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Abstract

Syntax-guided synthesis is a program synthesis method that generates code guaranteed
to satisfy a logical specification. Early work of Chasins et al. [15] shows that syntax-
guided synthesis can synthesise reactive motion plans for simple benchmarks. But the
synthesis time becomes unreasonably long when the depth of a synthesised abstract
syntax tree is greater than 5, and the synthesis time increases exponentially as the
number of actions in the synthesised strategy increases. The synthesis of motion plans
is rarely studied since the paper was published in 2016. Additionally, driven by the
popularity of machine learning, the corpus of reactive motion planning benchmarks
has expanded quickly. In this dissertation, we aim to explore the capability of a
state-of-the-art syntax-guided synthesis solver to solve OpenAl Gym problems and
to determine whether the paper’s conclusions by Chasins et al. still hold. To achieve
this, we modelled 3 grid-world environments and 2 Atari environments from OpenAl
Gym using the SyGuS-IF language. The resulting benchmarks were submitted to the
SyGuS-Comp repository to facilitate future research. Our Python pipeline, integrated
with CVCS5, was used to solve some stochastic agent problems; we also proposed
generating high-level plans to tackle complex agent problems. While we found that
SyGusS is generally not scalable for agent problems and unable to deal with probability
and maximisation, it can still generate simple, error-free or high-level agent strategies.
This study sheds light on the potential of SyGusS in solving agent problems and identifies
areas where it can be improved.



Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Xiaolu Fu)



Acknowledgements

I want to thank Elizabeth Polgreen, my supervisor, for suggesting this topic and for
her invaluable guidance and support throughout the project. I would also like to thank
Andrew Reynolds for reviewing my benchmarks and responding to me on GitHub.
Thank all the contributors to the SyGuS-IF language, CVCS, and OpenAl Gym for their
accomplishments.



Table of Contents

1 Introduction

Motivation . . . . . . . . . . . e e e e e
1.2 Contribution . . . . . . . . . . ...
1.3 Dissertation Structure . . . . . . . . . .. ... ...

2

3

1.1

Background
Syntax-Guided Synthesis . . . . . ... ... Lo

2.1

22
2.3

24

2.1.1

Syntax-Guided Synthesis Example . . . . . . ... ... ...

Oracle-Guided Synthesis . . . . . . .. ... ... ... .......
Counterexample-Guided Inductive Synthesis . . . . . . .. ... ...

2.3.1 Counterexample-Guided Inductive Synthesis Example . . . .
2.3.2 Search Strategy . . . . . . . . .. ... ..
2.3.3  SyGuS-IF language and Limitations . . . . . ... ... ...
OpenAIGym . . . . .. . . . . e

From Agent Problems to SyGuS Problems
Overview of OpenAl Gym Environments . . . . . ... ... ....

3.1

3.2

33

34

3.5

Cliff Walking . . . . . . . ... ..
3.2.1 The Environment Overview . . ... . ... ... ......
3.2.2 TheFormalModel . . ... ... .. ... ... .......
3.2.3 Performance and Alternative Design . . . . . ... ... ...
Taxi . . . .
3.3.1 The Environment Overview . . . . .. ... ... ......
3.3.2  Modelling the Entire Environment . . . . . . . ... ... ..
3.3.3 Benchmark Generator . . . . ... .. ... .........
3.3.4 Performance and Benchmark Design. . . . . . ... ... ..
FrozenLake . . . . . . . . . . . . . ...

3.4.1 The Environment Overview . . .. ... ... ........
3.4.2 The Deterministic Formal Model . . . . . . ... .. .. ...
3.4.3 Online Synthesis for a Stochastic Environment . . . . . . . .
3.4.4 Performance of Online Synthesis . . . . . ... ... .....
AtariPong . . . . . . ...
3.5.1 The Environment Overview . . .. ... ... ........
3.5.2 Predicting the Trajectory . . . . . ... ... ... ......
3.53 Controllingthe Paddle . . ... ... ... ..........

DN DN =

01 ION Nk B WW



3.6

354 Performance . ... ... ... ... .. ...
Atari Pitfall . . . . . . . . ...
3.6.1 The Environment Overview . . . . . . ... ... ......
3.6.2 Pathfinding . . ... .. ... ... ... ... ...,
3.63 AvoidingHazards . . . .. ... ... ... ... ... ...
3.64 Performance . ... ... ... ... ... ... .. ...

4 Discussion of SyGuS and Experiment Results

4.1

4.2

43
4.4
4.5

Non-SyGuS-Compatible Problems . . . . . ... ... ... .....
4.1.1 Other Atari Environments . . . . . . ... ... .......
4.1.2 All MulJoCo Environments . . . . .. ... ... .......
4.1.3 Toy Text: Blackjack . . . ... ... .. ... ........
4.1.4 All Classic Control Environments . . . . . .. ... ... ..
4.1.5 AllBox2D Environments . . . . . . .. ... ... ......
CVCS Performance on Benchmarks . . . . . . ... ... ... ...
4.2.1 Comparison with a Related Work . . . . . . ... ... ...
4.2.2 Comparison of Enumeration Strategies . . . . . ... .. ..
SyGuS and Reinforcement Learning . . . . . . ... ... ... ...
SyGuS and Genetic Programming . . . . . . ... ... ... ....
SyGuS and Automated planning . . . . ... ... ...

5 Conclusions and Future works

5.1
5.2

Summary of Findings . . . . ... ... ... .............
Limitations and Future Works . . . . . . . . . . . .. .. ... ...

Bibliography

A Pathfinding Benchmark

B Hazard Avoidance Benchmark

28
28
28
29
29
30
30
30
30
31
33
34
34

35
35
36

38

42

45



Chapter 1

Introduction

1.1 Motivation

Program synthesis has been a famous problem ever since the first programmable com-
puter was built [22]. With the emergence of advanced deep learning model architectures,
modern program synthesizers based on language models have brought great conve-
nience to programmers. However, due to the ambiguity of human intents, even the
state-of-the-art model cannot guarantee the correctness of a synthesised program [16].
In contrast, formal synthesis, a classical approach, guarantees correctness but requires
programmers to encode the desired behaviour into logical constraints. This property of
formal synthesis makes it still irreplaceable nowadays.

Syntax-guided synthesis (SyGuS) is a sub-category of formal synthesis in which a
syntactic constraint is also encoded, besides semantic constraints on the desired function.
A syntactic constraint is context-free grammar, which restricts the search space of the
candidate program. With the syntactic restriction, a synthesizer will ignore the unrelated
syntax in a programming language to reduce the synthesis time. The community of
formal synthesis has been attempting to solve various problems using SyGusS. Inspired
by a previous work [15], this project utilises SyGusS to tackle agent problems.

As an alternative approach in the era of Al, reinforcement learning (RL) is a popularly
used approach to tackle agent problems nowadays [32] [30]. RL approaches train
agents by rewarding them for specific interactions with an environment [27]. Deep RL
approaches utilise the advantages of neural networks; with more than one hidden layer,
a model can approximate any continuous functions (which refers to an agent plan) [23].
However, this approximation is not guaranteed to be correct.

Real-life automation tasks are commonly formulated as agent problems. In many
automation tasks, the utility is closely related to social safety, where a single error is
not tolerated (e.g., driving automation). Formal synthesis techniques fit these tasks, as
they can find the exact function that guarantees no error. To investigate the pros and
cons of SyGusS, the project uses OpenAl Gym, one of the most popular integrations of
agent problems [12].

In this project, we aimed to model OpenAl Gym environments as SyGuS problems and
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then solve them using a state-of-the-art SyGusS solver (CVCS5). Our research hypothesis
is that we can apply SyGusS to solve some OpenAl Gym agent problems.

1.2 Contribution

This project makes the following contributions:

* Modelled 5 OpenAl Gym environments into SyGuS problems and generated
multiple SyGuS benchmarks for OpenAl Gym environments with random initial-
isation.

* Evaluated the performance of the state-of-the-art SyGusS solver on these bench-
marks.

* Discussed strengths and weaknesses of SyGuS and types of agent problems it can
be applied to.

* Submitted benchmarks to SyGuS-Comp, the main public repository of syntax-
guided-synthesis benchmarks. We also reported the performance issues discov-
ered to the CVCS5 developers.

1.3 Dissertation Structure

The following content of this thesis is divided into four chapters. Chapter 2 provides a
hierarchical overview of SyGuS, starting with a definition of SyGuS problems, followed
by a discussion of oracle-guided synthesis and its variant, counterexample-guided
inductive Synthesis. At the end of the background chapter, we briefly introduced
OpenAl Gym.

Chapter 3 details how five OpenAl Gym environments can be modelled as SyGuS
problems. We also mentioned a state-of-the-art solver’s performance on our benchmark
and the limitations of SyGuS, as this information is crucial for making our design
decisions.

Chapter 4 explores why SyGuS cannot be applied to some problems. We evaluated the
state-of-the-art solver using our benchmarks and discussed the results of our experiments.
Additionally, we discussed the pros and cons of SyGuS and other approaches for solving
agent problems.

Chapter 5 serves as the conclusion to the thesis, where we summarise our findings,
evaluate our work, discuss potential additional work, and suggest future directions for
research.
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Background

2.1 Syntax-Guided Synthesis

Program synthesis is to let artificial intelligence automatically generate programs,
and it can potentially change the ways of programming. By using synthesis tools,
software engineers only need to think about what they want without knowing how to
achieve it. There are many uses for program synthesis tools. The concept of sketching
[38][39] allows programmers to sketch the high-level structure of software, and the
detailed programs will be automatically constructed; Program synthesis tools can also
do automatic refactoring with much lower costs than humans, especially when the code
has low readability [17]; Program de-obfuscation is another application, which can
help people understanding and dealing with malicious malware [25]; Synthesising a
time-consuming part of the program may also help with finding a more efficient version
with equivalent functionality [36].

Among the big area of program synthesis, some approaches provide their best guess
but do not guarantee correctness (e.g., neural network-related approaches [18]), some
approaches guarantee correctness if (and only if) the desired program is specified cor-
rectly, formal synthesis belongs to the latter category. The problem of formal synthesis
is to find a correct implementation that satisfies a set of given logical specifications [26].
This project focuses on syntax-guided synthesis (SyGuS), a particular case of formal
synthesis where syntactic and semantic constraints restrict the potential implementa-
tions.

The definition of the SyGuS problem [5] is to prove 3f.Vx.¢ by searching a correct
function f € G, where x is a set of input of function f, ¢ is a set of given logical
specifications that describes the expected behaviours of the desired functions. ¢ is in a
background theory 7. The theory defines the data type or data structure of variables
(e.g., Boolean, String, Array) and types of operation (e.g., comparison, condition,
division). To restrict the space of searching, human programmers should provide a
context-free grammar G, and G defines a set of implementations. It should contain
at least one expression of the desired function; otherwise, a programmer must try a
different grammar.
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2.1.1 Syntax-Guided Synthesis Example

Assume there is a theory T, all variables under 7T are real numbers, and the set of
operations consists of if-then-else (ITE), logical operations (=), comparisons (<),
functions that compute square and square root (Sqrt) of a number. A simple example is
to find a function that computes the absolute value of an input, a logical specification of
function f could be:

0: (f(x) =0) V(f(x) = =x)) A (f(x) = 0) 2.1
A context-free grammar G1 defines the set of functions:

Exp: =x|0| —Exp | ITE(Cond,Exp,Exp)
Cond: = Exp <Exp | Exp < Exp | ~Cond

where ITE means an if-then-else statement. Two expressions are found that satisfy the
specification ¢:

ITE(x <0,—x,x)

2.2
ITE(x <0,—x,x) (22)

More than two expressions can be found by searching the space defined by the syntax.
As the grammar restricts the space of possible implementations, a different grammar
may result in a different output. An example of an alternative grammar G2 could be:

Exp: =x|0| Square(Exp) | Sqrt(Exp) (2.3)

G2 does not contain f1 and f2; the expected output implementation should differ.
Sqrt(Square(x)) (2.4)

Grammar is a parameter of SyGusS tools, and providing proper grammar is vital for
program synthesis. Users must carefully implement their grammar depending on
the programming language and the specific problem to be solved with the program.
However, the grammar helps restrict the search space and allows programmers to decide
the desired implementations.

2.2 Oracle-Guided Synthesis

Oracle-Guided Synthesis (OGIS) is a typical strategy that searches the space defined
by syntactic constraints. It guarantees the synthesised program behaves as intended if
the logical specification is correct and satisfiable by the syntactic constraint. Unlike
many popular synthesis tools (e.g., speech synthesis, image synthesis) in Artificial
Intelligence, the state-of-art OGIS methods do not involve deep learning. Instead,
there is a synthesis phase to iteratively search for a candidate solution defined by the
grammar and a verification oracle to verify if a candidate program satisfies the formal
specification and gives feedback to the next synthesis phase.
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The synthesis phase is performed by a search algorithm that searches the space of
programs. A vanilla example of a search algorithm is randomly checking every unen-
countered implementation until a suitable implementation is found. The verification
oracle is usually a satisfiability modulo theories (SMT) solver. An SMT solver can
check if all inputs and outputs of a function satisfy all specified logical formulas given
a background theory [10]. Modern SMT solvers can solve many problems with consid-
erably high efficiency and are still evolving sustainably. There is an annual competition
that encourages the innovation of SMT solvers. Among all submissions of the newest
competition, an SMT solver called CVCS5 [8] has won the most 1st prize and the best
average rank of all tracks (see https://smt-comp.github.i0/2022/results.html). There is
also a competition for SyGuS called SyGuS-Comp [6], but the competition was not
held in recent years. The winner of the most recent SyGuS-Comp was CVC4, the previ-
ous version of CVC5 (CVC4 could solve SyGuS problems and SMT problems). An
executable program can also be a verification oracle if the specification is given as input-
output pairs. Sometimes OGIS can be used for refactoring. By providing a program
with correct behaviour, an OGIS synthesizer could find an alternative implementation
with higher readability or efficiency [36].

The time complexity of the synthesis phase increases exponentially as the depth of the
program’s abstract syntax tree (AST) increases due to the nature of iterative search.
Besides the synthesis phase, the SMT problem is NP-hard, and no known efficient
algorithm can solve it under polynomial time. Much recent research in synthesis tackles
the time complexity of OGIS, and several variants have been proposed. Innovations
in this area can be split into two categories: novel algorithms to search the space of
candidate programs in the synthesis phase or new SMT solvers in the verification stage.
By choosing a suitable synthesis approach, a lot of problems could be solved within a
reasonable time. In the related research, SyGuS solver could solve some simple agent
problems within several minutes [15].

2.3 Counterexample-Guided Inductive Synthesis

Counterexample-guided Inductive Synthesis (CEGIS) is a variant of OGIS. It was first
introduced in 2008 [37] and is still one of the most used inductive synthesis procedures
nowadays. Inductive means the algorithm finds a program that satisfies a part of the
logical specification and then checks if the program satisfies the entire specification.
Counterexample-guided means the verification oracle learns new input-output pairs
produced by the program that contradicts the specification, called counterexamples.
These counterexamples are then used to guide the synthesis phase when finding new
candidate programs. If a new program produces correct outputs given counterexample
inputs, the program satisfies a part of the specification.

As shown in Figure 2.1, the CEGIS accepts inputs from programmers. The necessary
parameters are grammar and formal specifications (including the background theory).
The output of CEGIS is a piece of code that satisfies the given formal specifications
under theory. The CEGIS algorithm will first check the feasibility of the specified
SyGusS problem. If no program defined by the syntax satisfies the logical specification,
the CEGIS algorithm will terminate and return a message for infeasibility. Some CEGIS
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Figure 2.1: Counterexample-Guided Inductive Synthesis Structure

solvers have extra parameters, including input-output pairs, time to terminate, and
search strategy. The time to terminate refers to the maximum execution time, and
the solver will return a message for timeout if no suitable program is found within
the specified time. The search strategy specifies which search algorithm to use in the
synthesis phase; it will be explained in section 2.3.2.

2.3.1 Counterexample-Guided Inductive Synthesis Example

In the example SyGuS problem (2.1.1), we wanted to use CEGIS to synthesise a
function that calculates the absolute value of a real input number. The grammar G1,
specification ¢ is provided to the search algorithm, and we also have two input-output
pairs:

{(x=0,/(x) =0),(x=1,f(x) = )} (2.5)

The search strategy is to test implementations individually, starting from the easiest.
Since the task is simple, we can confidently expect that implementation will be found
within 200 attempts.

The first attempt will be f(x) = 0, while the function is inconsistent with the second
input-output pair when x = 1, f(x) should be 1. The second attempt will be f(x) = x,
and it is consistent with all input-output examples. Thus the candidate program is then
passed to the verifier. However, the candidate is not a correct program and cannot satisfy
the logical specification. The verifier will generate a counterexample (x = —1, f(x) = 1),
and the counterexample will be passed back to the search algorithm and added to the set
of input-output pairs. Now the search algorithm has three example pairs in total. The
next two attempts will be f(x) = —0 and f(x) = —x. These functions will be rejected
in the synthesis phase as they are inconsistent with all example pairs. The search will
continue until it finds a candidate program consistent with all input-output pairs or the
number of attempts reaches 200.

The counterexample generated by the verifier can reduce the frequency of querying
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the verification oracle, thus reducing the time and cost of unnecessary verifications.
Since solving the SMT problem is computationally expensive, reducing the frequency
of invoking SMT solvers could significantly boost the synthesis speed.

2.3.2 Search Strategy

The search space of the synthesis phase can be infinite if the grammar is recursive and
the expression can be infinitely long. Even if the depth of AST or size of the expression
is limited, the search space is still exponential to the depth of AST. If a search algorithm
attempts to find a correct implementation from an infinitely large set by a completely
random search, it is doubtful to succeed. Therefore, an intelligent search strategy for
the synthesis phase is essential to restrict the procedure’s time cost.

Related works have proposed various approaches to search efficiently; three approaches
will be introduced and discussed. They are constraint-based search [21], stochastic
search [36], and enumerative search [40]:

 Constraint-based search: The algorithm reduces a formal synthesis problem to
a first-order constraint problem and uses an SMT solver to solve the constraint
problem efficiently.

 Stochastic search: The algorithm assigns a score to an expression and applies
biased stochastic sampling using a Markov Chain Monte Carlo sampler.

* Enumerative search: The algorithm enumerate all expression by some properties,
and the candidate programs are verified in the enumerated order. The search
space is pruned by ignoring expressions evaluated to the same value as another
expression. For instance, in the grammar G1, f(x) = x and f(x) = -(-x) are
equivalent.

Enumerative search is usually the fastest algorithm for various synthesis problems and
is used in CVCS. Its intuitive strategy could reduce the number of queries to the oracle
and significantly prune the search space for a potential expression.

2.3.3 SyGuS-IF language and Limitations

Computers cannot directly interpret the example logical specification and syntax in
2.1.1 before parsing it into machine-readable code. In practice, we need formalised
language to describe logical specifications. To address this requirement and facilitate
research in satisfiability modulo theories, several research groups worldwide incepted
a community and brought forward the SMT-LIB. Since 2003, numerous researchers
have contributed to providing standard rigorous descriptions of background theories
and developing common input-output language for SMT solvers [9].

Compared to SMT solvers, a SyGusS solver also needs to parse inputs for the syntax. The
SyGuS community proposed the SyGuS-IF language, designed based on the SMT-LIB
language [33]. The SyGuS-IF language is used in SyGuS-Comp competitions and is
now widely accepted by modern SyGusS solvers.
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However, specifying a SyGuS problem in the SyGuS-IF language is not trivial; the
language’s syntax is simple and easily parseable but makes writing specifications
inconvenient. A typical input written in SyGuS-IF language could be longer than the
desired program written in high-level programming languages. In 2.1.1, the desired
program can be as easy as a function call of an imported package, whereas the example
input is an abbreviation of actual input to SyGuS-IF solvers. The output of the SyGuS-IF
language is not directly executable. To run the output, users must design their parser
and parse it into an existing programming language, and this extra effort is not desired
in many software engineering scenarios. Therefore in practice, SyGusS is rarely used to
speed up software development nowadays.

2.4 OpenAl Gym

OpenAl Gym (see https://www.gymlibrary.dev/) is an environment library for agent
problems. An agent can observe some states of the environment and perform a set of
actions to achieve some goals. The environment can be fully observable or partially
observable. Agents in real life are impossible to fully observe the environment, while
some virtual environments can be fully observed. The agent problem is constructing a
set of rules allowing the agent to react to the observed state. The original purpose of
OpenAl Gym is to provide benchmarks for reinforcement learning (RL). Modern RL
approaches can produce sophisticated agents to interact with complex problems (e.g.,
autonomous driving), but the agents are not guaranteed to act optimally.

As machine learning is mainly implemented in Python, OpenAl Gym only supports
Python interface, and the environment information is not interpretable by any SyGuS
solver. Besides the observed environment, RL agents also receive rewards or penalties
for achieving specific states. In later iterations or training, RL agents are more likely to
perform a sequence of actions that receive rewards and avoid penalties. This reward
mechanism is different in SyGuS, a concrete goal is needed instead, and it could be
receiving at least some reward or reaching a specific awarded state. In this project, we
implemented SyGuS benchmarks corresponding to OpenAl Gym benchmarks from
scratch.
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From Agent Problems to SyGuS
Problems

3.1 Overview of OpenAl Gym Environments

There are five first-party environments in OpenAl Gym: Atari, Mujoco, Toy Text,
Classic Control and Box2D. Each environment is a unique agent problem, specifically,
a reactive planning agent problem. Environments within the same set share some
properties:

Atari environments are simulated Atari 2600 video games. An observed state is a frame,
and each observation consists of pixels. Thus the observation space is discrete. Similar
to actual video games, the action space is a set of valid controller inputs, which is also
discrete.

MuJoCo stands for Multi-Joint Dynamics with Contact. MuJoCo environments involve
sophisticated simulations of real-world physics. In these environments, agents need to
manipulate multiple joints simultaneously. The action space is a set of real numbers
corresponding to the torque applied on each joint. Each environment is a 3D box of
infinite size, and each goal of agents is unbounded. For instance, in the Humanoid
environment, an agent needs to make a humanoid with 17 joints run in a direction as
fast as possible forever.

Toy Text is the most straightforward set of environments. It consists of 3 grid-world
environments and a game of Blackjack. They have small discrete observation spaces and
action spaces. Toy Text can be used for debugging in the development of RL algorithms.
We expect SyGusS solvers to solve Toy Text benchmarks with the least effort.

Classical Control consists of 5 environments, each with a continuous observation state,
and three environments have unbounded goals: reaching a position and staying forever.
The other two environments are different versions of the same world, and the goal is
to drive a car to the top of a mountain hill. The only difference is the action space.
The continuous version takes acceleration as input, whereas the discrete version takes
direction (with fixed acceleration) as input.
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Figure 3.1: Cliff Walking

Box2D is a simpler version of Mujoco, and Box2D environments involve simple physics
simulation. Box2D environments have smaller (compared to Mujoco) action space and
bounded goals, but randomisation is introduced in every environment.

Solving reactive planning agent problems with SyGuS solvers has not been widely
studied. As a contribution to SyGuS research, this project offers formal models for
five agent problems in the SyGuS-IF language, and formal models are submitted to
the SyGuS-Comp repository (https://github.com/SyGuS-Org/benchmarks). These five
models are Cliff Walking, Taxi, Frozen Lake, Atari Pong, and Atari Pitfall. We chose
them because they are deterministic and discrete and have finite (and small) observation
space. We will discuss each environment in this chapter and explain why we did not
choose other environments in the next chapter.

3.2 ClIiff Walking

3.2.1 The Environment Overview

Cliff Walking is a deterministic and discrete environment, as shown in Figure 3.1. The
gird world is a 4 x 12 matrix. The agent’s initial position is the left bottom square,
and the goal position is the right bottom square. At every time step, the agent could
move in an orthogonal direction by one square. If the agent steps on a “cliff” square,
it will return to the starting point immediately. Besides reaching the goal position, the
agent receives a reward of -1 for taking each step and a -100 reward for stepping off the
cliff. Therefore, the agent must take the shortest path and never step on a cliff square
to maximise the reward. Since an agent that steps on a cliff will return to the starting
position and takes more steps to reach the goal position, maximising the reward is the
same as minimising the number of steps.

3.2.2 The Formal Model

The observation o; at each time step ¢ is the position of the agent, and the desired output
from a SyGusS solver is a function f, such that f(o;) = m;, where m, is the agent’s move
at time ¢, m, equals [0, 1, 2, 3] corresponds to the agent moving [up, right, down, left].
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In the OpenAl Gym environment, agent positions are encoded as flattened indexes, and
the index of a square is (y_coordinate X 24 + x_coordinate); for example, the starting
square is encoded as 36, and the goal square is encoded as 47. In this section, the formal
model follows this style. To describe the transition between states, we apply addition or
subtraction directly on the flattened index:

;

o1, if hitBoundary(o;,m;) or my is invalid
o, —12, ifm ==

ftransition(ota mt) =Qo0+1, ifm, ==1 (3.1
o 12, ifm ==

\01‘_1, lfm[ —_—

The hitBoundary function checks if the agent is trying to move out of the boundary; for
example, if the agent is at the starting position and m; = 2, the next state should still be
the starting position. If m; is invalid, OpenAl Gym will raise an exception. However,
when working with the SyGuS-IF language, we cannot define a function that throws
exceptions or returns nothing. Therefore, if an invalid action is taken, we leave the
agent in its current position. This minor modification will not affect the function if the
specified goal is to maximise the reward.

The transition function also allows the agent to stand on a cliff square. But we specified
this as a semantic constraint on the desired function, so the function will never move the
agent to a cliff square. This design significantly reduces the synthesis time. In the next
section, we will discuss the alternative design. In the modified environment, f;,qnsition
correctly models the transition between states:

Vl‘,l‘ 2 0 = ftransiti(m(ohf(ot)) == 0141 (32)

To model the environment as a SyGuS problem, we must define a logical specification
for all constraints on f. The constraint is in the form of the following:

correctStartingPosition N\ correctTransitions — (3.3)

reachingGoal N correctintermidiatePositions '

Suppose the agent’s starting position is correct (0, = 36), and each resulting state of an
action m, is correctly defined by f;ansition. In that case, the function should bring the
agent to the final position at a time step 7 (o7 = 47) without stepping on the cliff or out
of the environment (avoiding penalty).

The correctTransition refers to:

T

/\ (Ot == ftransition(otfl7f(0171))) 3.4)

t=1

The correctintermediatePositions is false only when o; is not one of the white squares
in Figure 3.1:

>~

((0r <36 N0, >0)V (0, ==47)) (3.5)

t=1
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In a typical CEGIS, a counterexample of an undesired candidate program can either be
a motion plan that does not end with the agent reaching the goal or some intermediate
positions of the agent are not a white square in Figure 3.1.

We also need to prove that a motion plan maximises the reward. However, we should
not write this requirement as a constraint:

Vf' € GR(f") <R(f) (3.6)

Where R(f) is the reward received by executing function f, G is the provided syntax. To
prove that a function satisfies this constraint, we need to compute the reward received
for all possible functions. Proving the above constraint is practically impossible due to
the excessive or infinite number of syntax-defined unique functions.

Inspired by previous work [15], we applied an iterative bounded check. To find an
optimal function f which minimises 7', we can prove that for all constraints with T/ < T
is infeasible. We make iterative queries to a SyGusS solver, starting from 7 = 1. If the
solver returns “infeasible”, we then add 7' by one and make another query until a solution
is found. Although, in general, proving the feasibility (also known as "unrealizability”
in some literature) of a SyGuS problem can be a costly task [24], it is a more viable
option than exhaustively comparing all unique functions in our specific scenario. This
is because our SyGuS problem is bounded.

The syntax as a part of SyGusS input is recursive:

Start: = Moveld | ITE(StartBool,Start, Start)
Moveld: =0|1|2]|3
Int: =01]1]2|3[4|5|6|7|8]9]|10]|11|getY(o;) | getX(o)
Bool: =Int <Int |Int < Int|Int == Int | =Bool | Bool \/ Bool | Bool N\ Bool

We restrict the width of the search space by only including constants that represent good
moves or valid positions. The getY and getX are two functions that transfer a flattened
index into Y and X coordinates. Compared to using o; directly, using coordinates will
reduce the search tree’s width and speed up the synthesis.

3.2.3 Performance and Alternative Design

As shown by previous work [15], the synthesis time of an agent problem can be
significantly affected by the number of actions to reach the goal state and the complexity
of the environment. Since the optimal path for the Cliff Walking problem only involves
two turning points. We expect a modern SyGusS solver to solve this problem quickly.
However, CVCS5 took more than 2 hours in the first verification phase of CEGIS (the
synthesis phase finds f(o;) = 1 as a candidate program, and then the verifier finds
counterexamples of the candidate). If we write the SyGuS problem as a verification
problem in which f(o;) = 1, the SMT checker inside CVCS5 could solve it within one
second. CVC5 wasted time on normalising the conjecture using expensive ITE rewrite
rules. This was reported to CVCS5 developers, and the problem could be resolved by
disabling the ITE rewrites (https://github.com/cvcS/cvcS/issues/9337).
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Figure 3.2: Taxi

The benchmark still requires 2-5 minutes (depending on the computational power)
to solve, even if ITE rewrites are disabled. CVCS5 spends a long time generating
counterexamples and enumerating programs. For a simple agent problem like Cliff
Walking, generating counterexamples does not significantly help with the synthesis, as
the verification is very cheap. A program that produces correct output given an example
input will satisfy the logical specification, as only one input-output pair exists.

We have briefly mentioned an alternative design decision of the benchmark. The
alternative transition function is:

36’ if 36 < ﬁ‘ransition (0t7ml‘) < 47

. 3.7
Siransition (01 ) mz) , otherwise

ftlransition (0t>ml) = {

While using the alternative transition function, the correctTransition is no longer needed,
and the alternative constraint is:

correctStartingPosition N\ correctTransitions —> reachingGoal (3.8)

An optimal function will never make the agent falls off the cliff, as all synthesised
functions are deterministic reactive plans. If the agent falls off the cliff once at a position,
it will always fall off it. While checking if a function is correct, an undesired function
should be rejected immediately after the agent falls off the cliff. But in the alternative
benchmark, a candidate function will not be rejected immediately after the agent falls
off the cliff; additional computations are required to check if the agent reaches the goal
at time 7'. The alternative benchmark is sub-optimal because it is more computationally
expensive to solve.

3.3 Taxi

3.3.1 The Environment Overview

Like the Cliff Walking problem, the Taxi problem in Toy Text also involves moving the
agent from a start square to a goal square and avoiding some states. There are minor
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differences:

* The forbidden states are walls instead of cliffs. The agent is not allowed to drive
through walls.

* The Taxi now has a random starting state, one of four yellow squares in Figure
3.2, and the goal position is also a randomly decided yellow square.

* Besides moving in four directions, the agent has two more possible actions. It
could pick up (m; = 4) or drop a passenger off (m; = 5) at the current location.
The passenger is also generated at a yellow square but never its destination.

 The Taxi will not be punished when crushing a wall, but it will be punished when
performing pickup or drop-off at the wrong position.

3.3.2 Modelling the Entire Environment

This section discusses the approach to modelling the entire environment, which is not
our final implementation of benchmarks but essential for understanding the environment.
We follow the same style of naming variables as in the previous section, oy is the agent’s
position at time ¢, and m; is the agent’s action at time ¢. Besides, Boolean variable
onTaxi; encodes if the passenger is picked up. This information is vital for motion
planning, as the taxi needs to drive in the opposite direction immediately after the
onTaxi; 1s set to true. Let T be the number of steps to complete the task; the logical
specification is now slightly different:

correctStartingState N\ correctTransitions — dropoffAtGoal N\

, iy , (3.9)
correctIntermediatePositions N\ onTaxir_
where correctStartingState is the conjunction of (o9 == s) and — onTaxip, where s is
the taxi’s initial position. Let p be the passenger’s initial position:
onTaxi; = onTaxi;—1 V ((0, == p) V (my == 4)) (3.10)

where 4 is the action ID of pickup.

This means the passenger will always stay in the Taxi after being picked up. In the
real OpenAl Gym, a Taxi could drop the passenger at an arbitrary state and receives
negative rewards. Similar to stepping off the cliff in Cliff Walking, we could ignore this
reward in Taxi to reduce computational complexity. Because we are minimising T to
achieve the highest reward, and executing pickup and drop-off requires 1 step, including
drop-off in the above equation will not change the synthesised function. Let g be the
destination, dropoffAtGoal is:

((mr ==5)A(or-1==2g)) (3.11)

where 5 is the action ID of drop-off.
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3.3.3 Benchmark Generator

A switch-case statement is necessary to create a function that can solve the Taxi problem
regardless of the starting, pickup, and goal positions. However, since the SyGuS-IF
language does not include a switch-case statement, we must use multiple if-then-else
statements instead. This approach can be pretty verbose and may require significant
code. There are 48 unique combinations of starting, pickup and goal positions, each
requiring unique motion plans. An AST with a depth of 6 is needed to cover all cases,
and for each case, an AST with a depth of at least 4 is required to specify the motion
plan. Compared to the Cliff Walking benchmark (AST with a depth of 3), given the
synthesis time is exponential to the depth of AST, synthesising an AST with a depth of
10 is impractical on modern hardware. Thus we have to create and solve one benchmark
for a unique case of starting, pickup, and goal position.

SyGuS-IF is a repetitive language, and implementing a generating program is faster than
manually writing benchmarks sometimes. We wrote a Python script that automatically
generates and solves Taxi benchmarks. Using Python’s built-in read and write functions
and the os package, we make minor modifications to a template file, save it as a new
benchmark, and then run CVCS5 with the subprocess package.

3.3.4 Performance and Benchmark Design

The synthesis time is still unaffordable. In one of the worst cases, the Taxi starts from
the top left square (0, 0), the passenger waits at (5, 0), and the destination of the tour
is (0,4). The Taxi must execute 20 actions, 4 turning points, and 20 extra variables to
specify whether the passenger is in the Taxi. The Taxi problem is more complex than
the Cliff Walking problem. In an experiment, the CVC5 took more than 2 hours without
successfully synthesising the solution.

To reduce the synthesis time, we decided to split the whole problem into two bench-
marks: (1) the Taxi travels from the starting point to the passenger and pickup the
passenger, (2) the Taxi travels to the destination and drop-off the passenger. As the
length of the solution increases, the time required for synthesis grows exponentially,
and the total time spent on synthesising both problems is much less than the synthesis
time of the whole problem.

In our final implemented benchmarks, the variable onTaxi; is deleted, and the syn-
thesised function takes o, as the only input parameter (f(o,;) = m,). Since the pickup
and drop-off tasks are modelled in separate benchmarks, there will be two synthesised
functions for the Taxi problem. Each synthesised function will not return different
actions given the same position as input.

The logical specification for the pickup task is as follows:

(0o == ) A correctTransitions —> correctPickup N 3.12)
correctIntermediatePositions .

Let p be the passenger’s initial position, correctPickup is:

((mr ==4) A\ (or—1 == p)) (3.13)
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Figure 3.3: Frozen Lake

The logical specification for the drop-off task is as follows:

(0o == p) A correctTransitions = dropoffAtGoal N (3.14)

correctintermediatePositions

3.4 Frozen Lake

3.4.1 The Environment Overview

Frozen Lake is another grid world, and there are two versions of it in OpenAl Gym:
deterministic and non-deterministic. The deterministic Frozen Lake is very similar to
Cliff Walking, except for three minor differences:

* Blue square in Figure 3.3 represents holes in the frozen surface; an agent who
falls into a hole will not receive negative rewards.

» The agent will be sent back to the start if fallen into a hole, but the agent will not
receive negative rewards for spending extra steps.

* OpenAl Gym offers a function to generate worlds with different arrangements
and sizes randomly. A generative Python script is also required to solve different
Frozen Lake problems.

3.4.2 The Deterministic Formal Model

We cannot specify “the agent will eventually reach the goal” using SyGuS-IF language,
as this is an unbounded property. Proving a function is undesired is equivalent to
proving “the agent will never reach the goal”. Knowing the agent cannot reach the goal
at time 7" does not mean we can infer the agent cannot reach the goal at 7 + 1. Similar
to previous problems, we decided to minimise 7. Although minimisation is unnecessary
in the Gym environment, checking the feasibility of the problem with a small 7 is faster
than solving the problem with a random big 7. The formal model of the deterministic
Frozen Lake follows the same style as the Cliff Walking model, and we will not discuss
it in detail.
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Figure 3.4: Frozen Lake: state transitions from the starting square.

3.4.3 Online Synthesis for a Stochastic Environment

In the non-deterministic Frozen Lake, an agent may not move in its intended direction
due to the slippery floor. There is % chance the agent moves in an orthogonal direction
to its intended direction, and the agent is equally likely to move in each of the two
orthogonal directions. For example, if the agent (1, 2) in Figure 3.3 wants to move down,
it may end up in one of (0,2), (1, 2), and (2, 2) with an equal probability. Although a
sophisticated agent performs equally well as random walking in this environment due
to the rewarding mechanism, we still want to synthesise an agent with a reasonable
strategy.

Standard (commonly used) SyGusS solvers are not good at dealing with probabilities.
There are SyGuS solvers that specialise in probabilistic synthesis, PAYNT is a famous
one among them [7], but these solvers require the problem to be modelled in a different
language, PRISM [35]. This project only attempted to model Gym environments in
the SyGuS-IF language. This subsection will explain why SyGuS-IF-language-based
approaches cannot deal with probabilities and what is the compromised solution.

Standard SyGusS solvers can deal with non-determinism by treating the environment
as a finite state machine. A transition from a state will reach a set of states. If the
agent moves down from the starting position (state0), it will reach state0, statel and
state4. However, this approach to modelling non-determinism ignores the probability
and suffers from the risk of state-space explosion.

No function guarantees to bring the agent to the goal within some steps. When the agent
is in the starting position, executing each valid move will make the agent stay in the
same position with a chance, as shown in Figure 3.4. The logical specification “reach

the goal at time 7" is infeasible (7 is non-infinity), as there is at least % chance that
the agent is not going anywhere.

The best motion strategy will minimise the expected number of steps. The goal of
maximising the expectation could be formulated in the SyGuS-IF language. Assigning
a utility to each non-deterministic transition, a better action should result in high-utility
transitions with a bigger chance. Minimising the expected number of steps becomes
maximising the utility. To make the specification correct, the utility of reaching a
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position must be the expected number of steps to travel from that position to the goal.

However, this game is unbounded. There can be infinitely many steps to travel from a
neighbouring square to the goal. In this case, computing the average number of steps
requires a set of mathematical calculations not included in any SyGuS-IF-supported
logical theory (e.g., integration and limit theories). Maximising the expectation is
infeasible without manually assigning the utility for each transition. However, SyGuS
can optimise the expectation when the maximum number of actions is restricted. We
will discuss a finite and stochastic problem in 4.1.3.

There is a different area of research in formal synthesis called strategy synthesis. It uses
Markov Decision Processes (MDP) and probabilistic checks to find a motion strategy
with some expectations. The found strategy is a direct mapping from states to actions
[20].

The only solution is not to formulate the entire problem as a SyGuS problem. By
performing online synthesis, each time, we generate a function that only solves a part of
the agent problem and re-synthesis a function when the previously synthesised function
is no longer working. Each synthesised function assumes the agent travels from its
current position to the goal position without slipping. A new motion plan will be
synthesised when the agent moves in an unintended direction and cannot reach the goal
position using the previous plan (assuming no slips). In this project, the online synthesis
is accomplished with a Python script. This is the pseudocode for the script:

Algorithm 1 Online Synthesis

Require: Env generated by the Gym API
state <— Env.start
goal < Env.goal
CVC5 _output < synthesis(Env, state)
plan < parse(CVCS5 _output)
while szate is not goal do
if planNotWorking(plan,Env, state) then
CVCS5 _output < synthesis(Env, state)
plan < parse(CVC5_output)
end if
state = plan.next_state(state) > execute the plan
end while

Our online synthesis is named after [43] and is different from receding horizon ap-
proaches [42], the motion plan is synthesised over the entire fully-observable environ-
ment, and there are no fixed time steps before the next re-planning.

3.4.4 Performance of Online Synthesis

The system’s performance is hard to evaluate due to high randomness in the environment.
A Frozen Lake problem with a bigger size or more holes tends to invoke CVCS5 more
times. Moreover, CVCS5 takes longer to solve a Frozen Lake problem with a bigger
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Figure 3.5: Atari Pong, the image is the output of the OpenAl Gym API

size or more holes. This stochasticity in the environment makes the computational cost
explodes even faster. This solution of the system is still not optimal, but better than
random walking in most scenarios.

3.5 Atari Pong

3.5.1 The Environment Overview

The Atari Pong is one of the most famous video games in history, and the gym environ-
ment is a simulation of the player against AI mode in the original game (Figure 3.5).
The game is played like tennis, with a paddle on both sides of the screen, and a player
moves a paddle vertically to reflect the ball. If the player or computer misses the ball,
the opponent will get one score and be able to serve in the next round. The reward is
negative when the opponent gets one score. Besides serving and moving the paddle, the
player can choose the direction to reflect the ball: up or down.

Three versions of the simulated environment differ from the original game by including
some noise. There are 4 versions of the Pong environment:

* One version deployed a stickiness mechanism, which forces the agent to repeat
the previous action.

* Another version deployed a stochastic frame-skipping mechanism, which makes
the skipped frame unobservable and the next frame unpredictable.

* The third version deployed both random mechanisms.
* The last version does not have any noise.

The noise was proposed as it benefits RL training [31] but can be detrimental to a
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synthesised agent. The synthesised agent must find strategies that work for all possible
scenarios, and the noise makes that impossible (same as the stochasticity). The frame-
skipping mechanism is especially devastating since it forces the agent not to choose
repetitive actions [28], and synthesised SyGusS agents are prone to act repetitively due to
the restriction in running time and the depth of AST. The stickiness is pseudo-random,
so it is still unfeasible to brute-force the random generator. In contrast, an RL agent
finds imperfect strategies that work for as many scenarios as possible.

Unlike other first-party environments, Atari environments are black boxes, and the latest
OpenAl Gym version no longer supports them. These environments are simulated via
the arcade learning environment (ALE) [11], and the ALE is built based on Atari 2600
emulator Stella and runs ROM images of games directly. Since Atari 2600 production
has been ceased 30 years ago, and most games were programmed in assembly language
for an old processor, modern binary analysis tools cannot interpret the ROM image
of an Atari game. Getting and understanding any Atari game source code nowadays
is a great challenge. We performed brute-force experiments to learn the environment.
However, we still cannot specify the exact environment using a function other than
switch cases.

The deterministic agent always misses the ball from a specific direction, but the synthe-
sised agent cannot exploit its weakness without knowing the exact adversarial strategy.
The best strategy is to return the paddle to the middle position immediately after reflect-
ing the ball; predict the ball trajectory immediately after the opponent reflects the ball;
the paddle is then moved to where the trajectory crosses the x-coordinate of the paddle.
The entire process is complex and will make the synthesis time unreasonably long.

We separate the process into three parts: predicting the trajectory, moving the paddle,
and returning to the middle. We did not further split each part into multiple more
straightforward problems, as we wanted each synthesised function to be meaningful.

3.5.2 Predicting the Trajectory

The trajectory-predicting algorithm takes the current and previous position of the ball
as input and returns a y-coordinate (where the paddle should move). This is a problem
to find a linear function that passes two points and then predicts the reflection.

We used x and y-coordinates instead of flattened indexes to model the world, as there
are an excessive number of states. There is no velocity decay throughout the game. The
ball takes an extra frame to reflect on the upper or lower boundary. There is no vertical
displacement during the reflection step, but the ball moves horizontally. Sometimes,
the ball moves vertically in that step, but the vertical displacement is compensated in
the next step, which results in no difference in the final intersection. Thus given the
velocity (vx;,vy;) the ball position (x;,y;) at time ¢ should be:

(3.15)

(%, ) = (Xt—1+vX-1, Y1), if isReflect(t)
tyJt) — .
(x—14+Vvx—1, Y—1+vy—1), otherwise

The horizontal component of the ball’s velocity vx; is always 2 pixels per frame, so we
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did not define a variable for it. The synthesised function takes the ball position (x;,yy)
and vy; as input parameters and returns yCoordinate.

For simplicity, we use correctTransition, to represent the above specification, and
correctVelocityU pdate, refers to:

(3.16)

(vxz,vyr) = (vxr—1, —vyi—1), if isReflect(t)
e (th—l, Vyt—1>7 otherwise

The function isReflect checks if the ball moves out of the boundary in the next step:
isReflect(t) = ((yr +vy;) < 0)V ((yr +vy;) > 79) (3.17)

The game board height was 160 pixels, but due to pixel duplication, the board can be
down-sampled into 80 x 80 pixels without affecting any game decisions.

The specification for where the paddle should move to can be less strict. After down-
sampling, the surface of the paddle consists of 4 pixels, and a contact of a single pixel is
enough to reflect the ball. The function isPredicted checks if the paddle has contacted
the ball at time step ¢:

isPredicted(yCoordinate, (x;,y;)) = (x; > 69) A (x; < 71)

. . (3.18)
N(yCoordinate < y;) A (yCoordinate +3 > y;)

The synthesised function should return a yCoordinate, which is the y-coordinate of the
top pixel of the paddle, and 69 to 71 is the range of the x-coordinate when the ball hits
the paddle. The logical specification is that correct ball movement and correct velocity
updates imply the paddle hits the ball before time step T':

T
( /\ correctTransition, /\ correctVelocityUpdate,)
= . (3.19)
= (\/ isPredicted(yCoordinated, (x;,y;)))

=1

We applied a top-down approach, where we first implemented the arithmetic equation
for predicting the trajectory and then minimise the grammar. The syntactic constraint
only includes expressions that exist in our implemented function:

Start: = RealNum | Start + RealNum | Start — RealNum | Start X Real Num
RealNum: =69 0.5 | x0 | yo | vyo
This top-down approach is not applicable when a desired function is unknown, and this

is not a practical use of SyGuS. The reason for doing so is to test the capability of a
SyGusS solver and provide benchmarks for research of new SyGusS solvers.

3.5.3 Controlling the Paddle

The game has a deterministic inertia mechanism, making the paddle hard to manipulate.
The function to calculate the inertia is not intuitive and disobeys real-world physics. We
could find a function other than switch cases to model the inertia in our experiments.
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We then calculated the average inertia, implemented a deterministic Python agent based
on it, and tested it in the gym environment. Since every part of the experiment is
deterministic, the agent traps in a loop that always reflects the ball in the same position.
Given a time bound 7', the agent’s total reward will be 0.

We did not write a benchmark for controlling the paddle for two reasons: CVC5 cannot
solve the trajectory-predicting problem within a reasonable time; We cannot model the
inertia correctly, and an approximation is verified to be sub-optimal.

3.5.4 Performance

While synthesising the function that predicts the trajectory, CVCS5 stopped on the first
verification stage. If we write the SyGuS problem as a verification problem, the verifier
spent more than 30 minutes without returning a result. However, this performance was
expected.

Although the logical specification is straightforward, the formal model is much more
complex. Firstly, using real numbers is inevitable in this model, as we need at least
one division to formulate the function passing through two points (the denominator is a
constant). Arithmetic theories for real numbers are computationally expensive for an
SMT solver. Secondly, there are much more states and variables compared to previous
models.

Since a SyGusS solver could not solve the first part of the desired strategy, it cannot
synthesise the whole function. Atari Pong is an example that shows the limitation of
SyGusS.

3.6 Atari Pitfall

3.6.1 The Environment Overview

Atari Pitfall is a deterministic but very complex environment. The environment consists
of 255 boxes. The top level of the environment is a maze, and each cell in the maze is a
box, and each box is connected to 4 other boxes. The agent could travel to other boxes
by moving toward the boundary of the current box. It could move left/right above/under
the ground. Every time the agent travels in the underground tunnel, it moves 3 boxes
forward. As demonstrated in Figure 3.6, the agent starts in BoxO0. If it moves left above
the ground, it will end up in Box254 or reach Box252 by moving left under the ground.
Underground walls stop players from using the underground shortcut.

Each scene has various hazards, like rolling logs, lakes, pits, holes, hostile creatures,
etc. There are 32 treasures spread over the 255 boxes, and the agent is awarded (with a
score) if it finds and picks up a treasure. On the other hand, the agent will be punished
for not avoiding the hazard, scores are reduced for being harmed by non-lethal hazards
(logs and holes), and the agent will lose one life for being harmed by other hazards.
There are 3 lives in total. The game will terminate if the agent runs out of time or all
lives are lost. There are 20 minutes for operation before the timeout. The game aims to
maximise the score by avoiding hazards and finding treasures. Because the environment
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Figure 3.6: Atari Pitfall

is complicated, the reward is sparse, and agents are penalised quickly, many classic
RL models cannot be adequately trained. Their best score is the default score a the
beginning of the game (they used O in the paper) [41], a simple strategy that waits until
timeout is no worse than these RL agents.

To find a better solution, we only have to set the goal as finding the nearest treasure and
then waiting for the timeout at a safe position. Synthesising a pixel-and-frame level
solution is impossible, as we do not have source code to model the exact transition
between states. The environment complexity has exceeded SyGuS solvers’ capability.
We only need to generate a high level that tells the agents which path to go and how it
could deal with some hazards.

3.6.2 Pathfinding

The synthesised agent should travel between boxes and find the nearest treasure. Like a
grid world, the agent can move in one of 4 directions. However, there are also some
minor differences:

* Pitfall boxes are arranged and enumerated linearly. We do not use flattened
indexes.

* Besides o; to encode which box the agent is in at time ¢, we also need isUnder; to
encode whether the agent is in the underground tunnel, the agent can only switch
isUnder; by using a ladder or hole (which always co-exists with a ladder).

* There is no forbidden state, but specific transitions between states are prohibited,
as there might be a wall or no ladder.

We first define 4 functions [wallRight, wallLeft, ladder, treasure]. They return true if the
current box (given as an Int parameter) contains a wall (left/right), ladder or treasure.
Each function is a disjunction of the current box index equals every box index that
contains a wall, ladder or treasure. For example, the function checks if there is a wall at
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the right end of the underground tunnel:

wallRight (currPosition) = (currPosition == —5) V (currPosition == —13) (3.20)
V(currPosition == 0) V (currPosition ==1) =

Since we aim to find the nearest treasure, we can only model a small part of the
environment. The agent is not expected to travel through a complete loop (255 boxes)
of the environment, so we do not have to define the environment as a circle. By using
negative numbers (-5 and -13) instead of large positive numbers (250 and 242) as box
indexes, we can simplify transition functions into:
nextPosition (o, isUnder;, m;) = ITE(m; == 0, oy,
ITE((isUnder, = ladder(currPosition)) \ (m; == 1), o, + 1,
ITE(—isUnder; = ladder(currPosition) A —wallRight(currPosition)
A(my==2), 0, +3, (3.21)
ITE(—isUnder; = ladder(currPosition) N\ —wallLeft(currPosition)
A(my ==3), o, — 3,
ITE((isUnder; = ladder(currPosition)) \ (m; ==4), oy — 1, 0y)))))

nextState (o, isUndery, m;) = ITE(m; == 0, isUnder,
ITE ((isUnder; = ladder(currPosition)) A\ (m; == 1), false,
ITE(—isUnder; = ladder(currPosition) N\ —wallRight(currPosition)
A (my ==2), true,
ITE (—isUnder; = ladder(currPosition) \ —wallLeft(currPosition)
A (my == 3), true,
ITE((isUnder; = ladder(currPosition)) \ (m; == 4), false, isUnder;)))))
(3.22)

where m; is the action performed at time step ¢, and it is the output of the synthesised
function. The action id [1, 2, 3, 4] refers to the direction the agent travels [right, right
underground, left underground, left].

The synthesised function takes o, and isUnder; as input parameters, so f(o;,isUnder;) =
m,. The logical specification of the synthesised function f is to find a treasure at time
T:

correctPosition A\ correctlsUnder = treasure(or) A (mp == 0) (3.23)

where mr == 0 is an abstract expression of waiting until timeout after finding the
treasure. The specification correctPosition refers to the agent always reaching the
expected position:

T

/\ 01+1 == nextPosition(o;,isUnder;, m;) (3.24)

=1

The specification correctIsUnder refers to:

T
/\ isUnder; == nextState(o;,isUnder;, m;) (3.25)

t=1
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Figure 3.7: Atari Pitfall, enumerated intermediate states, agents may transition to other
states by performing the correct actions.

The grammar is very similar to a grid-world problem, which we will not discuss in this
chapter, but instead, we will put the whole benchmark in Appendix A.

3.6.3 Avoiding Hazards

We cannot model the environment with pixel-and-frame level details, but we could
abstract the environment and synthesis a high-level plan. For example, in Figure 3.6,
Box254, there is a lake with 3 crocodiles and a swinging vine above the ground. The
agent will lose a life if falling into the lake or the mouth of a crocodile, to travel across
the dangerous lake, the agent could jump onto the swinging vine and jump off after
being swung to the opposite side of the lake, or it could timing jump 3 times when
crocodiles closed their mouth (the agent could stand on a crocodile with mouth closed).
The high-level plan does not include when or how long the agent should jump. It only
needs to know the agent is near the dangerous lake.

We investigated the game and found that each unique interactive hazard or challenge
always appears in a fixed position. Thus, we can reduce the 210 x 160 pixels game
into a 13-states environment. The agent only needs to do a monotonous action to reach
a connected state. The resulting state of acting is dependent on the specific box. For
instance, the agent will reach state 4 in Figure 3.7 by jumping rightwards, but it could
reach state 11 instead if there is a swinging vine.

There are 11 interactive objects listed in Table 3.1, most of which are hazards. The
agent could interact with the object and travel across the object. Please note that all
interactions (transitions) in the table are bi-directional, the agent can jump (leftwards)
over a snake from state 2 and reach state 3, and it can also jump reversely from state 3
and reach state 2. Besides these transitions, the agent can also travel between states if
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Interactive Objects | Positions (Between 2 States) How to Interact
Scorpion 8-9 Jump

Wall 7-8, 9-10 None

Pit 1-2 None
Quicksand 1-2 Walk

Crocodile + Lake | 1-2 3 Jumps
Ladder 4-5, 4-6, 6-5, 8-6, 9-6, 6-5, 8-9 | Jump, Climb, Walk
2 Holes 1-4,5-2 Jump

Rolling Log(s) 0-3 Jump

3 Fixed Logs 0-1, 2-3,2-3 Jump

Snake 2-3 Jump

Swinging Vine 1-11, 11-12, 12-2 Jump, Wait
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Table 3.1: A Pitfall box may contain several of the listed Objects, and the agent could
perform some actions to interact with them.

there is no object between them.

The number of transitions between states is minimised, and transitions with negative
rewards are removed. For example, the agent could fall into a hole and enter the
underground tunnel (a transition between state 1 and state 8). The transitions using
the ladder are also simplified, the agent could choose to reach state 4 or state 5 after
climbing up the ladder, but we force the agent to choose state 5 in our formal model.

A few objects in the environment are precisely the same as others except demonstrated
with a different image, and they are not listed in the table. For example, Box252 in
Figure 3.6 contains a lake with tidal (its size varies and may disappear regularly), which
is equivalent to a quicksand except it is blue. There are patterns that some objects
always co-exist: a pit (or a lake with fixed size) always appears with a swinging vine;
if there are 2 holes, there must be a ladder as well; a ladder always co-exists with one
wall. Moreover, there must be an object located between state 1 and state 2, if the object
is not a crocodile, there must be another object generated on the ground (state 0-1 or
state 2-3), and the underground tunnel must contain either a scorpion or a ladder (with a
wall).

Rolling Logs are ignored in the formal model as they are dynamic. The agent must
know when exactly it should jump to deal with rolling logs. Moreover, interactions with
a rolling log do not result in state transitions, as the agent could dodge the rolling log
by simply jumping in place.

Due to the excessive number of cases in the environment, we had to hardcode a transition
function for each unique box, e.g., the agent could climb a ladder in Box0 but could not
do so in Box254. We will not discuss the hardcoded function in detail but list an example
benchmark in Appendix B. Let correctTransition specify that each motion choice of
the function always results in the correct transition, and the logical specification for the
synthesised function is:

correctStartingState N\ correctTransitions —> reachingDestination (3.26)
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where correctStartingState and reachingDestination refer to where the agent enters and
leaves the box, this is decided by the top-level plan (output of pathfinding). For instance,
the agent enters the box, from box,_1 and travels to box,| can be specified as o9 == 0
and or == 3. In this agent problem, we do not have to minimise the number of steps,
and the agent has sufficient time. We let T be 12 (number of states minus 1) for every
box.

The syntactic constraint is also different because of the excessive number of cases and
limited number of states in the reactive plan. A switch-case statement is necessary for
this problem, with 13 cases in each box. We utilised 13 ITE statements to replicate the
functionality of a switch-case statement. Thus, the synthesizer must only map a motion
to each specific state.

3.6.4 Performance

The entire Atari Pitfall environment is split into 8 SyGuS benchmarks. One benchmark
is to find the shortest path to the nearest treasure, and other benchmarks correspond
to each box along the shortest path. CVCS5 with a default parameter could solve these
benchmarks within a half minute in total. The problem takes less time than grid-world
problems. It could be explained for 2 reasons: the pathfinding is similar to a grid-
world problem, but only with 6 steps; the specified ITE syntax in hazard avoidance
benchmarks has significantly reduced the search space in the synthesis phase.

According to no free lunch theorem (NFL) [3], a stochastic optimisation algorithm
cannot outperform an utterly random algorithm on every optimisation problem. Atari
Pitfall is a challenging problem for many classic reinforcement learning agents [41].
However, we think a SyGusS solver could help RL agents by generating high-level plans.
Compared to SyGusS, an RL agent cannot learn the high-level plan with 30 seconds of
training, whereas SyGuS cannot find the pixel and frame level strategy. Combining
SyGusS for high-level plans and RL for low-level actions could address the sparse reward
problem.

A similar framework has been proposed recently [29], whereas their method utilised
planning domain definition language (PDDL) [4]. Their experiments provide evidence
that combining logical specifications and reinforcement learning is effective.
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Discussion of SyGuS and Experiment
Results

This chapter will first discuss what OpenAl Gym environments we did not model and
explain our decisions. Then we will discuss the experiment on benchmarks in Chapter
3. The last section of this chapter listed the pros and cons of SyGuS compared to other
approaches.

4.1 Non-SyGuS-Compatible Problems

We have discussed why solving some agent problems involving stochasticity or optimi-
sation without re-synthesising is not feasible. We did not model other OpenAl Gym
environments due to the limitation of the commonly used SyGuS approaches, and this
section discusses these environments.

4.1.1 Other Atari Environments

Many Atari games were designed to be non-deterministic so that players could have a
different experience in each game. However, the SyGuS-IF language does not support
arithmetic for probabilities, and finding a strategy that never fails is infeasible in many
cases. For example, in the famous Pac-Man, an adversarial ghost moves faster than
Pac-Man. The ghost moves in random directions. No matter where the Pac-Man is, there
is always a chance for the ghost to reach Pac-Man. A human player or reinforcement
learning strategy would try to minimise that probability, whereas a SyGuS solver will
find the problem infeasible.

Most games aim to maximise the score, whereas this is impossible to prove when
context-free grammar defines a recursive and unbounded search space. A game compat-
ible with the standard SyGuS must not be stochastic and does not involve optimisation.

Modelling SyGuS-compatible Atari Environments is still challenging since all Atari
games are black boxes. We cannot guarantee the specification is correct without knowing
the source code. Thus, the synthesised function is not guaranteed to be correct.

28
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4.1.2 All MudoCo Environments

MulJoCo environments pose a massive challenge for solving and modelling due to their
continuous nature. The torque applied to each robot joint in each coordinate is a floating
number. Unlike agent problems with a discrete action space, we cannot include an
infinite action space in our syntactic constraint. As an example, in cliff_walking, we
included the action of moving left, which is unnecessary for the solution. Still, in a
MuJoCo model, we cannot include every float32 number because most are unnecessary
for the goal. For each floating number, we need a mathematical computation that returns
it. However, we do not know the mathematical computation unless the reactive strategy
is known.

Besides the problem of continuous action space, there is no bounded goal in all MuJoCo
environments. We cannot prove an agent is “running as fast as possible forever”, even if
we could model them in the SyGuS-IF language. Moreover, Mujoco environments have
random noises. In conclusion, MuJoCo environments possess almost every property
that SyGuS cannot handle easily.

4.1.3 Toy Text: Blackjack

We did not model one Toy Text environment, Blackjack, a classical casino banking
game. The environment is stochastic and bounded, and we think SyGusS can solve this
problem by reducing it into a mathematical problem but doing so is unnecessary. If we
specify the desired function to maximise the expectation of winning, the synthesised
function is equivalent to a part of the logical specification.

In this game, the dealer has an infinite deck, and the game begins with the dealer having
one card face-up (observed by all) and one card face-down (hidden). Meanwhile, the
agent has two face-up cards. The agent can request more cards or stop at any point as
long as the total sum of their cards does not exceed 21. The dealer will continue drawing
cards until their sum reaches 17 or higher. If the dealer or the agent’s sum exceeds 21,
they lose the game. However, if neither exceeds 21, the winner is determined based on
who has a sum closer to 21. If both of them exceed 21, the dealer wins.

Unlike the non-deterministic Frozen Lake problem, Blackjack is finite. The agent or
the dealer cannot draw infinite times. In the luckiest scenario, an agent will have at
most 21 Aces (Ace is 1 point or 10 points), whereas the agent in the Frozen Lake could
always move in an unintended direction and not reach the goal. We could only define
the accurate expectation when the stochastic problem is bounded.

Given the observed card and their fixed behaviour, we could compute the expectation
E(Sumy) of the dealer’s sum. We could also compute the probability P, of the agent’s
sum greater than E (Sum,) given the agent requests extra cards. The agent’s probability
of exceeding 21 after requesting one extra card can be expressed using P,, and the
probability of the dealer exceeding 21 is P;. Let the probability of winning if the agent
requests an extra card be P,;,1:

Pyint = (1—P,) x (1 — (1—Py) x (1—P,)) 4.1)
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If the agent stops to request extra cards, the probability of the agent’s current sum
greater than E(Sumy) is Py, and the probability of winning is Pyyino:

PwinO =1- (1 —Pd) X (1 —Ps) (42)

The synthesised function must choose an action that maximises the probability of
winning given the current observation o, so the logical specification should be:

f(O) == ITE<Pwinl Z PwinOa 170) (43)

where 1 is requesting extra cards, and 0 is stopping. However, the desired function is
the same as ITE (Pyin1 > Pyino, 1,0). In this case, the formal model is not meaningful
in solving the problem.

4.1.4 All Classic Control Environments

Synthesis control is different from other agent problems. Proving an agent can reach a
position is straightforward, whereas proving the agent will stay in that position forever
is challenging. Modern commonly used SyGusS solvers cannot prove the reach-and-stay
specification.

Researchers have been investigating the formal synthesis of control problems and have
made significant advances in solving such problems using CEGIS, as evidenced in
recent studies [1] [2]. In the literature, researchers used a special CEGIS algorithm, and
the problem was split into two Single Input, Single Output (SISO) models. Generally,
we consider synthesising control problems as a different research topic that is already
well-studied.

4.1.5 All Box2D Environments

Box2D environments are highly configurable, and we could remove all random noises.
Each environment is randomly initialised, and we still need a benchmark generator.
Modelling Box2D environments is possible, whereas solving them using a generally
used SyGusS solver is practically impossible. They are much more complex environ-
ments than Atari Pong: each environment’s action space has at least 5 dimensions,
there are more intermediate states before achieving the goal, and each state encodes
more information (requires more variables to model). The state explosion is inevitable.
Moreover, trigonometry was involved in every Box2D environment, which forced the
solver to use an arithmetic theory that is harder to solve. We decided not to model
Box2D environments because CVCS failed to solve a similar but simpler problem.

4.2 CVC5 Performance on Benchmarks

4.2.1 Comparison with a Related Work

The relationship between the execution time of the SyGusS solver and the agent problem
is studied and well explained in [15]. SyGuS solvers suffer from the state-space
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explosion, and SyGusS for agent problems are generally not scalable. The synthesis time
is exponential to the depth of AST and the number of time steps before reaching the
goal.

Although the previous work used CVC4 in their experiment, our experiment results are
consistent with the previous study’s conclusion. Cliff Walking is intuitively simpler
than Taxi, but this is not true for a SyGusS solver. The Cliff Walking agent must travel
more steps to reach the goal, and the agent must change direction 2 times. In contrast,
the agent in Taxi will change direction at most 2 times (depending on the random
initialisation) and perform at most 10 actions. In a reactive agent strategy, the number
of turning points in the path is proportional to the depth of AST. As shown in Figure 4.1,
CVCS takes more time to solve the Cliff Walking benchmark than the average synthesis
time of multiple randomly generated Taxi benchmarks.

4.2.2 Comparison of Enumeration Strategies

In this project, we further investigated how the enumeration strategy of a CEGIS solver
affects the synthesis time. We experiment on an Intel Core 17-9750H CPU 2.60GHz
with 16 GB of RAM and Windows 10 OS. Only up to 20% of CPU power was occupied
throughout running, but the RAM could be fully occupied when there is a state-space
explosion.

5 enumeration strategies can be configured as a command line parameter: smart, fast,
random, var-agnostic, and auto. Candidate programs are enumerated in different orders
by different strategies. They are detailed explained in a thesis for CVC4 [34], here is a
brief summary:

* smart enumeration sorts candidates based on datatype constraints. It rules out
many redundant solutions.

* fast enumeration sorts all candidates purely based on their AST. It only rules out
a few clearly redundant solutions.

* random enumeration is a pseudo-randomly generated sequence.

* var-agnostic enumeration is a hybrid of smart and fast enumerations. The
technique is advantageous when there are many variables in the grammar.

 auto enumeration is the default option. It lets the solver decide the best enumera-
tor for each SyGuS problem.

The grammar for the Cliff Walking, Taxi and Frozen Lake benchmarks are recursive, and
searching a candidate randomly from an infinite search space is not desired. In our first
experiment, the random enumeration spent more than 10 hours without solving a Taxi
benchmark, so we decided not to include the random strategy in the latter experiments.

We only used deterministic Frozen Lake in our experiments, and there are two reasons:
the experiment aims to compare CVCS5’s enumeration strategies, and online synthesis
requires additional script; the execution time of our online synthesis is highly stochastic,
and we cannot guarantee a high statistical significance.
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Figure 4.1: Experiment results: average running time on benchmarks.

We found that CVCS5 cannot solve a grid world with 3 or more turning points in the
optimal path. For example, the agent in Figure 3.3 must change direction 3 times to
travel from the starting square to the goal square. This is due to the state-space explosion.
The minimum depth of AST is directly related to the number of turning points, and the
synthesis time rises quickly as the depth of AST increases. In the experiment, we found
the smart enumeration strategy could not solve the specified environment shown in
Figure 3.3 within 10 hours. Moreover, we found the fast enumeration strategy could not
solve any Pitfall hazard avoidance benchmarks within a reasonable time. Thus, we set a
10 minutes time limit on all Frozen Lake and Pitfall experiments. All Cliff Walking and
Taxi benchmarks have at most 2 turning points in their optimal paths. Thus we did not
restrict the execution time in Cliff Walking and Taxi experiments.

The experiment results show that the smart, var-agnostic and auto enumeration strategies
have close results. The fast enumeration strategy is significantly faster with grid-world
problems and much slower than others in the Pitfall problem. A Pitfall problem
combines one pathfinding benchmark with multiple hazard avoidance benchmarks, and
the fast enumeration could solve the pathfinding benchmark quickly.

Enumeration strategies are designed for pruning the search space and reducing the
number of invocations of the verifier [5]. By evaluating some properties of candidate
functions (datatype or relation with variables), many expressions will be ignored for
sharing the same property as a rejected candidate function. However, this enumeration
process is computationally expensive sometimes, and it may be harmful to the synthesis
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time, especially when the verification is computationally cheap, and the search space is
narrow (so the pruning is less effective).

The fast enumeration strategy is a brute-force sort of all expressions by their syntactic
complexity. In grid-world problems, all synthesised functions are uncomplicated, and
only a few expressions are eliminated by other strategies. Hence, the most straightfor-
ward sorting method proves to be the swiftest in grid-world problems, and the it should
be the preferred choice for such benchmarks in the auto enumeration strategy. The latter
was created to solve most benchmarks faster on average. However, due to a shortage of
resources in the field of reactive agent synthesis, the auto enumeration strategy may not
always make the best decision in such situations.

The performance of the fast enumeration strategy is significantly worse in the pitfall
benchmarks. Remember the specified syntactic structure in pitfall is a switch-case
statement, and the depth of AST is fixed. The fast enumeration strategy will check at
most a'3 expressions, where a is the number of actions. In contrast, pruning the search
space using other enumeration strategies significantly reduces this upper limit.

4.3 SyGuS and Reinforcement Learning

Many studies with OpenAl Gym have compared their results with previously studied
RL methods. However, we will not compare the running time and performance with RL
methods in this project. Instead, we will focus on explaining why SyGusS is different.

SyGuS cannot deal with black boxes, which makes the performance or the execution
time of SyGuS and RL methods incomparable. All environments in OpenAl Gym are
expected to be used as black boxes. During RL training, the agent was not supposed
to know the semantics of the observations, and the semantics should be learned after
several attempts and receiving rewards. For example, in the Atari Pong environment,
the observation is a set of pixels, where the agent does not know which pixel indicates
the ball or the paddle at the beginning, nor does it not know what will happen when the
paddle hits the ball. In contrast, the background knowledge is learned by humans and
specified as input to SyGuS solvers. SyGusS is a different type of problem, which is not
comparable with OpenAI Gym problems. A rigorous comparison should be carried out
with an algorithm that automatically rewrites an agent problem in OpenAl Gym into a
SyGusS problem and then solves it with a SyGusS solver.

SyGusS guarantees to return a correct output, which differs from RL approaches. How-
ever, in most cases, the agent problem involves stochasticity and maximisation, and
how to specify the synthesised function becomes a problem. Without specifying that
the synthesised function should maximise the reward or expectation, the synthesised
function is not guaranteed to outperform an RL solution.

In terms of the execution time, SyGuS problems are undecidable if the syntax contains
an ITE statement [13]. However, an ITE statement is necessary for reactive agent
problems. The efficiency of modern SyGusS solvers restricts the depth of AST. Any
functions with a deep AST cannot be synthesised within a reasonable time. As a
comparison, RL methods with deep neural networks can approximate any continuous
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function [23]. SyGusS solvers are not expected to outperform RL methods on complex
agent problems.

4.4 SyGuS and Genetic Programming

Genetic programming is an evolutionary algorithm that could also synthesise programs.
Applying genetic programming on Atari games is also studied [41], whereas this
approach is similar to RL approaches. An evolved program is not guaranteed to be
correct but satisfies most input-output examples. The approach could deal with black
boxes, as it only requires input-output samples, and it has the power to express very
complex functions, including loops.

4.5 SyGuS and Automated planning

SyGusS is more similar to automated planning, with both methods specifying the
background knowledge as a formal language. There are many solvers only focusing on
automated planning based on PDDL. Because a SyGusS solver is designed to tackle a
wide range of problems, the verification algorithm needs to perform better on average
for all problems. This makes a SyGusS solver unlikely to outperform a PDDL solver in
solving agent problems.

PDDL solvers usually return a sequence of actions, which differs from the function
in SyGuS. Our benchmarks cannot show this difference. It can be demonstrated by
randomised Cliff Walking, in which the agent’s initial position is randomly generated.
To model this environment, we only have to change the correctStartingPosition in the
logical specification (3.3) into (09 <36 Aog > 0) V (09 == 47), and the synthesised
function would be the same as before. In contrast, this different version requires a
sophisticated technique to specify in PDDL [19]. A more rigorous comparison requires
experiments with PDDL models.
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Conclusions and Future works

In this project, we modelled 5 OpenAl Gym environments using the SyGuS-IF language
and implemented a Python script for generating new benchmarks. While designing grid-
world benchmarks, we followed the style of a previous work [15]. Besides reproducing
the achievements in the previous work, we have also demonstrated the approach of
applying SyGusS to stochastic problems, designed new benchmarks for problems that
were not studied, and investigated why SyGuS is incompatible with other OpenAl Gym
environments. Last, we evaluated the state-of-the-art SyGuS solver (CVCS5) using our
benchmark and studied why the enumeration strategy in a CEGIS solver affects the
synthesis time.

5.1 Summary of Findings

SyGusS solvers can solve some simple agent problems in OpenAl Gym, which guar-
antees the correctness of the solution. If the logical specification is equivalent to
maximising the reward, the synthesised function is guaranteed to be the best strategy
that maximises the reward; RL and genetic programming are not guaranteed to be the
best. PDDL approaches are more similar to SyGuS approaches in modelling the envi-
ronment in formal language and guaranteeing it to be the best. But PDDL approaches
focus more on sequential motion strategy. Applying SyGusS to agent problems can be
beneficial, but only in minor cases.

If the specification is not guaranteed to be correct, then the synthesised function is
not guaranteed to be correct. Generating specifications is difficult: nowadays, there is
no practical approach to dealing with black boxes using SyGuS. Also, the SyGuS-IF
language does not support arithmetic theory for probabilities and limits, and modelling
stochastic agent problems is challenging.

One of the most significant limitations of modern SyGusS solvers is their efficiency.
Although we can split an agent problem into several SyGuS problems, deciding the
complexity of each sub-problem and where to split becomes a dilemma. Because of
the undecidability of SyGuS problems with ITE statements, the synthesis time rapidly
increases as the depth of AST increases. A complex function will not be synthesised
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within a reasonable time, and a simple function could be equivalent to the logical
specification sometimes (like the Blackjack environment). A SyGuS solver could
synthesise a function quickly where there is no ITE in the syntactic constraint or the
exact number of ITE is explicitly specified (like the hazard avoidance benchmark),
whereas this is rarely the case for reactive agent problems.

In some complex agent problems, the decisions can be synthesised hierarchically, and a
high-level plan can sometimes be expressed with a simple function. SyGuS could be
combined with other probabilistic approaches and improve performance by generating
a high-level plan that is guaranteed to be correct. In our Pitfall models, the high-level
plan includes which direction the agent should go and what action should be performed
to tackle each hazard. With this information, an RL agent only has to learn the exact
pixel and frame number to act, and the difficulty of training is significantly reduced.

5.2 Limitations and Future Works

SyGusS is a vibrant research field, there are numerous recent signs of progress in
improving SyGusS, and there will be more in the future. In this section, we will discuss
what we can or could have done to improve the performance of SyGuS on reactive
agent problems and suggest potential future works.

Knowing that the enumeration strategy affects the synthesis time significantly, a straight-
forward enumeration strategy that does not prune the search space effectively speeds up
the synthesis in some grid-world problems. We could further improve the performance
by designing a “state” enumeration strategy that prunes more search space and is com-
putationally cheap. There are unsafe states in agent problems, where reaching these
states indicates failure. By checking if the agent reaches an unsafe state in the first few
steps, a large number of expressions could be ignored in the synthesis phase, and this
checking process could be fast if it only focuses on the first few steps. As a piece of
supporting evidence for our proposal, CVCS5 spent more time solving the alternative
benchmark in section 3.2.2, where stepping off the cliff was not linked directly to failure.
A desired enumeration strategy would automatically establish the logical connection
between stepping off the cliff and failure, resulting in the solver spending equivalent
time on the benchmark in sections 3.2.1 and 3.2.2.

A recent study proposed an approach that synthesis probabilistic programs [14]. The
approach is based on the PRISM language, which we did not consider until the late stage
of the project. We could have modelled the non-deterministic Cliff Walking environment
using PRISM and solved it with a probabilistic synthesis tool (e.g., PAYNT). The
program synthesiser using PRISM may also suffer from the state-space explosion.
This relationship between the agent problem and the execution time requires further
examination. The probabilistic theory could be added to the SyGuS-IF language as a
suggested future work. Developing new solvers dealing with the new theory will then
become another challenge. This is a long-term research topic.

Combining SyGuS with modern deep-learning algorithms is another research topic full
of potential. In the previous chapter, we discussed generating high-level plans with
SyGuS and making detailed decisions using reinforcement learning approaches. We
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could also apply human-in-the-loop (HITL) approaches to extract logical specifications
from a black box environment. Specifying the background logic is a great challenge,
and Al-generated logical specifications are not guaranteed to be correct, whereas the
HITL system addresses both issues.

In Atari games, a machine-learning approach could learn a logical specification from
gaming samples of human players. After that, the logical specification is checked and
modified by a human user so that the logical specification is more likely to be correct.
The system will then solve the specified SyGuS problem using a SyGusS solver. An RL
approach could generate detailed decisions if the synthesised function is a high-level
plan. This approach could potentially improve the usability of SyGusS, as well as
mitigate the error rate in RL approaches.
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Appendix A

Pathfinding Benchmark

(set—logic LIA)

(define—fun wall-left ((curr—position Int)) Bool
(or (= curr—position (- 6)) (= curr—position (= 9))
(= curr—position (- 10)) (= curr—position (- 11))
(= curr—position (- 12)) (= curr—position (- 14))
(= curr—position 4) ))

(define—fun wall-right ((curr—position Int)) Bool
(or (= curr—position (- 5)) (= curr—position (- 13))
(= curr—position 0) (= curr—position 1) ))

(define—fun ladder ((curr—position Int)) Bool
(or (= curr—position (- 6)) (= curr—position (= 9))
(= curr—position (- 10)) (= curr—position (- 11))
(= curr—position (- 12)) (= curr—position (- 14))
(= curr—position 4) (= curr—position (- 5)) (=
curr—position (- 13)) (= curr—position 0) (=
curr—position 1) ))

(define—fun treasure ((curr—position Int)) Bool
(or (= curr—position (- 17)) (= curr—position 6)))

(define—fun next—position ((curr—position Int) (

underground Bool) (way Int)) Int

(ite (= way 0) curr—position

(ite (and (=> underground (ladder curr—position)) (=
way 1)) (+ curr—position 1)

(ite (and (=> (mnot underground) (ladder curr—position
)) (mot (wall-right curr—position)) (= way 2)) (+
curr—position 3)

(ite (and (=> (mnot underground) (ladder curr—position
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)) (mot (wall-left curr—position)) (= way 3)) (+
curr—position (- 3))
(ite (and (=> underground (ladder curr—position)) (=
way 4)) (+ curr—position (- 1))
curr—position))))))

(define—fun next—state ((curr—position Int) (underground

Bool) (way Int)) Bool

(ite (= way 0) underground

(ite (and (=> underground (ladder curr—position)) (=
way 1)) false

(ite (and (=> (mnot underground) (ladder curr—position
)) (mot (wall-right curr—position)) (= way 2))
true

(ite (and (=> (mnot underground) (ladder curr—position
)) (nmot (wall-left curr—position)) (= way 3)) true

(ite (and (=> underground (ladder curr—position)) (=
way 4)) false

underground))))))

(synth—fun move ((curr—position Int) (underground Bool))
Int
((Start Int) (Moveld Int) (CondInt Int) (StartBool
Bool))
((Start Int (
Moveld
(ite StartBool Travel Travel)
))
(Moveld Int (O
1
2
3
4
))
(CondInt Int (
curr—position

=D 234 =5 E6) =7 (-8

(= 9) (= 10)
(- 11) (- 12) (- 13) (- 14) (- 15) (- 16) (- 17)
0123435
))
(StartBool Bool ((and StartBool StartBool)
underground

(wall-left curr—position)
(wall-right curr—position)
(ladder curr—position)
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(or StartBool StartBool)

(not

StartBool)

(<= CondInt CondlInt)
(= CondInt CondInt)))))

(declare—var
(declare—var
(declare—var
(declare-var
(declare-var
(declare—var
(declare—var
(declare-var
(declare-var

(constraint

(and (= posO

posO Int)
under0 Bool)
mov0 Int)
posl Int)
underl Bool)
movl Int)

pos20 Int)

under20 Bool)
mov20 Int)

0) (not under0) (= movO0 (move posO under0))

= posl (next—position posO under0 mov0)) (= underl
(next—state posO under0 mov0)) (= movl (move posl
underl))

(= pos2 (next—position posl underl movl)) (= under2
(next—state posl underl movl)) (= mov2 (move pos2
under2))

(= pos3 (next—position pos2 under2 mov2)) (= under3

(next—state pos2 under2 mov2)) (= mov3 (move pos3
under3))

(= pos20 (next—position posl9 underl9 movl9)) (=
under20 (next—state posl9 underl9 movl9)) (=
mov20 (move pos20 under20))

) (and (= mov6 0) (treasure pos6))))

(check—-synth)

The move function is the synthesised function f in Chapter 3, pos0, posl, pos2... refers
to oy, mov(0, mov1, mov2... refers to m;, and under0O, underl, under 2 refers to isUnder_t.
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Hazard Avoidance Benchmark

(set—logic LIA)

; up left end
(define—fun stateO ((three—logs Bool) (move Int)) Int
(ite (or (and three—-logs (= move 5)) (and (not
three—logs) (= move 1))) 1 0))

; oup left
(define—fun statel ((three—logs Bool) (pit Bool) (
quicksand Bool) (crocodile Bool) (ladder Bool) (
ladder—and-holes Bool) (swinging—vine Bool) (move Int)
) Int
(ite (or (and (mnot pit) ladder (= move 5))
(and (or crocodile (and (not pit) ladder—and-holes))
(= move 7))
(and (mnot pit) quicksand (= move 1))) 2
(ite (and swinging—vine (= move 5)) 11
(ite (or (and three—-logs (= move 6)) (and (not
three—logs) (= move 3))) O
(ite (or (and ladder (= move 1)) (and
ladder—and—-holes (= move 5))) 4 1)))))

; up right

(define—fun state2 ((three—logs Bool) (snake Bool) (pit
Bool) (quicksand Bool) (crocodile Bool) (ladder Bool)
(ladder—and—-holes Bool) (swinging—vine Bool) (move Int
)) Int
(ite (or (and (mot pit) ladder (= move 6))
(and (or crocodile (and (not pit) ladder—and-holes))

(= move 7))

(and (not pit) quicksand (= move 3))) 1
(ite (and swinging—vine (= move 6)) 12

45
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(ite (or (and (or three—logs snake) (= move 5)) (and
(not (or three—logs snake)) (= move 1))) 3

(ite (or (and ladder (= move 3)) (and
ladder—and—-holes (= move 6))) 5 2)))))

; up right end
(define—fun state3 ((three—logs Bool) (snake Bool) (move
Int)) Int
(ite (or (and (or three—logs snake) (= move 6)) (and
(not (or three—logs snake)) (= move 3))) 2 3))

; up left middle
(define—fun state4 ((ladder Bool) (ladder—and-holes Bool)
(move Int)) Int
(ite (and (or ladder ladder—and-holes) (= move 2)) 6
(ite (and (or ladder ladder—and-holes) (= move 5)) 5
(ite (or (and ladder (= move 3)) (and
ladder—and-holes (= move 6))) 1 4))))

; up right middle
(define—fun state5 ((ladder Bool) (ladder—and-holes Bool)
(move Int)) Int
(ite (and (or ladder ladder—and-holes) (= move 2)) 6
(ite (or (and ladder (= move 1)) (and
ladder—and—-holes (= move 5))) 2
(ite (or (and ladder (= move 3)) (and
ladder—and—-holes (= move 6))) 4 5))))

;ladder

(define—fun state6 ((ladder Bool) (ladder—and-holes Bool)
(scorpion Bool) (move Int)) Int
(ite (and (or ladder ladder—and-holes) (= move 4)) 5
(ite (and (mnot scorpion) (= move 1)) 9
(ite (and (mnot scorpion) (= move 3)) 8 6))))

;down left end
(define—fun state7 ((wall-left Bool) (move Int)) Int
(ite (and (mot wall-left) (= move 1)) 8 7))

;down left
(define—fun state8 ((wall-left Bool) (ladder Bool) (
ladder—and—-holes Bool) (scorpion Bool) (move Int)) Int
(ite (and (mot wall-left) (= move 3)) 7
(ite (or (and scorpion (= move 5)) (and (mnot scorpion
) (= move 1))) 9
(ite (and (or ladder ladder—and-holes) (= move 4)) 6
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8))))

;down right
(define—fun state9 ((wall-right Bool) (ladder Bool) (
ladder—and—-holes Bool) (scorpion Bool) (move Int)) Int
(ite (and (mnot wall-right) (= move 1)) 10
(ite (or (and scorpion (= move 6)) (and (mot scorpion
) (= move 3))) 8
(ite (and (or ladder ladder—and-holes) (= move 4)) 6
9))))

;down right end
(define—fun statelO ((wall-right Bool) (move Int)) Int
(ite (and (mot wall-right) (= move 3)) 9 10))

; swinging—vine left

(define—fun statell ((swinging—vine Bool) (move Int)) Int
(ite (and swinging—vine (= move 1)) 1
(ite (and swinging—vine (= move 0)) 12 11)))

; swinging—vine right

(define—fun statel2 ((swinging—vine Bool) (move Int)) Int
(ite (and swinging—vine (= move 2)) 2
(ite (and swinging—vine (= move 0)) 11 12)))

(define—fun interpret—move ((curr—state Int) (three-logs
Bool) (snake Bool) (pit Bool) (quicksand Bool) (
crocodile Bool) (ladder Bool) (ladder—and-holes Bool)
(swinging—vine Bool) (scorpion Bool) (wall-left Bool)
(wall-right Bool) (move Int)) Int

(ite (= curr—state 0) (state0 three—logs move)

(ite (= curr—state 1) (statel three—logs pit
quicksand crocodile ladder ladder—and-holes
swinging—vine move)

(ite (= curr—state 2) (state2 three—logs snake pit
quicksand crocodile ladder ladder—and-holes
swinging—vine move)

(ite (= curr—state 3) (state3 three—logs snake move)

(ite (= curr—state 4) (state4 ladder ladder—and-holes
move)

(ite (= curr—state 5) (state5 ladder ladder—and-holes
move)

(ite (= curr—-state 6) (state6 ladder ladder—and-holes
scorpion move)

(ite (= curr—state 7) (state7 wall-left move)

(ite (= curr—state 8) (state8 wall-left ladder
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ladder—and-holes

(ite (=

ladder—and-holes

(ite (=
(ite (=
(ite (=

(- 1
))))))))

48

scorpion move)
curr—state 9) (state9 wall-left
scorpion move)
curr—state 10) (statelO0 wall-right move)
curr—state 11) (statell swinging—vine move)
curr—state 12) (statel2 swinging—vine move)

ladder

))))))

(synth—fun move ((curr—state Int)) Int

((Start Int) (Moveld Int))
((Start Int (
(ite (= curr—state 0) Moveld
(ite (= curr—state 1) Moveld
(ite (= curr—state 12) Moveld (- 1)
)))))))))))))))
(Moveld Int (0 ; stay
1 ; walk right
2 ; walk left
3 ; climb down
4 ; climb up
S ; jump right
6 ; jump left
7 ; 3 jumps (bidirectional)
))

))

(declare—var
(declare-var
(declare-var
(declare—var
(declare—var
(declare-var

(declare—var
(declare—var
(declare—-var
(declare-var
(declare-var
(declare—var
(declare—var
(declare—var
(declare-var
(declare-var

Int)
Int)
Int)
Int)

posl
mov1
pos2
mov2

posl2 Int)
movl2 Int)

snake Bool)
swinging—vine Bool)
scorpion Bool)
crocodile Bool)
pit Bool)

ladder Bool)
ladder—and-holes
wall-left Bool)
wall-right Bool)
quicksand Bool)

Bool)
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(declare—var three—logs Bool)

(constraint

posl 0) (= movl (move posl))

pos2 (interpret—move posl three—logs snake pit
quicksand crocodile ladder ladder—and-holes
swinging—-vine scorpion wall-left wall-right movl)
) (= mov2 (move pos2))

pos3 (interpret—move pos2 three—logs snake pit
quicksand crocodile ladder ladder—and-holes
swinging—vine scorpion wall-left wall-right mov2)
) (= mov3 (move pos3))

posl2 (interpret—-move posll three—-logs snake pit
quicksand crocodile ladder ladder—and-holes
swinging—vine scorpion wall-left wall-right movll
)) (= movl2 (move posl2))

snake (mot swinging—vine) (not scorpion) (not

crocodile) (mot pit) ladder (mot ladder—and-holes
) (not wall-left) wall-right (mot quicksand) (not
three—logs)

) (= posl2 3)))

(check—-synth)



