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Abstract
In this dissertation, I primarily concentrate on analyzing Google’s quantum random
circuit sampling experiment, with the objective of evaluating their quantum supremacy
claims. I employed Fourier analysis as the method to investigate the relationship
between the experimental results and the number of qubits, allowing for a comprehensive
assessment of the strength of Google’s quantum supremacy assertion. During the course
of my research, I encountered an intriguing phenomenon. Contrary to expectations, my
experimental findings revealed that Google’s experiment exhibited higher correlator
values than those of a theoretically noise-free ideal circuit. This discrepancy prompted
an extensive analysis of the data to identify the underlying cause, which was eventually
attributed to an insufficient number of samples. Moreover, the level of noise in the
system was found to significantly influence the outcomes associated with varying sample
sizes. Consequently, determining the optimal sample size required to obtain correlators
close to their true values has emerged as a valuable research question, warranting further
investigation.
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Chapter 1

Introduction

1.1 Motivation

With the development of computer science, it has been found that more and more
problems are difficult to solve in a short time on a classical computer architecture. NP
problems, which cannot be solved efficiently by classical computers in polynomial time,
have become increasingly relevant in many fields, including cryptography, optimization,
and chemistry. Fortunately, quantum computing, an emerging computing architecture,
offers promising potential for accelerating the resolution of these complex problems.
Quantum computing is based on quantum mechanics, using the superposition effect of
qubits, enabling quantum computers to perform computations exponentially faster than
classical computers for some of the problems.

Quantum computing has been a topic of study for over 40 years, and in that time,
scholars have established a solid theoretical foundation for quantum computing. Re-
searchers have proposed many algorithms to solve practical problems, such as Shor’s
algorithm, which could be used to factoring large numbers and Grover’s algorithm for
searching databases. Moreover, quantum computing has had a significant impact on
other fields, such as cryptography, where it has been shown that quantum computers
can break some of the most commonly used encryption schemes such as RSA.

However, the question of whether quantum computers can truly solve problems that
are infeasible for classical computers in a practical amount of time remains a topic
of debate. In 2019, Google claimed to have achieved quantum supremacy using their
53-qubit quantum computer, ”Sycamore” [1]. This claim was soon challenged, as
subsequent analysis revealed that the calculation in question would take only a few days
on a classical system [2].
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Chapter 1. Introduction 2

1.2 My Project

In this dissertation, I will investigate the assumption of Google’s claim of quantum
supremacy by applying the Fourier analysis on the data generated by Sycamore .Fourier
analysis on Boolean functions is a mathematical technique used to decompose and study
these functions in terms of their orthogonal basis, derived from the Walsh-Hadamard
basis, revealing patterns and properties that may not be apparent in their original repre-
sentation. By applying Fourier analysis to the sample data generated by Sycamore, I
will be able to calculate the Fourier coefficients of the output samples, which represent
the correlations among the different qubit measurement at output. This study will help
determine how strong the assumption of supremacy of Sycamore is and contribute to
the ongoing debate on the potential of quantum computing.

Overall, quantum computing has the potential to revolutionize many fields, and testing
its capabilities is crucial to realizing this potential. By investigating Google’s claim of
quantum supremacy, this dissertation aims to contribute to the advancement of quantum
computing and its applications in various fields.

1.3 Structure

Chapter 2: In this chapter, I will provide an overview of quantum computing, including
its historical and background knowledge. I will also explore the idea of quantum
supremacy. Specifically, I will focus on the Quantum Random Circuit Sampling (RCS)
experiment conducted by Google on its 53-qubit quantum computer ”Sycamore” in
2019. I will describe the RCS process in detail and discuss its significance in the
field of quantum computing. By examining the RCS experiment and related research,
this chapter aims to provide a basic understanding of quantum supremacy and RCS
experiment.

Chapter 3: In this chapter, I will look into the mathematics behind the Fourier analysis
of the real-valued Boolean functions of probability distributions. Specifically, I will
explain the step-by-step process of the mathematical formulas used in Fourier analysis
and their purpose in analyzing the correlation between input qubits and output samples.
By providing a detailed analysis of the mathematical formula of Fourier analysis, this
chapter aims to enhance the reader’s understanding of the analysis process and its
purpose of the investigation of quantum supremacy.

Chapter 4: In this chapter, I’ll detail the Python implementation of the function,
providing the detail of the code, using optimization techniques and GPU computing to
achieve a 3800x speed increase in Fourier coefficient computation. I’ll also discuss the
validation of my results.

Chapter 5: In this chapter, I present a comprehensive analysis of Google’s random
circuit sampling results obtained from the Sycamore quantum processor. The primary
focus of our investigation lies in examining both the Patch circuit and Full circuit
configurations independently across varying qubit sizes, ranging from 12 to 24 qubits.
By conducting a detailed comparative analysis of the results, I aim to uncover the impact
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of qubit count on the accuracy of quantum computations and explore the strengths and
limitations of the Sycamore processor.

Chapter 6: In this final chapter, I will present a thorough recap of the dissertation. This
summary will encapsulate the main objectives, methods, outcomes, and implications of
the research explored in this work. By providing a concise overview, readers will be
able to quickly grasp the key aspects and findings discussed throughout the dissertation.



Chapter 2

Background

2.1 Overview

Quantum computing is an innovative technology that leverages the principles of quan-
tum mechanics, such as superposition and entanglement, to address problems that are
challenging for classical computers to solve. Classical computers operate with bits
that are either 0 or 1, utilizing logic gate circuits to execute operations and ultimately
producing deterministic results. In contrast, quantum computers employ qubits, which
represent a superposition of 0 and 1. This means that a quantum computer with n qubits
can simultaneously perform operations on 2n inputs. This computational paradigm
exhibits immense potential in diverse fields, including quantum system simulation, com-
putational biology, machine learning, and search problems. Furthermore, its ability to
rapidly factorize large integers has significant ramifications for the field of cryptography.
Researchers refer to a quantum computing device’s capability to solve problems that
classical computers cannot feasibly address within a reasonable time frame as ”quantum
advantage.”

Ever since Feynman first introduced the concept of quantum computing in 1981, the
field has experienced remarkable growth. Major technology companies, such as Google,
Microsoft, and IBM, have dedicated substantial resources to investigating the vast
potential of quantum computing. In this chapter, we will delve into the milestones of
quantum computing development, shedding light on the pursuit of quantum supremacy
and highlighting the most recent research breakthroughs.

The pursuit of quantum computing technology has led to the development of vari-
ous quantum computing architectures, such as superconducting qubits, trapped ions,
and photonic systems, each with its own set of advantages and challenges. As re-
searchers continue to refine these architectures, they also explore novel error-correction
techniques to ensure the stability and reliability of quantum computations.

In parallel with hardware developments, theoretical advancements in quantum algo-
rithms and programming languages have driven the field forward, allowing for more
efficient problem-solving using quantum computers. These advancements have been
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Chapter 2. Background 5

instrumental in demonstrating the potential of quantum computers to revolutionize
fields such as drug discovery, materials science, and financial modeling.

As the field of quantum computing continues to evolve, so does the understanding
of its implications for society, including the potential risks and ethical considerations.
The ongoing dialogue among researchers, policymakers, and industry leaders ensures
that this transformative technology is developed responsibly and used for the betterment
of humanity.

2.2 Quantum Computing

2.2.1 Idea Proposing Stage

In 1981, Richard Feynman first proposed the idea of a quantum computer during a
conference [3]. He envisioned a computing device distinct from traditional Turing ma-
chines, capable of simulating complex quantum physical systems that were difficult for
conventional computing devices. Inspired by Feynman’s ideas, David Deutsch formally
defined a quantum computer in 1985 [4]. Since then, scientists have been exploring
areas where quantum computers have advantages over conventional computers.

2.2.2 Theory Matures Stage

In 1992, David Deutsch and Richard Jozsa jointly proposed the world’s first quantum
algorithm, known as the Deutsch–Jozsa algorithm [5]. A couple of years later, in 1994,
Daniel Simon developed the Simon algorithm while solving the Simon problem [6].
This directly inspired Peter Shor to design the Shor algorithm, which solved the prime
factorization problem of large integers [7]. Shortly thereafter, in 1996, the invention of
Grover’s algorithm [8] also considered the second major quantum computing algorithm
after Shor’s algorithm, which marked a new phase in human exploration of quantum
computing advantages.

2.2.3 Actual Quantum Computer Building Stage

Until 1997, quantum computing remained mostly theoretical. However, that year, Isaac
L. Chuang and other researchers introduced a quantum machine design based on nu-
clear magnetic resonance (NMR) machines, which they built in 1998 [9]. In 1999,
Yasunobu Nakamura and Jaw-Shen Tsai proposed the idea of building quantum comput-
ers using superconducting devices [10]. The 2-bit quantum computer they constructed
implemented Grover’s algorithm, and soon after, in 2001, IBM built a 7-bit quantum
computer that implemented Shor’s algorithm, successfully factoring 15 into 3 and 5
[11]. In 2003, the Deutsch–Jozsa algorithm was implemented on an ion-trap quantum
computer [12]. By 2006, researchers at the University of Waterloo successfully built
a 12-qubit quantum machine [13]. A year later, the C-NOT gate was successfully
developed on a superconducting quantum machine [14].
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In 2009, researchers from the University of Bristol successfully ran Shor’s algorithm
on a photonic chip [15]. In 2011, D-Wave developed the first commercial quantum
computer, utilizing quantum annealing technology, while scholars produced a quantum
machine with a von Neumann architecture on a superconducting circuit [16]. In 2015,
D-Wave claimed to have broken the 1000-qubit barrier. A year later, MIT scientists
implemented Shor’s algorithm in an ion-trap quantum computer [17]. In 2017, IBM
demonstrated a 50-qubit computer that could maintain its quantum state for 90 mi-
croseconds. In 2019, Google claimed to have achieved quantum supremacy through
random circuit sampling on their superconducting quantum computer ”Sycamore” [1].
More details about quantum supremacy will be provided in the next section.

2.3 Quantum Supremacy

Quantum supremacy, or quantum advantage, is a pivotal milestone in quantum comput-
ing, marking the moment when a quantum computer can solve a problem significantly
faster or more efficiently than the best available classical computer. This concept under-
scores the practical potential of quantum computers to outperform classical computers
in specific tasks. The term ”quantum supremacy” was firstly mentioned by J. Preskill
in 2012 [18]., aiming to identify a computational problem where a quantum computer
provides a clear advantage. Achieving quantum supremacy requires a scalable quantum
computer, an effective quantum algorithm, and the ability to verify results using classical
computers. The main way to verify quantum supremacy is by building a computational
framework that is difficult for classical computers to handle but easy to process on a
quantum computer. However, quantum supremacy is typically attainable only under
ideal quantum circuit conditions. As real-world quantum circuits are prone to noise, the
final outcomes may deviate from the expected results. Today, researchers mainly verify
quantum supremacy through two kinds of experiments.

In 2019, Google claimed to have reached quantum supremacy using their 53-qubit
processor called ”Sycamore.” [19][1] They reported solving a problem related to ran-
dom circuit sampling [20] much faster than the world’s leading classical supercomputer
at the time. This claim sparked considerable interest and debate within the scientific
community.

In 2020, researchers from the University of Science and Technology of China (USTC)
reported achieving quantum supremacy using a different approach called ”Gaussian
boson sampling” [21] with their photonic quantum computer, Jiuzhang [22]. This
experiment further demonstrated the potential of quantum computing and provided
an alternative method to showcase quantum advantage. In 2022, Xanadu conducted a
larger scale Gaussian boson sampling experiment on the Borealis photonic processor
[23]. Utilizing up to 219 photons, with an average of 125 photons, they claimed to
achieve results that would require 9,000 years for a classical computer to accomplish.
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Figure 2.1: Sycamore Superconduction
Quantum Computer [1]

Figure 2.2: Jiuzhang Photonic Quantum
Computer [22]

Besides, Moreover, alternative approaches for demonstrating quantum supremacy are
also available, such as Shor’s algorithm, D-Wave’s specialized frustrated cluster loop
problems [24], etc. In this dissertation, I will focus on the random circuit sampling
experiment done by Google.

2.3.1 Random Circuit Sampling

Random Circuit Sampling (RCS) is a process that is hard for classical computer to
simulate. In RCS, a random quantum circuit is created by applying a series of quantum
gates to a set of qubits in a specific order. The gates are chosen randomly from a
predefined set, such as the universal gate set, which includes single-qubit gates like
the Pauli-X, Pauli-Y, Pauli-Z, Hadamard, and T-gates, and two-qubit gates like the
controlled-NOT (CNOT) gate. The random circuit generated represents a complex
unitary transformation that manipulates the states of the qubits.

Figure 2.3: A example quantum circuit instance used in Google experiment [1].

After the quantum circuit is executed, the final state of the qubits is measured, collapsing
the qubits from their superposition states into classical bit values (0 or 1). The measure-
ment outcomes represent a sample from the probability distribution produced by the
random quantum circuit. Repeating the process multiple times with different random
circuits generates a larger set of samples with n bits length from the corresponding
probability distributions, where n represent the qubit size.

The RCS problem essentially consists of sampling from these probability distribu-
tions generated by random quantum circuits. While quantum computers can perform
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this task relatively efficiently by directly implementing the random quantum circuits,
classical computers struggle to simulate the process due to the exponentially growing
complexity of the quantum states as the number of qubits and gates increases.

But in the actual quantum computer, the noise will significantly affect the output result.
Reflected in the results, the results of the measurement will be biased towards some
specific output. To quantify the fidelity of quantum computers and quantum circuits,
the cross-entropy benchmark was used in this paper. The probability of a bitstring in
ideal quantum can be simulated and computed on classical machine. And by analyzing
the large number of experimental data coming out from the quantum computer, the
probability of a certain output can be computed. Then comparing the ideal probability
with real probability, High Output Generation (HOG) can be calculate.

HOG(p,q) = ∑
x

q(x)p(x)

Where fidelity can be expressed in term of:

FXEB = 2n ⟨P(x)⟩x−1
FXEB = 2nHOG−1

In the ideal noiseless situation, FXEB shoule be equal to 1, and in the case of full
noise, FXEB should be close to 0. According to Google experiment [1], FXEB decrease
exponentially with the increase of the qubit number.

Figure 2.4: Google Experiment [1]

In this experiment, Google conduct 3 different kinds of experiments, which are Full
circuit, Elided circuit and Patch circuit. These three different circuit indicate the
complexity of the circuit. The full circuit represents the complete random quantum
circuit that is executed on the quantum computer. It includes all the gates and operations
applied to the qubits in the experiment, while in elided circuit, some gates or operations
may be omitted. and the patch circuit represents the full circuit is dividing it into two
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equally independent subcircuits.

In the paper, Google claims that for 53 qubits 20 layers quantum circuit, sampling
a million samples will take 200 seconds with average of 0.1% of fidelity, but meanwhile,
for classical sampling will takes 10,000 years on a million cores to reach the same
fidelity.

2.3.2 Gaussian Boson sampling

Boson sampling, a benchmark for quantum supremacy, demonstrates a quantum com-
puter’s ability to outperform classical computers. Proposed by Aaronson and Arkhipov
in 2011 [21], it showcases linear-optical quantum computing’s power by simulating
non-interacting bosons in a network. The process involves input state preparation, a
linear-optical network, photon detection, and sampling. Classical computers struggle
with the problem’s complexity, while quantum systems have a clear advantage. In 2020,
USTC researchers claim to achieve quantum supremacy using Gaussian boson sam-
pling with Jiuzhang [22]. Boson sampling highlights quantum computing’s potential,
stimulating further research despite limited practical applications.

This aspect of the work is primarily spearheaded by my colleague Zhenyan Zhao.
In this dissertation, I will not delve into the details of Gaussian Boson sampling.

2.4 Fourier Analysis on RCS

In a quantum random circuit with n qubits, there are 2n possible output states. The
quantum random circuit is designed to generate a quantum state in which all qubits
are entangled, the probability distribution of the output states may exhibit statistical
properties similar to the Porter-Thomas distribution, and the average expectation of
the square of the Fourier coefficients should be uniform under ideal circuit conditions.
However, a direct correspondence on probability distribution should not be assumed,
as the output distribution is influenced by various factors within the quantum random
circuit.

However, this ideal uniform distribution is often not the case in actual quantum random
circuits, as various factors, such as gate errors and decoherence, affect the final state
distribution. The analysis of the output states in quantum random circuit sampling
experiments is aimed at understanding the deviations from the ideal distribution and
verifying the performance of the quantum computer.

Fourier analysis is a mathematical technique used to decompose a signal or function
into its constituent frequencies, providing insights into the underlying structure and
behavior of the data. In the context of RCS, Fourier analysis can be applied to the
experimental results to study the properties of the probability distributions generated by
the random circuits and reveal hidden patterns or correlations.

In my project, I conducted a comprehensive analysis of the results obtained from
Google’s quantum computing experiment by employing Fourier decomposition tech-



Chapter 2. Background 10

niques. I carefully examined the frequency components by categorizing the bit strings
in the input space based on their Hamming weight. Details will be described in the next
chapter.



Chapter 3

Boolean Function Analysis

In this chapter, I provided a detailed analysis of the Fourier coefficients of experimental
results in quantum random circuit sampling on Google’s experiment. I presented mathe-
matical derivations and discussed the computation methods under different conditions,
with or without noise. By examining the Fourier coefficients, we can gain a deeper
understanding of the noise and fidelity situation in the quantum circuit.

3.1 Probability Distribution Function

For quantum random quantum circuits, the state of the output space could be represented
by unitaries applying on the initial state. For any n-qubits quantum circuit, the final
state |ψ⟩ of the circuit could be represented by the following:

|ψ⟩= ∑
x∈{0,1}n

Ax |x⟩

and
∑

x∈{0,1}n
|Ax|2 = 1

Where x represent all possible output bitstring of the quantum circuit, Ax represent the
amplitude of bitstring x. The probability of the circuit output bitstring x can be obtained
by the following

pψ(x) = |⟨x|ψ⟩|2 = |Ax|2

It can be found that the probability function is a Real-valued Boolean Function.

p(x) : {0,1}n→ R

3.2 Fourier Analysis

For every real-valued Boolean function, it can be expressed in terms of multi-linear
polynomial function by applying Walsh-Hadamard transform or Fourier expansion

11



Chapter 3. Boolean Function Analysis 12

over the Boolean function. Therefore, probability function p(x) : {0,1}n→ R could be
rewrite in the following way.

p(x) : {0,1}n→ R= ∑
s∈{0,1}n

p̂(s)χs(x) (3.1)

Where χs(x) is called parity function, given by the following.

χs(x) = (−1)s·x (3.2)

It is worth mentioning that in the above formula, s and x are bitstrings, and s ·x represent
the dot product of two bitstrings. Assume the length of s and x are n.

s = {s1s2...sn} , x = {x1x2...xn}

s · x =
n

∑
k

sk · xk (3.3)

Through the definition, for real-valued Boolean function p(x) : {0,1}n→ R and q(x) :
{0,1}n→ R, the inner product could be written as the product of expectation of two
functions.

⟨p(x),q(x)⟩= E [p(x)q(x)]

Furthermore, since p(x) and q(x) are real-valued Boolean function, the above formula
could be rewrite into the following.

⟨p(x),q(x)⟩= 1
2n ∑

x∈{0,1}n
p(x)q(x) (3.4)

Also for parity function χs(x), it can be fund that it is also a real-valued Boolean
function, taking the input bitstring x and output a real number. Therefore, consider two
different parity function χs(x) and χs′(x), by calculating their inner product,

⟨χs(x),χs′(x)⟩ =
1
2n ∑

x∈{0,1}n
χs(x)χs′(x)

=
1
2n ∑

x∈{0,1}n
(−1)s·x(−1)s′·x

=
1
2n ∑

x∈{0,1}n
(−1)(s+s′)·x

=

{
1 if s = s′

0 if s ̸= s′

= δs,s′

Thus, parity function are orthogonal function.
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And in the above mentioned formula, p̂(s) is the Fourier coefficient of s on function p.
Since parity function are orthogonal, p̂(s) could be written as the following.

p̂(s) = ⟨p(x),χs(x)⟩

=
1
2n ∑

x∈{0,1}n
p(x)χs(x) (3.5)

The Fourier coefficient p̂(s) shows the correlation of bitstring s with the sampling
results. When noise is absent, the probability of receiving outcome s is |p̂(s)|2 [25]. But
instead of using Fourier coefficient to represent the correlation between the probability
function with the input space, to increase the precision, I will use Correlator given by
the following formula, which indicate the re-scaled Fourier coefficient.

C(p(x);s) = 2n p̂(s) = ∑
x∈{0,1}n

p(x)χs(x) (3.6)

In the following section, I will show how to obtain the estimated Fourier coefficient on
the data from Google’s experiment on Random Circuit Sampling.

3.3 Analysis on RCS Experiment Data

Under ideal situation, where there is no noise in the circuit, the correlator of the output
probability function of RCS when average over a uniform distribution, follow formula
can be obtained.

E [C(p;s)] =
2n−1
4n−1

(3.7)

For large n : E [C(p;s)] ≈ 1
2n (3.8)

Because of the fact that the sample size for each experiment is small, instead of look
into every Fourier coefficients, I am combining the bitstring with same order k together
and calculating its average. For every bitstring, define the Order of the bitstring s as
|s| which is the Hamming weight of the bitstring. In another words, it represent how
many ”1” contained inside the bitstring.

s = {s1s2...sn} , |s|=
n

∑
k=1

sk

It is obvious to see for order k, the Fourier weights of correlators is given by:

W k
C [ f ] = ∑

s:|s|=k
C(p;s)2

=

(
n
k

)
2n−1
4n−1

(3.9)
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Therefore, the expected value of Fourier weights under ideal circuit for order k is

W̄ k
C [ f ] =

1(
n
k

) ∑
s:|s|=k

C2(p;s) (3.10)

=
2n−1
4n−1

(3.11)

For every randomly generated circuits, Google repeated sampling for 100,000 times,
and for every qubit size n, Google generated 10 different random circuits. But it is still
difficult to obtain the true probability since there are 2n numbers of possible output,
which is much higher than 100,000 samples. I take the mean of the result over all
samples as the average correlator of the bitstring. Suppose for every circuit, the sample
size is m, therefore, the experimental correlator C̃ of bitstring s with the probability
function on x could be written as the following.

C̃(p(x);s) =
m

∑
k=1

1
m
·χs(xk)

=
1
m

m

∑
k=1

χs(xk) (3.12)

If sample size is infinite, the average correlator is equal to actual correlator.

lim
m→∞

C̃(p(x);s) =C(p(x);s) (3.13)

In the actual quantum circuit, the circuit will infected by different sources of noise
such as qubit decoherence, individual gate errors, and measurement errors, which
leads to sampling error. The effect of this error on the correlator can be expressed
mathematically as the following formula:

C̃(p;s) = e−α|s|C(p;s)

In the formula, α represent the error rate. It can be clearly found that this is a function
of exponential decay, and the higher the α is, the smaller correlator value is. Therefore,
in the analysis of the sampling results of the actual circuit, I expect an exponential decay
image.

Combining formula 3.10 and 3.12, in one experiment, the Fourier weights Z̄(k) for
order k can be given by the following formula.

Z̄(k) =
1(
n
k

) ∑
s:|s|=k

(
C̃2(p(x j);s)

)

=
1

m2
1(
n
k

) ∑
s:|s|=k

(
m

∑
j=1

χs(x j)

)2

(3.14)
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At the same time, in order to observe the results expected by the above expectation
formula of Fourier weight, combineing all random circuits samples and calculations
together are necessary. Suppose the circuit number is D, the experimental Fourier
weight Z(k) can be given by the following.

Z(k) =
1

m2
1
D

1(
n
k

) D

∑
i=1

∑
s:|s|=k

(
m

∑
j=1

χs(xi j)

)2

(3.15)

m : Number of samples per experiment = 100,000
n : Qubit size = 12,14,16,18...
D : Number of different experiments per qubit = 10
k : Order of bitstring = 0 to qubit number



Chapter 4

Code and Acceleration Method

In this chapter, I will describe the implementation process of the function described
in chapter 3 on Python. I reduced the complexity of the functions using some special
techniques and transferred them to the GPU, resulting in a 3800 times increase in speed.
This achievement was significant, as it demonstrated the effectiveness of GPU comput-
ing in accelerating Fourier coefficient computation. By optimizing the code and utilizing
the power of the GPU, I was able to achieve substantial performance improvements.
Meanwhile, I will explain how I validate the correctness of my computation.

4.1 Programming Language

Python is a high-level programming language that is widely used for web development,
scientific computing, data analysis, artificial intelligence, and many other applications.
It is particularly useful for data analysing is because of its simplicity, readability, and
availability of various libraries and tools. In addition, Python is popular for GPU
computing because of its rich ecosystem for GPU computing, including CuPy I am
using in this dissertation. Meanwhile, Python is also adept at data visualization. In this
project I will use Matplotlib to display the result of the experiment.

4.1.1 Matplotlib

Matplotlib is a powerful library used to display all kinds of diagrams and chart. For
visualizing data, Matplotlib has the following advantages:

Flexibility: Matplotlib provides a wide range of plots options, also allow user to
customize everything with simple procedure, including color, font, line style, label, etc.
Integrative.

Integrative: Matplotlib can be perfectly combined with most of the data analyse
library and data structure, like CuPy array or Pandas dataframe.

Huge user base: Matplotlib the most popular visualization library in the world, with

16
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huge user base, it is very convenient to find relevant knowledge and tutorials.

4.1.2 CuPy

CuPy is a GPU-accelerated library for numerical computations, designed to be compati-
ble with NumPy in gramma. For CuPy, it has following advantages:

Speed: CuPy call the computing power of GPU, which could significantly increase the
speed of calculation comparing with CPU based library like NumPy.

Usability: CuPy has exactlly same interface with NumPy, which greatly reduce the cost
of learning. This makes it very simple for those familiar with NumPy to adopt CuPy for
GPU acceleration.

Flexibility: Comparing with other GPU based library like PyTorch or TensorFlow,
CuPy is more lightweight which only focus on numerical computations, while other
two are more focusing on deep learning. Also, CuPy could be easily combined with
other Python libraries like Matplotlib.

4.2 Calculation Process

In this project, I conduct a variety of experiments and analyze the results from multiple
perspectives. The core component of the code is the implementation of the aforemen-
tioned formula.

Z(k) =
1

m2
1
D

1(
n
k

) D

∑
i=1

∑
s:|s|=k

(
m

∑
j=1

χs(xi j)

)2

In practice the formula can be broken down into the following steps:

1. Load a single experimental dataset into memory.

2. Assuming a qubit size of n, generate an empty list of length n+1 to represent the
results of different orders.

3. Iterate over 2n bitstrings. For each bitstring, if its order is k, compute the square
of the sum of the parity function outcome with every bitstring from the previously
loaded experimental data. Add the value to the kth element of the list.

4. Going to the next experiment, repeat from step 1 to step 3 until finishing all
experiments, then multiply each element in the list by 1

m2
1
D

1(
n
k

) .

5. Plot the diagram and save the result into a text file.
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4.3 Complexity Analysis

It can be found that the time complexity of the formula can be express as following.

χs(xi j) : O(n) (4.1)

(
m

∑
j=1

χs(xi j)

)2

: O(m ·n) (4.2)

∑
s:|s|=k

(
m

∑
j=1

χs(xi j)

)2

: O(m ·n ·2n) (4.3)

D

∑
i=1

∑
s:|s|=k

(
m

∑
j=1

χs(xi j)

)2

: O(m ·n ·2n ·D) (4.4)

Z(k) : O(m ·n ·2n ·D) (4.5)

4.1 Parity function, with complexity of O(n) cause it will need to calculate every bit
in bitstring with length n. Details described in section 4.4.1.

4.2 The complexity of process one bitstring with every samples in the experiment.

4.3 This step involves calculating all bitstrings with order k. Although the complexity
of this step should be dependent on k, ultimately, all 2n bitstrings will be processed.
Therefore, from a macro perspective, the increased complexity of this step is 2n.

4.4 Going over D different experiment circuit will cause the increase of complexity
of D.

4.5 Final overall complexity.

Therefore, the time complexity of the function is O(m ·n ·2n ·D). In the next section, I
will describe a way to optimize the time complexity and method to speedup with GPU.

4.4 Speedup Method

In this section, I will delve into the details of the code implementation, describing the
techniques employed to reduce time complexity and actual runtime.

4.4.1 Parity Function

This is a straightforward implementation of the parity function, by going over all bit
from the bitstring and apply the multiplication then add together.
The parity function is implemented in a straightforward manner by iterating over all bits
of the bitstring, applying the multiplication operation, and summing the results. The
time complexity of this function is O(n), where n represents the bitstring length or qubit
size. By employing the following method, the time complexity can be reduced to O(1).
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Algorithm 1 A Naive Parity Function Implementation (bitstring1, bitstring2)

Require: |bitstring1|= |bitstring2| ▷ represent s and x in formula 3.2
result← 0
index← 0
while index < |bitstring1| do

bit1← bitstring1[index] ▷ represent the bit at the index position in bitstring1
bit2← bitstring2[index] ▷ represent the bit at the index position in bitstring2
result← result +bit1 ·bit2
index← index+1

end while
return −1result

The calculation of the parity function is divided into three parts, which are dot product,
bit sum and -1 exponent. I will describe their optimization methods separately.

4.4.1.1 Dot Product on Bitstring

For bitstring s = {s1s2...sn} ,x = {x1x2...xn}, the dot product is s · x = ∑
n
k sk · xk as

described in formula 3.3. It is obvious that for two bit sn and xb, the result of sn · xn is
equivalent with sn AND xn. On classical computer architecture, the time complexity
of bitwise AND is O(1). Therefore, for the first step of calculating the dot product of
two bitstrings, I could just simply apply AND operations on two bitstrings. By first
converting the bitstring into binary digits, then applying AND operation between two
binary digits.

11 00 10 11 00
&& && && && &&
10 01 01 10 11

10 00 00 10 00

4.4.1.2 Summing Bits and Exponential Operation

Then, the process of summing the bits can be viewed as determining the Hamming
Weight of the bitstring 1000001000 in the given example, in another word, the order.
Because in the whole calculation process, the order of 2n bit strings needs to be cal-
culated anyway. If these calculation results are stored, there is no need to repeat the
calculation process. Consequently, by pre-calculating the order of all possible bitstrings,
the summing process can be simplified to accessing the result from the bitstring-order
list and then computing the exponent of −1.

By incorporating the aforementioned techniques, a more efficient method for com-
puting the parity function has been developed, as shown below. Although this function
requires pre-computation of the order list for 2n bitstrings, it reduces the time complexity
of parity to O(1). Thus, the total time complexity of the overall computation is reduced
from O(m ·2n ·D ·n) to O(m ·2n ·D+2n), which is equivalent to O(m ·2n ·D).
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Algorithm 2 A Fast Way to Compute Parity Function
▷ This function int to bin list used to transfer a integer to its binary form, and stored
in a list. Eg.: input 9 will output [1,0,0,1]. The purpose of this is to faster calculate
the Hamming weight of the bitstring in the following step.

procedure INT TO BIN LIST(A: int)
binaryA← INT TO BINARY(A)
listBinaryA← SPLIT(binaryA)
return listBinaryA

end procedure

bin order← [ ] ▷ List store the order for all bitstring
A← 0
while A≤ 2n do

listBinaryA← INT TO BIN LIST(A)
orderA← SUM(listBinaryA) ▷ Calculate the order the bitstring
bin order← bin order+[orderA] ▷ Append the result into result list

end while

procedure PARITY FUNCTION(bitstring1, bitstring2)
int1←BINARY TO INT(bitstring1) ▷ Transfer the bitstring into integer
int2←BINARY TO INT(bitstring2) ▷ Transfer the bitstring into integer
sum← bin order[int1 & int2] ▷ The Dot Product of two bitstring
result←−1sum ▷ Parity function result
return result

end procedure

4.4.2 GPU Approach

GPUs are designed to handle multiple tasks simultaneously by allowing the faster
execution of parallelizable calculations compared to CPUs. In this project, the computa-
tion could be converted to parallel computing on CuPy array instead of original loop
structure by slightly modify the storage structure.

Like the original structure, the code still pre-calculate the bin order list, but instead of
the original list structure, CuPy arrays are used to store the list data.

bin_order = cupy.array
([

int(sum(int_to_bin_list(i))) for i in range(0, sLength)
])

Additionally, another array called sBarList is introduced to store bitstrings with the
same order together. The length of sBarList is n+1, with the element at index 0 storing
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all bitstrings of order 0, the element at index 1 storing all bitstrings of order 1, and so on.

sBarList = [[] for i in range(0, n + 1)]

for i in range(0, 2**n):
sBarList[sum(int_to_bin_list(i))].append(i)

sBarList = [cupy.array(i) for i in sBarList]

By arranging the array in this manner, instead of iterating from 00..00(0) to 11..11(2n),
even though the order of all bitstrings has been pre-calculated, running on the GPU
causes the communication delay between memory and GPU to become the bottleneck
of the calculation. Although at the end of every parity function calculation there will
still be a memory access to check the order of the summing result, this method reduces
the overall runtime. As a result, the calculation function for a single experiment sample
result can be written as follows.

def calculate(filename , n, m, bin_order , sBarList):
Z_file = [0 for i in range(n + 1)]
f = open(filename , "r")
fileListLines = f.readlines()
fileList = cp.array([bin_to_int(i) for i in fileListLines])
indx = 0
for sBar_num in range(len(sBarList)):

sBar = sBarList[sBar_num]
for s_num in range(len(sBar):

s = sBar[s_num]
temp = cp.bitwise_and(s, fileList)
binO = lambda x: bin_order[x]
temp = (-1)**(binO(temp))
Z_file[indx] = Z_file[indx] + int(cp.sum(temp))**2

indx = indx + 1
return (Z_file)

The core component for achieving acceleration is this part:

temp = cp.bitwise_and(s, fileList)
binO = lambda x: bin_order[x]
temp = (-1)**(binO(temp))

It can be proved by experiments on patch circuit that this method improves the operation
speed by 3828 times.
(Both experiments were running on the same machine. Configured as Intel i9-11900k,
32G memory, NVIDIA RTX 3090)

Figure 4.1: The original CPU-based design took 8 hours and 32 minutes to process the
12 qubits of data for all 10 experiments.
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Figure 4.2: The improved GPU-accelerated design takes only 8 seconds to process the
same data.

4.4.3 Performance Evaluation

The GPU-accelerated code’s runtime is summarized in the table for 12 to 24 qubits on
patch circuit. In general, for every 2 additional qubits, the required runtime increases
by a factor of 3.5. For 24 qubits, it takes about five hours.

Qubit size Running time
12 8 sec
14 26 sec
16 120 sec
18 476 sec
20 1537 sec
22 5391 sec
24 18920 sec

Table 4.1: Running Time Table

By analogy, 26 qubits will take about 17 hours, and 28 qubits will take about 60 hours.
Simultaneously, it was observed that during the entire operation process, video memory
usage remained low, occupying less than 2Gb of video memory. This offers the potential
for optimization. When calling the GPU to perform calculations, the communication
time with the memory and the CPU limits the calculation speed. If more data can be
stored in video memory, the speed and time of the calculation may be further optimized.
The next section will describe some possible ways to achieve further optimization.

4.5 Further Potential Improvement

4.5.1 Broadcasting Technique

The NVIDIA RTX 3090 has 24Gb of V-Ram, which is relatively small. Thus, the
code iterates over each bitstring one by one and performs parallel computing with all
experimental data simultaneously, as shown in the following code:

for sBar_num in range(len(sBarList)):
sBar = sBarList[sBar_num]
for s_num in range(len(sBar):

s = sBar[s_num]
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However, with a computing resource offering higher V-Ram, it is possible to treat all
bitstrings with the same order (written as bk) as an array and calculate the matrix of the
outer and (written as && below) with the experimental data array (written as em).


b1
b2
...
bk

&&
[
e1 e2 ... em

]
=


b1&e1 b1&e2 ... b1&em
b2&e2 b1&e2 ... b2&em
... ... ... ...

bk&ek b1&e2 ... bk&em


To achieve this with CuPy, broadcasting techniques can be used. Broadcasting tech-
niques in NumPy and CuPy enable efficient arithmetic operations on arrays of different
shapes and sizes. In this project, this technique could potentially be used to achieve
further speedup by avoiding memory access when iterating over bitstrings.

4.5.2 Avoid Redundant Computation

When examining the experimental data more closely, it is evident that many redundant
bitstrings exist in the results. For each qubit size, there are 1,000,000 total samples (for
patch circuit). The unique bitstring numbers for 12 to 38 qubits are summarized in the
following table.

Qubit size Unique Bitstring Number on Experiment
12 4096
14 16320
16 57845
18 128716
20 176707
22 194021
24 198471
26 199617
28 199914
30 199979
32 199997
34 199998
36 200000
38 199999

Table 4.2: Unique Bitstring Number

The table reveals that, compared to the total sample number (1,000,000), a significant
number of redundant bitstrings exist in the experimental data, meaning that more
than 4/5 of the calculations are redundant. To avoid this, the calculation result could
potentially be saved in the V-Ram, and each calculation could be checked to determine
whether it had been calculated previously. In theory, this could save a considerable
amount of time. However, the actual performance can only be determined through
experimentation.
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4.6 Validation

4.6.1 Toy Model

To verify the correctness of the code, a Toy Model constructed by my colleague Sirui
Chen was used, and I applied my calculation on it to verify it the result matches with
the expectation of the Toy Model. The purpose of the toy model is to simulate the noise
of a classical stochastic process. The toy model takes 0̄ bitstring as input and, for every
bit in the bitstring, applies a random error effect. Specifically, the model takes an error
possibility parameter p (0≤ p≤ 1). For each bit, an error occurs with probability p,
and when the error occurs, the bit will change into 1 or 0 with equal probability.

4.6.2 Validation on Toy Model

Applying the previously mentioned calculations to the generated samples from the toy
model, the average correlators’ weights should follow the formula:

W̄ k
c = (1− p)2k

I applied the results with a sample size of 1,000,000 for p = 0.5/0.6/0.7/0.8 into my
calculation model and compared them with the expected results. The following graph
was obtained.

Figure 4.3: Toy Model Experimental Average Correlator Weight and Expectation Correla-
tor

The graph shows that most of the experimental average weights fit the expectation well,
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proving the correctness of the calculation model. However, for p = 0.8, the higher-order
experimental correlators deviate from the expected value, which is likely due to the
limited sample size. As mentioned earlier, only when an infinite number of samples are
used, the experimental correlators equal the actual correlators.

lim
m→∞

C̃(p(x);s) =C(p(x);s)

I also compared different sample sizes of 1000, 10000, 100000, and 1000000 and
confirmed this conjecture. The details will be described in the next chapter.

4.7 Conclusion

In conclusion, the improvements to the code and the introduction of GPU acceleration
have significantly reduced the time complexity and runtime of the calculations. Addi-
tionally, the use of CuPy arrays and broadcasting techniques, as well as optimization
for higher V-Ram computing resources, have further enhanced the code’s efficiency.
Finally, the verification of the calculation model using a Toy Model has demonstrated
the correctness of the implemented improvements. In the next chapter, I will present
the results obtained using the improved code, along with an in-depth data analysis and
error analysis to further understand the implications of noise in the quantum circuit.



Chapter 5

Experiments and Results

5.1 Overview and Hypothesis

I carried out an analysis of Google’s random circuit sampling results obtained from
the Sycamore quantum processor. My primary focus was on examining both the Patch
circuit and Full circuit configurations independently, utilizing my calculation model to
process the data. I evaluated the outcomes for circuits ranging from 12 to 24 qubits
in size and performed a comparative analysis of the results to gain a deeper under-
standing of their implications. Upon completing the analysis of Google’s random
circuit sampling results from the Sycamore quantum processor, I observed the per-
formance trends and potential correlations between the Patch circuit and Full circuit
configurations. By scrutinizing these configurations across varying qubit sizes, from
12 to 24 qubits, I sought to uncover the impact of qubit count on the accuracy of the
quantum computations. This detailed investigation provided valuable insights into the
strengths and limitations of the Sycamore processor, as well as informed the ongoing
discussion surrounding quantum advantage and the broader field of quantum computing.

As discussed in Section 3.3, the distribution of RCS circuits is expected to exhibit expo-
nential decay, which also serves as the hypothesis for this experiment. Concurrently,
Section 4.6.2 highlights that the sample size and the number of qubits significantly
influence the resulting image. Based on the insights from Section 4.6.2, it can be
anticipated that larger qubits will require more samples to approximate the actual result
accurately. In other words, for higher qubit numbers, the current sample size may be
insufficient to accurately represent the real correlator outcomes.

5.2 Data Collection and Analysis

5.2.1 Data Collection and Description

The experimental dataset was acquired from DRYAD (https://datadryad.org/
stash/dataset/doi:10.5061/dryad.k6t1rj8), encompassing data for quantum
circuits ranging from 12 to 53 qubits in size. Each qubit size featured 10 randomly
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generated quantum circuits for Full circuit, Elided circuit, and Patch circuit configura-
tions, represented in Python, QISKit, and QASM formats. Additionally, every circuit
included a text file containing the sampled bitstring results. The number of samples
varied depending on the circuit type. In this analysis, I focused on the Full circuit and
Patch circuit configurations, which contained 500,000 and 100,000 samples per circuit,
respectively.

5.2.2 Patch Circuit Result

The results of the Fourier analysis for 12, 18, 22 and 24 qubits are shown below.

(a) 12 Qubits (b) 18 Qubits

(c) 22 Qubits (d) 24 Qubits

Figure 5.1: Experimental results for 12, 18, 22 and 24 qubits are shown. Dots represent
results in a single circuit, lines represent the average of all circuits with the same qubits

Analysis of the image distributions reveals that they are highly similar, exhibiting an
exponential decay on a logarithmic scale. Notably, for low order correlator weights, the
experimental results are very similar, whereas for higher order weights, some variation
appears to be present. Nevertheless, after averaging the results of all experiments, a
smooth trend remains evident in the curve.

In order to investigate the relationship between the trend and qubit size, I created
a graph by plotting the average result of each qubit. The resulting graph is shown below.
A clear trend can be seen from the graph, with larger qubit sizes exhibiting smaller
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average correlator weights. This shows that for circuits with more qubits, the resulting
output is less correlated on the overall qubit state, in the other word, noise increased.

Figure 5.2: Average Correlator Weight on 12-24 Qubits

Also, I plotted the expected curves for each qubit size under ideal conditions and
compared them with the previous graph. According to the formula in Chapter 3, in an
ideal case, the average correlator weight in RCS for each order should be equal to 1/2n,
except for order 0, which equals 1. In order to look clearer, I omitted the part where the
order is 0, since they are all equal to 1.
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(a) 12 Qubits (b) 16 Qubits

(c) 18 Qubits (d) 24 Qubits

Figure 5.3: Experimental results for 12-24 qubits are shown, with the ideal situation
result

Surprisingly, the results demonstrate that for circuits with a larger number of qubits, the
correlator weights are, in fact, higher than those in the ideal noise-free case. This obser-
vation indicates that the degree of correlation in the experimental correlator exceeds
that of the noise-free circuit. Conversely, for circuits with fewer qubits, experimental
results are lower than ideal values, with the exception of smaller number orders. This
suggests that in circuits with a smaller number of qubits, lower-order correlators exhibit
deviations from the ideal circuit behavior beyond the hypothesized exponential decay
with order. In circuits with a higher number of qubits, lower-order correlators display
similar effects, but the results for high-order correlators remain inconclusive. This
counterintuitive finding warrants further investigation to uncover the underlying reasons
for this discrepancy. I also made a conjecture, which will be elaborated in section 5.3.

5.2.3 Full Circuit Result

For the full circuit, I drew the same diagram. I found that the overall trend is very
similar to patch circuit.
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(a) 12 Qubits (b) 18 Qubits

(c) 22 Qubits (d) 24 Qubits

Figure 5.4: Experimental results for 12-24 qubits are shown. Dots represent results in a
single circuit, lines represent the average of all circuits with the same qubits

Comparing the data of different qubits together, I can also get the same conclusion as
the patch circuit, the larger the qubit, the more noise.

Figure 5.5: Average Correlator Weight on 12-24 Qubits
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I combined the results of both patch and full circuits in a single graph to observe the
trends more clearly. Overall, the values for the patch circuit are higher than those for the
full circuit, and full circuit decays faster than patch circuit in terms of k. However, the
full circuit also exhibits a similar issue: as the qubit size increases, the results surpass
the ideal situation. Yet, unlike the patch circuit, the full circuit’s deviation from the ideal
situation occurs more gradually. In the full circuit results, it is evident that the outcome
for 18 qubits remains below the ideal value, while in the patch circuit, the result for 18
qubits already exceeds the ideal expectation. At the same time, it can also be found
that for the full circuit, except those cases where the correlator results are higher than
ideal due to sample size error, other values are lower than ideal, except order 1, which
is also fit with the previous expectation, because the hypothesis of 1/2n is only proven
theoretically for full circuits.

(a) 12 Qubits (b) 14 Qubits

(c) 18 Qubits (d) 24 Qubits

Figure 5.6: Experimental results for 12-24 qubits are shown, with the ideal situation
result

5.3 Error Analysis

In the hypothesis, I mentioned that the number of samples will have a certain impact
on the data of larger qubits. To elucidate this peculiar phenomenon and verify this
hypothesis, I conducted additional experiments and discovered that the number of
experimental samples plays a crucial role in the occurrence of this anomaly. Initially, I
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focused on the patch circuit. I randomly divided the circuit results into several subsets,
with the number of subsets ranging from 5 to 10, and treated each group as a separate
experimental outcome for analysis.

Figure 5.7: Comparison of Experimental Outcomes

For the classifications of 5, 7, and 10, the number of samples in each group are 20,000,
14,285, and 10,000, respectively, arranged in descending order. As illustrated in the
image, it is evident that the 10-class group with the fewest samples per class exhibits the
highest weight, followed by the 7-class and 5-class groups. This further demonstrates
that a larger number of samples brings the weight closer to the true value, resulting
in a smaller weight. This is also the reason why the overall value of the Full circuit
is lower than that of the Patch circuit since the Full circuit contains 500,000 samples
per experiment while 100,000 in Patch circuit. Simultaneously, in conjunction with
previous conclusions, it can be inferred that a smaller qubit size requires fewer sam-
ples. As depicted in Figure 5.6, the results for smaller qubit size appear more reasonable.

This conclusion can also provide insight into the phenomenon discussed in Section
4.5.2 to some extent. By incorporating the P=0.8 situation depicted in Figure 4.3 into
various sample sizes for illustration, the resulting image can be observed below.
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Figure 5.8: Comparison of Different Sample Size on Toy Model

It can be observed that as the sample size increases, the result approaches the expected
performance more closely. Additionally, it is worth noting that under the same sample
size, the group with a larger error exhibits a more significant deviation from the expec-
tation. This suggests that for greater noise levels, a larger sample size may be required
to approach the true value more accurately.
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Summary and Conclusion

In this dissertation, my primary focus is on the in-depth analysis of Google’s quan-
tum random circuit sampling experiment, which plays a pivotal role in evaluating the
company’s claims surrounding quantum supremacy. To comprehensively assess these
assertions, I employ the method of Fourier analysis, a powerful tool that allows for a thor-
ough investigation of the relationship between the experimental results and the number
of qubits involved. By doing so, I aim to ascertain the robustness of Google’s claims and
better understand the implications of their findings in the context of quantum supremacy.

Through experimentation, I obtained the expected results for circuits with smaller
qubit sizes, which demonstrated an exponential decay in the images. Observing both
the full circuit and the patch circuit independently, they both conform to the anticipated
exponential decay, with the full circuit exhibiting a more rapid decay rate. Additionally,
I observed that for small orders in small qubit size circuit, the correlators have higher
values than ideal line 1/2n. This unexpected finding presents an intriguing point for
future research. The discrepancy may be attributed to the assumption of 1/2n might
only true for a large number of qubits, or it could be due to noise mechanisms beyond
those responsible for producing the exponential decay of correlators. At the same time,
I stumbled upon a peculiar and unexpected phenomenon. My experimental results
demonstrated that the correlator values obtained from Google’s experiments with high
qubit size were, in fact, higher than those derived from a theoretically noise-free ideal
circuit and approaches to a horizontal line. This counterintuitive observation prompted
me to delve deeper into the data, conducting a rigorous analysis to uncover the root
cause behind this anomaly. After extensive examination, it became apparent that the
primary factor contributing to this discrepancy was an insufficient number of samples
utilized in the experiments. Furthermore, through the Toy model, I discovered that the
degree of noise present within the system played a significant role in influencing the
outcomes related to different sample sizes. These findings indicated that an interplay
between noise levels and sample sizes had a direct impact on the experimental results.

Given these insights, a crucial research question has emerged: How many sample
sizes are needed to obtain correlator values that closely resemble their true values in
a quantum random circuit sampling experiment? And clearly through my work, the
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sample size for Google is not enough. Addressing this question is of utmost importance
for refining our understanding of quantum supremacy and improving the accuracy and
reliability of future experiments. By exploring this avenue of research, we can con-
tribute valuable knowledge to the ongoing discussion surrounding quantum advantage
and ultimately advance the broader field of quantum computing.
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