app.

1.

10.

A log which would be used to record all of the events occurring, recorded in
real time and time from arrest, such as time and dose of drugs given, time de-
fibrillated, time intravenous access achieved, time intubated, time return of cir-
culation. The aim would be that this could record all the key information which
could then be exported as a text file as an e-mail to then be uploaded.

Metronome using the device’s speakers to inform when each compression and
ventilation should be given

. Timer to prompt when the next emergency drug is due, when the compressor

should change or when a check for the heart rhythm should be performed

. CPR checklist e.g. has a leader been assigned, is the patient intubated, have any

potentially causative drugs been reversed, are ECG pads in place, have bloods
been taken

. Link to a second checklist which would summarise the potential causes of the

arrest e.g. drug related, blood parameter alterations, collapsed lung etc.

. Link to emergency drug dosage calculator

Patient record section to be filled in afterwards

CPR debrief sheet to be completed after the arrest, which can then also be ex-
ported.

Database to record all of the arrests and the above data for each case

Ability to export this database or patients from it via e-mail to us for potential
research studies

Chapter 3. Design 9

3.2 Data models and UML

The first step I took in designing the software was to create a schema for our data
model. Using both the list of functional requirements provided by the University of
Edinburgh Royal (Dick) School of Veterinary Studies, and the RevivR guidelines, I
prototyped the below data models and the relationships between them, as they would
appear in a traditional relational database.

Although they are subject to change later in the development cycle as the client pro-
vides feedback and asks for changes, this was a useful first step as it enabled the cre-
ation of the UI prototypes to show the client. This is because knowing all the fields
required in the database allows designing how that data is collected from a front-end
application, through forms, buttons, and other Ul components.

In addition to defining the fields and data models, I also needed to design the relation-
ships between data models, as this would influence the design of the database and the
effectiveness of the data being collected for the client. Using Unified Modeling Lan-
guage (UML), as outlined in the official specification [11], I created three data models,
shown in the UML diagram in figure 3.1.

CprSession ActionDefinition

+ cpr_session_id: integer
+ created_at: DateTime
+ createdd_by:Dsmn_P 0.4
+ started_at: DateTime .

+ended_at: DateTime 1 ctionLogs—s
+ subject_weight_kg: decimal
+is_success: boolean

ActionLog + name: string

+ type: ActionType

1| + recommended_timestamp: integer
——ActionDefinition—-| + dosage: decimal?

+ dosage_unit: string?

+ serializeJson(): string + is_dosage_relative: boolean?

+ timestamp: integer

. + N
+ serializeJson(): string serializeJson(): string

Figure 3.1: UML diagram for the project’s data models

Each CPR session stored in our database has a single data model named CprSession,
holding all high-level information about the session, such as the patient’s weight and
when the session was started. In figure 3.2, I listed out the full specification for the
CprSession data model, including all the fields that would appear in the database
table, with their associated data type and readable description.

Each CPR session needs to also contain multiple events which occur during the session,
such as defibrillation or administration of medicine. Requirements 1 and 4 from the
client (the event log and CPR checklist) have significant overlap in terms of functional-
ity, so I decided to combine them into a single data model named Act ionLog, of which
a CprSession can have multiple. To avoid duplicating event information across ev-
ery instance of an ActionLog, I also created a data model ActionDefinition which
defines common fields such as recommended time of administration or dosage, which
can be optional depending on the event type. Each ActionDefinition can be linked
to multiple instances of ActionLog. This design will allow users to share common
actions between session, and define a list of default actions which will appear at the
start of the session. Figures 3.3 and 3.4 show the full specification of fields that would
appear in the ActionLog and ActionDefinition database tables, respectively.

Chapter 3. Design 10

Although the data models are subject to change as requirements evolve during the
implementation and evaluation phases, developing a specification at an early stage
can assist with designing the user interface prototypes, and gaining feedback from the
client.

CprSession

cpr_session_id integer CPR Session ID (primary key)

started_at DateTime When the CPR session was started

ended_at DateTime When the CPR session was ended

created_by string The email of the user who created the
CPR session

created_at DateTime When the CPR session record was cre-
ated in the database (not when it was
started)

subject_weight_kg | decimal The weight of the patient in kilograms

is_success boolean Whether the CPR session succeeded (the
patient was resuscitated) or failed (the
patient died)

notes string (optional) | User-inputted notes adding additional
details about the session

Figure 3.2: CprSession data model specification

ActionLog
action_log_id integer | Action Log ID (primary key)
cpr_session_id integer | CPR Session ID (foreign key)
action_definition_id | integer | Action Definition ID (foreign key)
timestamp integer | Time, in seconds, at which the action was
performed
is_skipped boolean | True if the user skipped this action in the UI,
and false if the user completed it

Figure 3.3: ActionLog data model specification

3.3 User interface prototypes

I used a user interface prototyping tool called Figma! during the design phase of this
project. I created user interface prototypes for each screen in the mobile app’s front-end
(see figure 3.5), and showed them to the client before development started. Although
they aren’t interactive, they demonstrated the basic functionality and appearance of
the app, which allowed the client to give feedback at an early stage and influence the
direction of the project. Furthermore, they were a useful way to evaluate the data

Thttps://www.figma.com

Chapter 3. Design 11

ActionDefinition

action_definition_id | integer Action Definition ID (primary
key)

action_type Enum Category of this action, eg ad-
ministering medicine

name string Description of the action

recommended_timestamp | integer Time, in seconds, at which the
action is recommended to be per-
formed

is_repeat boolean True if the action should be re-
peated after completion

dosage decimal (optional) | If applicable, dosage of the
medicine given

dosage_unit string (optional) The shortened unit of the dosage,
eg “mg” or “ml”. Dosage must
not be null.

is_dosage_relative boolean (optional) | True if the dosage is per patient
kilogram. False if the dosage is a
flat amount regardless of the pa-
tient’s weight. Dosage must not
be null.

Figure 3.4: ActionDefinition data model specification

models designed earlier, since I could visually compare the data model schemas to the
designed interface.

3.3.1 Design principles
3.3.1.1 Heuristic evaluation

Nielsen 1990 [12] outlines a set of heuristics for evaluating user interfaces. I prop-
erly evaluate the front-end software using these heuristics in the evaluation chapter,
however, I also used them during the design phase when creating the user interface
prototypes.

One of the most important heuristics is the visibility of system status. In a CPR session,
being able to quickly understand data presented in a user interface is critical due to the
time sensitive nature of the environment. I ensured that the metronome was placed
centrally and was always visbile, and provided visual cues for each metronome tick.
The actions log table also showed both the completed and upcoming actions, so that
the state of the CPR session would always be visible to the user.

Consistency and standards is another heuristic I took into account when designing the
user interface. I developed a color palette for the system so that the style of the ap-
plication would be consistent throughout. Furthermore, I created reusable components
in the design tool, Figma, which allowed me to share design choices between multi-

Chapter 3. Design 12

Active for Active for

2m53s

o

© vetcer

Search

2m 53s

d cat,20kg

Dog Cat Log book
Administered 32 mg adrenaline
atlmoOs « 0.5mg/kg

-~
‘ m Administered DRUG_NAME

at2mo0s « 0.5mg/kg

Horse Rabbit .
Administered DRUG_NAME
at3mos « 0.5mg/kg
Administered DRUG_NAME
at4mo0s « 0.5mg/kg

Add Custom Log +
d 20 kg Add Log +
Cat
‘ Horse 20kg Administer 32 mg adrenaline v
atlmO0s - 0.5mg/kg

Administer DRUG_NAME

&P now 0.5mg/kg
Administer DRUG_NAME .
A 20s - 05mg/kg Skip

Figure 3.5: User interface prototypes created in Figma

ple places in the app. This also equates to less development time when it comes to
implementation, as these reused components would share the same code.

3.3.1.2 Apple’s human interface guidelines

For creating an optimal user experience on mobile applications, I researched practices
recommended by Apple in their Human Interface Guidelines®>. Some important points
that I applied in the user interface design included:

* All buttons were at least 44x44 px in size, as any elements smaller than this
would be inconvenient to users on a touch screen

* Including text and a symbol (icon) to clearly indicate what a button will do

* Using common-place touchscreen gestures found in other apps, such as swiping
left on table rows to show actions

3.3.2 Client feedback on prototypes

Before implementation started, I met with the client to discuss the Ul prototypes based
on their initial requirements and discussion. Although there was no functionality to the
prototypes, the client could see the high-level design of the app and workflows they
would undertake. Overall, they were happy with the designs, but added two comments
which should be taken into consideration for development.

Zhttps://developer.apple.com/design/human-interface-guidelines/guidelines/overview/

Chapter 3. Design 13

3.3.2.1 Comment 1, on type of animal

Craig: “The type of animal is less useful for us, as it would only be for
dogs/cats initially and the drugs/procedures that we’d do would be the
same for both, so differentiating won’t be necessary”

Me: “Ok, what would be the most helpful to determine the weight of the
animal? You mentioned that sometimes in emergency settings you’ll have
to take a guess at the weight. Maybe a distribution of average weights /
sizes of dogs and cats?”

Craig: “I think the ability to input the weight at the start, just as a text
box would probably be most useful, and if that input can then be used for
the emergency drug calculations etc. Often we’ll guess based on the size,
unless we have a weight on file if weighed recently.”

These comments led me to remove the type of animal selection from the UI design.
Instead, a simple number input for the animal’s weight is prompted for the first screen,
with minimal steps required to start a session, since the environment would be time-
sensitive. This included auto-focusing the input when the app opened, and allowing
the user to tap the ’next” button while the keyboard was shown. These comments were
added to the design document for reference during development.

3.3.2.2 Comment 2, on metronome Ul component

Craig: “This would be great, the only aspect that would be useful is if we
can have a sound associated with it as the person doing the compressions
probably won’t be able to see the app and will be listening.”

Based on this comment, I added a note for development to my design document to add
other cues for the metronome, such as a sound effect and vibration using the phone’s
hardware.

Chapter 4

Implementation

There are three distinct layers in the proposed systems architecture (figure 4.1).

Data Layer Application Layer Presentation Layer
Database API Mobile App

Figure 4.1: System architecture

The data layer and the application layer both fall under the umbrella of the back-end,
which is developed in Python using common frameworks and libraries for managing
database and web connections. The presentation layer, or front-end, is a mobile app
that is accessible by the client.

The design choice of separating the three layers in this way is a common practice in
software development. It reflects the separation of concerns principle [13], where each
layer is responsible for a specific aspect of the system. The data layer handles the
storage and retrieval of data, the application layer processes the data and provides the
business logic, and the presentation layer is responsible for the user interface and user
experience.

By separating these layers, it allows development work on each layer to occur inde-
pendently, without affecting other layers. This makes the system more modular, easier
to maintain, and easier to scale. For example, if there is a need to change the database,
it can be done without affecting the application or the user interface.

4.1 Backend API

4.1.1 Web framework

For this project, I opted to use Flask!, which is a Python web development micro-
framework. This means that it does not have a lot of features built-in like other en-

Uhttps://flask.palletsprojects.com/

14

Chapter 4. Implementation 15

terprise web frameworks, however it gives the developer more freedom in their imple-
mentation. It was a good fit for this project as the scope of the project is quite small
and does not call for a complex web development framework.

Developers can leverage Flask to implement blueprints which consist of a series of
endpoints (URL routes). Each endpoint is a function that executes a specific function
upon receiving an HTTP request from the client application with a designated HTTP
method (such as GET, POST, PUT, or DELETE).

Each endpoint will return some JSON that the client app can parse into defined data
models. This JSON is generated by defining a function serialize () for each data
model, which returns a view of relevant columns which should be exposed to the front-
end. Figure 4.2 contains a basic example of a Flask endpoint, in which I defined an end-
point using a Python function decorator containing the URL route and HTTP method.
Inside the function, a database query is executed through the ORM’s data model, and
the JSON is returned to the client application using my custom serialize () function
and the built-in Flask function jsonify ().

@blueprint.route("/action—definition/list", methods=["GET"])
def list_action_definitions():
action_definitions = [x.serialize() for x in
ActionDefinition.query.all() 1]
return jsonify(action_definitions)

Figure 4.2

4.1.1.1 Application Factory Pattern

I implemented the Flask back-end using a pattern called Application Factories?, which
allowed me to define different configurations for the local and production environ-
ments. config.py provides an interface for the application to define and use environ-
ment variables, such as the PostgreSQL database URL and flags for whether the server
is in debugging mode. For the local environment, these variables are stored in env . sh,
while on the public web application (production environment) these are defined in the
deployment platform’s back-end console.

4.1.2 Database
41.2.1 Engine

For this project, I used PostgreSQL?, a common relational database engine. For testing
on my local environment, I created a new database named vet-cpr-db and setup a
database user to connect to it. When deploying the application to a hosted server, this
will also need to be done. To connect to the database, a Python wrapper needs to be
used. T opted for psycopg2*, a common wrapper specialized for PostgreSQL which is

Zhttps://flask.palletsprojects.com/en/2.2.x/patterns/appfactories/
3https://www.postgresql.org/
“https://www.psycopg.org/

Chapter 4. Implementation 16

integratable with the ORM of choice.

4.1.2.2 Object Relational Mapper (ORM)

Object Relational Mapping (ORM) is a technique used in programming languages to
define data models in object-oriented code, which can be mapped to database schemas.
They provide many advantages to the developer, including safety from SQL injection,
type-safety with object oriented classes for each data model, and allow extending the
data model object with custom properties and methods that would not be available in
a regular database.

A common library used in Python for ORM is SqlAlchemy”. At the time of develop-
ment, [used major version 1.4, since the newly developed version 2.0 was still in beta
and introduced a lot of breaking changes in the way models were defined.

Each database table, or data model, is defined as a class in Python. Each column
can have a name and data type, along with a number of constraints or foreign keys
which are mapped to the database engine during migrations. Data types are mapped to
Python types: for example, db.Integer would be mapped to Python’s int. This applies
to complex data types such as enums and datetimes too, allowing us to define rich data
models.

In figure 4.3 below is a snippet of the CprSession data model used in this project,
including some of it’s columns. This ORM model mirrors the data models created in
the design chapter. The SqlAlchemy library enables the database table to be queried
and modified through this class.

from datetime import datetime

class CprSession(db.Model):
__tablename__ = "cpr_session"”

id = db.Column(db.Integer, primary_key=True)
created_at = db.Column(db.DateTime, index=True)
started_at = db.Column(db.DateTime)

ended_at = db.Column(db.DateTime)
subject_weight_kg = db.Column(db.Numeric)

etc

def __init__(self):
self.created_at = datetime.utcnow()

Figure 4.3: An example ORM data model for CprSession

Shttps://www.sqlalchemy.org/

Chapter 4. Implementation 17

4.1.2.3 Migrations

As I developed the database and API, and implemented changes requested during eval-
uation, alterations to the data models were required. To ensure consistency between the
ORM and the schema of the database, I used a technique called database migrations.
This involves writing code which updates the database schema to add new fields, alter
column types, or drop parts of the database if needed, depending on the differences
between the ORM and the current database.

I used a Python library called alembic® to generate the migration code, along with a
custom bash script (see 4.4) which would version and name the migrations so they are
easily identifiable.

#!/bin/bash
source venv/bin/activate
source env.sh

CURRENT_ID_STR=‘ls migrations/versions | tail -1‘
NEXT_ID="‘expr S{CURRENT_ID STR:0:4} + 1"
flask db migrate —-m $1 --rev-id=‘printf "%04d" S${NEXT_ID}"

Figure 4.4: db_migrate.sh, a custom bash script

4.1.3 Endpoints

A Flask endpoint is a Python function that handles incoming HTTP requests to a spe-
cific URL of the web application. It receives the request, processes it, and returns a
response to the client. Endpoints in my web application return a JavaScript Object No-
tation (JSON) response which can be easily deserialized by the JavaScript front-end, or
a CSV file response for export endpoints. Flask endpoints are defined using decorators
that specify the route and HTTP method that the function should handle. The endpoint
function performs any necessary logic, and can access the database through queries if
needed.

Endpoints can be accessed by the mobile application through HTTP requests. They are
required in order to connect the client devices to the centralized database and expose
the logic and functionality of the back-end application.

4.1.3.1 Create CPR Session

POST /cpr-session: This endpoint creates a new CprSession. It receives a POST
request with a JSON payload containing information about the session, such as who
created it, the subject’s weight, the start and end times, whether it was successful, and
other details collected from the mobile app. The endpoint saves this information to the
database and returns a JSON payload with the serialized CPR session.

®https://alembic.sqlalchemy.org/

Chapter 4. Implementation 18

4.1.3.2 List Action Definitions

GET /action-definition/list: This endpoint returns a list of all the action defi-
nitions that have been created. It receives a GET request and returns a JSON payload
with the serialized action definitions.

4.1.3.3 Create Action Definition

POST /action-definition: This endpoint creates a new ActionDefinition in the
database. It receives a POST request with a JSON payload representing the data model
for an ActionDefinition, without the ID since this is computed by the database
upon insert. The endpoint returns the newly created model with the ID assigned by the
database engine.

4.1.3.4 Export

Although the relational database engine can be accessed through the back-end appli-
cation, the client mentioned that they would find it easier to view the data as a spread-
sheet. In order to meet this requirement, I developed two API endpoints which could
transform data from the database into a comma-separated value (CSV) file.

Each of the two endpoints takes a database model and query, and uses them to populate

a CSV file in memory which is returned via the web API as a downloadable file. The
columns of each CSV file are the same as the keys in the JSON object serialized by the

API for the data model being returned. The first, /export/cpr-sessions, returns a
spreadsheet of all CPR sessions with their respective fields, sorted by the date created

so the most recent sessions are at the top of the spreadsheet. However, this spreadsheet
cannot represent each CprSession’s one-to-many relationship with ActionLog. To
work around this, I created another endpoint /exports/cpr-session/<int:id>/actions
which returns spreadsheet of actions for a given CprSession by ID.

Both endpoints contain very similar logic to generate the CSV file. Figure 4.5 shows
an example for the export_cpr_sessions () endpoint. The function uses an in-
memory string buffer, as well as the Python csv package, to create a CSV file of
all the CprSessions in the database. It makes use of the ORM to fetch all columns
from the data model’s class, and writes them to the buffer. Then, the response headers
are set to indicate that the response contains a CSV file and to provide a filename for
the downloaded file which is unique to the current time. The in-memory string buffer
is then returned to the client application, which will allow the client to download the
CSV file if the endpoint is viewed using a web browser.

4.1.4 Default data

I needed to create some ActionDefinitions by default in the database, as there were
a number of standard actions from the RECOVER guidelines that I wanted to populate
the database with. By default, the database tables are created with no data in them, so
I needed to perform INSERTS to create some default data. One method to accomplish
this would be to write a SQL script which inserted all the data. However, I opted to use

Chapter 4. Implementation 19

@blueprint.route("/export/cpr—sessions”", methods=["GET"])
def export_cpr_sessions():
si = io.StringI0Q)
CWw = csv.writer(si)
records = CprSession.query.order_by(CprSession.created_at.
desc()).all(
if len(records) > 0:
cw.writerow([k for k in list(records[0].serialize().
keys()) if k != "actionLogs" 1)
[cw.writerow([getattr(curr, column.name) for column in
CprSession. __mapper__.columns]) for curr in records]
output = make_response(si.getvalue())
now = datetime.date.today().isoformat()

output.headers["Content—Disposition"] = f"attachment;
filename=vet—cpr—sessions—{now}.csv"
output.headers["Content—type"] = "text/csv"

return output

Figure 4.5: Flask endpoint for exporting the CprSessions from the database to a CSV
file

Python and the ORM data models, as these provide more type safety and extensible
code. In figure 4.6 is a snippet of the code written to create this data by default, which
makes use of the ActionDefinition data model to assign variables using the defined
ORM classes.

class CreateDefaultActionDefinitionsCommand:
action_definitions = [

ActionDefinition(
action_type=ActionType.action,
name="Assign leader’,
recommended_timestamp=0,

),
etc

def run(self):
print(’ [~] Creating default action definitions...’)
for action_definition in self.action_definitions:
db.session.add(action_definition)
db.session.commit ()
print(’[.] Done’)

Figure 4.6: Script to create default ActionDefinitions

Chapter 4. Implementation 20

4.2 Mobile app creation

4.2.1 Platform
4.2.1.1 Option A: iOS and Android native

Native apps can be developed for iOS and Android operating systems. For iOS, the
Swift language (or Objective-C) can be used in conjunction with Apple’s Foundation
and UIKit frameworks, which expose a large collection of pre-build Ul components
and functionality. For Android, the Kotlin language (or Java) can be used.

The major downside of developing native apps is that two codebases need to be created
and maintained, one for each operating system. Despite the similarity of the end result,
the software will be very different as the frameworks for developing native apps take
many different approaches to common development patterns.

For this project, using native app development would allow a lot greater control over
the end product, as the native frameworks are a lot more specialized for their individual
operating systems and expose more functionality than cross-platform options. How-
ever, due to the complexity and effort required to create two apps, I opted to not use
this approach.

4.2.1.2 Option B: React Native & Expo

In recent years, alternative cross-platform development frameworks have gained pop-
ularity amongst mobile developers due to their convenience in not having to develop
and maintain software for multiple platforms. One of the most popular of these frame-
works, React Native’, is especially popular due to it’s similarity to React, used for web
development. Despite their similarity in the way they handle mutability of state and
“reactiveness’” of web components to it, React Native is not using HTML on mobile
devices to render the applications; instead, it interacts with the native frameworks for
10S and Android, allowing for a more dynamic and standard mobile user experience,
while still making use of JavaScript’s Document Object Model® (DOM).

Expo’ is an even more recent software development framework, which builds on top
of React Native to give developers more features when developing mobile apps. It also
simplifies testing and releasing cycles, allowing developers to use their own mobile
devices to test the app while in development, seeing real-time updates.

I opted to use Expo and React Native for their convenience and rich feature set. For
development, I used the programming language TypeScript'®, which is a superset of
JavaScript, including new features which enable developers to write type-safe code
[14]. It transpiles to JavaScript at build-time, which is then run on the client devices.

https://reactnative.dev/
8https://dom.spec.whatwg.org/
“https://expo.dev/
1Ohttps://www.typescriptlang.org/

Chapter 4. Implementation 21

4.2.2 Project outline
4.2.2.1 Top-level files

In the root of the project, there are some config files for the project, as well as the root
React component which is rendered. The config files are:

* tsconfig. json, which defines compiler options for the TypeScript language
(which is compiled into JavaScript)

* package. json, all the 3rd-party packages used in the app (using yarn'! as the
package manager)

* babel.config. js, a configuration file for Babel'?, a JavaScript transcompiler

which enables developers to support backwards-compatability in JavaScript ap-
plications

* app.json, which defines metadata for submission to the Apple and Google app
stores

* App.tsx, which is the root component and entry point of the application

4.2.2.2 Assets

Images and audio files used in the app (or any other media asset) are bundled at
compile-time by React Native. For this app, I used a tick.mp3 sound effect as well
as some images, which were all included in the assets folder. The tick audio sound
effect is used for the metronome, which is played every 600 milliseconds (or 100 beats
per minute) to prompt the user to perform a chest compression. I chose the selected
sound effect as it is high-frequency and can stand out to a user in a busy environment.
I also designed a splash screen, as an image, which is shown to the user while the app
is being opened.

4.2.2.3 Constants

Some of the data used in the app is constant and does not need to be handled by React
components. I created a handful of typescript files which defined global constants,
such as a color palette and device dimensions, which can be used across the app. I also
created a list of predefined actions a user might undertake during a CPR session. After
they start a session, this will be shown as potential actions they might want to mark as
completed.

4.2.2.4 State handling and contexts

To manage the state of the app, I opted to use React contexts'3. Typically, components
re-render each time one of their props (inputs) changes. To move data between nested
elements of the UI, a developer would have to pass each piece of data across multiple

https://yarnpkg.com/
2https://babeljs.io/
Bhttps://reactjs.org/docs/context.html

Chapter 4. Implementation 22

components, repeating the same code at each level. To combat this, a design pattern
called React contexts was created. All the state (variables and functions) of the app are
stored in a single component which sits as a parent above all components which might
subscribe to the data.

I created an AppContext component which held the current CPR session to be used
across many different screens and components. I also created some common functions,
such as starting/ending the session, submitting to the server, or editing actions. The
data can be consumed by different parts of the UI without needing to pass it between
them individually.

4.2.2.5 Custom hooks

React hooks are a set of functions that allow developers to use state and other Re-
act features in functional components. Previously, state and other features were only
available in class components, but with Hooks, these features can be used in functional
components as well. There are several built-in hooks in React that allow developers to
manage state, handle side effects, and manipulate the component lifecycle. Develop-
ers can also create their own hooks, which extract logic from components to reusable
functions.

I created a custom hook called useInterval which calls a function repeatedly after a
delay. In the below example, found in the CprSession component, I used the hook to
update the timer and heartbeat animation after a given number of milliseconds.

uselnterval (() => timerUpdate (), 100)
uselnterval (() => beatUpdate (), BEAT_MS)

The useInterval hook is defined below. It makes use of some of the built-in Re-
act hooks, useRef and useEffect. The useRef hook allows developers to create a
reference to a DOM element or a value that persists across component renders. The
useEffect hook is used to perform side effects (such as fetching data or manipulating
the DOM) after rendering the component. In the example below, I made use of these
two built-in React hooks inside my custom useInterval hook to create a timer which
executes a callback after a given duration repeatedly.

import React, { useEffect, useRef } from "react"
type Callback = () => any

export default function uselnterval (callback: Callback, delay: number) {
const currentCallback = useRef<Callback> ()

useEffect (() => {
currentCallback.current = callback;
}, [callback]);

useEffect (() => {
const tick = () => {

Chapter 4. Implementation 23

if (currentCallback.current) {
currentCallback.current ()

}

if (delay !== null) {
let id = setlInterval (tick, delay)
return () => clearInterval (id)
}
b, [delay]);

4.2.2.6 Models

In the frontend, I defined models using TypeScript’s type system which mirrored the
output of the API’s JSON. This allowed me to write type-safe code in the Ul, which
made it easier to avoid bugs caused by missing properties or invalid types. An example
of a TypeScript model I defined is below. It closely mirrors the API’s JSON response,
which is mapped from the cpr_session database table during serialization.

export type CprSession = {
cprSessionId?: number;
startedAt: Date;
endedAt?: Date;
subjectWeightKg: number;
isSuccess?: boolean;
notes?: string;
actionLogs: Action[];

4.2.2.7 Navigation

I used a library called React Navigation'* for handling the routing and navigation be-
tween screens in the frontend application.

4.2.2.8 Screens

Each screen the user can navigate to is defined as a separate component.

4.2.3 Interacting with the API

In order to make requests to the backend API, I used axios'”, a popular JavaScript

library for making HTTP requests. Using axios allowed me to easily create GET,
POST, PUT, and DELETE requests to the backend API and retrieve data to display
on the front-end. In order to ensure consistency between the front-end and the API, I
mirrored the models and API methods on the front-end using TypeScript. While for

4https://reactnavigation.org/
Dhttps://axios-http.com/

Chapter 4. Implementation 24

larger projects an OpenAPI'® specification could be used to generate the front-end API

code, due to the small amount of data models at this stage, it was easier to implement
the API methods by hand. To further streamline the implementation, I created an
api.ts file which defined a static API class with methods for each endpoint. This
class utilized TypeScript models for requests and responses, ensuring that the data
passed between the front-end and the back-end was correctly formatted and typed.

1ohttps://www.openapis.org/

Chapter 5

Evaluation

In this chapter, I will explore the evaluation of the software both during the design and
implementation phases, and after the completion of development.

The first evaluation of the system was completed during the design phase, in which I
presented the data models and user interface prototypes to the client. After the com-
pletion of the implementation stage, I conducted a second feedback session to evaluate
whether the client’s initial requirements were met.

5.1 Application demonstration

In the second evaluation session with the client, we looked at the completed back-end
API, as well as a semi-complete implementation of the front-end mobile app.

One query I had for the client was whether they could directly connect to the database
through a tool such as Microsoft Access. This would save development work required
to create a CSV export, and could enable more powerful analysis of the data. In the
call, we ascertained the needs and capabilities of the system’s users, and settled on
using a CSV export as originally planned. This is because it would be easier for the
user to interact with the data as a spreadsheet. If deeper analysis of the data is required
in the future of the project, the database can still be configured for remote connections
and analysis through a read-only user.

The client also asked for a number of changes to the data collected at the end of the
CPR session. At the time of the feedback session, we only captured whether the ses-
sions was successful, as well as free-form notes. However, the client mentioned in their
feedback that they use a standardized checklist at the end of CPR sessions to capture
useful metrics. Using the supplied checklist as a reference, I expanded the data model
of the CprSession database table to capture the new data-points.

Implementing these changes involved adding the fields to the ORM in our data models.
Then, I generated a database migration which added the columns to the database. The

25

Chapter 5. Evaluation

26

CprSession Added Fields

notes (removed) string Removed field which is re-
placed with more relevant
fields below

suspected_cause_of_arrest | string Free text description of what
caused the cardiac arrest in the
patient

capnograph_used boolean Whether a capnograph was
used during the session

ecg_used boolean Whether an ECG was used
during the session

iv_access boolean Whether IV access was ob-
tained during the session

emergency_drugs_given boolean Whether emergency drugs
were administered during the
session

infusions_stopped boolean Infusions stopped / antago-
nised

number_of_vets_present integer Number of vets present

number_of_nurses_present | integer Number of nurses present

practice_type string What kind of practice the ses-

sion took place in (eg small
animal / mixed)

equipment_issues

string (nullable)

Whether there were issues
with the equipment (Optional)

staff_safety_ compromised

string (nullable)

Whether there were potential
safety issues with the staff
(Optional)

what_went_well

string (nullable)

User comments on positive
parts of the session (Optional)

what_could_be_improved

string (nullable)

User comments on negative
parts of the session (Optional)

action_points

string (nullable)

User comments on action

points (Optional)

Chapter 5. Evaluation 27

system is not in-use yet, therefore back-filling or altering existing data was not neces-
sary. Then, once the database was updated, I modified the API routes, and front-end
models, to match the changes.

In the front-end, I added user inputs for all the newly added fields. Columns with a
string data-type used a <Text Input> component; boolean fields used a <Switch>; and
integer fields used a <Text Input> with a keyboard type of number-pad.

5.2 Mobile application user interface

After the change in requirements was implemented in the second feedback session
with the client, the final design of the user interface differed slightly from the original
prototypes. Figure 5.1 shows the user interface as it appears in the final product. One
major difference is the removal of the feature to select which animal type the patient
is. This was removed in line with feedback from the client, who specified that the type
of animal isn’t usually relevant to the medical process or review. Instead, the weight
of the patient is the most important for calculating drug dosages. Another difference is
the addition of the form at the end of the CPR session. This includes the post-session
checklist and debrief, and serves as a way to collect more data about the CPR session
for analysis by the client. These fields were added in line with the client’s feedback
above, where they specified a number of additional fields to collect for a CprSession.

5.3 Evaluation of initial requirements

For each of the original requirements set out by the client at the start of the project, |
have evaluated the success in implementing them below.

Chapter 5. Evaluation 28

To meet this requirement, I created data models to represent events
in the database, named ActionLog and ActionDefinition. An
ActionDefinition stores common properties of an event which can be
shared between multiple CPR sessions. For example, defibrillation would have
a single ActionDefinition defining the name, type and interval of the event,
and for each time defibrillation occurs a new ActionLog would be created and
linked to the ActionDefinition via a foreign key in the database.

In the user interface, I created a component to display the events to the
user. The list shown includes both upcoming ActionDefinitions, as well as
ActionLogs which have been completed (or skipped) by the user. This serves
as a record of all the events which have occurred in the session, as well as
letting users complete or skip upcoming events.

Users can customize events through the UI, by clicking the ”Add” but-
ton in the ActionLogs list component. This allows a user to fill out the name,
type, dosage, and other properties of a new ActionDefinition, which is then
added to the end of the list and can be completed by the user. These definitions
are shared globally for all users, allowing users to collaborate on a shared
protocol during CPR sessions.

The original requirement mentions allowing the events to be exported as
text file or email which could be uploaded to the database. I altered this part of
the requirement to be more in line with the system’s architecture. The mobile
front-end instead connects directly to the database via an API, which accepts
JSON requests which closely align with the TypeScript models defined in the
front-end. Users can then export the database as a CSV file from the API.

I created a timer which occurred every 600ms, executing a custom React hook
(function) in the front-end. The function triggers a metronome tick sound
to play from the phone’s speakers. However, the audio is not guaranteed
to be heard by the user, as their phone speakers may be on low volume, or
non-functional in some edge cases. To accommodate this possibility, I also
created an animated user interface component which repeats in sync with the
metronome timer. This includes a heart icon inside a circle, which pulses in
and out every beat, and creates a wave effect expanding outwards.

Ventilation can be created as a regular ActionDefinition, since the in-
terval between each ventilation is much longer than the metronome for chest
compressions. I created an ActionDefinition with an interval of 18 seconds,
which equates to the 30:2 ratio suggested by the RECOVER guidelines.

Emergency drugs, and similar timed events, are integrated into the ActionLogs
user interface component. I created a boolean flag is_repeat, which allows
for an ActionDefinition to be repeated after the action is completed, for the
duration of the session.

Chapter 5. Evaluation 29

Although this requirement for a session checklist differs slightly from the re-
quirements for emergency drugs and events specified previously, I made the
decision to integrate it into the ActionLogs component and data model due to
the overlap between their functionality. The main difference is that the check-
list items don’t have a recommended time at which they should be completed,
however I solved this by giving them a null recommended timestamp field.
In the UI, this causes them to be displayed at the top of the list, and without a
countdown timer. This fulfills the requirement laid out by the client, without
cluttering the user interface with a separate checklist, which could confuse the
user.

I created a form at the end of the CPR session which is prompted to be filled out
by the user before submitting to the database. Working with the client in the
second feedback session, we created a list of fields to be captured and stored in
the database. Most of these fields are optional, as they may be non-applicable
to certain CPR sessions.

This requirement called for the dosage of emergency drugs to be calculated
by the software. To solve this, I made use of the dosage, dosage_unit,
and is_dosage_relative fields. Dosages can be auto-calculated relative to
the weight of the patient in the app by setting these fields. If a user needs
to quickly calculate the dosage for a new drug which isn’t already in the
database of ActionDefinitions from previous sessions, they can create an
ActionDefinition through the user interface which will show the calculated
weight-relative dosage immediately in the user interface.

This requirement, for a patient record section, is fulfilled by the form at the end
of the CPR session.

This requirement, for a CPR debrief sheet to be completed after the arrest, is
fulfilled by the form at the end of the CPR session. These fields are stored in
the database, which can be exported through the API along with all the other
data collected during the session.

The database designed for this project records all the data for this requirement.
Each CPR session, along with its relevant data, is stored in the CprSession
data model. All events, emergency drugs, and checklist items are stored in the
ActionLog and ActionDefinition data models. The API and mobile app
developed for this project enable users to submit all of this data to the database
at the end of a CPR session.

Chapter 5. Evaluation 30

10 The API developed for this project allows users to export data from the database
via a CSV format. There are two endpoints that can be called, one which ex-
ports a list of CPR sessions, and another which exports a list of ActionLogs
for a single CPR session. The backend’s PostgreSQL database can also be con-
nected to remotely if required by researchers in cases where more advanced
analysis is required. For example, if a researcher wanted to analyse CPR ses-
sions filtered by criteria based on their ActionLogs, this would be difficult
using the export feature, as the ActionLog export would have to be called for
every CPR session. Instead, a simple SQL query would be much more ef-
fective in this case. However, the export functionality is still very useful for
administration of the system, and basic analysis of the data.

5.4 User interface heuristic evaluation

In the design chapter, I evaluated the user interface prototypes using Nielsen heuristics
[12]. However, there were a number of changes in the design during the implemen-
tation and evaluation phases, which lead to the final user interface differing from the
original designs. In the sub-sections below, I will re-evaluate the user interface of the
final application using Nielsen heuristics.

5.4.1 \Visibility of system status

“The design should always keep users informed about what is going on,
through appropriate feedback within a reasonable amount of time.” [12]

I ensured that the CPR metronome was always visible in the user interface, so the user
could see the current state of the session at a glance. Additionally, the actions log table
in the lower portion of the screen is always visible and can be scrolled through to see
the full range of data. Upon submission of the session, all data for the CPR session
being submitted to the server is visible, including the length of the session and all the
actions performed.

5.4.2 Match between system and the real world

“The design should speak the users’ language. Use words, phrases, and
concepts familiar to the user, rather than internal jargon. Follow real-world
conventions, making information appear in a natural and logical order.”
[12]

I ensured that actions that had been completed became less prevalent in the user inter-
face. Specifically, the opacity of a completed row fades, and it is moved to the start of
the list. This way, upcoming actions are most visible to the user, and completed actions
are made less prominent in the user interface.

Chapter 5. Evaluation

T, o < Back Create custom action
4m 21s -
¥
100 bpm At time (seconds)
Repeat
22kg +Add)
Dosage Dosage unit

Start defibrilation
Dosage is relative to weight per kg?
Take bloods
Place ECG pads
Reverse potentially causative drugs

Intubate patient

Assign leader

Administer epinephrine
at4m - 0.22 mg (0.01 mg / kg)

(Active for

BACK 3s

Number of nurses present

Practice type

Equipment issues

Staff safety compromised

What went well

What could be improved

Action points

< Active for

BACK 3s

Failure @ Success

Created By

s1955932@ed.ac.uk

Suspected Cause of Arrest

Capnograph Used

88 I

ECG Used

IV access

Emergency drugs given

Infusions stopped / antagonised

Bloodwork Obtained

Number of vets present

Figure 5.1: Screenshots of mobile app’s Ul

5.4.3 User control and freedom

“Users often perform actions by mistake. They need a clearly marked
emergency exit to leave the unwanted action without having to go through

an extended process.” [12])

I provided users with the ability to exit any screen to return to the previous one. How-
ever, destructive actions such as exiting the CPR session require the user to confirm
before leaving. This is a measure to prevent accidental loss of data by the user, as this

Chapter 5. Evaluation 32
would be an unrecoverable situation during a CPR session.

5.4.4 Consistency and standards

“Users should not have to wonder whether different words, situations, or
actions mean the same thing. Follow platform and industry conventions.”
[12]

To maintain consistency and standards, I reused form components and styling across
screens by defining them in a shared stylesheet in the mobile app’s project. I also
established a common design theme, where colors were defined in a common file
Colors.ts which could be used throughout the application without needing to re-
define constant values every time they were used. Moreover, | reused components
such as the ActionLogs table component to increase consistency across screens and
to prevent needing to reimplement common logic and styling.

5.4.5 Error prevention

“Good error messages are important, but the best designs carefully prevent
problems from occurring in the first place. Either eliminate error-prone
conditions, or check for them and present users with a confirmation option
before they commit to the action.” [12]

Finally, to adhere to the error prevention design heuristic, I implemented input valida-
tion to prevent invalid data from being propagated through the system. Input validation
includes making a field required (empty strings are invalid) or placing certain data type
constraints, such as requiring the input value to be a valid integer or decimal number.
Places in the application where input validation takes place include:

* Inputting the patient weight before starting a CPR session
* Adding an action definition

* Filling out the checklist at the end of a CPR session

5.4.6 Recognition rather than recall

“Minimize the user’s memory load by making elements, actions, and op-
tions visible. The user should not have to remember information from one
part of the interface to another. Information required to use the design
(e.g. field labels or menu items) should be visible or easily retrievable
when needed.” [12]

This heuristic closely aligns with Apple’s Human Interface Guidelines!, which I had
previously explored in the design chapter while creating the user interface prototypes.
Practically, in implementation, I made use of common user interface functionality
found in many other mobile apps. For example, users are accustomed to many swipe
gestures at a subconscious level, such as the ability to swipe vertically to scroll through

"https://developer.apple.com/design/human-interface-guidelines/guidelines/overview/

Chapter 5. Evaluation 33

a table. I made use of these patterns in the Act ionLogs table, which also allowed users
to swipe left to show a set of actions (skip or complete) which affected the selected
row. Other patterns I followed included placing the exit and back buttons at the top
left of the screen, and using common user interface components for form fields, such
as Switch for booleans or Text Input for strings and numbers.

5.4.7 Aesthetic and minimalist design

“Interfaces should not contain information that is irrelevant or rarely needed.
Every extra unit of information in an interface competes with the relevant
units of information and diminishes their relative visibility.” [12]

In a time-sensitive environment such as a CPR session, a minimalist and efficient user
interface design is a critical feature of the software. To adhere to this, I made sure that
every user interface component visible to the user served a purpose. Even elements
which were only aesthetic had a purpose: for example, icons in the ActionLogs table
rows allowed the user to clearly distinguish the type of action without needing to read
the entire row’s description, and the wave effect emanating from the metronome cre-
ated enough movement for the tick of the metronome to be visible from further away
and be more pronounced to the user.

Information that isn’t immediately relevant is hidden from the user, to adhere to this
heuristic. For example, the screen and user interface components for creating an
ActionDefinition are hidden in a separate modal which needs to be opened by the
user. Another example is the skip and complete buttons being hidden behind rows in
the ActionLogs table until the row is swiped left by the user. Hiding this information
until it is required by the user allows the available space of the screen to be used for
purely necessary information, and creates a more efficient experience for the user.

Chapter 6

Deployment

6.1 API hosting platform

I deployed the API using Heroku!, a platform as a service (PaaS) which provides
lightweight containers (or dynos) for the deployment of web applications. I opted to
use gunicorn? as the production web server since Flask’s debug server (werkzeug) isn’t
recommended in production settings as per their official documentation?.

To configure the Heroku deployment, I created a Procfile (6.1) in the root of the
API’s project folder, which defines a gunicorn worker to run the web server. It also
executes a database upgrade, which runs any alembic migrations which may have been
created since the last deployment, ensuring that the server’s database is always up-
to-date. Pip* packages defined in requirements.txt are automatically installed by
Heroku during deployment, allowing the use of external packages in the application.
Heroku handles SSL configuration via LetsEncrypt® and provides the domain name for
the project to be hosted at (https://vet-cpr-api.herokuapp.com).

web: flask db upgrade; gunicorn application:app

Figure 6.1: Heroku Procfile

Environment variables used in the Flask application, such as the Postgres DATABASE_URL,
are set via Heroku’s project settings page. I also configured Heroku to use automatic
continuous integration (CI) [15] so commits to the GitHub repository for the API trig-
gered a redeployment of the web application.

"https://www.heroku.com/

Zhttps://gunicorn.org/
3https://werkzeug.palletsprojects.com/en/2.2.x/deployment/
“https://pypi.org/project/pip/

Shttps://letsencrypt.org/

34

Chapter 6. Deployment 35

6.2 Mobile application beta

To gather more valuable feedback from the client, I needed to test the application on
their physical devices rather than just demoing on my own device. For the purposes of
this project, I focused on deployment for iOS platforms only, as this was the operating
system used by the client. Deployment to Android devices would follow a similar
process, using Google’s Play Store instead of the Apple App Store as described below.

To deploy the mobile application, I first used a platform called TestFlight®, which
allows developers to test applications on real devices before it is released to the public.
A prerequisite to testing through this platform is creating and paying for an Apple
Developer Account.

Next, I had to register the application through Apple’s AppStoreConnect’ platform,
which involved registering a bundle identifier and creating a provisioning profile. A
provisioning profile is a digital certificate for the application which enables the distri-
bution of software on Apple devices.

Once these steps had been completed, I needed to upload a binary of the application
to be deployed. I used Expo Application Services® (EAS), which is a platform that
streamlines the deployment process and reduces the amount of manual work required
by developers. Using the JavaScript React Native code I had written for the project,
it compiled an app in a remote build server and downloaded a .ipa file to my local
computer, which I could then upload to Apple’s servers. At this point, the application
was ready for testing and I could add the emails of external testers to the app, allowing
them to download it on their mobile devices.

®https://developer.apple.com/testflight/
Thttps://appstoreconnect.apple.com/
8https://expo.dev/eas

Chapter 7

Conclusion

In conclusion, CPR is a vital procedure in veterinary medicine that can save the lives
of animals in cardiac arrest. However, the lack of standardized treatments and record-
keeping can make it difficult for veterinarians to provide optimal care. The develop-
ment of a software-driven solution to assist veterinarians during CPR can improve the
accuracy of dosages and maintain detailed records of the procedure. This dissertation
presented the design, implementation, and evaluation of such a solution, which has the
potential to revolutionize the way CPR is performed in veterinary clinics. Further de-
velopment and refinement of this software application can lead to improved outcomes
for animals in cardiac arrest and provide a valuable tool for veterinarians in clinical
settings.

7.1 Final feedback and future work

Craig Breheny, the point of contact at the University of Edinburgh Royal (Dick) School
of Veterinary Studies, provided the following areas which could be developed in the
future for this project.

“It’d be great if we could signify when the person compressing the chest
should switch out for the next person. We know that after 2 mins of com-
pressions, the person doing the compressions becomes less effective even
though they don’t always recognise it themselves. So current recommen-
dations are that the person doing the compressions should switch every 2
mins.”

This point of feedback was trivial to implement, so I added it to the project before
submitting the final version. No changes were required in the code, as I used the app’s
user interface to create a new action definition which is visible for all users of the ap-
plication. The action definition was named ”Switch chest compression responsibility”,
and had an interval of 120 seconds. I also set the repeat flag to true, so that the action
countdown will be triggered each time it is completed.

“Whether we could split things slightly into two lists - one being a check-
list for the team leader that they have to check, the second being the record

36

Chapter 7. Conclusion 37

you’ve set up.”

This future feature would be best integrated into the application by splitting the actions
into two separate tabs, with the actions filtered by their Act ionType depending on their
categorization. This would be the easiest way to implement the feature as it would
reuse existing infrastructure developed for the ActionLogs list component, which can
have an instance for each actions tab.

“It’d be great if the adrenaline dose could be set up so that there is a count-
down timer when it is next due, and changes to red when it is overdue, and
back to black once it has been given.”

This future feature will require more in-depth changes to the action logs list compo-
nent. However, it can make use of the custom React hook useInterval which was
developed as a part of this project and used for the metronome and main timer for the
session. Another consideration when developing this feature would be to add an indi-
cator to the tab header mentioned in the previous future feature, so that an important
timer event won’t be missed if it’s not visible to the user.

[1]

[5]

Bibliography

M. Boller and D. J. Fletcher, “Recover evidence and knowledge gap analysis on
veterinary cpr. part 1: Evidence analysis and consensus process: Collaborative
path toward small animal cpr guidelines,” Journal of Veterinary Emergency and
Critical Care, vol. 22, no. s1, S4-S12, 2012.

K. Hopper, S. E. Epstein, D. J. Fletcher, M. Boller, and R. B. L. S. D. W. Au-
thors, “Recover evidence and knowledge gap analysis on veterinary cpr. part 3:
Basic life support,” Journal of Veterinary Emergency and Critical Care, vol. 22,
no. s1, S26-S43, 2012.

C. Babbs, W. Voorhees, K. Fitzgerald, H. Holmes, and L. Geddes, ‘“Relationship
of blood pressure and flow during cpr to chest compression amplitude: Evidence
for an effective compression threshold,” Annals of Emergency Medicine, vol. 12,
no. 9, pp. 527-532, 1983, 1SSN: 0196-0644.

M. P. Feneley, G. W. Maier, K. B. Kern, et al., “Influence of compression rate
on initial success of resuscitation and 24 hour survival after prolonged manual
cardiopulmonary resuscitation in dogs.,” Circulation, vol. 77, no. 1, pp. 240-
250, 1988.

E. A.Rozanski, J. E. Rush, G. J. Buckley, D. J. Fletcher, M. Boller,and R. A. L. S. D. W.

Authors, “Recover evidence and knowledge gap analysis on veterinary cpr. part
4: Advanced life support,” Journal of Veterinary Emergency and Critical Care,
vol. 22, no. s1, S44-S64, 2012.

G. Buckley, E. Rozanski, and J. Rush, “Randomized, blinded comparison of
epinephrine and vasopressin for treatment of naturally occurring cardiopulmonary
arrest in dogs,” Journal of Veterinary Internal Medicine, vol. 25, no. 6, pp. 1334—
1340, 2011.

C. T. Leng, N. A. Paradis, H. Calkins, et al., “Resuscitation after prolonged
ventricular fibrillation with use of monophasic and biphasic waveform pulses
for external defibrillation,” Circulation, vol. 101, no. 25, pp. 2968-2974, 2000.
D. J. Fletcher, M. Boller, B. M. Brainard, ef al., “Recover evidence and knowl-
edge gap analysis on veterinary cpr. part 7: Clinical guidelines,” Journal of Vet-
erinary Emergency and Critical Care, vol. 22, no. s1, S102-S131, 2012.

G. Scott, T. Barron, 1. Gardett, et al., “Can a software-based metronome tool en-
hance compression rate in a realistic 911 call scenario without adversely impact-
ing compression depth for dispatcher-assisted cpr?” Prehospital and Disaster
Medicine, vol. 33, no. 4, pp. 399—-405,2018. D0O1: 10.1017/51049023X18000602.
S. C. Kim, S. O. Hwang, K. C. Cha, et al., “A simple audio-visual prompt
device can improve cpr performance,” The Journal of Emergency Medicine,

38

BIBLIOGRAPHY 39

[11]

[12]

[13]

[14]
[15]

vol. 44, pp. 128-134, 2013, 1SSN: 0736-4679. DOI: https://doi.org/10.
1016/ j . jemermed . 2011 . 09 . 033. [Online]. Available: https : / / www .
sciencedirect.com/science/article/pii/S0736467912003423.

I. J. Grady Booch James Rumbaugh, “Unified modeling language user guide,
the, 2nd edition,” 2005.

J. Nielsen and R. Molich, “Heuristic evaluation of user interfaces,” in Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI °90, Seattle, Washington, USA: Association for Computing Machinery,
1990, pp. 249-256, 1SBN: 0201509326. DOI: 10.1145/97243.97281. [Online].
Available: https://doi.org/10.1145/97243.97281.

B. De Win, F. Piessens, W. Joosen, and T. Verhanneman, “On the importance of
the separation-of-concerns principle in secure software engineering,” in Work-
shop on the Application of Engineering Principles to System Security Design,
Citeseer, 2002, pp. 1-10.

G. Bierman, M. Abadi, and M. Torgersen, “Understanding typescript,’

M. Fowler, 2006. [Online]. Available: https://martinfowler.com/articles/
continuousIntegration.html.

