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Abstract
Mixture models are often used to model complex data distributions where single
probability distributions are not enough. Traditionally, mixtures cannot subtract away
probability mass which limits its expressiveness as complex shapes such as a ring will
require a substantial number of components to effectively model. Therefore previous
work has been done on enabling non-monotonic mixtures (NMMMs) which enable
mixtures to subtract away components by allowing for negative weights. However
this work is not generalisable for deep mixtures or mixtures of multiple parametric
families. This project will provide such a framework, which we experiment with
assuming a shallow mixture of multivariate Gaussians. We will demonstrate that this
model achieves comperable results to monotonic mixtures whilst requiring considerably
fewer parameters to be optimised. Thus, providing a strong foundation for generalised
NMMMs.
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Chapter 1

Introduction

Estimating probability distributions of data is a core part of unsupervised learning.
Distributions are learned by observing patterns in data, and these patterns can quickly
become complex as the amount of data increases. To model such distributions, mixture
models are often used [19, 21]. Mixture models are one way to effectively capture
such complex data distributions. Weights are attached to each combined distribution,
representing the prior probability of a random variable belonging to that density. There-
fore, it is assumed that these weights are positive and sum to one, such that the mixture
model is a valid probability density function.

However, this limits the ways these mixture models can effectively model complex
patterns in data. By allowing negative weights, it is possible to subtract densities,
assuming that the resulting mixture model is a valid probability density. Such mixture
models are called Non-Monotonic Mixture Models or NMMMs for short. So far, there
has been work on practically achieving NMMMs, which have used simple parametric
probability distributions such as Gaussians [39, 26] and Weibulls [14]. However, the
techniques used to achive these NMMMs are not generalisable for deep mixture models
and combinations of parametric families, therefore, this project will create a generalised
framework for learning NMMMs.

1.1 Objectives and Contributions

The main objective of this project is to create a foundation for generalised NMMMs,
which in the future can easily be extended to support deep mixtures or mixtures of
multiple parametric families. Thus, this report will set out to answer the following
research questions.

Research question 1: is it feasible to create a generalised framework for NMMMs
which can support deep mixtures and multiple parametric families?

Research question 2: can such a generalised framework implemented as a shallow
non-monotonic Gaussian mixture (NMGMM) converge to a lower loss than shallow
monotonic Gaussian mixtures with the same number of components for shapes with
negative spaces?
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Chapter 1. Introduction 2

Research question 3: can the NMGMM provide more generalised fits compared to
monotonic GMMs?

Based on these research questions, we have established the following contributions.

• Constructed a theoretical framework for generalised NMMMs.

• Performed a thorough analysis on the new parameters in this theoretical frame-
work, assuming a shallow non-monotonic Gaussian mixture model, which was
used to compare against shallow GMMs.

• Built a learning framework which can enable effective learning of NMMMs for
shallow and deep mixtures.

• Trained NMGMMs using this generalised framework for identifying positive and
negative component and compare against the equivalent GMM.

1.2 Project Outline

Chapter 2: Here the necessary theory and notion will be presented which will serve as a
foundation for appreciating the motivation behind NMMMs. This will be followed by an
analysis of the past research and a critique for why these methods are not generalisable.
To build on that, we present the relevant components of Probabilistic Circuits as a
framework which will be used to construct a generalisable NMMM.

Chapter 3: Following relevant components of Probabilistic Circuits, we will present
our theoretical framework for NMMMs. Further, we construct a shallow NMGMM
using this framework, which will be experimented on.

Chapter 4: Using the theoretical framework for the shallow NMGMM, we will perform
preliminary experiments to better understand how the parameters change with respect
to a GMM equivalent.

Chapter 5: Based on the findings in Chapter 4, we present a learning framework which
will optimise the NMGMM and address any limitations observed in the preliminary
experiments.

Chapter 6: Here the experimental setup for the NMGMM will be presented, as well
as the dataset which we will be using to compare it against the monotonic Gaussian
mixture. Additionally, we will perform hyperparameter optimisation to identify optimal
hyperparameter configurations to be used to present the results.

Chapter 7: In this chapter we will present the results of our experiments, and we will
analyse the possible limitations of the NMGMM and compare it against a monotonic
Gaussian mixture.

Chapter 8: Finally, we will conclude our findings and present our conclusions for
the research questions above. Additionally, we will highlight some possible future
directions which further research can take.



Chapter 2

Background

In this chapter, we will present the basic theory as a prerequisite of this project, which
will be followed by a literature review of the latest work on learning simple NMMMs.
This will establish the notations used throughout the project, and solidify the motivations
behind NMMMs from a technical perspective. Which will also illuminate the limitations
of the previous literature. We will then present the necessary components of Probabilistic
Circuits (PCs) which will be used to address these limitations in the following chapters.

2.1 Theory and Notation

Before presenting the relevant theory and notation, it is important to understand which
interpretation of probability this project is assuming. There are different views on
probability, however this project will be based on the objective Bayesian interpretation
as outlined by Jon Williamson [37]. Through the lens of this interpretation, probabilistic
models try to model uncertainty in the world through observations. Such observations
are seen as evidences for the uncertainty of a model. Another term for such evidences
are random variables, and they form the basis of any Bayesian probabilistic model.

A random variable (RV) can be interpreted as possible states of a model. This project
denotes RVs with capitalised letters X and some realisation in lowercase x, where
x ∈Val(X) defines the total state space of X . Further, any set of all possible RVs are
denoted in bold X. Lastly, RVs can either be discrete or continuous. The difference
between these RV types will affect what type of probability function is produced.
Suppose pm is some probability distribution which is defined over a continuous RV X .
Such a distribution is classified as a probability density function (PDF) and is defined
by pm(X). Further, for pm(X) to be a valid PDF, the following conditions have to be
met.

Definition 1 (Probability Density Function) Assume p(X) is some probability distri-
bution defined over some continuous RV X, then p(X) has to be constrained by the
following conditions such that it is a valid PDF.

3



Chapter 2. Background 4

p(x)≥ 0.∀x and
∫ −∞

∞

p(x) dx = 1 (2.1)

On the other side, for some discrete RV Y defined over pn, the probability distribution
pn will be classified as a probability mass function (PMF). These two classifications of
probability functions, form the foundation of most probabilistic modelling.

So far, we have assumed that the probability functions are non-parametric. However,
in this project we will only concern ourselves with mixtures of parametric probability
distributions, which can either be discrete or continuous. Daniel S. Wilks [36] refers to
a parametric distribution as an abstract mathematical form, where its nature or shape
is determined by a set of parameters. These parameters are optimised to fit the set of
observations which the parametric distribution is modelling. There are many parametric
families such as Gaussians, Weibulls and Bernoullis, which are either PMFs or PDFs and
their characteristic shape can make them better candidates for certain data distributions.
The process of selecting the parametric family for some set of observations to model,
is often done by evaluating the closeness to the observed data when their parameters
are optimised. On the other hand, real world data can have very complex patterns
over multiple dimensions and therefore we need a way to combine multiple parametric
distributions to be able to capture such complex patterns.

2.1.1 Finite Mixture Models

This is where Finite mixture models (FMMs) come into the picture, as they provide a
way to model a mixture of probability distributions to data where a single distribution
is not able to accurately represent the features. This flexibility of FMMs is indeed
attractive for many different practical applications such as automatic speech recognition
systems [17, 40], machine vision for visual clustering [29, 5], and other fields such as
bioinformatics [13]. This section aims to introduce FMMs as described by Geoffrey J.
McLachlan, et al. [20]. An FMM is a model which combines 2 or more probability den-
sities. Suppose, we want to create an FMM with k number of parametric distributions,
then a d-dimensional RV X = [x1,x2, . . . ,xd]

T follows a finite mixture distribution, if its
PDF can be written as

p(X ;θ) =
k

∑
m=1

αm p(X ;θm) (2.2)

Where θ = {θ1,θ2, . . . ,θk} form the parameters for each parametric distribution in
the mixture. To support data of multiple dimensions, the parametric distributions
are generally multivariate. Meaning that the joint distribution for each dimension in
one mixture component generalises to higher dimensions. Further, each α represents
the prior probability of an RV realisation belonging to some parametric distribution
p(X ;θm). As these weights are treated as prior probabilities for a point belonging to
one of the components, they are constrained by the following conditions.
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∀α≥ 0 and
k

∑
i=0

αi = 1 (2.3)

FMMs form the generalised framework for how families of parametric probability
distributions can be combined to model more complex shapes. However, the specific
details for practically achieving any FMM depends on the parametric family assumed.
For this project, we will aim to provide a generalised foundation for NMMMs which
will be experimented on using a mixture of Gaussian distributions, also known as a
Gaussian mixture model (GMM).

2.1.2 Gaussian Mixture Models

Gaussian mixture models (GMMs) are FMMs, where the model parameters are the
parameters of a mixture of Gaussian distributions, which can either be bivariate or
multivariate. A bivariate Gaussian mixture is limited to only two dimensions, whereas
a multivariate Gaussian is generalised to any number of dimensions [21]. Therefore,
this project will be assuming mixtures of multivariate Gaussian, such that our work is
generalisable for any number of dimensions.

A multivariate Gaussian distribution is parametrised by a vector µ and a matrix Σ. µ
is a D dimensional vector, where each entry µi represents the mean of a Gaussian
distribution along dimension i. Further, Σ is a covariance matrix, where the diagonal
entries represent the squared variance along the different dimensions and the off diagonal
entries represent the correlation between the dimensions. Thus, Σ is represented as a
square matrix of size D×D. Therefore, given a vector µ and a covariance matrix Σ, the
PDF of the multivariate Gaussian is given by.

P(X ;Σ,µ) =
1√

(2π)D |Σ|
exp
(
−1

2
(X−µ)⊤Σ

−1(X−µ)
)

(2.4)

Additionally, the PDF in Equation 2.4 assumes an invertible covariance matrix. In fact,
any valid covariance matrix is invertible, therefore it is important to establish what a
valid covariance matrix is. A covariance matrix can be any square matrix, as long as the
square matrix is symmetric and positive semi-definite. A positive semi-definite Σ is a
matrix which follows x⊤Σx≥ 0 for any D dimensional real vector x [25]. As long as
this condition is upheld, Σ can be considered a valid covariance matrix.

2.1.2.1 Learning Gaussian Mixtures

For learning optimal configurations for the parameters of a Gaussian mixture or any
FMM, there are multiple approaches one could take. Traditionally, the expectation
maximisation algorithm (EM) is used [21], however, as outlined by Alexander Gepperth,
et al. [9] the EM algorithm is a batch-type optimiser. This type of optimiser, takes the
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entire training data for each optimisation step, which can quickly become inefficient for
higher dimensions and large amounts of training data.

To address this in the past, researchers have implemented a stochastic version of the EM
algorithm called SEM [6, 15, 30]. The most typical version of the SEM algorithm was
presented by Olivier Cappé et al. [2], however, this implementation introduces additional
hyperparameters such as step size, mini-batch size and step reduction. However, for
certain models, these additional hyperparameters can be undesirable as it can further
complicate the optimisation process. This has been addressed in the past by using
stochastic gradient descent (SGD) for optimising GMMs using mini-batches [9, 11, 12].
Which only introduces two additional hyperparameters.

Stochastic gradient descent (SGD) is a gradient based optimiser which can support
optimisation over mini-batches. Mini-batches are subsets of the training data, where
its size is defined by the batch size hyperparameter. Therefore, SGD will segment the
training data into multiple batches and for one iteration it will optimise the parameters of
some Gaussian mixture for each mini-batch. This is implemented by constructing some
loss function which computes the cost over the entire mini-batch. Thus, the objective
of SGD is to reduce the output of this loss function by computing the gradients of the
loss function with respect to the model parameters, which in the case of a GMM is a set
containing parameters µ and Σ for each component. According to Ian Goodfellow et al.
[10] the SGD optimisation step can be summarised according to Equation 2.5 and 2.6.

ĝ :=
1
m

∇θ

[
m

∑
i=0

L( f (xi;θ),yi)

]
(2.5)

Where ĝ represents the estimated gradient given some loss function and some labels y,
further the gradient computation is averaged over the size of one mini batch. The new
parameters are estimated using this gradient along with a learning rate ε.

θ := θ− εĝ (2.6)

For using SGD to optimise GMMs, however, we modify the loss function such that it
computes the average negative log likelihood over the minibatch. Therefore, we reframe
the computation for ĝ in the optimisation step according to Equation 2.7, where P(X ;θ)
denotes the PDF of the GMM.

ĝ :=
1
m

∇θ

[
m

∑
i=0
−log(p(Xi;θ))

]
(2.7)

Equation 2.7 highlights the versatility of using SGD as an optimiser for training any mix-
ture model. However, depending on the parametric family which is assumed, different
constraints on the parameters can apply. As SGD does not enforce any such con-
straints, Alexander Gepperth et al. [9] address this by performing two reparametrisation
techniques, which are presented in Subsection 2.1.2.2.
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2.1.2.2 Reparametrisation of GMMs with SGD

To account for the stochasticity introduced by SGD, the parameters of the GMM are
reparameterised. As highlighted previously, a valid covariance matrix is a matrix which
is positive and semi-definite. To account for this constraint, Alexander Gepperth et
al. [9] used Cholesky decomposition to construct a valid covariance matrix. Michael
Parker [23] outlines this method in his chapter on matrix inversion, where Cholesky
decomposition takes some lower triangular matrix L with all positive entries along its
main diagonal, such that a matrix Σ is positive semi-definite as it is defined by Σ = LL⊤.
Thus, SGD will optimise a set of lower triangular matrices for each component, which
are then transformed according to the Cholesky decomposition to produce a valid
covariance matrix Σ.

Cholesky decomposition ensures that the covariance matrices are valid, however, the
priors of the mixture also require some constraints in a monotonic Gaussian mixture. To
account for this, Alexander Gepperth et al. [9] perform the softmax over all the priors
which SGD optimises, which ensures that the priors are positive and sum to one. The
softmax function as formulated by John Bridle, et al. [1] is a normalised exponential,
which is applied to the optimised weights from SGD to compute the priors used for the
Gaussian mixture.

2.1.3 Limitations of Monotonic Mixtures

As we have now seen, mixture models bring some additional flexibility in the world
of probabilistic modelling. However, such monotonic mixtures are limited in that they
cannot subtract away probability densities. For example, with a complex shape such
as a ring, a monotonic mixture would have to place many small components along the
ridge of the ring. However, the most effective way would obviously be to have a circle
or component which encloses all the point and have a second component in the middle
to ’cut’ out the probability mass in the middle. This is the idea behind non-monotonic
mixtures, as they remove the conditions on the priors presented in Equation 2.3, such
that it can effectively subtract away the probability mass. However, as mixtures are
expected to be valid PDFs or PMFs, the technique for achieving this has to ensure that
there are no negative values and that the mixture integrates to one. There has been
research looking into practically achieving such models, and this will form the context
of this project.

2.2 Subtracting Densities in FMMs

In this section, we will provide a brief outline of the work that has been done on creating
NMMMs. Which will allow us to understand the necessary foundation for generalising
to deep mixture models and mixtures of multiple parametric families, as this project
aims to achieve. The current work has provided learning schemes for shallow NMMMs
on a few families of parametric probability distributions, such as Gaussians [39, 26]
and Weibulls [14].

Authors have shown how simple mixtures of GMMs and Weibull mixtures can allow
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for negative weights. All authors have discarded the first constraint of Equation 2.3
to allow for negative weights, however for the NMMM to be a valid PDF they keep
the sum constraint in Equation 2.3, as well as some additional constraints based on
the techniques they are using. These techniques assume a shallow mixture, and some
techniques such as the work by R. Jiang, et al. [14] are only applicable to their mixture
families. we intend to present these methods and what can be learned from them, which
will serve as the foundation for generalising to deep mixtures.

A crucial step in constructing a learning scheme for NMMMs is to ensure that the
resulting mixture is a valid PDF. There are many approaches one could take to achieve
this, one way is to initialise the number of negative and positive components and enforce
a set of constraints to ensure that the mixture is a valid PDF. This is the approach which
researchers Baibo Zhang, et al. [19] took. They proposed a technique where negative
components are estimated dependably on positive components, which was achieved by
constraining the negative component with respect to a positive component. Therefore,
they introduce some covariance constraints on the negative components to ensure that
the negative component does not spill over the positive component, thus ensuring that
the mixture does not output negative probabilities.

Figure 2.1: Illustration inspired by the Baib Zhang et al. paper [19] showing their
covariance constraint on negative components

Further, they propose a learning scheme which is a modified version of the traditional
Expectation Maximisation (EM) algorithm used for monotonic mixture models. In
their approach, they estimate the positive and negative components (denoted by p+

and p− respectively) by first fixing the negative component and performing EM on
the positive component. p− is initialised by performing k-means, and is estimated in
the next step by fixing p+. This process is repeated until a convergence is met. This
approach achieved promising results on 2-dimensional data with complex patterns,
which monotonic mixtures require a considerable amount of components to achieve.

However, as Baibo Zhang et al. are using a modified version of the EM algorithm
it cannot be effectively applied to deep mixture models, in fact this also applies to
the approach presented by R. Jiang on non-monotonic Weibulls [14] and Guillaume
Rabusseau et al.’s work on non-monotonic GMMs [26]. The reason for this, is that
the E-step in the EM algorithm can quickly become intractable for deep mixtures. As
discussed by Cinzia Viroli, et al. [33] the computation of the E-step for deep mixtures
can become intractable quickly, as the EM algorithm is a batched-optimiser. Thus, to
prevent this one could adopt the SEM algorithm [3], use the SGD optimiser [9], or any
other technique where the training is performed over mini-batches. However, none of
the existing work on learning NMMMs have addressed this limitation.

Further, the authors also assume that the number of negative and positive patterns are
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known at initialisation, which is an infeasible assumption for high-dimensional data. In
their experiments, they have used 2-dimensional data, where it is trivial to estimate the
number of positive and negative patterns. Therefore, their work serves as a foundation
for achieving non-monotonic mixtures, however to create a generalised learning scheme
additional work remains.

2.3 Mixture Models as Probabilistic Circuits

A suitable learning framework to learn generalised NMMMs, has not been explored yet.
Probabilistic Circuits (PCs) provide a promising framework for modelling deep mixtures
and combinations of parametric families, offering a general framework for constructing
hierarchical and recursive structures of probability densities. These structures posses
certain properties that make large classes of queries tractable, facilitating exact inference
on probability distributions and eliminating the need for estimations. This chapter aims
to reformulate shallow mixtures as simple PCs and demonstrate why PCs can effectively
handle both shallow and deep mixtures.

To support this claim, we present the relevant theory behind PCs as formulated by
Antoni Vergari et al. [32] By doing so, we aim to show that PCs offer a general and
effective framework for modelling complex mixtures. This discussion will also highlight
the advantages of using PCs over other approaches. Ultimately, this section aims to
contribute to the development of more effective learning frameworks for NMMMs that
are applicable to a wide range of mixture models, including complex ones.

To reframe mixture models as PCs, it is necessary to first gain a high-level understanding
of what a PC is. Essentially, a PC is a computational graph that can be defined by a set
of random variables (RVs) X and a probabilistic circuit C. The circuit is represented
as a directed acyclic graph (DAG) with an output distribution PC(X). The DAG in a
PC consists of three types of nodes or units, which include distributional units, product
units, and sum units. A computational unit in the circuit, denoted for some node n in
the DAG, is represented as Cn and encodes a probability distribution PCn . The set of
child nodes connected to node n is denoted as in(n).

A shallow mixture model can be represented as a set of computational units that are
fully connected to a sum unit within a PC. This representation captures the essence
of a shallow mixture model, which consists of a single layer of mixture components.
By reformulating shallow mixtures as simple PCs, it becomes possible to model more
complex mixture models with deep nested mixtures or components of multiple paramet-
ric families. An example of a Gaussian Mixture Model (GMM) with two components,
represented as a PC, can be seen in Figure 2.2.
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Figure 2.2: GMM as a PC for some RV X
and a sum unit with weights at the edges.

Figure 2.3: Inference on PCs. A1 : N1(µ =
−2,σ = 2) and A2 : N2(µ = 2,σ = 1.5).

Efficient training and inference of deep mixture models, characterised by nested mix-
tures, has traditionally posed a challenge due to the requirement of specialised frame-
works distinct from those employed in the case of shallow mixtures. Figures 2.4 and
2.5 visually demonstrate the contrast between shallow GMMs and deep GMMs.

Figure 2.4: Shallow GMM Figure 2.5: Deep GMM

Previous studies on deep mixture models have developed specific learning schemes and
structural properties to ensure computationally efficient inference [31, 8, 33]. However,
such techniques are often limited to a particular family of parametric distributions,
such as GMMs. Hence, the use of Probabilistic Circuits (PCs) as a framework coupled
with a generalisable optimisation scheme is proposed to ensure tractable deep mixtures,
subject to the enforcement of relevant structural properties.

Section 2.4 formally defines the PC components, properties, and operations relevant
to the methodology of this project. By redefining mixtures as PCs and adhering to the
structural properties of PCs when constructing a learning scheme for shallow NMMMs,
a foundation can be established that can be readily extended to deeper mixtures and
support for multiple parametric families.
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2.4 Probabilistic Circuits Theory

In this section we will present the necessary components, properties and operations
for probabilistic circuits which are directly linked to the theoretical framework of this
project.

2.4.1 Distributional Units

Distributional units form the most basic unit in a PC. Such units represent a probability
distribution for some input RV. Which in this project will be assumed to be parametric.
Thus, when given a full set of evidences, the inference query will output a probability for
the given RV realisation. These units are flexible and different probability distributions
can be exchanged with one another. Figure 2.6 demonstrates how such computational
units are modelled, and Figure 2.7 shows an example of a possible inference query.

Figure 2.6: Distributional unit Figure 2.7: A1 = N (X ;µ = 1,σ = 0.1)

2.4.2 Product Units

Product units represent joint distributions which are factorised. Meaning that the outputs
of each input node are multiplied together. Suppose we have a factorised Gaussian
distribution.

p(X1) = p1(X1)p2(X1)p3(X1)

= N1(X1;µ1,σ1)N2(X1;µ2,σ2)N3(X1;µ3,σ3) (2.3)

The join probability is simply the output of the Gaussians, multiplied. Therefore, in the
world of PCs we can frame this as taking the product of these distributional units. To
evaluate some inference query for PCn where n is the product unit, it is trivial to see that
it is the same as evaluating Equation 2.3. Figure 2.8 demonstrates the computational
process of product units for a realisation of all random variables belonging to the product
node children.
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Figure 2.8: Computational unit Figure 2.9: A1 = N (X ;µ = 1,σ = 0.1)

2.4.3 Sum Units as Mixture Models

Sum units represent a mixture of probability distributions. Thus, each edge to every
child node of the sum node, has a respective weight attached to it. This weight represents
the prior probability of a sample belonging to that child node. The formal definition of
a sum node, follows the same definition of an FMM, which can be found in Section 2.1.

Figure 2.10: GMM as a PC for some RV X
and a sum unit with weights at the edges.

Figure 2.11: N1(µ = −2,σ = 2) and
N2(µ = 2,σ = 1.5).

2.4.4 Structural Properties of PCs

To ensure that different inference queries are tractable for PCs, we have to ensure that
the PC follow some properties. These properties depend on the general structure of the
PC. These definitions will be based on the work done by Antonio Vergari, et al. [32].

Definition 2 (Smoothness). A circuit is smooth if, for every sum unit n, its inputs depend
on the same variables: ∀c1,c2 ∈ in(n),φ(c1) = φ(c2)

Definition 3 (Decomposability). A circuit is decomposable if the inputs of every product
unit n depend on disjoint sets of variables: in(n) = {c1,c2},φ(c1)∩φ(c2) = /0.

Definition 4 (Compatibility). Two circuits p and q over variables X are compatible
if (1) they are smooth and decomposable and (2) any pair of product units n ∈ p and
m ∈ q with the same scope can be rearranged into binary products that are mutually
compatible and decompose in the same way: (φ(n) = φ(m))−→ (φ(ni) = φ(mi), ni and
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mi are compatible) for some rearrangement of the inputs of n (resp. m) into n1, n2 (resp.
m1, m2).

Definition 5 (Structured-decomposable). A circuit is structured-decomposable if it is
compatible with itself.

2.4.5 Powers of Circuits

Additionally, it is possible to perform operations on probabilistic circuits, and they are
essentially mathematical operators such as addition, summation, and powers. These
operations are applied to the circuit as a whole and thus changes the output of the circuit.
For this project, we are only going to concern ourselves with the process of taking
powers of a circuit. Which will be done to construct a NMMM which is a valid PDF,
the details of this process will be discussed in Chapter 3.

To be able to compute the power of a circuit, it has to be structured-decomposable as
outlined in Definition 5. Otherwise, the process of computing the circuit power will be
P-hard. Antonio Vergari, et al. [32] gives the following theorem which they prove.

Definition 6 If p is a structured-decomposable circuit, then for any α ∈ N, its power
can be represented as a structured-decomposable circuit in O(|p|α) time. Otherwise, if
p is only smooth and decomposable, then computing pα(X) as a decomposable circuit
is P-hard.

2.5 Overview

In this chapter, the formal definition of mixture models were established. Further,
Gaussian mixture models (GMMs) are commonly used, with the traditional expectation
maximization (EM) algorithm for learning optimal configurations, however this can
be inefficient for high dimensions and large amounts of training data. Stochastic
gradient descent (SGD) has been proposed as an alternative using mini-batches, and the
parameters of the GMM are reparameterised with Cholesky decomposition to ensure
that the covariance matrices are valid.

However, the priors of the mixture also require some constraints in a monotonic
Gaussian mixture, limiting their ability to subtract away probability densities. Non-
monotonic mixtures have been proposed as an alternative in the past. However, their
work is not generalisable for complex mixtures, therefore this project will now develop
practical techniques for achieving this.
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Theoretical Framework

A new generalised learning framework for achieving NMMMs is proposed in the
following chapter. This technique involves squaring the circuit representation of the
mixture model. By re-framing mixture models through the lens of PCs, it can be
ensured that complex mixtures remain tractable as long as the circuit follows the
structural properties outlined in Section 2.4.4, and a suitable optimisation procedure is
used, which will be outlined in 5. At the end of this chapter, the following contributions
will be established.

• A generalised technique involving circuit squaring to remove the possibility of
negative values being output from the mixture.

• Assuming that the circuit is squared, a technique for renormalising the squared
circuit will pre presented such that it is a valid PDF.

3.1 Squaring the Circuit

As this project no longer assumes that the mixture weights are positive, we have to
employ some techniques which will ensure that the resulting NMMM is a valid PDF.
Which implies that the mixture model has to be bounded by the constraints in Definition
1.

Ensuring the first constraint is trivial, and can be done by squaring the mixture model.
For any mixture of parametric probability distributions, the resulting squared PC will be
the Cartesian product of the distributional nodes with respect to the sum node. This is
trivial to see, assuming some mixture with N components and a parametric probability
distribution denoted by P(X ;θ), where θ represent the distribution parameters. The
squared circuit is then the Cartesian product.

(
N

∑
i=0

αiP(X ;θi)

)2

=
N

∑
i=0

N

∑
j=0

αiα jP(X ;θi)P(X ;θ j) (3.1)

14
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As a PC for some three component mixture, the DAG for the squared circuit can be
seen in Figure 3.2.

2

Figure 3.1: A mixture as a sum unit to be
squared

Figure 3.2: Result of squaring a mixture at
the sum unit by using Cartesian product.

In Figure 3.2, the distributional nodes that are grouped together represent the product
of two parametric distributions. These product components can be treated as new
components of the mixture, however, it is not guaranteed that the products between
parametric distributions are normalised, which in turn may result in the mixture not
being normalised. This would violate the definition of a valid PDF. Therefore, it is
essential to compute a normalisation constant for each product component in the squared
circuit.

The normalisation scheme depends on the parametric family assumed, however the
approach is still applicable as long as a normalisation constant for the product of two
densities can be computed effectively. This will be possible for most exponential
families, such as Gaussians. As a generalised analysis for computing the normalisation
constant, assume two continuous parametric distributions P(X;θa) and P(X;θb) where
θ denotes the respective parameters of the distributions. The normalisation constant
for the product of the two distributions can be computed by resolving the following
integral.

∫
RD

P(X;θa)P(X;θb) dX = Z (3.2)

The product between the two distribution can therefore be normalised to be a valid PDF.

Z−1P(X;θa)P(X;θb) (3.3)

Which resolves how it is possible to renormalise the product between parametric
distributions, however as will be discussed in Subsection 3.2.2 more work remains to
normalise the squared circuit as a whole.
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3.2 Assuming Gaussian Distributions

As the computation of the normalisation constant depends on the parametric family
assumed, we will assume that the NMMM consists of multivariate Gaussians. Addi-
tionally, a shallow mixture is assumed, as this simplifies the theoretical work, however
the same principles will apply for deep mixture models. It has been established that
the product of parametric distributions is another possibly un-normalised parametric
distribution. To create a learning scheme for the approach outlined in Section 3.1,
this section will outline how the product of multivariate Gaussians is another possibly
un-normalised multivariate Gaussian. Which will be followed by how the normalisation
constant can be computed such that it can be propagated to the sum unit in the squared
PC mixture to normalise the circuit as a whole.

3.2.1 Product of Gaussians and the Normalisation Constant

The formulation for the product of two multivariate Gaussians and their normalisation
constant will be based upon the derivations made by Rasmussen et al. [27]. In their
section on Gaussian identities, they present the following formulation for the product of
two multivariate Gaussian distributions.

N (X;Σa,µa)N (X;Σb,µb) = Z−1N (X;Σc,µc) (3.4)

Which shows that the product of two multivariate Gaussians is another multivariate
Gaussian. The new parameters of this multivariate Gaussian is expressed in terms of
the parameters of the two other Gaussians.

Σc = (Σ−1
a +Σ

−1
b )−1 and µc = Σc(Σ

−1
a µa +Σ

−1
b µb) (3.5)

Where Z−1 was obtained by performing the following integration

∫
RD

N (X;Σa,µa)N (X;Σb,µb) dX =
∫
RD

Z−1N (X;Σc,µc) dX (3.6)

= Z−1 (3.7)

Therefore, Z−1 is the normalisation constant for the product of the two Gaussians as
seen above. The expression for this constant is given in Equation 3.8.

Z−1 =
1√

(2π)D|Σa +Σb|
exp(−1

2
(µa−µb)

⊤(Σa +Σb)
−1(µa−µb)) (3.8)

Given these definitions and more importantly the normalisation constant Z−1, it is
possible to build a non-monotonic mixture which is a valid PDF, by squaring the PC.
However, it is important to understand how to apply this normalisation constant correctly
such that the mixture as a whole is a valid PDF.
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3.2.2 Normalising the Circuit

The goal is not to normalise the product components as we saw in Figure 3.1, the
desired outcome is a squared mixture which is normalised. Therefore, this subsection
will explore why applying the normalisation constant to the product between Gaussians
is not appropriate. Which will be followed by an analysis on how it is possible to
propagate the constant to the sum node to normalise the entire circuit.

Firstly, let us analyse why normalising the product components directly might not
normalise the entire circuit when we cannot ensure that the weights of the sum node,
sum to 1. Here Ni will represent some Gaussian defined over RV X, and αi is the weight
or prior belonging to that Gaussian. Additionally, we denote Z−1

i j to be the normalisation
constant produced between component i and component j. Thus, for some squared
mixture consisting of these Gaussian, its integral can be expressed as.

∫
RD

N

∑
i=0

N

∑
j=0

Z−1
i j NiN jαiα j dX =

N

∑
i=0

N

∑
j=0

∫
RD

Z−1
i j NiN jαiα j dX (3.9)

=
N

∑
i=0

N

∑
j=0

αiα j

∫
RD

Z−1
i j NiN j dX (3.10)

Inserting Equation 3.6 into the above will resolve to the following.

=
N

∑
i=0

N

∑
j=0

αiα j (3.11)

However, this is a problem, as we cannot assume any more that the priors will sum to
one for the non-monotonic Gaussian mixture model (NMGMM). Which is the reason
for propagating the normalisation constant to the sum node before normalising the
entire circuit. By propagating the normalisation constant to the sum node, the weighted
sum of the constants is taken and sent to the sum node. Which then computes the
weighted sum for the un-normalised mixture and divides this with the weighted sum of
the normalisation constant. The derivation for this process can be seen below.

=
∫
RD

(
N

∑
i=0

N

∑
j=0

Z−1
i j αiα j

)−1( N

∑
i=0

N

∑
j=0

NiN jαiα j

)
dX (3.12)

We can further simplify by moving the integral to be around the unnormalised mixture
term, as the normalisation constants are constant with respect to X.

=

(
N

∑
i=0

N

∑
j=0

Z−1
i j αiα j

)−1∫
RD

N

∑
i=0

N

∑
j=0

NiN jαiα j dX (3.13)

=

(
N

∑
i=0

N

∑
j=0

Z−1
i j αiα j

)−1 N

∑
i=0

N

∑
j=0

αiα j

∫
RD

NiN j dX (3.14)
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Inserting Equation 3.6 into the above will resolve to the following.

=

(
N

∑
i=0

N

∑
j=0

Z−1
i j αiα j

)−1( N

∑
i=0

N

∑
j=0

Z−1
i j αiα j

)
(3.15)

= 1 (3.16)

This shows that the normalisation scheme can simply propagate the normalisation
constants down to the sum node, and that for any combination of weights that might
not sum to one, the NMGMM will integrate to 1. Additionally, since the circuit is
squared, it is ensured that the output of the mixture will never be negative. In other
words, we have constructed the necessary components for an NMGMM which follows
the conditions of a PDF as per Definition 1, thus ensuring that the NMGMM is a valid
PDF.

However, as the NMGMM is a squared mixture, it effectively increases the number
of components. Where the parameters of each new component is computed as a
combination of the parameters from the original un-squared PC, which is given by
Equation 3.5. Therefore, before we can construct an effective learning framework
for this model, we first have to understand how the parameters of these new product
components are transformed such that we can account for these transformations in our
learning scheme. This analysis will be given in the following chapter.



Chapter 4

Preliminary Analysis

To effectively train any mixture model, the initialisation procedure is a crucial step.
However, since the NMGMM model effectively increases the number of components
by squaring the circuit, the new product components will not have the same parameters
as a monotonic GMM with an equivalent initialisation. Which will influence how good
or bad the initialisation is for the squared mixture. In this chapter, we will assume that
we have some Gaussian mixture A with possibly negative weights which is squared and
normalised according to the procedure outlined in Chapter 3 to produce a NMGMM B.
From that, we will analyse how different initialisations for the parameters of mixture A
translates for mixture B. Therefore, this chapter will establish the following contribu-
tions, which will help construct the learning framework and effective experiments in
the following chapters.

• Preliminary experiments investigating the transformation of the means for
NMGMM B with respect to initial configurations of GMM A.

• Preliminary experiments demonstrating how the generalised covariance is trans-
formed for NMGMM B with respect to initial configurations of GMM A.

• Thorough algebraic analysis on the transformation of the means and the covari-
ances for NMGMM B, which will justify the results of the preliminary experi-
ments above.

4.1 Transformation of Means

Upon visual inspection of the new parameters of the squared circuit in Equation 3.5
the correlation between the initialised parameters and the parameters of the squared
mixture is not obvious. Therefore, this preliminary experiment will investigate four
different initialisations for GMM A and observe how the means are transformed for
NMGMM B, using the same initialisation.

19
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Experiment Covariance type Mean range Covariances range

Alpha - 1 Diagonal N (µ = 0,σ = 0.5) N (µ = 2,σ = 0.5)

Alpha - 2 Diagonal N (µ = 0,σ = 2) N (µ = 2,σ = 0.5)

Alpha - 3 Full N (µ = 0,σ = 0.5) N (µ = 2,σ = 0.5)

Alpha - 4 Full N (µ = 0,σ = 2) N (µ = 2,σ = 0.5)

Table 4.1: Configurations for the preliminary experiments on the transformation of means
for NMGMM B over different initialisations for the parameters in GMM A.

4.1.1 Experiment Setup

To examine the impact of mean initialisation, we will conduct four experiments with
both full and diagonal covariances. Additionally, we will compare two initial mean
distributions for component A, one with tightly initialised means using a normal distribu-
tion having a low standard deviation and the other with a large standard deviation. The
objective is to gain a better understanding of how means for NMGMM B can deviate
from the initial distribution in mixture A. The parameters used for this investigation are
detailed in Table 4.1.

4.1.2 Results

The preliminary experiments suggest that the distribution of means for the squared
circuit significantly relies on the shape of the covariance matrices. The experiments
Alpha-1 and Alpha-2 in Figure 4.1 demonstrate that the means of mixture B follow
a similar distribution as mixture A, as evidenced by the similarity in the convex hull
shapes of both distributions. Nevertheless, the convex hull for mixture B appears to be
slightly scaled compared to the original distribution, indicating that the initialisation
of mixture A might result in some components of mixture B falling beyond the desired
area of initialisation.

Remarkably, a significant change in the distribution of the means for mixture B occurs
when the covariance matrices are full. In reality, the distribution of means for mixture
B appears to be influenced by the shape of the covariance matrices, which aligns with
Equation 3.5. Therefore, experiment Alpha-3 and Alpha-4 reveal that increasing the
range of the mean initialisation leads to the expansion of the gap between the two
convex hulls.

These experiments demonstrate the significance of creating an effective initialisation
scheme for the NMGMM, as conventional initialisation procedures for GMMs cannot
ensure similar initialisation for the NMGMM. This is especially critical when using full
covariance matrices, where we must be cautious when initialising, as the means can
quickly go beyond the initialisation space. However, before creating better initialisations
for the NMGMM, we must first analyse how the covariances are transformed.



Chapter 4. Preliminary Analysis 21

Figure 4.1: The transformation of means for NMGMM B marked in red.

4.2 Transformation of Covariances

It is clear that any initialisation procedure for the NMGMM needs a regularisation of the
means, however more work remains to understand how the covariances are initialised.
As the covariance matrices for the NMGMM are computed using Equation 3.5 it is not
immediately obvious how the covariance matrices for NMGMM B will respond to some
initialisation of the covariance matrices for mixture A.

4.2.1 Experiment Setup

Therefore, two preliminary experiments will be setup according to Table 4.2, which
will investigate the effect of diagonal vs full covariance matrices by looking at the
generalised covariances. The results of these experiments can be seen in Figure 4.2.

Experiment Covariance type Mean range Covariances range

Bravo - 1 Diagonal N (µ = 0,σ = 2) N (µ = 2,σ = 0.5)

Bravo - 2 Full N (µ = 0,σ = 2) N (µ = 2,σ = 0.5)

Table 4.2: Configurations for the preliminary experiments on covariance transformations.



Chapter 4. Preliminary Analysis 22

4.2.2 Results

Figure 4.2: Log generalised covariance for a GMM and a NMGMM, log is performed to
be able to compare the generalised covariance for both models.

Figure 4.2 illustrates that the covariance matrices are considerably scaled down in com-
parison to the original covariance matrices. Moreover, there seems to be no substantial
variation between using diagonal or full covariance matrices. This implies that the
initialisation of the covariance matrices should make use of large values to avoid scaling
down the covariances. Additionally, this suggests that the optimiser will have to expand
the covariance matrix considerably more for the NMGMM than for the GMM. To better
understand why these transformations occur for the means and the covariances, we will
provide an algebraic analysis on the effects observed in the above experiments.

4.3 Algebraic Analysis

When performing the preliminary experiments, some interesting patters were discovered
with respect to the placement of the means and the transformation of covariances after
the mixture is squared. Therefore, this section will explore these patterns for diagonal
and full covariance matrices. Which will result in a general expression for the placement
of means and the shape of the new covariance matrix, which will be used to highlight
some interesting properties. It is worth noting that this section does not intend to
provide any rigorous proofs of these patterns, but rather serve as an explanation for the
observations in Figure 4.1 and Figure 4.2.

4.3.1 Diagonal Covariance Matrices

In this subsection, we will explore what happens when we multiply two components
with diagonal covariance matrices. These components are assumed to be a part of a
mixture we are squaring to produce the NMGMM as outlined in Chapter 3. This analysis
will form a deeper understanding of the initialisation of means and the transformation of
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covariance matrices for the NMGMM. Which will be necessary for creating an effective
learning framework and performing experiments. Throughout this subsection we will
be assuming that we have two mixture components A and B with diagonal covariance
matrices which will contribute to produce some new component C in the NMGMM
where C is defined by C = A×B.

Given the above context for component A and component B, we define the parameters
of these components according to the parameters in Equation 4.1. Where the covariance
matrix for component B is defined by scaling the covariance matrix for component A
using a scaling vector δ, which will help provide some insight into the relationship
between the two components.

ΣA =

[
a11 0
0 a22

]
µA =

[
xA
yA

]
ΣB = ΣA

[
δ1
δ2

]
µB =

[
xB
yB

]
(4.1)

Using these parameters and Equation 3.5 for the parameters of the product between
Gaussians, we derive the following expression for the means and the covariance matrix
for the new component. The details of this derivation can be found in the Appendix A.1.

ΣC =

[
a11(1+δ1)

−1 0
0 a22(1+δ2)

−1

]
µC =

[
(xA +δ1xB)(1+δ1)

−1

(yA +δ2yB)(1+δ2)
−1

]
(4.2)

This expression of the placement of the means gives us some interesting properties,
where each property will be highlighted below for different configurations of the scaling
vector δ.

4.3.1.1 Similar Covariance Matrix

If component A and B have the same variance in their respective covariance matrices,
then the scaling vector δ becomes a unit vector. Thus, reducing the expression for the
mean and covariance matrix of component C to become.

ΣC =

[
a112−1 0

0 a222−1

]
µC =

[
(xA +δ1xB)2−1

(yA +δ2yB)2−1

]
(4.3)

Which will place the new component exactly between the component A and component
B. Additionally, the covariance matrix of component C will be scaled down with half
the variance of component A and B, which is consistent with the results in Figure 4.2.

4.3.1.2 Scaled Covariance Matrix

Further, if component B becomes infinitely larger compared to component A then we
observe that the mean of the component C is bounded by the mean of component B.
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lim
δ1,δ2→∞

[
(xA +δ1xB)(1+δ1)

−1

(yA +δ2yB)(1+δ2)
−1

]
=

[
xB
yB

]
(4.4)

Therefore, if component B becomes sufficiently larger than component A then compo-
nent C will gravitate towards component B. Further, it is trivial to see that the inverse
will happen when δ approaches zero. For the covariance matrix of the new component,
we see observe in Figure 4.2 that the covariances for component C is scaled down
considerably compared to component A and B. In Equation 4.5, we see what happens
when the covariance of a component B is scaled up with respect to component A.

lim
δ1,δ2→∞

[
a11(1+δ1)

−1 0
0 a22(1+δ2)

−1

]
=

[
0 0
0 0

]
(4.5)

This indicates that there is an inverse relationship between the scale of component B
and the scale of the resulting component C. Which is again consistent with our findings
in Figure 4.2.

4.3.1.3 Dissimilar Covariance Matrix

In Figure 4.1 we observe that the means of the new components in the squared circuit
are transformed beyond the original distribution of the means. This, happens when
some δi is scaled down sufficiently, and some other δ j is scaled up, which is expressed
by the following.

lim
δ1→0

lim
δ2→∞

[
(xA +δ1xB)(1+δ1)

−1

(yA +δ2yB)(1+δ2)
−1

]
=

[
xA
yB

]
(4.6)

Which shows that the means of the newly created component can indeed go beyond
the original distribution of the means. Further, as the scaling factor δ is bounded by
δ ∈ (0,∞), this will limit how large the convex hull of the components of the new means
are, which is consistent with our observation in Figure 4.1. As for the covariance matrix,
we again observe an inverse relationship, where component C will be scaled along the
axis which we reduce in component B.

lim
δ1→0,δ2→∞

[
a11(1+δ1)

−1 0
0 a22(1+δ2)

−1

]
=

[
a11 0
0 0

]
(4.7)

This demonstrates that for mixtures which are initialised to be diagonal, it is possible to
estimate the location of the means as they are bounded. Additionally, we observe that
the covariance matrix for the new component does not have the same bounds which
the means have. As our experiments will be conducted on data which also requires
full covariance matrices, we will extend this analysis for full covariance matrices to
investigate whether this relationship is also consistent for full covariances.
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4.3.2 Full Covariance Matrices

For full covariance matrices, the derivation for the means and the covariance matrix
of the new component is not as straight forward. Therefore, in this analysis, we will
simply assume that we have some mixture component A and another component B
which is scaled with respect to A by some constant δ. The product component will be
expressed as C and will be one of the new components defined in some NMGMM. This
investigation will give light to whether or not the means of component C are bounded,
as observed for diagonal covariance matrices. Using this context for component A and
component B we define their parameters by the following.

ΣA =

[
a11 0
0 a22

]
µA =

[
xA
yA

]
ΣB = δ ΣA µB =

[
xB
yB

]
(4.8)

Using these parameters and Equation 3.5 for the parameters of the product between
Gaussians, we derive the following terms for the expression of the means and the
covariance matrix for component C. The details of this derivation can be found in the
Appendix A.2.

ΣC =

[
δ2a11(δ+1)−1 δ2a12(δ+1)−1

δ2a21(δ+1)−1 δ2a22(δ+1)−1

]
(4.9)

Σ
−1
A ×µA +Σ

−1
B ×µB =

[
(a22(δxA + xB)−a12(δyA + yB))(δ|ΣA|)−1

(−a21(δxA + xB)+a11(δyA + yB))(δ|ΣA|)−1

]
(4.10)

Using the expression for ΣC and Σ
−1
A ×µA +Σ

−1
B ×µB we will provide insight into the

transformation of means for component C when component B is scaled with respect to
component A.

4.3.2.1 Scaled Up Covariance Matrix

In this analysis, we will explore what happens when we scale up component B such
that it is infinitely larger than component A. Which will indicate whether the means of
component C are bounded as for the diagonal covariances.

lim
δ→∞

[ΣC(Σ
−1
A ×µA +Σ

−1
B ×µB)] = lim

δ→∞

ΣC lim
δ→∞

[Σ−1
A ×µA +Σ

−1
B ×µB] (4.11)

By first preforming the limit over ΣC we observe the following

lim
δ→∞

ΣC =

[
∞ ∞

∞ ∞

]
(4.12)

lim
δ→∞

[Σ−1
A ×µA +Σ

−1
B ×µB] =

[
(a22xA−a12yA)(|ΣA|)−1

(−a21xA−a11yA)(|ΣA|)−1

]
(4.13)
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Which shows that, when component B is sufficiently larger than component A, then
the means for component C will move without the bounds we observe for diagonal
covariance matrices, which is consistent with Figure 4.1. Additionally, it seems that the
means for component C will be distributed dependably on the variance and correlation
of component A, which is also consistent with our observations in Figure 4.1.

4.3.2.2 Scaled Down Covariance Matrix

When we scaled down component B with respect to component A sufficiently, we
observe that the placement of means for component C will indeed go towards the origin.
We first compute the limit over, ΣC as previously.

lim
δ→0

ΣC =

[
0 0
0 0

]
(4.14)

lim
δ→0

[Σ−1
A ×µA +Σ

−1
B ×µB] =

[
∞

∞

]
(4.15)

Therefore, there are no bounds for the placement of the means for component C when
we have two full covariance matrices for component A and component B. Further, we
notice that there is a mutual relationship between the scale of component B and the
scale of component C.

4.4 Discussion

Throughout this chapter, we have seen that the transformation from a traditional GMM
to a squared NMGMM can result in additional components which can have significantly
smaller covariances than what was initialised. Additionally, the means can be spread out
beyond the original distribution of means which we have initialised for. For diagonal
covariance matrices, it is easier to account for this, as both the covariance matrix and
the means for the new component in the NMGMM are bounded by the components
which we use to construct it.

However, for full covariance matrices we have to be more careful as both the means
and the covariances can explode or collapse depending on the relationship between the
two components we use to construct the new product component in the NMGMM. This
should not be a significant problem for our experiments, however, this will be discussed
in Chapter 6. Before, we can start defining effective experiments, however, we will first
establish the complete learning framework for NMGMM using the findings presented
in this chapter as well as the theoretical framework in Chapter 3.



Chapter 5

Learning Framework

In Chapter 3 the method for constructing a NMMM as a valid PDF was established,
additionally we discovered some interesting patterns about the transformation of com-
ponents in Chapter 4. However, some work still remains to create a complete learning
framework for the NMGMM. Specifically, this chapter will introduce how we are using
the SGD momentum optimiser for learning NMGMMMs, similarly to the background
material presented in Subsection 2.1.2.1. Additionally, a new hyperparameter will be
introduced called the sparsity prior which will aid the optimisation procedure as there
are many components which are dependent on each other as presented in Chapter 4.
Therefore, at the end of this chapter the following outcomes will be established.

• An overview of how SGD is used to learn NMGMM, as well as the necessary
reparametrisations which will be done to learn valid parameters for the NMGMM.

• The sparsity prior for weight regularisation will be introduced, which will help
the NMGMM achieve better fits as the weights for each new component are better
balanced.

• Finally, a complete learning framework for the NMGMM will be presented
as an algorithm which will combine the theoretical framework with the newly
established optimiser and weight regularisation.

5.1 Learning NMGMMs with SGD Momentum

From the background research, methods for training GMMs using numerical optimisers
such as SGD were explored. To enable such optimisation algorithms, it is essential that
some restrictions on the covariance matrix Σ are enforced. Specifically, to compute the
PDF of a multivariate Gaussian, it is assumed that Σ is positive and semi-definite. Since
optimisers such as SGD has some stochasticity it is not guaranteed that Σ is positive
and semi-definite when it is optimised directly. To enforce this, we use Cholesky
decomposition according to the past research. For each component in the mixture, we
first perform the Cholesky decomposition such that we can ensure that all the covariance
matrices in the mixture are valid. Which will be followed by the process of squaring
the circuit as outlined in Chapter 3.
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To further speed up the learning process, we opted for using SGD with momentum.
SGD with momentum has the same base components as SGD which was presented in
Chapter 2, however it adds a parameter called the momentum. This variant of SGD
has also been applied to numerous optimisation problems, such as neural networks
[18, 7]. The SGD with momentum optimiser simply adds the momentum parameter to
the computation of the gradient, as described by Ian Goodfellow et al. [10].

ĝt := βĝt−1− ε∇θ

[
1
m

m

∑
i=0

L( f (xi;θ),yi)

]
(5.1)

Where ĝt represents the estimated gradient given some loss function at time step
t, further the parameter β represents the momentum. The computation for the new
parameters are the same as for SGD, however, since the learning rate is already applied
in the gradient computation we get.

θ := θ+ ĝt (5.2)

By using SGD with momentum we speed up the learning process, as the gradient of
the loss function is only estimated it can have a lot of noise. Therefore, by applying
momentum, we effectively smooth out such noise and thus avoid local minima more
effectively.

5.2 Weight Regularisation

Since the NMGMM does not enforce any constraints on the weights, we add a cus-
tom regularisation term to our model. In the past, there has been some research on
regularising mixtures [22, 4]. The rationale behind using regularisation choice, is that
we want SGD to avoid local minima where the components capture a small subset of
some shape and then explode the weights to become infinitely large. This can indeed
happen without regularisation, as we no longer have any bounds on the weights, which
a monotonic GMM does.

L1 and L2 regularisation are techniques which are popular in deep neural networks, to
prevent exploding gradients and overfitting [38, 16, 24]. Similarly, in the case of the
NMGMM, we can reframe the problem above as a problem of overfitting. However,
as L1 and L2 regularisation will squeeze the weights close to zero, we use a modified
version of these regularisation techniques, which can be seen below.

L(B) = NLL(P(B;θ)+λ

(
1
k

k

∑
i=0

√
ewi

∑
k
j=0 ew j

)
(5.3)
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Here λ represents an additional hyperparameter called the sparsity prior, additionally
we perform the softmax over the weights such that the square root can be performed
as the weights can be negative. The reason behind this is to ensure that the weights
do not get scaled down significantly towards zero, which is the case for L1 and L2
regularisation. Further, we use the mean over the square root softmax values such
that we ensure a soft penalisation of weights which are too large. By introducing
an additional hyperparameter we further complicate the hyperparameter optimisation,
however this is balanced out by the importance of creating generalisable fits from the
NMGMM.

5.3 Learning Scheme

Given all the components of the learning scheme above, this section will tie these
concepts together to a complete learning scheme. As outlined in Subsection 5.1, the
training procedure will be using SGD with momentum to learn optimal configurations
for the NMGMM. Which requires some loss function L to be minimised, for the
NMGMM implementation this will be the mean negative log-likelihood over a batch,
additionally, we add the sparsity prior to this loss function during training. The loss
function is given in Equation 5.4, where Bm denotes a mini-batch of points during
training, and p(Bi;θ) represents the PDF of the NMGMM over some mini-batch instance
i.

L(Bi) =
−loge (P(Bi;θ))

|Bi|
+λ

(
1
k

k

∑
i=0

√
ewi

∑
k
j=0 ew j

)
(5.4)

Given the loss function above and the SGD with momentum optimiser, the learning
procedure will look like the following.

1. Compute the new Σ covariance matrices for each component using the Cholesky
decomposition method outlined in Subsection 5.1.

2. Perform the Cartesian product over the mixture components.

3. Over each pair of components i and j from the Cartesian product, compute the
normalisation constant and the product between the components.

4. Perform the weighted sum using the non-monotonic weights for the normalisation
constants and the products of components.

5. Normalise the circuit by dividing the weighted sum of components with the
weighted sum of normalisation constants, which produces the PDF for the
NMMM.

6. Compute L and perform an optimisation step to update the parameters.

7. Repeat the above steps until the maximum number of iterations is reached.

This concludes the work on constructing a learning scheme for NMMMs as valid PDFs.
Additionally, a more thorough overview of the learning scheme is given in Algorithm 1.
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5.3.1 Learning Algorithm

Algorithm 1: NMMM Learning Scheme
Input: Dataset batch D , validation batch V ; Number of dimensions N, number of

components C, sparsity prior λ

µ,L,w← InitParams(C,N,D);
cart ids←CartesianProduct([0, . . . ,C−1]);
while not converged do

Zt ,Gt ← 0,0;
Zv,Gv← 0,0;
for i, j ∈ cart ids do

Σi,Σ j←CholComposition(tril(Li)),CholComposition(tril(L j));
Zt ← Zt +wiw jComputeNormalisation(D,(Σi,µi),(Σ j,µ j));
Gt ← Gt +wiw jGaussianPDF(D,Σi,µi)GaussianPDF(D,Σ j,µ j);
With zero grad do

Zv← Zv +wiw jComputeNormalisation(V ,(Σi,µi),(Σ j,µ j));
Gv← Gv +wiw jGaussianPDF(V ,Σi,µi)GaussianPDF(V ,Σ j,µ j);

end
end
Lt ,Lv← L(Gt ,Zt ,w,λ),L(Gv,Zv,w,λ);
Optimise for L,µ,w using Lt ;

end

The functions used in Algorithm 1 can be described by the following.

• initParams: method which optimally initialises the parameters, uses predefined
optimal positions for the means, covariances and weights given a shape to fit. Can
also initialise using methods such as K-means, however that is not an optimal
initialisation procedure for the NMGMM as it will not effectively place the
negative components.

• CartesianProduct: computes a list of integer pairs, representing the IDs of each
component in the mixture. Therefore, we iterate over each pair as the product is
performed between each paired ID in the Cartesian product.

• CholComposition: uses Cholesky decomposition as outlined in Section 5.1 given
a lower triangular version of the matrix L which the optimiser has computed.

• ComputeNormalisation: computes the normalisation constant for the product
between two Gaussian components as outlined in Subsection 3.2.2.

• GaussianPDF: computes the PDF of the multivariate Gaussian component as
outlined in Subsection 2.1.2.

• L: computes the negative log likelihood using the weighted sum of Gaussian
PDFs and normalisation constants, as well as the weights and sparsity prior to
compute the regularisation term as outlined in Section 5.2.
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Experimental Setup

As an effective learning framework for non-monotonic Gaussian mixtures was es-
tablished in the previous chapter, the next stage is to lay a foundation for how the
experiments for this model will be setup. This chapter will therefore contribute with the
following.

• Introduce a collection of artificial shapes with negative space which will be used
throughout the experiments on the NMGMM.

• Introduce the baseline model to compare against the NMGMM.

• Establish the initialisation procedure which will be used for both the NMGMM
and the GMM baseline model.

• The results of performing Bayesian hyperparameter optimisation, and the identi-
fied optimal hyperparameter for each artificial shape in the dataset.

6.1 Dataset

To evaluate the performance of the NMGMM, we will be using a dataset of artificial
shapes created by Wenliang, Li et al. [35]. This dataset presents multiple artificial
shapes which are typically difficult for monotonic mixtures to fit to, as they will require
considerably more components to get a good fit. One example is the ”ring” shape,
which simply distributes the points along a ring. A monotonic GMM will have to fit
multiple components along the ridge to get a good fit, whereas the NMGMM should
in theory only need 2 components. Where one is positive and overlaps the points, and
one negative to reduce the probability mass in the middle close to zero. The shapes, as
presented by Wenliang, Li et al. [35] can be observed in Figure 6.1.

All shapes in this collection have shapes which in theory should enable the NMGMM
to learn negative components to subtract away probability mass, and therefore achieve a
better fit than monotonic GMMs. It is worth noting, however, that these shapes are all
in two dimensions. This project will not perform any experiments in higher dimensions,
as that will further complicate the initialisation procedure of the NMGMM. Further,
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Figure 6.1: A collection of complex artificial shapes presented by Wenliang, Li et al.

work is necessary to better understand effective initialisations for the NMGMM to be
able to perform meaningful experiments in higher dimensions.

Additionally, we construct a train, validation and test subset for each dataset shape.
Based on the code provided by Wenliang, Li et al. [35] we sample k number of points
at random from the distribution of the shape. The number of points for each split can be
seen in Table 6.1.

Train size Validation size Test size

1000 200 200

Table 6.1: Train, validation and test split denoted by the number of points sampled from
the distribution of each shape.

6.2 Baseline

To effectively compare the benefits of the NMGMM, we will be using a monotonic
GMM which is trained using expectation maximisation (EM). For the GMM baseline
implementation and the EM optimiser, we will be using the implementation provided
by Scikit-Learn [28]. The EM optimiser is traditionally used for monotonic GMMs as
it provides some convergence guarantees which numerical optimisers are not able to
provide to the same extent. Therefore, using EM for the baseline experiments is the
most appropriate strategy for comparing it against the NMGMM. Further, the baseline
will be using its own initialisations which Scikit-Learn provides, as the initialisations
for the NMGMM are crafted specifically to support negative components. Therefore,
we will be using K-means initialisations for the baseline experiments.

Additionally, to give a fair comparison with some NMGMM initialised for, N we will
be using (N(N +1))2−1 components for the baseline GMM. As the NMGMM squares
the circuit it will have N2 components, however as it is produced by doing the Cartesian
product we will have some components such as A×B and B×A which will be identical.
Thus, we ignore these for the baseline by treating such components as the same.
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6.3 NMGMM Initialisation Procedure

For initialising the NMGMM, the mean and the covariances are initialised according to
the positive and negative spaces for each dataset shape. the components of the NMGMM
places the components which should be positive over the points in the dataset, and the
negative components are placed in the negative spaces such that the NMGMM can
learn to subtract this probability mass. Further, the weights were initialised at random
between 0 and 1, such that we can observe that the NMGMM correctly identifies which
components are supposed to be negative, thus subtracting away probability mass in
those areas. To measure the NMGMM against the baseline, we initialise the baseline to
have the same number of components as the squared circuit representing the NMGMM,
the initialisation for each shape can be seen in Figure 7.1.

6.4 Evaluation Metrics

To evaluate the NMGMM against the monotonic GMM, we compare the negative log
likelihood, which is computed according to Equation 5.4. Further, we will present the
heatmaps of the resulting fits for the NMGMM as well as the confidence plots, which
will highlight the positive and negative components according to the ellipses which are
formed by the covariance matrices. For each confidence ellipse, we will be using a
standard deviation of 2.3 to highlight the area where most of the probability mass is
located for each component. Other evaluation metrics such as silhouette score were
considered, however since the NMGMM will have negative components this score
would be misleading as each negative component would contribute to a worse silhouette
score when that might not actually be the case.

6.5 Hyperparameter Optimisation

Since the NMGMM introduces additional hyperparameters for both the optimiser and
the model, we chose to perform a Bayesian hyperparameter search. The goal of this
search was to observe the optimal hyperparameter configuration for each dataset shape,
where each configuration was measured against the validation set, using the negative
log likelihood loss. Therefore, through this experiment, we aim to answer the following
research questions.

1. How many components are necessary in the NMGMM to have enough degrees of
freedom to create generalisable fits for the shapes presented?

2. What is the effect of adding the sparsity prior, and which shapes have a higher
gain when using higher sparsity priors?

3. What hyperparameters have the most significant impact, for the different shapes
in the dataset?

Further, to ensure that the configuration indeed resulted in a good fit, we also plotted the
resulting fits for each configuration, such that we could discard configurations where
the fit resulted in small components with exploded weights. This often happened when
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the sparsity prior was set too low, thus we selected the hyperparameters which had
low validation loss and a good fit according to the data distribution. The resulting
hyperparameter configurations for each shape can be observed in Table 6.2 and Table
6.3.

Dataset Components Covariance Shape

Ring 2 Diagonal

Funnel 4 Full

Banana 3 Full

Cosine 6 Diagonal

Table 6.2: Optimal number of components, obtained through Bayesian hyperparameter
optimisation.

To get a better understanding of the importance of the different hyperparameters for
the different shapes, we also denote a prior weight for each hyperparameter. These
priors are obtained through training a random forest supplied by Weights and Biases
[34], which takes the hyperparameters as input and the validation loss as an output to
calculate the feature importance of the random forest. These importance priors can be
observed next to the hyperparameter values in Table 6.3.

Dataset Iterations Batch size Learning rate Momentum Sparsity prior

Ring 100 64 (0.24) 0.0004 (0.52) 0.57 (0.08) 0.37 (0.16)

Funnel 500 128 (0.57) 0.001 (0.23) 0.94 (0.13) 0.89 (0.07)

Banana 500 128 (0.15) 0.0006 (0.34) 0.79 (0.26) 0.29 (0.25)

Cosine 100 32 (0.20) 0.0006 (0.24) 0.82 (0.41) 0.24 (0.15)

Table 6.3: Optimal hyperparameter configuration for each dataset for the NMGMM model,
obtained by performing Bayesian hyperparameter optimisation.

From the results of the hyperparameter optimisation in Table 6.3 we observe some
interesting results. For batch size, we see that cosine requires the lowest batch size,
which is due to the fact that there are more components and the shape itself is more
complex to fit. Additionally, we see that the funnel and banana shape requires more
iterations to achieve convergence, which is in large part caused by the optimiser having
to scale down the positive components sufficiently, as seen in Figure 7.1. Moreover, the
learning rate and the momentum seems to be quite stable for all the different shapes
except for the funnel which handles a higher learning rate.

Lastly, for the sparsity prior, we observe that some shapes have a higher importance on
this parameter. Such as the funnel, which has an importance prior of 0.89. This, makes
sense as we observed configurations which had collapsed covariances with exploded
weights for this shape when the sparsity was set low. Thus, we see that the sparsity
prior can indeed aid the NMGMM to create better fits.
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Results

Given the learning scheme presented in Chapter 5 and the experimental setup in the
previous chapter, we will now present the results of the experiments with optimal
hyperparameters for each dataset shape. These results will highlight the expressiveness
of the NMGMM as well as highlight its limitations, which will provide a motivation
for any future improvements of our proposed framework. The initialisations and final
fits for the NMGMM can be seen in Figure 7.1, additionally the fits for the monotonic
GMM equivalents can be seen on the right.

Figure 7.1: Fits achieved for the NMGMM with the initialisations on the left with the
equivalent monotonic GMM on the right.

In the following sections, we will provide a more detailed breakdown of these results, as
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well as the learning curves and final loss values when compared against the monotonic
GMM.
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Figure 7.2: Loss curves for each shape fitted with the NMGMM.

In Figure 7.2 we observe that the NMGMM does converge for all shapes, however the
final loss value for each shape are either slightly higher or comparable to the monotonic
GMMs at convergence. These results can be observed in Table 7.1.

Dataset Model Components Train loss Validation loss Test loss

Ring
NMGMM 2 4.6421 4.6417 4.6417

GMM 3 4.6401 4.6526 4.6332

Funnel
NMGMM 4 3.7093 3.7078 3.7078

GMM 10 3.4856 3.4626 3.4924

Banana
NMGMM 3 3.5948 3.5907 3.5907

GMM 6 3.5423 3.5372 3.5699

Cosine
NMGMM 6 3.8198 3.8423 3.8423

GMM 21 3.4953 3.5089 3.5068

Table 7.1: Final loss values for each dataset shape, comparing the results for the
NMGMM with the GMM at convergence. Additional results for varying number of
components can be seen in Table B.1 of the Appendix.

In Table 7.1 it is clear that the NMGMM achieves a comparable result to the monotonic
GMM, however the NMGMM is able to create more uniform fits which generalise better
than the GMM. In fact, the average generalisation gap between the train and validation
loss for the NMGMM is 0.007, whereas the GMM has an average generalisation gap of
0.014. This demonstrates that the NMGMM is able to create more generalised fits for
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these complex shapes as it can subtract probability masses, additionally, the NMGMM
requires considerably fewer parameters to be optimised to achieve this.

These results seem promising, however there are some interesting patterns in Figure 7.1
which are yet to be discussed. Therefore, in the following section, we will break down
the results we observe for each dataset shape to better understand how the NMGMM is
achieving these convergences and thus highlight some of its limitations.

7.1 Probability Mass in Negative Components

For the ring shape, we observe that there exists a small blob in the middle of the
ring at convergence. In fact, in Figure 7.3 we observe that for iteration 39 it has a
perfect ring, but this ring does not stretch fully out to the points. This seems somewhat
counterintuitive as the probability mass should be distributed along the border of the
ring to achieve a perfect fit and thus outperform the GMM considerably. However, this
is an inherent limitation of the NMGMM, and we hinted at this in Chapter 4 on the
preliminary analysis.

Figure 7.3: Fits achieved for NMGMM over iteration 0, 39 and the final iteration at
convergence. Demonstrating how the blob in the middle occurs.

We can explain this pattern by looking at the distribution of the multivariate Gaussians
over the x-axis, which has one negative component which we denote as A and one
positive denoted by B. After squaring the circuit, we will have two positive components
B×B and A×A, and two negative A×B and B×A. We can then investigate why this
happens when we plot the distributions of the NMGMM along the x-axis, as seen in
Figure 7.4.

In Figure 7.4 we observe that for iteration 39, we still have a slight blob in the middle.
However, it is not visible since the gap between the peaks of the distributions for
component AxB and BxB is very small, thus the probability mass is negligible. For
iteration 99 however, the covariances are squished slightly which further exaggerates
this gap, thus producing a very visible blob in the middle. This is an inevitable fact
about our NMGMM model, because as we saw in the Chapter 4 on the preliminary
analysis, the negative components will always produce a positive one with the same
means and with variance values which are effectively halved. Which will produce a
slight gap between the peaks of the negative component and the positive component as
observed in Figure 7.4.

This observation is also consistent across the other shapes we have experimented with.
Particularly, for the cosine and funnel shape, we observe a very small probability mass
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Figure 7.4: Distribution of the components in the NMGMM for the ring shape along the
x-axis.

in the middle of where the negative components are placed. However, for the banana
shape, we observe a very interesting pattern. Due to the way that the NMGMM is
initialised for the banana shape, it learns to place the new negative components in such
a way that the positive component in the middle is almost fully faded away, whilst also
subtracting away the necessary probability mass. It manages to do this as the negative
components have full covariance matrices and this is the placement of the positive
components, with respect to the negative, does not have the same bounds as diagonal
covariance matrices have. Thus, enabling the NMGMM to get a good uniform fit for the
banana shape without much probability mass remaining from the negative components.

7.2 Additional Components

Furthermore, we experimented with using additional components for the NMGMM.
During our sweeps for the Bayesian hyperparameter optimisation, we observed that
adding more components for the NMGMM had very little effect on the validation
loss. The idea behind using additional components was to effectively remove the
probability mass we observe in the middle of negative ones. However, to do this we
have to strategically place new positive components such that the product between these
components and the negative components can produce new negative components which
are able to subtract away this probability mass.

The results of these experiments can be observed in Table B.1 of the appendix, along
with the initialisations in Figure B.1. For the funnel we are able to remove some of the
mass produced by the negative components which we can observe when looking at the 3
component vs the 4 component initialisation. This did in fact reduce the loss by 0.1378,
however, increasing the number of components beyond 4 simply increased the loss,
which highlights the difficulty of effectively fitting the NMGMM due to the number of
components which are dependent on each other. Thus, these results highlight that the
NMGMM can produce decent fits for complex shapes with negative spaces. It does not
reduce the overall loss when compared to the equivalent GMMs, however it produces
fits which are more generalisable and uniform with considerably fewer parameters than
comparable GMM instances.
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Conclusion

In this project, we have explored how we can build a generalisable framework for
achieving NMMMs. Additionally, we explored how this technique comes with some ad-
ditional complexity in terms of the squared circuit, namely introducing new components
which are dependent on each other. Based on that analysis, we addressed these issues by
introducing weight regularisation to promote empty clusters, which was combined with
SGD with momentum to achieve effective learning of both shallow and deep mixtures.
Finally, we presented the results of our experiments, which demonstrated how the
NMGMM can achieve more generalised fits than monotonic GMMs with considerably
fewer parameters.

Based on this work, we can provide the following conclusions to the research questions
we set out to answer.

Research question 1: is it feasible to create a generalised framework for NMMMs
which can support deep mixtures and multiple parametric families?

It is indeed feasible to create a generalised framework for NMMMs, and our approach
can support mixtures of multiple parametric families as long as the computation of the
normalisation constant is tractable. Additionally, our method can support deep mixtures,
as our learning framework is based on techniques often used to learn deep mixtures.

Research question 2: can such a generalised framework implemented as a shallow
non-monotonic Gaussian mixture (NMGMM) converge to a lower loss than shallow
monotonic Gaussian mixtures with the same number of components for shapes with
negative spaces?

As discussed in the previous chapter, the NMGMM is not able to converge to a lower
loss than monotonic GMMs for the shapes we have experimented with. However, it
can converge very close to the same loss value of an equivalent GMM whilst requiring
considerably fewer parameters. Which demonstrates the flexibility of the NMGMM as
a model for learning complex shapes with negative spaces.

Research question 3: can the NMGMM provide more generalised fits compared to
monotonic GMMs?
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The NMGMM does indeed create more uniform and generalisable fits than the mono-
tonic GMM. As we saw in the previous chapter, the GMM will have to place multiple
small components along the distribution of points. Thus resulting in fits which are
not uniformly distributed, whereas the NMGMM can simply place a large positive
component where the bulk of the points are, and then clip away the excess probability
mass. However, we do observe that for certain initialisations, some lingering probability
mass exists where we place the negative components. Therefore, any future work will
have to investigate efficient algorithms for initialising the NMGMM.

8.1 Limitations and Future Directions

So far we have seen a few limitations of the NMGMM, specifically we know that it has
a lot of components which are dependent on each other. This can limit the model in
that it makes it harder to optimise, for example, negative components in the NMGMM
are product components which consist of a negative and positive component. Thus,
any negative component in our model will be dependent on a positive one. However,
there are ways of tackling this. One way is to tackle this is to construct specially crafted
initialisations such that these dependencies are not an issue. Which highlights a second
limitation for our NMGMM, namely its sensitivity to initialisations. Therefore, any
future work should investigate initialisation procedures which can enable effective
learning of NMGMMs.

Furthermore, we observed in our results that the NMGMM can produce probability
mass inside negative components. However, this is obviously not desirable. This can
be addressed by creating better initialisations, such as the result we observed for the
banana shape. However, for any practical application this should be automated, and a
future direction would be to explore additional techniques for minimising the likelihood
produced inside negative components.

In our experiments, we have only tested our model using simple mixtures, which are
shallow and in two dimensions. However, to better evaluate the generalisability of
our model, it is necessary to perform additional experiments using deep mixtures and
mixtures of multiple parametric families. This would also highlight which families that
are tractable for computing the normalisation constant and which combinations that are
possible to make.

In conclusion, we have seen that our approach provides a good foundation for achieving
generalised NMMMs. Where a shallow NMGMM can produce more generalisable fits
than monotonic GMMs whilst using considerably fewer parameters. However, work
still remains to investigate its performance on complex mixtures which are deep or with
multiple parametric families. Additionally, we would like to see some new proposals for
initialisation algorithms of our model to capture negative components. Overall, we can
conclude that our NMMM implementation improves the overall flexibility of mixture
models.
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Appendix A

Derivations

A.1 Diagonal NMGMM Transformation of Means

Given some GMM with possibly negative weights, we produce the NMGMM by
squaring the circuit of the GMM. Thus, we will have some component A and component
B with diagonal covariances from the GMM, which will be multiplied to produce a new
component in the NMGMM. Further, the covariance matrix for component B is defined
by scaling the covariance matrix for component A using a scaling vector δ, which will
help provide some insight into the relationship between the two components.

ΣA =

[
a11 0
0 a22

]
µA =

[
xA
yA

]
ΣB = ΣA

[
δ1
δ2

]
µB =

[
xB
yB

]
(A.1)

Given Equation 3.5 for the definition of the parameters for the squared mixture, we first
have to compute the covariance matrix of the new component to get the expression for
its mean. By inserting the above into Equation 3.5 we get the following.

ΣC =

([
a11 0
0 a22

]−1

+

[
δ1a11 0

0 δ2a22

]−1
)−1

(A.2)

=


1+δ1

a11
0

0
1+δ2

a22



−1

=

 a11

1+δ1
0

0
a22

1+δ2

 (A.3)
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Given the above derivation for, ΣC we can now derive the expression for the means of
the new component in the squared mixture, expressed as µC.

µC = ΣC

([
a11 0
0 a22

]−1[xA
yA

]
+

[
δ1a11 0

0 δ2a22

]−1[xB
yB

])
(A.4)

= ΣC


 xA

a11yA

a22

+
δ1xB

a11
δ2yB

a22


= ΣC

xA +δ1xB

a11
yA +δ2yB

a22

 (A.5)

=

xA +δ1xB

1+δ1
yA +δ2yB

1+δ2

 (A.6)

Thus, we have computed the general expression for the placement of component C,
which is given by µC.

A.2 Full NMGMM Transformation of Means

Given some GMM with possibly negative weights, we produce the NMGMM by
squaring the circuit of the GMM. Thus, we will have some component A and component
B with full covariances from the GMM, which will be multiplied to produce a new
component in the NMGMM. Further, the covariance matrix for component B is defined
by scaling the covariance matrix for component A using a scaling vector δ, which will
help provide some insight into the relationship between the two components.

ΣA =

[
a11 0
0 a22

]
µA =

[
xA
yA

]
ΣB = δ ΣA µB =

[
xB
yB

]
(A.7)

As for the derivation with diagonal covariance matrices, we will insert the above
parameters into Equation 3.5 to first compute the covariance matrix of component C,
given by ΣC.

ΣC =

([
a11 a12
a21 a22

]−1

+

[
δa11 δa12
δa21 δa22

]−1
)−1

(A.8)

=

([
a22|ΣA|−1 −a12|ΣA|−1

−a21|ΣA|−1 a11|ΣA|−1

]
+

[
δa22|ΣB|−1 −δa12|ΣB|−1

−δa21|ΣB|−1 δa11|ΣB|−1

])−1

(A.9)

For now we will ignore computing |ΣA|, however we will compute |ΣB| as it can be
expressed in terms of |ΣA| which will simplify the computation further.

|ΣB|−1 = (δ2a22a11−δ
2a12a21)

−1 (A.10)

= (δ2(a22a11−a12a21))
−1 (A.11)
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Notice that the term a11a22−a12a21 is the same as the determinant of component A,
thus we can simplify further.

= δ
−2|ΣA|−1 (A.12)

Given this experession for the inverse determinant of component B we can derive the
expression for the ΣC.

ΣC = |ΣC|−1
[

a11(δ+1)|ΣA|−1δ−1 a12(δ+1)|ΣA|−1δ−1

a21(δ+1)|ΣA|−1δ−1 a22(δ+1)|ΣA|−1δ−1

]
(A.13)

Interestingly, we can compute the determinant for ΣC as an expression of |ΣA|.

|ΣC|−1 = ((a11a22(δ+1)2|ΣA|−2
δ
−2)− (a12a21(δ+1)2|ΣA|−2

δ
−2))−1 (A.14)

= ((δ+1)2
δ
−2|ΣA|−2(a11a22−a12a21))

−1 (A.15)

= ((δ+1)2
δ
−2|ΣA|−2|ΣA|)−1 (A.16)

= (δ+1)−2
δ

2|ΣA| (A.17)

Finally, using this expression for |ΣC| we can compute ΣC.

ΣC =

[
δ2a11(δ+1)−1 δ2a12(δ+1)−1

δ2a21(δ+1)−1 δ2a22(δ+1)−1

]
(A.18)

Again using Equation 3.5 we can compute the expression for the means of component
C with respect to component A and component B. Firstly, we will compute Σ

−1
A ×µA

and Σ
−1
B ×µB as a part of deriving the expression of the means.

Σ
−1
A ×µA =

[
a22|ΣA|−1 −a12|ΣA|−1

−a21|ΣA|−1 a11|ΣA|−1

][
xA
yA

]
(A.19)

=

[
(a22xA−a12yA)|ΣA|−1

(−a21xA +a11yA)|ΣA|−1

]
(A.20)

Σ
−1
B ×µB =

[
a22(δ|ΣA|)−1 −a12(δ|ΣA|)−1

−a21(δ|ΣA|)−1 a11(δ|ΣA|)−1

][
xB
yB

]
(A.21)

=

[
(a22xB−a12yB)(δ|ΣA|)−1

(−a21xB +a11yB)(δ|ΣA|)−1

]
(A.22)

To get the second part of the expression of the means for component C we have to add
these terms together, thus producing.

Σ
−1
A ×µA +Σ

−1
B ×µB =

[
(a22(δxA + xB)−a12(δyA + yB))(δ|ΣA|)−1

(−a21(δxA + xB)+a11(δyA + yB))(δ|ΣA|)−1

]
(A.23)



Appendix B

Additional Experiments

Dataset Model Components Train loss Validation loss Test loss

Ring

NMGMM 2 4.6421 4.6417 4.6417
GMM 3 4.6401 4.6526 4.6332

NMGMM 3 4.6545 4.6545 4.6545
GMM 6 3.5582 3.566 3.5640

NMGMM 4 4.5761 4.5746 4.5746
GMM 10 3.3029 3.3029 3.3029

Funnel

NMGMM 3 3.8471 3.8517 3.8517
GMM 6 3.4983 3.4645 3.4974

NMGMM 4 3.7093 3.7078 3.7078
GMM 10 3.4821 3.4551 3.4868

NMGMM 5 3.7227 3.7241 3.7241
GMM 15 3.4693 3.4464 3.4783

Banana

NMGMM 3 3.5948 3.5907 3.5907
GMM 6 3.5423 3.5372 3.5699

NMGMM 4 3.6211 3.6219 3.6219
GMM 10 3.5376 3.5419 3.5678

NMGMM 5 3.7847 3.7885 3.7885
GMM 15 3.5256 3.5248 3.5502

Cosine

NMGMM 6 3.8198 3.8423 3.8423
GMM 21 3.4922 3.5149 3.5062

NMGMM 8 3.7222 3.7429 3.7429
GMM 36 3.4912 3.5087 3.5052

NMGMM 10 4.1004 4.1185 4.1185
GMM 55 3.4839 3.5000 3.4952

Table B.1: Result of varying number of components for the different shapes introduced in
Section 6.1. The initialisations for each number of components can be seen in Section
B.1.
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B.1 Initialisations

Figure B.1: Initialisations used for different number of components for the different
shapes presented in Section 6.1. Note that the number of components in the titles are
before the circuit is squared.


