Detecting Sockpuppet Accounts in Wikipedia:
A Quantitative Evaluation of Different Models

Skaistée Mielinyté

4th Year Project Report
Computer Science
School of Informatics
University of Edinburgh

2023

Abstract

Sockpuppetry problem, where the same user creates multiple accounts to engage in some
malicious activity, significantly undermines the quality of Wikipedia. Past research
addressed this problem by presenting many candidate models for automated sockpuppet
accounts’ detection in Wikipedia, however the suggested models were never directly
compared, which prevented from knowing which model has the highest potential of
achieving good practical results in Wikipedia. This study filled the gap by recreating the
models (textual, non-textual and combined), described in the past research, evaluating
them on the standard dataset formed from users’ comments in Wikipedia’s talk pages
and directly comparing the accumulated results. In order to make the comparison up-to-
date and reflecting the latest innovations, transformers were also fine-tuned to detect
sockpuppet accounts in Wikipedia and included in the comparison after evaluating them
on the same dataset. Findings of this study show that transformers, more precisely
the RoBERTa transformer, are the most compatible with the sockpuppetry problem
in Wikipedia - the RoBERTa transformer achieved 84.4% recall, 9.8% FPR, 89.3%
precision and 86.7 f-score. It was also found that the ROBERTa transformer can achieve
comparable results when generalising on comments from unseen topics and unseen
time periods, which makes RoBERTa even a more promising candidate. Because
of the high FPR, the currently proposed RoBERTa can only offer a semi-automated
sockpuppet detection, however it is still sufficient to considerably improve the current
completely manual sockpuppet detection mechanism in Wikipedia. Having a more
effective sockpuppet detection system should make Wikipedia a more accurate, objective
and welcoming website.

Research Ethics Approval

This project obtained approval from the Informatics Research Ethics committee.
Ethics application number: 34872
Date when approval was obtained: 2023-01-27

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Skaisté Mielinyte)

Acknowledgements

I'would like to thank my supervisor Dr Bjorn Ross for providing me continuous guidance
and help while I was working on this project. I am especially grateful for his suggestion
to use transformers in this study, which, I believe, highly increased the value of my
study.

I would also like to thank my family for always supporting me in every possible way
and my friends for their companionship. Moral support of my family and friends really
helped not only while working on this project, but also throughout all four academic
years.

Table of Contents

1 Intr 1

2 Background|
2.1 ~ Sockpuppetry problem in Wikipedia]

3.3 Cleaningdata]
[3.3.1 Cleaningmainfiles|
[3.3.2 Cleaning metadata files|.

4 Comparing different model groups on standard metrics (RQT))
4.1 Methodology|
[4.1.1 Recreatingmodels|
4.1.2 Evaluatingmodels|

[y

oo NN NNk BB WWW

10
10
10
10
11
12
15
16
16
16

17
17
17
22
23
23

26

[5.2 Methodology|

[5.2.1 Selecting transtormers|,

[5.2.2 Fine-tuning transformers|

[5.2.3 Evaluating transformers|

021 RQ3a

i ol
[/.1 Implications|

(/.2 Comparison with existing literature|.

[7.3.1 Design limitations|

[7.3.2 Implementation limitations|

4 Possible future work| . .

A First appendix

[A.2 Extended results of RQ]I]|
[A.3 Additional data for RQ?2)

30
30
31
31
33
34
34

36
36
37
38
38
39
39
40

41

Chapter 1

Introduction

Wikipedia can be written by anyone, but not everyone contributing to it has good
intentions. One of the major sources undermining Wikipedia’s quality are sockpuppet
accounts. Sockpuppets are a type of fake identity where the same person creates multiple
accounts and uses them for malicious purposes, i.e. sockpuppetry is “the misuse of
multiple Wikipedia accounts” as originally defined in Wikipedia [46]. It is important to
note that some user having multiple Wikipedia’s accounts do not automatically count
as a sockpuppetry case - secondary accounts are referred to as sockpuppets only when
a person uses them to violate the established policies [47, 46]]. Examples of policy
violation include using secondary accounts to spread fake news, to circumvent a block
or sanction of a primary account, to create the illusion of greater support for a primary
account’s position in discussion pages, etc [46].

Sockpuppet accounts can cause a severe damage for Wikipedia. Wikipedia is built on 5
fundamental principles, also known as “Five pillars” [41]], and sockpuppets’ activity
can easily violate even 3 of them. The first principle is “Wikipedia is an encyclopedia
... Wikipedia is not a soapbox, a battleground, or a vehicle for propaganda, advertising
and showcasing.” Users often use sockpuppets to carry on ideological battles, spread
propaganda and, in general, foster prejudice, hatred, or fear, which clearly does not
comply with this principle. The second violated pillar is “Wikipedia is written from a
neutral point of view”. Users can create the illusion that their viewpoint is superior by
posting favorable comments from their sockpuppet accounts. This tactic may lead to the
acceptance of their position instead of objectively presenting multiple perspectives, i.e.
writing from a neutral point of view. The last violated principle is “Wikipedia’s editors
should treat each other with respect and civility”. The usage of sockpuppet accounts
often results in edit wars, conflicts and overall makes it harder to reach consensus. All
of this creates tension between users and makes Wikipedia a less welcoming place.

Even though Wikipedia has a method to detect and ban sockpuppet accounts, it is
arguably insufficient given the severity of the problem. Sockpuppets are caught and
blocked in a 2-stage process: suspected sockpuppets are firstly reported by other users
[35]] and then manually reviewed by administrators [44], clerks [45] and, if requested,
checkusers [39]]. Arguably, the current procedure involves too many parties, requires too
much manual effort and is prone to human error. Researchers have tried to address these

Chapter 1. Introduction 2

problems by suggesting automated sockpuppet detection solutions based on machine
learning. They can be grouped into 3 categories based on the features used: textual
features [23l], non-textual features [25,50] and a combination of several types of features
[S1,53]. Even though several of these models were reported to have achieved good
results, none of them have actually been integrated into Wikipedia. One of the reasons
none of the models were adopted could be because it is not possible to directly compare
the reported results, as different evaluation datasets were used, and consequently know
which model is the most promising. This creates a paradox - even though many solutions
were suggested to solve a severe problem, no effort was made towards actually analysing
which solution has the highest potential of achieving good practical results.

Here comes this study whose aim is to directly compare models from different groups on
standard metrics as well as from practical dimensions and ultimately determine the best
candidate model for sockpuppet detection in Wikipedia. This study directly compared
3 model categories by firstly collecting the standard dataset of comments made by
Wikipedia users in talk pages and recreating a representative model for each of the
groups. After that, the recreated models were evaluated on this dataset and accumulated
results were directly compared in order to find the best solution. Also, it was noticed
that recreated models are limited to ML technologies and thus do not reflect the latest
innovations in the text technologies field. For this reason, transformers were also
fine-tuned to detect sockpuppet accounts and included in the direct comparison. Using
transformers to detect sockpuppet accounts was, in fact, a novel approach in Wikipedia’s
context. Summarising the work completed, the most important contributions of this
study are as follows:

* This study enabled the direct comparison of 3 sockpuppet detection model groups
based on different types of features (textual, non-textual, combined) and outlined
the most promising group, as well as its specific implementation.

* This research presented a novel approach of using transformers to catch sockpup-
pet accounts in Wikipedia. To the best of our knowledge, transformers have never
been used before to catch sockpuppets specifically in Wikipedia.

» This paper evaluated the recreated models on more practical aspects such as
topic generalisability (generalising on unseen topics) or temporal generalisability
(generalising on unseen time periods). This evaluation was not found in the
original papers, even though it is important if models were to be actually integrated
into Wikipedia.

* A new dataset from users’ comments in Wikipedia’s talk pages was produced. It is
sufficient in size: 146,886 contributions from 4,966 users (50% sockpuppets, 50%
real accounts), and can be used to analyse the sockpuppetry problem from other
dimensions or to analyse related problems such as user commenting behaviour.

Chapter 2

Background

The background, important for this study, can be divided into 2 sections. The first
one is the sockpuppetry problem in Wikipedia which covers motivations for creating a
sockpuppet account, current procedures of reporting and reviewing suspicious accounts
and overall relevance of the problem. The second topic is literature review. Papers
about the sockpuppetry problem are discussed in terms of their methodology, results
and individual limitations.

2.1 Sockpuppetry problem in Wikipedia

2.1.1 Motivations

Sockpuppetry problem, where the same person (often called sockmaster, puppetmaster,
or sockpuppeteer) creates multiple accounts and uses them for malicious purposes, is a
well-known fake identity problem in social platforms. Common reasons for creating
a sockpuppet account includes defending or supporting a sockmaster in online discus-
sions, participating in some malicious activity, e.g. spreading fake news, or simply
regaining access to the platform after the main sockmaster’s account was blocked. All
these reasons apply to Wikipedia as well, however, its unique setup adds even more
motivations for sockpuppetry [34]]. For instance, in Wikipedia sockpuppet accounts
are used to cast additional votes in deletion debates or talk pages. In these pages the
outcome is generally determined by consensus - having more accounts gives more votes
for a sockmaster and theoretically increases the probability of some article, which a
sockmaster cares about, not being deleted or some controversial edit, which a sock-
master made and which is being discussed in talk pages, being accepted. One more
Wikipedia-specific motivation for creating sockpuppets is to gain more reverts in edit
wars [40]. Edit wars happen when two editors have opposing views on some topic
and hence constantly override each other’s changes in an article. Current Wikipedia’s
rules allow up to 3 reverts on the same article within a 24-hour period, however having
multiple accounts consequently increases this number and disturbs the balance between
2 opposing editors. As a final note, it is also important to mention that Wikipedia’s
design makes it very easy to create multiple accounts. One of the main properties of
Wikipedia is that its setup is anonymous. When creating accounts, users do not have to

3

Chapter 2. Background 4

specify their personal information such as email address (it is only recommended, but
not mandatory) which would allow linking accounts of the same user.

2.1.2 Reporting a sockpuppet account

In Wikipedia, any user (even a not registered user) who suspects that some account is a
sockpuppet, can report it. A reporting user, however, must have sufficient evidence that
2 accounts are connected, for instance, they should list edited pages where they noticed
signs of sockpuppetry. The current procedure of reporting a sockpuppet account is as
follows: a user needs to go to the reporting page [33], enter sockmaster’s name and then
list all the sockpuppet accounts they noticed and provide all the evidence they collected.
They can optionally request this case to be reviewed by a checkuser whose functionality
is described in the following section.

2.1.3 Reviewing a reported sockpuppet account

Sockpuppet investigations (SPI) are a manual action normally performed by administra-
tors and clerks, and, if requested, by checkusers. Administrators [44]] are responsible
for carefully and neutrally assessing the provided evidence and deciding the outcome
for SPI which includes completely or temporarily blocking an account or extending an
existing block. It is important to note that even though there are many signs that some
account is a sockpuppet [34], none of them guarantees that sockpuppetry is taking place
and in reality the administrator needs to use their subjective judgement and intuition.
Arguably, the decision making in SPI is subject to human biases and errors.

Checkusers [39] get involved in SPI when an administrator thinks that the provided
evidence is not sufficient for a decision or when the reporting user initially requested a
case to be reviewed by a checkuser. Checkusers are a small group of trusted Wikipedia
users who have access to IP addresses used by Wikipedia user accounts. By comparing
IP addresses of accounts under investigation, checkusers provide their decision of how
likely it is that these accounts are controlled by the same sockmaster. After a checkuser
provides their decision, an administrator can re-assess the case. Importantly, checkusers
never reveal the IP addresses themselves as sharing the IP addresses with others would
break Wikimedia Foundation’s privacy policy [7]].

Even though clerks [45] don’t have much decision power in SPI or have access to
non-public information such as IP addresses, they are very important when investigating
sockpuppetry cases. Clerks ensure that cases have sufficient evidence and if not, they
request such evidence. They also actively participate in SPI “housekeeping” tasks which
include formatting, merging the same cases, closing and archiving resolved cases.

2.1.4 Automation need

Presumably, Wikipedia’s methods of resolving SPIs require too much manual effort and
potentially are error-prone. Up to 3 different roles of Wikipedia’s users can be involved
in the SPI case, namely, administrators, clerks and checkusers. Administrators, clerks
and checkusers are Wikipedia’s editors who got their corresponding role by completing

Chapter 2. Background 5

various courses and maintaining a good reputation [44, 45, |39]]. Consequently, these are
the people who are very knowledgeable of Wikipedia and have spent a considerable
amount of time in the platform writing or editing articles and contributing to Wikipedia’s
welfare in other ways. Since obtaining a role requires significant effort, these individuals
are a limited resource, e.g. currently, the English Wikipedia has 909 administrators
[37] and only 49 checkusers [39]. It is debatable if involving such people in the SPI
review process, which potentially could be automated, is a good use of their time and
knowledge. If the SPI review process required less manual effort, these people could
continue to work on articles which probably would bring more benefit to Wikipedia,
as knowledge sharing is its main purpose. Also, manual SPI reviews may lead to
human error. Some evidence might be overlooked or mistakenly mixed up between
different cases which may result in inaccurate decisions. As already mentioned in[2.1.3]
a substantial part of the SPI review process requires individual judgement. Hence,
some sockpuppet investigations might get stricter examination than others, which leads
to inconsistencies. Having an automated solution for sockpuppets detection should
provide a more universal and consistent way of investigating sockpuppet cases.

2.1.5 Current state of the sockpuppetry problem in Wikipedia

Even though Wikipedia does not provide any statistics for the sockpuppetry problem
(e.g. average number of new SPIs each day), it is evident that sockpuppetry is an
ongoing problem as people actively report sockpuppets in the reporting tool till this
day [35]. In fact, sockpuppetry is not only an ongoing problem but it falls into a
category of important problems that Wiki community actively tries to solve. Sockpuppet
detection problem is being mentioned in various Wiki-related conferences including
Wiki Workshop which is an annual “forum bringing together researchers exploring all
aspects of Wikimedia projects” [49]. Looking specifically at Wiki Workshop, it has
been including sockpuppet’s problem in the “topics of interest” list for 5 years now
(2018-2023). However, regarding the most recent literature of this topic, not much was
done for investigating the sockpuppetry problem in Wikipedia after 2019 (see[2.2). This
imbalance between demand and supply shows that more contribution is needed towards
analysing the sockpuppetry problem in Wikipedia, especially its automated solutions.

2.2 Related work

The topic of automating sockpuppet account detection has been widely researched
for many social media platforms [1], especially for Twitter, Wikipedia, Facebook
and microblogging websites like Sina Weibo. Since Wikipedia has a unique setup,
functionalities and a different purpose than the rest of these websites (Wikipedia is a
knowledge sharing, not opinion sharing platform as opposed to Facebook, Twitter and
microblogs), methods applied to other websites cannot always be applied to Wikipedia.
Consequently, the most relevant work in the area is that which used data specifically
from Wikipedia.

This section reviews and evaluates work on sockpuppet detection in English Wikipedia
by grouping it into 3 sections based on the type of features used. The most recent

Chapter 2. Background 6

work in each of the 3 sections is reviewed in detail because these works are closely
related to this study. The remaining works are briefly mentioned without evaluating
them critically just to present the diversity of methods.

2.2.1 Models based on textual features

One of the first papers in this field is Solorio et al. “A Case Study of Sockpuppet Detec-
tion in Wikipedia” [23]] which dates back to 2013. In this paper, Authorship Attribution
(AA) techniques were used to match sockpuppet accounts with their sockmaster by
analysing their comments in various talk pages. Researchers used 239 textual features
such as total number of characters, total punctuation count or emoticons count. Dataset
consisted of 77 collected SPI cases each of which required a separate training and testing
phase - for each SPI case, researchers trained the model on comments made by the
sockmaster account, and afterwards tested it on the comments made by other accounts
(including sockpuppet accounts) in the same talk page. The proposed 239 textual AA
features proved to be somewhat effective as the model achieved accuracy of 69%, recall
of 75%, precision of 68% and F-measure of 72%. Nevertheless, separate training and
testing phase setting results in a high computational cost, which is a limiting factor, and
raises a question if this model can actually be used in Wikipedia because retraining a
model on each new SPI is probably not feasible. Other drawbacks of this study include
limited data in terms of the dataset itself (only 77 entries) and its content. In the training
set, each sockmaster wrote around 80 comments on average, while in the testing set,
the average number of comments made by one user was 8. Such numbers are not very
compatible with the authorship attribution method which expects long pieces of text in
order to match text with its author.

The same group of scientists presented a new dataset of 632 cases in their further re-
search called “Sockpuppet Detection in Wikipedia: A Corpus of Real-World Deceptive
Writing for Linking Identities” (2013) [24]. Applying this dataset to the previous model
[23] changed the F-measure from 72% to 73%. So increasing the dataset did not have
much effect on the SVM model’s performance. Interestingly enough, the effect on other
metrics was not reported. However, one cannot claim that the model would work well
on the majority of SPI cases, because 632 cases is still a low number and might not
reflect the variety of SPI cases. As a final note, it is important to remember that this
model can only be used to match sockpuppet accounts with pre-approved sockmaster
accounts (i.e. accounts which were known to be sockmaster accounts in advance), but it
cannot identify new sockmaster accounts and find their sockpuppets.

2.2.2 Models based on non-textual features

Tsikerdekis et al. model, described in “Multiple Account Identity Deception Detection
in Social Media Using Nonverbal Behavior” (2014) [25] paper, used non-textual features
to binary classify Wikipedia users into sockpuppets and non-sockpuppets. This model
used 2 types of non-textual features, namely, time independent (e.g., time difference
between account registration and the first edit) and time dependent ones (e.g. the total
number of bytes added or removed by a user for a time window of 30 days since their
initial registration with the website).

Chapter 2. Background 7

In 2016, Yamak et al. presented another binary classification model, which used
non-textual features, to detect Wikipedia’s sockpuppets in their study “Detection of
Multiple Identity Manipulation in Collaborative Projects” [S0O]. In some sense, this
study was the continuation of Tsiderkekis’ study because some of the features from
Tsiderkekis study [25] were reused such as the interval between the user’s registration
and their first contribution. However, some new features were also added, e.g. the
number of user’s contributions in each Wikipedia’s namespace, the average number of
contributions in the same article, etc. A number of ML models, namely, Support Vector
Machine (SVM), Random Forest (RF), Naive Bayesian (NB), K-Nearest Neighbor
(KNN), Bayesian Network (BN) and Adaptive Boosting (ADA), were evaluated on the
dataset of around 10,000 user accounts, active between 2004 and 2015. RF and NB gave
an extremely high precision of 98% and 97% respectively, and also an extremely low
FPR of 2% and 3% respectively. However, such good results are questionable because
the sockpuppet detection problem is not a simple classification problem, so some model
having accuracy of almost 100% sounds unrealistic. In the “Conclusion and Future
Work™ section authors claim: “We plan to study more closely how these algorithms
perform with the use of a third (development) dataset”, which suggests that only training
and testing sets were used. Hence, it might be the case that parameter tuning was done
on the testing set, which would mean that reported results cannot be trusted. Also, the
reported TPR and FPR always add up to 1 for all the models, even though TPR and FPR
adding up to 1 is not true in general. However, TPR and FNR always add up to 1, so
there is a slight possibility that authors mistakenly reported FNR instead of FPR, which
also makes reported results less trustworthy. Despite these inaccuracies, this study
surpassed the previous Solorio’s study [23] by having a setup which requires lower
computational cost, by being evaluated on a considerably bigger dataset, by relying
on non-textual features which cannot be manipulated easily by sockpuppets and by
being able to identify new sockpuppet accounts (i.e. not only sockpuppet accounts
of some predefined set of sockmasters). The single aspect on which Yamak’s model
remains weaker than Solorio’s is the complexity of features - to calculate features for the
Yamak’s study one needs high loads of data taken from various Wikipedia’s namespaces,
whereas Solorio’s model’s features can be calculated from talk pages only. It would be
interesting to investigate if it is possible to restrict the data to only a few namespaces
and still get satisfactory results.

2.2.3 Models combining different features

Several studies tried to combine different types of features. In 2018, Yamak et al. in
study “SocksCatch: Automatic detection and grouping of sockpuppets in social media”
[S1] used non-textual features to detect sockpuppet accounts and then applied graph
theory and community detection algorithms to group sockpuppets which belong to the
same sockmaster.

Yu et al. in paper “Sockpuppet Detection in Social Network Based on Adaptive Multi-
source Features™” (2021) [S3]] described combining verbal and non-verbal features for
sockpuppets detection. In this study, verbal features (e.g., text length, question fre-
quency, and number of emotional words) were combined with non-verbal features (e.g.,
speaking time of each user, the number of comments per user per day) using adaptive

Chapter 2. Background 8

multi-source feature fusion. The dataset consisted of 685 users: 370 sockpuppets and
315 legitimate. Several ML algorithms, namely, Support Vector Machine (SVM), Ran-
dom Forest (RF) and Adaptive Boosting (ADA), were used to verify the effectiveness
of the method. All models performed relatively well: the average precision of models
was 79%, average recall 82% and average F-1 score 80%. Even though these are quite
good results, FPR wasn’t reported. FPR is a very important metric for the sockpuppetry
problem because accusing a legitimate user with sockpuppetry would mean blocking a
completely innocent account and presumably losing that user’s trust in Wikipedia. The
dataset of this study is similar to the dataset used in Solorio’s study [24] and has the
same pros and cons. Since it only consists of data from talk pages, it makes it easy to
calculate the needed features which is a plus, however as it contains only 685 users,
it does not have the potential to represent many different Wikipedia’s users, and the
study’s evaluation is weaker than the evaluation of Yamak’s study [S0]. This study
shares some similarities with the Yamak’s study [S0] as well - both studies do not
require to know the predefined set of sockmasters to do the classification, however both
models are limited in a way that they cannot link sockpuppets of the same sockmaster.

2.2.4 Recent works

Looking at the previous sections (2.2.1] [2.2.2] [2.2.3)), it is apparent that there are not
many recent studies done about sockpuppetry in Wikipedia. In recent years, sockpup-
petry and fake identity problems still remained a relevant topic in literature, however,
researchers’ focus shifted to other platforms especially social network and microblog-
ging sites [3, 19, 28,155, 27] . For instance, in 2019, Zhou et al. study [S5], which
analysed Sina Weibo website, observed the dynamic growth of the social interactions
between 2 users. This study concluded that once blocked, a sockmaster tries to recover
its prior connections as soon as possible to maintain the same influence in the website.
In 2022, Du et al. [3]] analysed user sentiment with the help of deep learning methods
in 2 Chinese social network websites, namely, Sina Weibo and Douba. Researchers
found that user sentiment can be effectively used to link accounts belonging to the same
person. One of the most recent studies in the field is Verma et al. work [27]. They tried
several combinations of different ML and deep learning models and found that the most
effective model to classify an account as real or fake in OSN (online social network) is
the fusion of ROBERTa transformer, Bi-LSTM (Bidirectional LSTM) and RF (Random
Forest). The findings were confirmed by the consistent results from the evaluation on
2 datasets: OSN and Twitter. Summing up, there is a variety of newer sockpuppet
detection methods tested on other social network platforms, but not on Wikipedia.

2.3 Research questions

Considering the relevance of the sockpuppetry problem in Wikipedia (2.1.5)) and benefits
which come from automating sockpuppet detection procedure (2.1.4), it becomes clear
that there is a high need for automated or partially automated sockpuppet detection
mechanism. Even though literature suggests many different ML solutions (2.2)) for
the sockpuppet detection, it is not clear which solution is the most promising and has
the highest potential of achieving good practical results. One cannot simply compare

Chapter 2. Background 9

the reported metric results of different models because models were evaluated on
completely different datasets which varied in source and size - some datasets were
formed from talk pages and included only a few hundreds of cases [23} 24, 53], while
others were generated from various namespaces’ data and included several thousands
of cases [50, 151, 125]]. Also, the models themselves differ in their classification task - for
some it is binary classification [53, 150, 25], for others it is matching sockpuppets with
their sockmaster [23,51]]. Overall, it is clear that models cannot be compared as-is and a
study which would enable comparing different models and choose the most compatible
one is needed. Here comes this research study and the first research question:

RQ1 How do different models compare in terms of their classification precision,
recall, f-score and FPR? Based on these metrics, which model is the most
compatible with the sockpuppetry problem in Wikipedia?

The main goal of this question is to recreate 3 binary classification model archetypes
from different feature groups (textual features, non-textual features and combination of
textual and non-textual features) and to evaluate them on the uniform dataset. However,
if one wants the comparison to be up-to-date and reflecting the current state of the
field, analysing only the existing literature is not sufficient. As already noted in[2.2.4]
sockpuppetry in Wikipedia has not gotten much attention since 2019, which means
that the existing literature around sockpuppetry problem in Wikipedia did not try using
state-of-the-art models. Considering how powerful some of the state-of-the-art models
are (GPT, BERT, etc.), there is a high chance that they might achieve better results
and turn out to be more compatible with the sockpuppetry problem than the recreated
models which used traditional ML techniques. Hence, my research study also tries to
bring some innovation by introducing transformers (belong to textual features group) to
tackle this problem. This is what the second research question is about:

RQ2 Does switching to transformers increase classification scores for textual
models? Revisiting previous scores from RQ1 and transformers’ scores,
which model is the most suited for the sockpuppetry problem in Wikipedia?

Answering RQ1 and RQ2 would reveal the most compatible model based on the
standard metrics only. As already stated, one of the main goals of this study is to
analyse which model has the highest potential of achieving good practical results. This
invites evaluating models from a more practical perspective:

RQ3 How well do selected models generalise to unseen data:
a) Can models easily generalise to unseen topics?

b) Can models easily generalise to data taken from unseen time periods,
especially to the most recent data?

Answering RQ1-RQ3 will reveal which feature group’s model (textual, non-textual or
combined) is the most likely to achieve good practical results on detecting sockpuppet
accounts in Wikipedia. Depending on the fall-out (FPR) ratio, this will either reveal
a candidate for a fully automated or a semi-automated solution (i.e. still requiring
some human intervention). Regardless of the automation level, this study is expected to
mitigate the Wikipedia’s sockpuppetry problem by suggesting a real practical solution.

Chapter 3

Data

3.1 Motivation for a new dataset

In order to conduct this study, I created a completely new dataset formed of data gathered
from Wikipedia. A new dataset was needed because datasets used in related studies
(see[2.2)) were not publicly available. Recreating datasets used in previous studies was
also not feasible because their dataset collection lacked detailed descriptions how to
reproduce the process [24, 23, 50, 53], required too much manual inspection [23} 24]]
or produced too few sockpuppetry cases [23, 24, 53]. These problems led to designing
an alternative data collection methodology. By following this new methodology, I
created a dataset of 4,966 users (50% sockpuppet accounts, 50% non-sockpuppets
acounts) and their contributions to the discussion area (i.e. talk pages) of English
Wikipedia’s articles. The final dataset consisted of 2 main files: contributions from
sockpuppet accounts (‘“‘socks_with_contribs.json”), contributions from non-sockpuppet
accounts (“‘control_with_contribs.json”), and some metadata files: accounts registration
information (‘“‘sock_registrations.json”, ‘“control_registrations.json’’), timestamps of
first contributions (“control_first_contribs.json’’) and talk pages’ category information
(‘title_categories.pickle).

3.2 Gathering data from Wikipedia

3.2.1 Source

MediaWiki API [8]] was used as the source to gather the needed data. MediaWiki API is
a web service that provides a number of endpoints to interact with Wikipedia including
endpoints to retrieve information. The benefits of gathering data via the MediaWiki
API are that HTTP requests are highly customizable and can be restricted to return
only the data that is actually needed. This resulted in memory-light main files of ~ 27
MB and ~ 68 MB for sockpupppets’ contributions and non-sockpuppets’ contributions
respectively. However, getting data via the MediaWiki API resulted in many HTTP
requests and posed a risk of overwhelming the MediaWiki API’s servers. To mitigate
this risk, information was retrieved by adhering to the rules described in MediaWiki

10

Chapter 3. Data 11

API’s “Etiquette” page [9], for example, requests were serialised rather than sent in
parallel and several requests were combined into one by using the pipe character (“|”).
Even though this sometimes resulted in a longer waiting time, a safe request rate was
maintained and a fair usage of the API was ensured.

3.2.2 Sockpuppets
3.2.2.1 Getting sockpuppets

Since accounts participating in sockpuppetry eventually get blocked, usernames of
sockpuppet accounts were collected by looking at blocked Wikipedia’s users and
filtering those accounts which were blocked because of sockpuppetry.

To get blocked accounts, MediaWiki API:Blocks endpoint [[10] was used. A Python’s
script was written which sent a request m of the form:

https://en.wikipedia.org/w/api.php?action=query&list=blocksé
bkstart=<start_timestamp>&bkend=<end_timestamp>&bkdir=newer
&bklimit=500&format=7json

for each month from 2010 January to 2022 December. The request frequency was set to
once a month because of the “bklimit” parameter. The “bklimit” field has the upper limit
of 500 which means that one request can return at most 500 blocked accounts in the
response. This limitation required to experiment with different request frequency and
pick the one which finds the majority of blocked accounts but does not overwhelm the
servers. The decision was made to set the request frequency to once a month, because
this frequency collects the majority of blocked accounts (doubling the frequency and
querying twice a month increased the number of collected sockpuppets only by 1.56%)
and does not overload the servers as it results in the total of 156 requests only.

As already mentioned, account filtering was also needed because API:Blocks endpoint
returns accounts which were blocked for any reason, not only for sockpuppetry. Conve-
niently enough, the “reason” field in the API:Blocks endpoint’s response includes the
reason why each account was blocked. Hence, the Python script saved only the user-
names of those accounts whose block reason mentioned being involved in sockpuppetry
(e.g. [[WP:SOCK]], [[WP:SOCK—Abusing Multiple Accounts]], etc).

All the aforementioned steps were completed on the 22nd of November 2022 and
resulted in getting 20,361 usernames of sockpuppet accounts.

3.2.2.2 Getting contributions of sockpuppets (“socks_with_contribs.json”)

Once usernames of sockpuppet accounts were found, the aim was to leave only those
accounts which made some contribution (adding/editing/deleting comments) to the talk
pages of English Wikipedia’s articles and then to get the specific contributions of these
accounts.

To look at the contributions of each account, MediaWiki API:Usercontribs [[14]] endpoint
was used in the form:

! Arguments written in <> are variable (applicable for all the following HTTP requests).

Chapter 3. Data 12

https://en.wikipedia.org/w/api.php?action=query&list=
usercontribsé&ucuser=<sockpuppet_usernames>&uclimit=500&
ucnamespace=l&ucprop=ids|sizediff|title|timestamp&format=json

The field “ucuser” contained usernames (combined with the “|” symbol in order to
decrease the number of requests) of the accounts, for which contributions were retrieved,
“uclimit” was set to the maximum value of 500 meaning that for each account at most
500 contributions were returned and “ucnamespace’ was set to the numeric code of 1
of the “Talk” namespace which ensured that the retrieved contributions were only taken
from the talk pages. If this request returned no contributions for some account, this
means that this account did not contribute to talk pages and hence this user was ignored
and not included in the final “socks_with_contribs.json” file.

For accounts which had contributed to the talk pages, the “ucprop” field shows what
kind of information was returned about each of their contributions: IDs (page’s ID,
revision’s ID and previous revision’s ID), size of the contribution’s diff, title of the
talk page an account was contributing to and finally the timestamp of the contribution.
This information was saved to the final “socks_with_contribs.json” file. However, the
MediaWiki API:Usercontribs endpoint is not capable of returning the content of a
contribution, i.e. the comment itself. For this reason, for every contribution which had a
positive “sizediff” MediaWiki API:Compare endpoint [12], which compares 2 versions
of a page, was called. By using the revision ID of each contribution and comparing it
with the previous revision of that talk page, this endpoint returned comments an account
has added or edited. These comments were saved to the “socks_with_contribs.json” file.
The final file mapped each sockpuppet account with the list of their contributions and
each of the contributions had the following content:
{ "pageid": int,

"revid": int,

"parentid": int,

"title": string,

"timestamp": timestamp,

"sizediff": int,

"comments": string }

The final version of “socks_with_contribs.json” file was generated on the 15th of De-
cember 2022 and contained 40,090 contributions to talk pages from 2,483 sockpuppet
accounts. Contributions were made between 2003 February and 2022 October. Out
of 40,090 contributions, 32,877 contributions were added or edited comments, 3,990
contributions were about deleting comments and hence had no “comments” content
and 3,223 contributions were about moving pages, hence they also had no “comments”
content. The content of the sockpuppet data is summarised in the figure [3.1a

3.2.3 Non-sockpuppets
3.2.3.1 Getting non-sockpuppets

In order to train the classifier, the control group of non-sockpuppets was needed. Even
though the majority of related studies (see collected non-sockpuppet accounts

Chapter 3. Data 13

Adding/editing comments Adding/editing comments

81.3% 83.9%

4%
8.4% Moving pages S Moving pages
10.4% Aok
.4%

Deleting comments
Deleting comments

(a) Sockpuppets’ contributions (b) Non-sockpuppets’ contributions

Figure 3.1: Types of contributions in the final dataset.

without controlling for any variables, the decision was made to control for an account’s
activity time when collecting non-sockpuppet accounts and control for an account’s
activity range when collecting specific non-sockpuppet contributions.

More precisely, to get the usernames of non-sockpuppets, for each sockpuppet a match-
ing unique non-sockpuppet, which was active around the same time as a sockpuppet,
was found. This was done by taking some contribution from a sockpuppet account
and looking at the 15 former and 15 subsequent contributions in the same talk page
made by other accounts with the MediaWiki API:Revisions endpoint [[13]]. From the
potential matches, only 1 not blocked (prevents from mistakenly including sockpup-
pet accounts into non-sockpuppet files) and not already used (ensures that the final
“control_with_contribs.json” file contains the same number of 2,483 accounts) non-
sockpuppet account was added to the “control_with_contribs.json” file. The final list of
usernames of non-sockpuppet accounts contained 2,483 usernames as expected.

Controlling for the activity time was needed because if non-sockpuppets and sock-
puppets were active at completely different times, this might influence the topics they
are contributing to or the linguistic style they are using when commenting since the
popularity of topics and writing style might change over time. For example, in the final
data for the sockpuppets, 80% of the contributions were made before 2019 and hence
topics like Covid-19 are not expected to be dominating topics among the sockpuppets.
However, if only those non-sockpuppet accounts, which were active for the last few
years, were sampled, the probability of them mentioning Covid-19 increases and hence
the model might become biassed and classify accounts mentioning Covid-19 as non-
sockpuppets. The effect of controlling for the activity time is depicted in the diagram
[3.2] Distributions of contributions of both groups, namely, sockpuppets and control
group, follow similar patterns - there aren’t many contributions until 2006, spikes (2011,
2018) and dips (2019-2020) happen around the same time. This proves that the timing
of contributions of both groups are comparable, however the height of bars is very
different which is explained in the following section.

Chapter 3. Data 14

Distribution of all sock contributions by a year Distribution of all control group's contributions by a year

2500

2000 ul

Contribution count

1500

1000

500

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022
Timestamp Timestamp

Figure 3.2: Distribution of all contributions by their timestamp.

3.2.3.2 Getting contributions of hon-sockpuppets (“control_with_contribs.json”)

To get the contributions of non-sockpuppet accounts, the identical process was followed
as when retrieving the contributions for sockpuppet accounts (see [3.2.2.2): MediaWiki
API:Usercontribs endpoint retrieved each user’s contributions and then MediaWiki
API:Compare endpoint was used to get the content of each comment. The final fields
saved for each contribution also followed the same json structure depicted in[3.2.2.2]
However, as already mentioned, each non-sockpuppet account was additionally con-
trolled for their activity range when collecting the contributions. This means that
non-sockpuppet account’s contributions were retrieved only for the time period when a
matching sockpuppet was active (time period between sockpuppet’s first and last contri-
bution in the “socks_with_contribs.json” file). This was needed because non-sockpuppet
accounts have an unfair advantage of being active for a longer period of time as they
are not eventually blocked unlike the sockpuppet accounts. Naturally, the probability
of non-sockpuppet accounts having more contributions increases and hence the model
might classify the accounts hugely depending on the number of contributions an account
has. In order to decrease the significance of this non-textual feature when classifying an
account, especially for the textual models, controlling for activity range was introduced.
Nevertheless, even when controlling for it, this still resulted in non-sockpuppet accounts
having a higher number of contributions as bars are significantly higher for this group
in the RHS table of [3.2] This shows that legitimate accounts are naturally more ac-
tive which is reasonable because users are expected to use their primary accounts, i.e.
legitimate accounts, more than their secondary accounts, i.e. sockpuppet accounts.

The final version of the “control_with_contribs.json” file for non-sockpuppet accounts
was generated on the 13th of January 2023 and contained 106,796 contributions to
talk pages from 2,483 non-sockpuppet accounts. The first contribution was made on
2001 December and the last one was made on 2023 January. Out of 106,796 contribu-
tions, 89,625 contributions were added or edited comments, 11,364 contributions were

Chapter 3. Data 15

about deleting comments and hence had no comment content and 5,807 contributions
were about moving pages, hence they also had no comment content. The content of
contributions of non-sockpuppet accounts is summarised in the figure [3.1b]

3.2.4 Metadata

3.2.4.1 Account registrations
(“sock_registrations.json”, “control_registrations.json”)

Yamak’s non-textual model’s [S0] features, more precisely “The interval between the
user’s registration and their first contribution” feature, required to know the registration
time of each account. The registration time of each account was retrieved by using
MediaWiki API:Users endpoint [15] in the form:

https://en.wikipedia.org/w/api.php?action=query&list=userssususers
=<account_usernames>&usprop=registration&format=json

As before, the field “ucuser” contained 50 (max limit) usernames combined with the
“|” symbol in order to decrease the number of requests. Account names mapped
with the retrieved registration times were saved into ‘“‘sock_registrations.json” and
“control_registrations.json” files.

3.2.4.2 First contribution’s timestamp (“control_first_contribs.json”)

The same feature “The interval between the user’s registration and their first contribu-
tion” required to know the timestamp of the first contribution of each user. For sockpup-
pet accounts, this information was already present in the “socks_with_contribs.json” file
- since for each account contributions were gathered by looking at 500 contributions
ordered from the oldest to the newest (“bkdir=newer”), the very first contribution was
always included. However, the situation was different for non-sockpuppet accounts -
their contributions were retrieved only for the time period when a matching sockpuppet
account was active (effect of controlling for activity range). This means that the very
first contribution might not be included in the “control_with_contribs.json” file. Because
of this reason, MediaWiki API:Usercontribs [14] endpoint was used again, this time
without controlling for activity range and retrieving only 1 oldest contribution for each
control account. The usernames mapped to the retrieved timestamps were saved in the
“control first_contribs.json” file.

3.2.4.3 Talk page’s category (“title_categories.pickle”)

RQ3fa) which examined how well models generalise on unseen topics, required to
know the topic of every talk page. The majority of talk pages are assigned some
topic category(-ies) in Wikipedia [38]. Topic categories of a page can be obtained via
MediaWiki API:Categories endpoint [11]]. The request of the form:

https://en.wikipedia.org/w/api.php?action=query&prop=categories
&cllimit=500&titles=<talkpage_titles>&format=7json

Chapter 3. Data 16

returned all the categories talk pages belong to. Talk page names mapped to all the
categories they belonged to was saved in the “title_categories.pickle” file. Note that talk
pages which didn’t have any category were not included in this file.

3.3 Cleaning data

3.3.1 Cleaning main files

Main files, namely, “socks_with_contribs.json” and “control_with_contribs.json”, were
cleaned only minimally in order not to lose important information. Initially, all the
contribution fields (pageid, revid, parentid, title, timestamp, sizediff and comments)
were checked if they contain the expected type and if all the values are not null. All
fields in both files passed this test. However, the “comments” field still needed some
cleaning because it contained raw people’s comments. Several stages of cleaning were
applied to this field:

1. Substituting actual signatures with “<signature>"" token. Comments in Wikipedia
can be signed with the user signature whose standard format is “[[User:username|
username]] ([[User talk:username|talk]]) + date”. As it is seen, signature depends
on the account’s username and hence it might influence comment’s textual features
like length of the comment, frequency of certain characters, etc. Hence, the
account’s username might become a hiding variable for signed comments in
textual models. In order for this not to happen, signatures in standard and some
common alternative forms were substituted with the “<signature>" token which
is independent from the account’s username.

2. Substituting automatic signatures with “<auto-signature>"" token. Comments
can also be signed by the SineBot [33] which automatically adds a signature to
unsigned comments. The format of the added signature is “Preceding [[Wikipedia:
Signatures| unsigned]] comment added by [[User:username]]”. Again, this signa-
ture might influence textual comment’s features as it includes a username, hence
these signatures were substituted with the “<auto-signature>"" token.

3.3.2 Cleaning metadata files
No cleaning was needed for the metadata files. Looking more specifically:

* “sock_registrations.json” and “control _registrations.json” - it was checked if all
accounts have their registration timestamp recorded. Even though some of the
accounts had “invalid” or “null” values for their registration timestamp, a decision
was taken to account for this issue when doing the computations (see [d.1.1.4)),
rather than to change it directly in files.

* “control_first_contribs.json” - no cleaning was needed as all the control accounts
had the timestamp of their first contribution registered.

* “title_categories.pickle” - no cleaning was needed because only those titles which
had at least one contribution were saved to the file.

Chapter 4

Comparing different model groups on

standard metrics

This chapter describes more precisely what methodology was used to answer RQ1
and what the accumulated results were. The aim of this chapter (as well as the RQ1 itself)
is to directly compare sockpuppet detection models described in literature and taken
from different feature groups: textual features, non-textual features and combination of
textual and non-textual features. The final goal is to select the most promising model
group based on the most relevant metrics for the sockpuppetry problem.

4.1 Methodology

The process of answering[RQI]|can be split up into 2 main stages: models’ recreation and
models’ evaluation. Since direct comparison was the main goal, models were recreated
by ensuring the identical setup for all the models and they were evaluated by creating the
identical evaluation environment for all the models. Without this “uniformity principle”,
the final metrics of different models would not be directly comparable because they
might be influenced by the other factors (different model type, different data split, etc).

4.1.1 Recreating models
41.1.1 Selected models

As already stated, 3 different feature groups were selected for the direct comparison:
textual features, non-textual features and combination of textual and non-textual features.
Each of the groups needed a representative model, i.e. archetype. The decision was
made to recreate the newest model described in each of the groups: for the textual
features group - Solorio’s model [23], for the non-textual features group - Yamak’s
model [50], for the combined features group - Yu’s model [53]. The main reason for
selecting to recreate the newest model was because newer studies are expected to use
newer methods and account for previously conducted studies by oftentimes building on
these studies and consequently improving them. Hence, in general, newer studies are
expected to be more promising.

17

Chapter 4. Comparing different model groups on standard metrics 18

Since none of the studies, described in the section, had published the full code of
their models, I needed to recreate all of the selected models from scratch. However, it is
important to note that none of the models were recreated fully accurately because of the
modifications needed to ensure the “uniformity principle” (see and individual
limitations (seed.1.1.3}4.1.1.4, |4.1.1.5]).

4.1.1.2 Identical setup

As already mentioned in[2.3] one of the reasons why models described in the literature
were not directly comparable was varying model type. Looking at the models chosen to
be recreated, one can indeed notice that they are of different types: Yamak’s and Yu’s
models are binary classification models, whereas Solorio’s model matches sockpuppet
accounts with their sockmaster (i.e. authorship attribution). RQ1 requires all the
models to have the identical model type. The decision was made to convert all of the
models to binary classification models, i.e. convert the Solorio’s model to the binary
classification model and leave the remaining 2 models as-is. The main reason why
binary classification was chosen over account matching was because converting the
model from account matching to binary classification is feasible, whereas the reverse is
not really doable - if a model can only output if an account is a sockpuppet or not, there
is no straightforward way to match accounts belonging to the same person. Additionally,
looking at the Solorio’s study limitations (see[2.2.1)), it was outlined that sockpuppetry
problem is not really compatible with the used authorship attribution (AA) technique,
because AA expects long texts of inputs, whereas people make only limited number of
comments in the discussion area. This was an additional motivation to modify Solorio’s
original model.

4.1.1.3 Textual features model

The textual archetype was mostly based on Solorio’s study [23], however, it required
some modifications, e.g. when converting it to the binary classification model.

Converting to binary model: There were several ways to convert the original account-
matching model to the binary model. One way was to try and match each sockpuppet
account with every possible sockmaster. If there is a match, it means that an account
was a sockpuppet, otherwise, it is a legitimate account. However, the original Solorio’s
model already suffered from a high computational cost (see [2.2.1)) and this setup
increases the runtime to classify one account by n times, where n is the number of
sockmasters. Also, if the sockmaster of some sockpuppet account is not in the dataset,
the model would incorrectly classify this sockpuppet as a legitimate account. Therefore,
this modification version had major flaws and could not be adopted. Instead, a simpler
conversion was done. AA features, described in the original study, were simply used to
convert each comment to a feature vector. Then a portion of labelled comments were
used as a training data. After the training phase, the model was able to classify each
comment, converted to the feature vector, as coming from the sockpuppet or a legitimate
account. These decisions were afterwards used to classify users to sockpuppets and
legitimate accounts (see .1.1.3)). This setup resulted in a low computational cost and
had the potential to catch all sockpuppet accounts regardless if their sockmaster was

Chapter 4. Comparing different model groups on standard metrics 19

in the dataset or not. On the negative side, this setup relied on the assumption that AA
features were compatible with the user classification problem into sockpuppets and
legitimate, even though this was not verified.

Features: All of the 239 features, used in the original study, were successfully
recreated. The used text features can be grouped into sentence, token, character and
speech level features and are listed in the table Most of the features are self-
explanatory and their explanations can also be found at the original Solorio’s paper
[23]. The only ambiguous features were features which originally included the word
“frequency” in their name such as “Question frequency” or “Tab frequency”. According
to the Cambridge dictionary [2], frequency is “the number of times something happens
within a particular period.” Applying this definition to the given context, frequency of
some feature might mean the number of times that feature happens within a specified
number of words, however this number was not outlined for any of the features in the
original paper. Because of the lack of information, the decision was made to substitute
the word “frequency” with “proportion” in the features, i.e. to divide feature’s count by
the total count of either sentences, tokens, characters or speech parts depending on which
level (sentence, token, character or speech) a feature belonged to. E.g. sentence-level
feature “Question frequency” was interpreted as “Question proportion” which equals
question sentences count divided by the total number of sentences in the comment.

Sentence level Token level Character level Speech level

Sentence count without capi- | Big “I” pronoun fre- | Frequency of letters (26 | Parts of speech (POS) tags fre-
tal letter at the beginning quency features) quency (36 features)

Total number of sentences Total number of tokens | Total number of characters

Question frequency Small “i” frequency Total alphabet count

Sentence with small letter fre- | Function words fre- | Two/three continuous punc-

quency quency (150 features) tuation count

All caps letter word count | Total punctuation count
Total contraction count | Emoticons count

Words without vowels Happy emoticons count
“He” frequency Quotation count

“She” frequency Parenthesis count

“A” error frequency Alpha frequency

“An” error frequency Digit frequency

Uppercase frequency
White space frequency
Tab frequency

Full stop without white
space frequency

Table 4.1: Features used in the textual model.

User classification: The recreated original model actually performed the classifica-
tion on the comment level. To translate this into user classification, the two-step scheme
proposed in the original paper was adopted. In order to classify a user, the first step was
to gather all the user’s comments and get their individual predictions. In the second
step, the majority (i.e. the most common) prediction is calculated and assigned as the
final classification for a user. This scheme is summarised in the fig. @.1]

Chapter 4. Comparing different model groups on standard metrics 20

Ty
01 Majority vote -
comment 1 classification for
\ for comment 1 user
comment 2 \
> on
Binary textual —
b n:yodel for comment 2
o
-m / \ g
o
on
0 (non-sock) / 1 (sock)

for commentn ——

Figure 4.1: User classification scheme of a textual model.

4.1.1.4 Non-textual features model

The non-textual model archetype was highly inspired by the Yamak’s model [S0] and
the main mismatch arose because the dataset used in this study (see [3|) was considerably
smaller (in terms of the number of namespaces it covers) than dataset originally used by
Yamak, hence some of the features could not be recreated.

Features: Originally Yamak used 11 non-textual features: 5 of them were successfully
recreated in this model, whereas 6 were lost because of the dataset limited to the
discussion area only. 5 recreated features include: the number of user’s contributions
in the talk pages, the average of bytes added and removed from each revision, the
average number of contributions in the same article and the interval between the user’s
registration and their first contribution. The latter feature required special attention. As
already noted in the [3.3.2] some registration dates, stored in the “sock registrations.json”
and “control registrations.json” files, were either “null” or “invalid”. For such accounts
whose registration date is unknown (these usually were not registered accounts), the
interval between the user’s registration and their first contribution feature should not
impact the classification output. Therefore, for these accounts the average feature’s
value calculated from all the registered accounts (including both sockpuppets and
control users) found in the dataset, was reported in this field as this was the most
neutral value. Coming back to 6 not recreated values, they include the number of
user’s contributions in the article/user page/user discussion page/project namespace/all
other namespaces combined, and the frequency of revert after each contribution in the
articles. One can observe that all these features are connected to namespaces other
than the article discussion area (i.e. talk pages), so recreating them would require
collecting additional data from various namespaces and would bring back the problem
of different evaluation datasets among different models which make the final results
not directly comparable. Even though missing some features results in data loss, it also
allows performing additional analysis. It was already noted in the [2.2.2] that it would be
“interesting to investigate if it is possible to restrict the data to only a few namespaces
and still get satisfactory results.” If the results are similar, then it is debatable how useful
the skipped features are, because collecting them costs much, and if the contribution

Chapter 4. Comparing different model groups on standard metrics 21

from them is only negligible, then it’s probably better to abandon them.

User classification: The non-textual model, as well as the original Yamak’s model,
performed the classification directly on the user level. All the contributions from a user
were gathered into one “document” which represented a user and then this document
(as well as the user) was classified as a sockpuppet (1) or a legitimate account (0). The
scheme is summarised in the

comment 1
comment 2

comment n » »

Binary model

Figure 4.2: User classification scheme of non-textual, combined models and transform-
ers.

0 (non-sock) / 1 (sock)

4.1.1.5 Combined features model

Combined features model integrated textual and non textual features by following Yu’s
study [S3].

Features: Since Yu’s study did not provide the exhaustive list of the combined features
or code of the model, it was impossible to know what features originally were combined.
Because of this lack of information, the decision was made to simply concatenate
features used in the previous textual (see [d.1.1.3) and non-textual models (see d.1.1.4)
of this study. Adding 239 textual features with 5 non-textual features would result in 244
features, however, Yu also completed adaptive feature selection via Logistic Regression
with Lasso regularisation (i.e. L1 regularisation), which decreases the feature space.
When reading Yu’s paper [S3]], it seems that authors might have used some modification
of the traditional L1 regularisation because provided formulas slightly differ from the
traditional L1 regularisation, but the provided formulas also contain many mathematical
errors. For instance, in (19.5) function in the original paper [S3], Y is subtracted from
1, even though Y is a vector and subtracting vectors from scalars is not mathematically
defined. Also, sum and product operator’s boundaries are incorrect in (19.4) and (19.5)
- they should include all the terms as in traditional log-loss function, not only the first
term. Taking into account all of the errors, one can claim that authors do not have much
expertise in logistic regression with L1 regularisation. Therefore, it becomes hard to
trust the provided formulas and, in general, distinguish which alterations in formulas
is the author’s conscious choice to modify the traditional approach, and which ones
were done due to simple lack of expertise. Hence, it seemed safer to complete adaptive
multi-source feature selection by executing the traditional Lasso regularisation found

Chapter 4. Comparing different model groups on standard metrics 22

0.675 0.695

0.650 0.690

0.625 0.685

0.600

Accuracy
Accuracy
o
(=)}
©
o

0.575

0.675
0.550

0.525 0.670

0.500 0.665

107* 1073 1072 107t 10° 10! 10? 103 0.0 0.2 0.4 0.6 0.8 1.0
C C

(a) Choosing the best magnitude. (b) Choosing the best individual value.

Figure 4.3: Lasso regularisation (C) effect on the classification accuracy.

in the sklearn.linear_model package. Regularisation’s goal is to prevent overfitting by
decreasing model’s variance, however there is no standard metric for logistic regression
to measure its variance (as opposed to R? score in linear regression). Hence, some
other metric, connected with overfitting, was needed. Since this is a classification
problem, the model’s accuracy can signal about overfitting - if the model is overfitted, it
generalises bad and has a low accuracy on validation or test dataset. Therefore, C was
tuned by maximising accuracy on the validation set in the 4-fold cross validation. In the
first stage, the best magnitude of regularisation parameter was found - it was in the order
of 107! (see . In the second stage, several values of this order were tried and C =
0.1 yielded the highest classification accuracy (see[d.3b)). Applying Lasso regularisation
with C = 0.1 removed 72 features and left us with a total of 172 combined features.

User classification: The combined model used the same classification scheme as the
non-text model, namely, classification on the user-level which is depicted in the @

4.1.2 Evaluating models

It was crucial to ensure an identical evaluation environment for all the models, so
that differences found in models’ results can be explained solely by their different
methodologies, not by some confounding variables. Because of this reason, all of the
models were trained and evaluated on the same dataset described in chapter [3] The
dataset was split 3 times (see .2)). Each model was trained and tested on each of the
splits and afterwards average metrics were reported. This was done in order to check if
a model’s performance is independent of the data split - ideally, we want a model to be
stable and perform equally well regardless of what data it gets.

For every archetype that was recreated, an attempt was made to identify the most
suitable machine learning model. Because of this reason, a number of ML models
were tried, namely, Support Vector Machine (SVM), Random Forest (RF), K-nearest
neighbours (kNN), Naive Bayes (NB) and Adaptive Boosting (ADA). Some of them
required scaled data, i.e. normalising the data. Data were scaled for linear models (SVM,
kNN) and used as-is for non-linear models (RF, NB, ADA). Importantly, normalisation
was completed after the dataset was split into training, development and testing sets.

Chapter 4. Comparing different model groups on standard metrics 23

If data was scaled before it, then some information from the testing set would appear
in the scaled training set and thus the model would become aware of it. Incorporating
any data from the test set during the model’s training phase might result in unfair
increase of a model’s performance. Using the ML models also required completing
hyper-parameter tuning. Different hyper-parameter combinations were exercised with
the help of scikit learn’s GridSearchCV [[18]]. Scikit learn’s GridSearchCV automatically
performs cross-validation. Time-consuming models were evaluated using only 3-fold
CV, whereas more time efficient models were evaluated using 5-fold CV.

Training set (70%) Testing set (30%)
#sockpuppets | #control users | #sockpuppets | #control users
SPLIT 1 | 1756 1720 727 763
SPLIT 2 | 1721 1755 762 728
SPLIT 3 | 1736 1740 747 743

Table 4.2: Description of different data splits.

4.2 Results

The average results from 3 splits are summarised in the following tables: textual models
in non-textual models in [4.4]and combined models in The extended version of
all tables, also reporting standard deviation, can be found in the appendix (A.2).

Models were compared on FPR, TPR, precision (macro average) and f-score (macro
average), which arguably are the most important metrics for a sockpuppet detection
model. Formulas of the metrics can be found at[A.1] TPR (recall) is relevant because
the ultimate goal of a model is to catch and block the majority of sockpuppet accounts,
so the system should have a high recall. Nevertheless, FPR is just as important. The
significance of FPR lies in the fact that being accused of sockpuppetry is a serious
action, which might result in an account’s block. Hence, it is crucial to minimise FPR by
preventing blocking legitimate accounts. As the cost of false positives is high, precision
also automatically becomes a metric of interest - a model must be certain when making
a positive prediction. Additionally, having high recall may lead to a very low precision
as recall and precision are often trade-offs. For example, if every account in our dataset
(50% sockpuppets, 50% legitimate accounts) is predicted to be a sockpuppet, then this
system would have a recall of 100% and precision of only 50%. Hence, precision
and recall need to be balanced and f-score is exactly the metric which integrates both
precision and recall and harmonises them.

The total time needed to train the model (this does not include parameter tuning) and
the total time a model took to classify all the instances was also reported in seconds.

4.3 Interpretation of results

Looking at the results, one can see that recreated models based on textual features
(see[d.3) turned out to be incompatible with our problem - since it can only detect at

Chapter 4. Comparing different model groups on standard metrics 24

Textual features models
SVM RF NB KNN ADA

TPR AVG 0.329 0.239 0378 0.385 0.268
FPR AVG 0.235 0.068 0.294 0.208 0.132
Precision AVG 0.559 0.665 0.548 0.604 0.607
F-score AVG 0.524 0528 0.528 0.569 0.523

Training AVG (ins) 71.520 61.368 0.895 0.065 37.531
Testing AVG (ins) 22.226 1.130 0.395 77.503 1.571

Table 4.3: Results of models based on textual features.

Non-textual features models
SVM RF NB KNN ADA

TPR AVG 0.618 0.693 0912 0.709 0.694
FPR AVG 0.324 0300 0.781 0.388 0.278
Precision AVG 0.681 0.697 0.627 0.666 0.708
F-score AVG 0.626 0.696 0.506 0.657 0.708

Training AVG (ins) 0.678 0.456 0.003 0.005 0.150
Testing AVG (ins) 0.154 0.029 0.001 0.116 0.013

Table 4.4: Results of models based on non-textual features.

most 38.5% of sockpuppets (TPR of kNN), the majority of sockpuppets would remain
unblocked, which basically defeats the purpose and makes the remaining metrics
irrelevant. This might have happened because, in order to allow for direct comparison,
the original model’s type was changed to binary classification and features, which were
originally used for AA, now were used for account classification purposes. Even though
those features were suitable for the AA problem in the original study (the original
model [23]] managed to achieve satisfactory results), they might be insufficient when
classifying users to sockpuppets and legitimate accounts.

Archetype based on non-textual features (see looks more promising. In the original
study (see [S0]), the best performing ML models were NB and RF. In this study, NB
managed to reach a very high recall of 91.2%, however its FPR of 78.1% is unacceptable,
therefore, this model cannot be considered as the best. It is interesting to notice that
NB had a FPR of 3% in the original study, which is very different from FPR of 78.1%
of NB in this study. In general, results are not expected to accurately match the results
of the original studies because of all the modifications and different evaluation dataset,
however similar trends between 2 studies are still expected to be observed. This
mismatch highly increases the possibility of the mistake which was mentioned in the
“there is a slight possibility that authors mistakenly reported FNR instead of
FPR.” Looking at the second best model in the original study, namely, RF, in this study
it achieved good but not the best results between all non-textual ML models. From the
remaining models, the ADA model has the lowest FPR (27.8%), the highest precision
(70.8%) and f-score (70.8%) and second highest TPR (69.4%). Hence, non-textual
archetype achieves the best results when implemented as ADA and non-textual model’s
implementation via ADA can be considered as a real candidate for the best solution.

Chapter 4. Comparing different model groups on standard metrics 25

Combined features models
SVM RF NB KNN ADA

TPR AVG 0.709 0.776 0910 0.654 0.749
FPR AVG 0.328 0.230 0.730 0.395 0.265
Precision AVG 0.691 0.773 0.653 0.629 0.742
F-score AVG 0.690 0.773 0.543 0.629 0.742

Training AVG (ins) 32.271 17.383 0.012 0.004 1.039
Testing AVG (in s) 0.261 0.282 0.005 0.996 0.026

Table 4.5: Results of models based on combined features.

Even though textual features on its own were not sufficient in the sockpuppetry detection
problem, adding them with non-textual features resulted in highly improved results.
From the combined features group (see [4.5), RF has the best metrics among all the ML
models (NB is instantly rejected because of an unacceptable FPR - identical problem
as for non-textual NB). RF model managed to achieve 77.6% recall, 77.3% precision,
77.3% f-score and FPR of 23%. All these results are really satisfactory, similar to
the original study’s results (see[2.2.3)) and improves the results of non-textual model’s
implementation via ADA by 5-8%. Hence, the combined archetype’s implementation
via RF is even a better candidate if considering only the standard metrics.

To conclude, this section’s aim was to review results of the textual, non-textual and
combined model and to identify the highest potential having solutions. The best found
solution in terms of recall, precision, f-score and FPR was the combined-features
model implemented via RF. Nevertheless, the primary section’s aim arguably was
not fully achieved because textual archetype’s models were not actually included in
the comparison. It was only identified that the recreated models turned out to be
incompatible with the sockpuppetry problem. However, this raises a question if the
archetype, which was selected for recreating, was a good representative for the textual
model’s group. First of all, as already noted, the original archetype’s type was changed
to binary classification, even though AA features might not be suitable for the account
classification problem. Also, the original study [23] is 10 years old. During this 10-
year period, there have been many innovations in the text technologies field such as
word2vec model allowing to capture semantic relationships between words [21] or
attention mechanisms allowing to focus on specific parts of a sequence when processing
it [26] which eventually led to transformers. Transformers (GPT, BERT, etc.) are a deep
learning model which demonstrated outstanding results on various NLP tasks and “has
brought natural language processing (NLP) to a new era.” [22] In[RQ2] transformers
will be implemented as a representative model for the textual-features group as they
are the most promising state-of-the-art solution suitable for the comments’ setup. It
is anticipated that transformers will turn out to be compatible with the sockpuppetry
problem and they will achieve better results for the textual-features group or even among
all of the groups.

Chapter 5

Sockpuppet detection with
transformers

This chapter describes - how transformers were used for the sockpuppet detection
problem and what results they managed to achieve when evaluated on the same dataset
as models described in[RQI] After transformers’ results were accumulated, the process
of choosing the most promising model group based on standard metrics was revisited
by including transformers in the selection process.

5.1 Motivation

As already noted in the previous section textual-features group needed a better
representative model. The decision was made to switch to transformers for the textual
group because of several reasons. The first criterion when choosing a new model, was
that this model should be compatible with the current problem - to classify users as
sockpuppets or legitimate accounts by analysing their comments in English Wikipedia’s
talk pages. Comments belong to sequential data, and transformers are well-suited for
analysing sequential data. Transformers are also known to work well on a number of
tasks, including the needed task of text classification, because of their universal archi-
tecture: “Transformer does not make any assumption about how the data is structured ...
This effectively makes Transformer a very universal architecture.” [20] Secondly, trans-
formers were chosen due to their promising results on a similar problem of detecting
fake accounts in OSN [27], as previously mentioned in[2.2.4] Even though the main
emphasis of this work was to present that UCred model incorporating RF, LSTM neural
network and RoBERTa transformer is the most effective when catching fake accounts,
this study also reported metrics if transformers were used alone. Using the ROBERTa
transformer alone caused only 1.5-3% drop in classification accuracy, precision, recall
and f1 score if compared with UCred’s results. Since transformers were successful in
detecting fake accounts, they hold a great potential for detecting sockpuppets which are
a subset of fake accounts. Finally, to the best of our knowledge, no study completely
relied on transformers to detect sockpuppet accounts specifically in Wikipedia. Using
something novel makes this study interesting and contributes to the research world.

26

Chapter 5. Sockpuppet detection with transformers (RQ2) 27

5.2 Methodology

5.2.1 Selecting transformers

In this study, the Hugging Face transformers [S]] library was used to download the
needed transformers and fine-tune them on the collected sockpuppetry dataset. This
library was chosen because it is flexible and easy-to-use - the author of this study did
not have any prior experience with PyTorch or TensorFlow, so some beginner-friendly
library was needed, which is exactly what Hugging Face library is about.

Hugging Face library offers thousands of transformers, however, evidently it was only
feasible to test a few transformer models in[RQ2] Therefore, a considerate selection
procedure was needed. Selection criteria included the popularity of the transformer
and its exposure to Wikipedia’s texts. The reasoning behind choosing the most popular
transformers was that if those models are actively used by other people, it indicates
that they perform well on the range of problems and hence there is a high probability
that they will succeed in the sockpuppets detection problem as well. Exposure to
Wikipedia’s texts was needed because the dataset of this study consists entirely of texts
taken from English Wikipedia. Hence, out of all the possible transformers, 4 most
downloaded (as of 14/02/2023, see[A.T)) transformers trained on the “Wikipedia” dataset
was chosen and downloaded, namely, ROBERTa, DistilBERT, BERT and XLNet.

5.2.2 Fine-tuning transformers
5.2.2.1 Process overview

The downloaded transformers already come pre-trained on large amounts of text in
a self-supervised manner. This type of training allows for a model to get a statistical
understanding of the text it was trained on, however pre-training does not prepare a
model to perform a specific task such as text classification. Therefore, the downloaded
general transformer should also go through fine-tuning which is training a model on a
dataset specific for a task. However, in order to complete fine-tuning, text in a dataset
should be preprocessed with a suitable tokenizer.

5.2.2.2 Preprocessing data

The first step of the data preprocessing was to gather each user’s comments into a
single document (i.e. 1 user = 1 document). Merging comments into 1 document might
arguably reveal the number of comments a user made, which is a non-textual feature,
because, if all the comments are of a similar size, the higher the number of comments a
user made, the longer the accumulated document should be. However, transformers’ to-
kenizers do padding which makes all of the documents of the same length, therefore the
risk of including non-textual features for a textual model is eliminated. Accumulating
comments to individual documents enabled transformers to perform direct classification
on a user level, i.e. transformers followed the same classification scheme as non-textual
and combined models (see [4.2)). Following the same classification scheme makes
different model groups even more comparable.

Chapter 5. Sockpuppet detection with transformers (RQ2) 28

Once comments were accumulated to individual documents, they were tokenized with
the suitable tokenizer. Each transformer required a different tokenizer, for example, for
RoBERTa “RobertaTokenizerFast” was used, for BERT “BertTokenizer” was used, etc.
Despite the fact that tokenizers were different, “padding” and “truncation” parameters
were always set to true for all the used tokenizers. Setting these parameters to true
meant that firstly comments’ documents were appended with additional tokens in order
to match the length of the longest document in a batch and afterwards the appended
documents were truncated to the maximum allowable input’s length for a model.

5.2.2.3 Fine-tuning via Trainer class

To complete the fine-tuning, Hugging Face’s Trainer class [6], which provides functions
to facilitate the fine-tuning of models in PyTorch, was used. This class is highly
dependent on the “TrainingArguments” class which is used to specify parameters for the
training. For the majority of training parameters, the default values were used, but values
for “per_device_train_batch_size”, “warmup_steps” and “weight_decay” were set to 4,
500 and 0.01 respectively because these values were reported to achieve satisfactory
results on similar tasks [[17]. In reality, to find the best results, one should do parameter
tuning for the training arguments, however due to time constraints (it took 20-30 min to
train 1 model) and limited computing resources (Google Collab’s GPU was used to train
the models, however, it is only available for at most 12 hours and has an exponentially
increasing reset time), the decision was made to choose the arguments from theoretical
rather than experimental side. It is important to note, that during training, the model
was evaluated on the development set, which was 30% of randomly sampled training
data, however during testing, it was evaluated on the unseen testing set.

5.2.3 Evaluating transformers

The most important thing was to recreate the identical evaluation environment which
was used to evaluate non-textual and combined ML models (see d.1.2). This was done
in order to directly compare transformers with previously recreated non-textual and
combined archetypes and, in case of any performance differences, explain them solely
by the different model’s architecture, rather than some confounding variables. Therefore,
all of the fine-tuned transformers were evaluated on the same dataset (see [3)) which
was split 3 times (see @) Evaluation, i.e. testing, was completed via the Trainer’s
“evaluate” method. Identically as for non-textual and combined models, transformers
were trained and tested 3 times (on each of the splits) and, subsequently, the metrics
obtained from each split were averaged and reported.

5.3 Results

Transformers’ results are summarised in the table [5.1] (the extended version of results
can be found at[A.4). The table reports the same metrics of interest, namely, averaged
recall, FPR, precision (macro average) and f-score (macro average). Average time to
train the transformer (Training AVG) and time to classify all test instances (Testing
AVQ) are also reported because they hold a significant importance for transformers.

Chapter 5. Sockpuppet detection with transformers (RQ2) 29

Transformers

RoBERTa DistilBERT BERT XLNet
TPR AVG 0.844 0.766 0.744 0.632
FPR AVG 0.098 0.278 0.274 0.385
Precision AVG 0.893 0.727 0.725 0.646
F-score AVG 0.867 0.746 0.734 0.566
Training AVG (in s) 738.605 371.902 726.550 1321.469
Testing AVG (in s) 42.261 22729 45376 139.208

Table 5.1: Results of transformers (belong to textual group).

5.4 Interpretation of results

Looking at the[5.1} one can immediately notice that transformers performed significantly
better than previous textual models (see 4.3)) which proves that previously selected
models were poor representatives for the textual model group and that textual features in
general are compatible with the sockpuppet detection problem. Performance of all the
transformers, except for maybe XLNet, was very satisfactory. ROBERTa demonstrated
outstanding results. So far, the best model was the combined model’s implementation
via RF with 77.6% recall, 77.3% precision, 77.3% f-score and FPR of 23%. RoBERTa
outperformed this model in all the aspects - ROBERTa reached 84.4% recall (improve-
ment by 6.8%), 9.8% FPR (improvement by 13.2%), 89.3% precision (improvement by
12%) and 86.7% f-score (improvement by 9.4%). These results are very promising and
the standard deviation of all the metrics is only 0.5-1% (see[A.4), which shows that the
achieved results are stable, i.e. they are not accidentally caused by a very good split
between training and testing data or some coincidental factors, and that the reported
results can be trusted.

When looking at the reported metrics, one could immediately claim that ROBERTa’s
model turned out to be the best performing one on sockpuppetry problem and has the
highest potential to be integrated into Wikipedia. However, arguably comparing models
on recall, FPR, precision and f-score is a very theoretical comparison suitable for any
type of problem. Relying only on standard metrics might not be sufficient to select
the best model for sockpuppet detection in Wikipedia. Therefore, it’s important to
evaluate the best found models from a more practical perspective that takes into account
factors such as limitations of selected models and models’ maintenance problem. This
leads to[RQ3] RQ3 analyses how well 2 so far the best models, namely, RoOBERTa and
combined model via RF, classify data taken from unseen topics (addresses limitation of
both models as they both rely on textual features) and unseen time periods (addresses
maintenance problem) which were not present during the training (or fine-tuning) phase.
It is anticipated that, performing additional evaluation on more practical dimensions,
will allow proposing a solution, which has the highest probability to achieve good
practical results if integrated into Wikipedia for sockpuppet detection, with a greater
confidence.

Chapter 6

Practical evaluation of top-performing

models

In this chapter, models that were found to be the best when evaluated solely on the
standard metrics, are evaluated further from a more practical perspective. The final goal
of this chapter, as well as this study, is to find a model which has the greatest potential
of achieving satisfactory results in sockpuppet detection in Wikipedia.

6.1 Motivation

As already mentioned in it is crucial to evaluate models not only on standard
metrics, but also from a more practical perspective. When choosing additional practical
dimensions to evaluate models on, the goal was to foresee what factors could have
a significant influence on their performance and to check model’s performance after
simulating unfavourable conditions for those factors.

The first factor to consider is that both ROBERTa’s model and the combined model rely
on the textual features when classifying users - ROBERTa’s model entirely, combined
model partially. Textual data is very dynamic and easily manipulable, hence it is
impossible to introduce the model with all the possible variations of texts during
training. For instance, new variations of texts can be created by introducing new topics
which were not present when training the model. As time advances, new article topics
continue to be generated - from 2018, each year around 200,000 new articles are
added to Wikipedia [43]. Given the great number of articles, many of them apparently
introduced new topics. Since the textual data is of very dynamic nature, the ideal
sockpuppet detection model should be able to correctly classify users whose comments
content is different from content of comments found in the training set. This invites
to test how well 2 best models (RoOBERTa and combined model via RF) generalise on
unseen topics, i.e. topics a model was not exposed to during the training phase (RQ3a)).
In this study, this feature will be interchangeably called “topic generalisability”. As
reflected in [54], topic generalisation, also known as domain generalisation, is a crucial
dimension to evaluate learning algorithms on as “generalization to out-of-distribution
data is a capability natural to humans yet challenging for machines to reproduce.”

30

Chapter 6. Practical evaluation of top-performing models (RQ3) 31

Another practical problem is retraining the models. In the ideal world, these models
should be periodically retrained, however retraining models requires human experts,
much computing power and time, all of which are limited resources. Time concern is
especially applicable for ROBERTa because transformers take much time for fine-tuning
- RoBERTa has 43 times longer training (i.e. fine-tuning) time than the combined model
via RF (see .4). Because of these practical issues, updating models may occur less
often than it is recommended and models trained on old data inevitably will have to
classify more recent data. This leads to RQ3b)| which analyses how well RoOBERTa
and combined model, trained on data from one period, can classify more recent data,
1.e. model’s “temporal generalisability” will be tested. Temporal generalisation is a
classical dimension to evaluate models working with textual data, for example, see [16].

6.2 Methodology

6.2.1 RQ3a
6.2.1.1 Getting topic of a talk page

For each talk page, categories it belongs to were retrieved via MediaWiki API:Categories
[11] endpoint as already described in It was observed that not all the retrieved
categories are topic-oriented, some of them are only concerned with talk page’s quality
or importance. For instance, “Talk:Donald Trump” [36] has the category “B-Class
politics articles” which indicates that this page is of B-Class quality and also the
category “High-importance politics articles” which informs about the page’s importance.
Therefore, the goal was to find a category type which is only concerned about the
page’s topic. WikiProject [48]] type categories precisely embodied that characteristic as
WikiProject type categories connect talk pages of the same topic. Some examples of
WikiProject titles include “WikiProject Television articles”, “WikiProject Biography
articles”, “WikiProject United States articles”, etc. Since WikiProjects are clearly
centred around a specific topic, only WikiProject type categories were filtered out and
used as a topic(-s) of the talk page.

It is important to note that a vast majority of the pages were given a topic, although not
all of them - of the 67,814 distinct talk pages, 55,459 (81.8%) were eventually assigned
a topic. Out of 18.2% of pages without a topic, 7.6% could not be assigned a topic
because they were not assigned to any of the categories in Wikipedia. Reasons why
some talk page did not have a category include the fact that talk pages are not required
to have a category, e.g. “Talk: ARM DynamIQ” [31] has no categories, or because the
talk page was moved and the current title did not exist, e.g. “Talk:Michael Bell Cox’
was moved to “Talk: Archdeacon of Raphoe” [32]. The latter reason is the limitation of
the MediaWiki API:Categories endpoint - this endpoint can only search for current titles
but it cannot redirect to a new title. The remaining 10.6% of unassigned pages could not
be assigned a topic because even though they belonged to some of the categories, none
of them were of the WikiProject type. One alternative topic source for unassigned talk
pages would be to analyse categories of the corresponding article, however categories of
articles are too specific and that would create an imbalance between 81.8% of talk pages
which were already assigned a few broad topics and the remaining 18.2% of talk pages

2

Chapter 6. Practical evaluation of top-performing models (RQ3) 32

which would be assigned to many very specific topics. Therefore these 12,355 talk
pages (18.2%) ultimately were left without a topic because alternatives topic sources
seemed insufficient.

6.2.1.2 Creating training and testing sets

Once the majority of talk pages were assigned a topic, the next step was to divide users
between training and testing sets. It was impossible to create a testing set which would
consist of users contributing only to topics which a model was not introduced to during
the training, i.e. some intersection between the training set’s and the testing set’s topics
was inevitable. A simple example proving the difficulty of this task is as follows: out
of 3 users, 2 users (i.e. 66% users) need to be assigned to the training set and 1 user
(i.e. 33% users) to the testing set. The contributions of the users are as follows: user A
contributed to “Politics” and “USA” topics, user B to “Politics” and “Food” topics and
user C to “Nature” and “USA” topics. Regardless of which user is put to the testing set,
it is impossible to create a testing set which consists only of topics which a model was
not introduced to during training.

One way to solve this problem was to assign each user a dominating topic, in which the
majority of the user’s contributions were made, instead of considering all of the topics
for which a user have made contributions. In the aforementioned example, if user A and
user B dominating topic was “Politics” and user C dominating topic was “Nature”, then
putting user C to the testing set would result in the smallest topic-intersection between
testing and training sets. However, in reality users tend to make their contributions
in a number of topics instead of concentrating on one topic only. Histogram (see
[6.1), which shows what percentage of contributions were made in the user’s majority
category (most common category for that user’s contributions), is skewed to the right.
This indicates that the majority of users made only a small portion, specifically 3-30%,
of their contributions in their majority topic. Hence the concept of linking each user
with the topic they made the most contributions at is not an accurate representation of
that user. Relaxing this and allowing a user to be assigned to multiple topics when X
percentage of their contributions were made in those topics would also not work. If
the goal is to assign each user with at least one topic, then histogram [6.1] shows that
the threshold should be set to 3%. If it is acceptable to have a subset of users without
any topic assigned to them, then the threshold could be somewhat higher: with 10%
threshold, 7% of users would be left with no topic, but with 20% threshold already 30%
of users would be left with no topic. However, setting up the main topic(-s) for a user in
reality is just applying filtering for categories. If the threshold is too low, most topics
will remain, and filtering will have little effect. Therefore, no filtering was applied
and topics were considered as-is, i.e. if a user contributed to some topic, they were a
representative of that topic, no matter how actively they contributed to it.

Once this was established, topics were randomly sampled one by one until the testing set
was of the needed size (=~ 30% users) and of the needed content (= 50% sockpuppets
and ~ 50% of control users). After sampling one topic, all of the users who made at
least one contribution to that topic were added to the testing set. After the testing set was
created, the remaining users were added to the training set. From the topic-intersection

Chapter 6. Practical evaluation of top-performing models (RQ3) 33

700 4

600 -

500

400 A

300 4

User count

200 A

100 A

0 20 40 60 80 100
Percentage (%)

Figure 6.1: Percentage of contributions that were made in the user's majority category.

perspective this means that when forming a testing set, some set of topics were selected
and it was ensured that those topics appear only in the testing set, however the remaining
topics were not controlled and they could appear both in the training as well as the
testing set. This procedure was repeated 3 times, each time with different topics in
the random sample - 3 different training and testing sets were created allowing to run
models 3 times and report average metrics.

6.2.2 RQ3b
6.2.2.1 Creating training and testing sets

Since timestamp of each contribution was present in the dataset from the very beginning
(see 3.2.2.2)), answering RQ3b only required to divide users between training and
testing sets. The sets were created by simulating the following scenario: models were
released at some point in time (let’s call it T) and then they were used to classify future
data without ever retraining models on newer data. Hence, the testing set consisted
of the “future data”, i.e. users who contributed after the time T, and the training set
consisted of the remaining users. Since the goal was to still ensure that testing set
contains only 30% of users (50% of sockpuppets and 50% of control group), some of
the users, who contributed after time T, were still assigned to the training set, however
all of their contributions which happened after time T were deleted. On the other hand,
contributions, which happened before time T, weren’t deleted from the testing set to
mimic the real word - when classifying some user as a sockpuppet or a legitimate
account, one examines all of their contributions, not only the most recent ones.

The date of “01/01/2016” was selected for the value of T. This date has no semantic
meaning - it was selected simply because it allowed splitting the users in the most
efficient way. Advancing T to more recent years would have introduced the problem
of not having enough users in the testing set - testing set required around 750 of each
control users and sockpuppets, who had at least one contribution after time T, and the
most recent date that had the similar amount of both type of users was “01/01/2016”.

Chapter 6. Practical evaluation of top-performing models (RQ3) 34

If the earlier date was chosen, on the other hand, this would have resulted in deleting
many contributions, which happened after this date, from the training set because as the
date becomes earlier, the number of deleted contributions increases proportionally.

To conclude, each user was reviewed separately and those users who had comments
after “01/01/2016” were added to the testing set. When the testing set became of the
desired size and content (= 30% of all users equally split between sockpuppets and
legitimate users), the remaining users as well as the users, who had no contributions
after “01/01/2016”, were added to the training set, however without the contributions
happening after “01/01/2016”. Since the number of sockpuppets who had contributions
after this date was slightly more than the needed 30%, this allowed creating multiple
sets. Hence, similarly as before, by creating 3 distinct sets for training and testing, the
models were executed three times, enabling the derivation of mean metrics.

6.3 Results

Results of both research questions (RQ3a) and RQ3p)) for both combined and RoBERTa
models are summarised in the table The same metrics of interest, namely, TPR,
FPR, Precision and F-score, were averaged from 3 separate runs and reported. The
reported metrics were compared with the baseline metrics calculated in the previous
research questions - for combined model in[RQT] (see #.5)), for RoBERTa in[RQ2] (see
[5.1). The observed difference between new and baseline metrics was expressed in
brackets in percentages: (new - baseline) * 100%. Differences indicating decline in
performance are bolded - for TPR, precision and f-score negative percentage means
performance drop, for FPR positive percentage means performance drop.

Combined model (RF) RoBERTa

baseline | RQ3a RQ3b baseline | RQ3a RQ3b
TPR AVG 0.776 0.796 (+ 2%) 0.786 (+ 1%) 0.844 0.916 (+ 7.2%) | 0.860 (+ 1.6%)
FPR AVG 0.230 0.273 (+ 4.3%) | 0.543 (+ 31.3%) | 0.098 0.134 (+ 3.6%) | 0.128 (+ 3%)
Precision AVG | 0.773 0.761 (- 1.2%) | 0.637 (- 13.6%) | 0.893 0.852 (-4.1%) | 0.867 (- 2.6%)
F-score AVG | 0.773 0.759 (-1.4%) | 0.614 (- 15.9%) | 0.867 0.882 (+ 1.5%) | 0.866 (- 0.1%)

Table 6.1: RQS results.
6.4 Interpretation of results

In general, one can clearly see that simulating unfavourable conditions resulted in
performance drop for both of the models, as expected. All of the metrics, except for
TPR, experienced deterioration. Since both TPR and FPR increased, one can claim that
models started to classify accounts as sockpuppets in a more lennient manner - this is
not ideal, because even high TPR is one of the goals, however the model needs to be
confident when claiming that some account is a sockpuppet as the price of FP is high.

Looking specifically at RQ3a), which analysed topic generalisability of models, it is
debatable which model experienced a more substantial decline in performance. As
for the combined model via RF, this experiment caused a minimal 1.2-2% change

Chapter 6. Practical evaluation of top-performing models (RQ3) 35

in almost all metrics, except for FPR which experienced 4.3% deterioration. Small
effect can be explained by the fact that this experiment was based on alternating textual
features and combined model relies on textual features only partially. The combined
model’s ability to achieve similar performance when generalising on unseen topics
underscores its stability, which is a desirable feature for a model. Effect for ROBERTa,
which completely relies on textual features, was of a higher magnitude, although not
always negative. ROBERTa’s TPR increased by 7.2%, however at a price of FPR which
regressed by 3.6% and precision which dropped by 4.1%. So even though RoOBERTa’s
model was less stable, some of the changes were positive which somewhat compensated
for deteriorated metrics.

On the other hand, it is evident that the combined model’s drop in performance is more
significant than that of RoBERTa in RQ3b)l which analysed temporal generalisability.
Looking at the ROBERTa’s decreased metrics, its metric deterioration of 0.1-3% seems
negligible when compared with the combined model’s metric deterioration of 13.6-
31.3%. The latter deterioration is unexpectedly high and some analysis was completed
in order to understand why. In general, this might be caused either by unsatisfactory
dataset, shifts in user commenting behaviour over time or model’s incompatibility with
the experiment’s setup. Out of these reasons, the first 2 seemed improbable, because
the ROBERTa model managed to achieve satisfactory results indicating that the dataset
was diverse and unbiased towards any specific type of comments and that the user
commenting behaviour did not change at least in terms of textual features. Even if
commenting behaviour changed in terms of non-textual features, this should not have
that drastic effect on the model’s performance as non-textual features constitute the
minority of the features in the combined model. Hence, the model’s incompatibility
seemed like the most probable reason and to test this, the experiment’s setup was slightly
changed - contributions that happened after “01/01/2016” were not deleted from the
training dataset. Rerunning the model gave the following averaged results: TPR - 0.807
(+3.1%), FPR - 0.372 (+14.2%), precision - 0.726 (-4.7%) and f-score - 0.717 (-5.6%).
The significant improvement in results by including “future” contributions in the training
set implies that the combined model needs to see the entire commenting history of a
user when learning, whereas the ROBERTa model can effectively learn from partial data.
This is one more advantage of ROBERTa. Nevertheless, even when including the entire
history, the combined model’s results are worse and FPR of 0.372 is quite intolerable,
hence the combined model cannot perform well without regular retraining. To conclude,
RQ3b shows that retraining model on a newer data is a mandatory condition for the
combined model to achieve satisfactory performance and the whole user’s commenting
history is required when learning, whereas RoBERTa can perform relatively well even
without retraining and only given partial commenting data in the learning phase.

To conclude, RoOBERTa already presented better results when evaluated on standard met-
rics and this additional analysis proved that ROBERTa is, in general, more compatible
with the practical issues that arise in the sockpuppetry problem. RoBERTa demonstrates
comparable performance when handling comments from previously unencountered top-
ics and it does not require regular retraining on more recent data. Therefore, ROBERTa’s
model exhibits the highest likelihood of achieving good practical results in sockpuppets
detection in Wikipedia.

Chapter 7

Discussion

7.1 Implications

Through the various stages of evaluation, this study outlined RoBERTa transformer as
the best model for catching sockpuppet accounts in Wikipedia. Even though RoOBERTa
presented very satisfactory results, the demonstrated behaviour still does not allow it
to be a fully automated solution which regularly scans all the accounts contributing to
Wikipedia, classifies them and automatically blocks accounts classified as sockpuppets.
The main reason why RoBERTa cannot be fully automated is its high FPR of 9.8%.
Although 9.8% FPR theoretically looks small, in reality the majority of Wikipedia
accounts are legitimate, hence it would translate into a significant number of incorrectly
blocked accounts. Since incorrectly blocking some account might result in serious prob-
lems, such as a decrease in the user’s trust towards Wikipedia or their discontinuation
of its use, the sockpuppet detection tool should be used very carefully. One way to
mitigate the unwanted effects is to include a human in the process. There are 2 ways to
make RoBERTa as a semi-automated solution involving a human in the decision making
process. As the current procedure of detecting and blocking sockpuppet accounts is a
2-stage process, one can either automate the first or the second stage.

To reiterate, the first stage of the current procedure is other Wikipedia users detecting
and reporting suspicious accounts through Wikipedia’s sockpuppet reporting tool (see
[2.1.2). This stage depends on other users’ good will and such problems as the reporting
tool being time-consuming or temporarily unavailable might lead to not reporting some
account which was suspected as a sockpuppet. Clearly, this stage could be improved
by using the RoBERTa model to flag the suspected accounts instead. RoOBERTa could
periodically scan the accounts which made some contribution and perform account
classification behind-the-scenes. Those accounts which were classified as sockpuppets
could be flagged and sent for further review to Wikipedia’s administrators, which would
make the final decision.

On the other hand, the second stage, where Wikipedia’s administrators make the final
decision (see [2.1.3)), could be automated instead. Then reporting the suspected accounts
would be done by all the Wikipedia’s users as before, but the final solution if the account
should be blocked would be automatically completed by the RoBERTa tool. In this

36

Chapter 7. Discussion 37

case, ROBERTa would make the decision on accounts which are already suspected not
to be legitimate, thus 9.8% FPR should result in a significantly reduced number of
incorrectly blocked legitimate accounts, if compared with making the classification on
all the accounts.

To conclude, the found RoOBERTa model cannot be used in a fully automated manner,
but it can successfully be used as a semi-automated solution for sockpuppet detection
automating either the first or the second stage of the current process. Deciding which
stage to automate is a trade-off. Automating the first stage would result in flagging
suspected accounts more accurately and free from faults caused by human action,
however it would still require a significant effort from Wikipedia’s administrators when
making the final decision. Automating the second stage would reduce the workload
of administrators, who could use their expertise and time towards other Wikipedia’s
problems, but the process of flagging suspected accounts would still depend on other
Wikipedia users. Regardless of which stage was automated, incorporating the RoOBERTa
model to sockpuppet detection in Wikipedia should result in a highly improved and
more objective process and greatly benefit all of the Wikipedia’s community.

7.2 Comparison with existing literature

found that the combined model is the most effective ML model to detect sockpup-
pet accounts in Wikipedia. Looking at the existing literature (see [2.2)), the combined
model group looked the most promising from the very beginning because it had the
most recent works, it integrated the strengths of both approaches and also because of
the primary comparison completed in the Yu et al. study [S3]]. In order to prove the
effectiveness of integrating textual and non-textual features together, Yu’s study also
performed account classification when using these features in isolation. It found that
non-textual features are slightly more effective than textual features (1-2% difference
on metrics) and integrating both of them together can increase standard metrics by 6%
on average if compared with results from using non-textual features only. The latter
conclusion matches findings of this study - for the majority of the models, except for
kNN, the combination of textual and non-textual models improved metrics by 1-8% if
compared with using non-textual features alone (see and and thus resulted in
the most effective ML based approach. Importantly, Yu’s comparison doesn’t diminish
our study’s importance as it’s very basic: it only uses SVM (whereas our findings show
that archetype’s performance depend very much on the selected ML implementation, so
one specific implementation is not a good representative of the archetype), lacks crucial
metrics such as FPR, and ignores practical evaluation.

As for the RQ2] it found that transformers perform significantly better than previously
analysed ML models. On the one hand, the fact that a model from a textual group turned
out to be the most compatible one is somewhat unexpected. Looking at the literature
about sockpuppetry problem in Wikipedia (see [2.2), the textual model group appears to
have been largely overlooked - there is only Solorio et al. model in this group, which is
10 years old and suffers from high computational cost and poor evaluation, and after that
no significant contribution was made in this area. On the other hand, transformers were
deemed to be superior to ML models on a similar problem of detecting fake accounts

Chapter 7. Discussion 38

in OSN [27]]. When these 2 types of models were evaluated in isolation, transformers
reached higher scores on all the metrics, e.g. ML models reached only 89-91% recall,
whereas transformers had recall of 94-97%. These findings provided us with a good
premise to try transformers on Wikipedia’s sockpuppetry problem and the outcomes
not only proved to be successful but also revitalised the previously neglected field.

Regarding [RQ3|findings, they cannot be compared with the existing literature. Even
though topic and temporal generalisation are classical evaluation axes for models,
none of the sockpuppet detection models for Wikipedia or other sites were found to
be evaluated on these axes. The closest studies evaluated on these axes were those
analysing bots [4, 52]], however bots are conceptually different from sockpuppets as
they are not controlled by humans, hence those studies cannot be used for comparison.

7.3 Critical evaluation

7.3.1 Design limitations

The first design limitation is that models were evaluated on the “Talk” namespace only.
In reality, Wikipedia has a number of namespaces [42] and some studies used all of
the namespaces to evaluate their model ([S0], [S1]]). However, when working with
all of the namespaces, fetching data from MediaWiki: API becomes not doable as the
data quantity is huge and hence one has to work with Wikimedia database dumps [30].
Working with Wikimedia dumps requires much storage - the needed English Wikipedia
dump (“All pages with complete edit history”) is around 24 TB uncompressed [29].
Storage of that quantity was unavailable when completing this study and hence the
models were evaluated on the “Talk” namespace only. However, in reality, only a
small portion of sockpuppets contribute to the discussion area. After revisiting sections
[3.2.2.1]and [3.2.2.2] one can observe that initially 20,361 of unique sockpuppets were
retrieved, however only 2,483 (12%) of them contributed to talk pages. This means that
even though this study found that the RoOBERTa model is very effective when catching
sockpuppets, its effectiveness was only proven for the small number of sockpuppets. On
the positive side, the remaining namespaces is of the textual nature as well, e.g. “Main”
namespace contains Wikipedia articles, “User” namespace is dedicated for interpersonal
discussion, etc. This means that the RoOBERTa model is applicable to other namespaces
as well, however, its effectiveness in other Wikipedia areas still needs to be tested.

Another limitation comes from the methodology of collecting control group’s contribu-
tions, more specifically controlling the control group’s activity range when collecting
the contributions (see [3.2.3.2). Even though this ensured that models do not rely too
much on the number of contributions a user made, which was crucial especially for the
textual models as this is a non-textual feature, it also resulted in losing some information.
It means that for the control users, not all of their contributions, that have been made
since the account registration, were analysed, but only those contributions which were
made at the time window when the matching sockpuppet account was active. This
might result in practical problems if the RoOBERTa model was actually integrated into
Wikipedia. Additional research would be required in order to find the optimal number
of contributions which are needed to decide if an account is a sockpuppet or not.

Chapter 7. Discussion 39

7.3.2 Implementation limitations

Implementation limitations were already discussed when presenting the methodology,
however, for the sake of completeness they are briefly mentioned again in this section.
When recreating non-textual models, features, which are related with namespaces other
than Talk”, could not be recreated (see .1.1.4). This resulted in a model with 5
features only. Such a small number of features might not reveal the full potential of a
non-textual model and the situation might be improved by adding additional features.
However the primary goal of this study was to compare models from different feature
groups and just a minimal archetype already allows that. If some improvements were
made towards the non-textual model, then to provide equal treatment for all the models,
arguably other models should also be improved which would have resulted in a different
study. Secondly, no hyperparameter tuning was completed for the transformers because
of the time and computing resources constraints (see [5.2.2.3). Even though this did
not prevent transformers from achieving satisfactory results, possibly models have the
potential to attain even more optimal outcomes. Finally, as already mentioned in[6.2.1.1]
18.2% of talk pages were not assigned a topic when completing RQ3a. This meant that
the inclusion of these articles in the testing dataset was deemed improbable. However,
it did not cause any major implications as the testing set already had many candidate
topics to sample from.

7.4 Possible future work

This study provides many possible directions for the future work.

One of the most important findings of this study was the innovative approach of using
a RoBERTa transformer to catch sockpuppet accounts. Even though the RoBERTa
model achieved outstanding results when compared with previously published ML
models, it still cannot be implemented as a fully automated solution because of the high
FPR. RoBERTa has an FPR of 9.8% which translates into a high number of incorrectly
blocked accounts as the majority of users are legitimate in reality. Future research
could investigate this problem and try to decrease the number of false positives. Some
suggestions on how to achieve better results include tuning hyper-parameters for the
transformer and finding the most optimal setting or including more data of a user, e.g.
an account’s edits to the “Main” namespace (i.e. articles). Regarding other namespaces,
as already mentioned in the[7.3.1] section, RoOBERTa’s performance in them still needs
to be tested, which is yet another direction for the future’s work.

What is more, since the RoOBERTa transformer proved effective in Wikipedia’s discus-
sion area, it would be interesting to test if transformers can also provide a satisfactory
performance in other websites which suffer from the sockpuppetry problem such as
Twitter, Facebook, Reddit, etc. Upon revisiting section, one can observe that
transformers were already tried on OSN and Twitter datasets to detect fake accounts by
using transformers on its own, as well as incorporating transformers to the multi-fusion
process [27]. Even though both methods proved effective in this study, they were tested
on a dataset which included all types of fake accounts such as bots, compromised
profiles, etc. As the proportion of sockpuppets within this dataset was not reported, one

Chapter 7. Discussion 40

cannot know if the proposed methods would work equally well if tested on sockpuppets
only. Hence, some future study detecting only sockpuppets using transformers alone in
other platforms might be a useful contribution to the research.

Also, the collected dataset is useful itself and it can be used in similar or related studies.
The dataset contains a rich collection of 146,886 contributions to English Wikipedia’s
talk pages made by 4,966 users (50% sockpuppets, 50% legitimate accounts) between
December 2001 and January 2023. Arguably, it is superior to the datasets used in other
studies - Solorio’s [23)24] and Yu’s [S3] studies used datasets that included only around
700 users, whereas Yamak’s studies [[50, 51 used datasets about 10,000 users, however
the data spanned a smaller time frame (only from 2004 to 2015). The dataset of this
study contains a sufficient number of users and it covers a commenting history of more
than 20 years. Consequently, it can be used in studies analysing if the commenting
behaviour of users change over time or in studies analysing the sockpuppet problem
from a different angle, for instance analysing if sockpuppets tend to contribute to some
topics more than others as the information what topic a comment belongs to is present
in the dataset.

7.5 Conclusion

The aim of this study was to outline the best candidate model to be implemented in
Wikipedia for catching sockpuppet accounts. The primary analysis (i.e. RQI)), which
considered only traditional ML models recreated from papers of past research, revealed
that the model combining textual and non-textual features has the highest probability
of achieving success as it scored the highest on standard metrics (77.6% recall, 77.3%
precision, 77.3% f-score and FPR of 23%). However, the poor representation of the
textual model group in RQ1, encouraged including more state-of-the-art textual models,
namely transformers, in the comparison (RQ2)). Detecting sockpuppet accounts solely
based on transformers was not only an innovative approach, but it also turned out
to be the most powerful solution - the ROBERTa transformer reached 84.4% recall,
9.8% FPR, 89.3% precision and 86.7% f-score on the very same dataset. ROBERTa’s
effectiveness was also proven from the practical point of view - it was found that
RoBERTa can effectively generalise on unseen topics and unseen time periods without
experiencing dramatic deterioration in its performance, opposite to the combined model
whose performance dropped quite significantly when generalising on unseen time
periods. ROBERTa achieving the highest results on standard evaluation, as well as on
additional evaluation on practical dimensions allows to confidently present ROBERTa as
the most promising model which has the highest potential of delivering positive results
if integrated into Wikipedia for sockpuppet detection.

It is anticipated that having outlined the most promising sockpuppet detection model
will accelerate the process of implementing semi-automated sockpuppet detection in
Wikipedia. Given the limitations of the current manual solution and the number of
aspects sockpuppet accounts can be detrimental to Wikipedia, this is a crucial and useful
contribution to Wikipedia. Having more effective sockpuppets detection system would
result in more accurate, more objective and more welcoming Wikipedia to all of us.

Bibliography

[1] Ahmed Alharbi, Hai Dong, Xun Yi, Zahir Tari, and Ibrahim Khalil. Social media
identity deception detection: A survey. ACM Comput. Surv., 54(3), apr 2021.

[2] Cambridge Dictionary. Meaning of frequency in English. https://dictionary.
cambridge.org/dictionary/english/frequency, 2023.

[3] Xin Du, Siyuan Chen, Zhiyue Liu, and Jiahai Wang. Multiple userids identification
with deep learning. Expert Systems with Applications, 207:117924, 2022.

[4] Juan Echeverri£ja, Emiliano De Cristofaro, Nicolas Kourtellis, Ilias Leontiadis,
Gianluca Stringhini, and Shi Zhou. Lobo: Evaluation of generalization deficiencies
in twitter bot classifiers. In Proceedings of the 34th Annual Computer Security
Applications Conference, ACSAC 18, page 137-146, New York, NY, USA, 2018.
Association for Computing Machinery.

[5] Hugging Face. Hugging Face transformers. https://huggingface.co/, 2023.

[6] Hugging Face. Trainer. https://huggingface.co/docs/transformers/
main_classes/trainer, 2023.

[7] Wikimedia Foundation. Privacy policy. https://foundation.wikimedia.org/
wiki/Privacy_policy, 2021.

[8] Wikimedia Foundation. MediaWiki API. https://www.mediawiki.org/wiki/
API:Main_page, 2023.

[9] Wikimedia Foundation. MediaWiki API Etiquette. https://www.mediawiki.
org/wiki/API:Etiquette, 2023.

[10] Wikimedia Foundation. MediaWiki API:Blocks. https://www.mediawiki!
org/wiki/API:Blocks, 2023.

[11] Wikimedia Foundation. MediaWiki API:Categories. https://www.mediawiki.
org/wiki/API:Categories, 2023.

[12] Wikimedia Foundation. MediaWiki API:Compare. https://www.mediawiki.
org/wiki/APTI:Compare, 2023.

[13] Wikimedia Foundation. MediaWiki API:Revisions. https://www.mediawiki.
org/wiki/API:Revisions, 2023.

41

https://dictionary.cambridge.org/dictionary/english/frequency
https://dictionary.cambridge.org/dictionary/english/frequency
https://huggingface.co/
https://huggingface.co/docs/transformers/main_classes/trainer
https://huggingface.co/docs/transformers/main_classes/trainer
https://foundation.wikimedia.org/wiki/Privacy_policy
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.mediawiki.org/wiki/API:Main_page
https://www.mediawiki.org/wiki/API:Main_page
https://www.mediawiki.org/wiki/API:Etiquette
https://www.mediawiki.org/wiki/API:Etiquette
https://www.mediawiki.org/wiki/API:Blocks
https://www.mediawiki.org/wiki/API:Blocks
https://www.mediawiki.org/wiki/API:Categories
https://www.mediawiki.org/wiki/API:Categories
https://www.mediawiki.org/wiki/API:Compare
https://www.mediawiki.org/wiki/API:Compare
https://www.mediawiki.org/wiki/API:Revisions
https://www.mediawiki.org/wiki/API:Revisions

Bibliography 42

[14] Wikimedia Foundation. MediaWiki API:Usercontribs. https://www,
mediawiki.org/wiki/API:Usercontribs, 2023.

[15] Wikimedia Foundation. MediaWiki API:Users. https://www.mediawiki.org/
wik1/API:Users, 2023.

[16] Angeliki Lazaridou, Adhi Kuncoro, Elena Gribovskaya, Devang Agrawal, Adam
Liska, Tayfun Terzi, Mai Gimenez, Cyprien de Masson d’ Autume, Tomas Kocisky,
Sebastian Ruder, et al. Mind the gap: Assessing temporal generalization in
neural language models. Advances in Neural Information Processing Systems,

34:29348-29363, 2021.

[17] Jesus Leal. Using ROBERTA for text classification. https://jesusleal.io/
2020/10/20/RoBERTA-Text-Classification/}, 2020.

[18] Scikit Learn. GridSearchCV. https://scikit-learn.org/stable/modules/
generated/sklearn.model_selection.GridSearchCV.html, 2023.

[19] Jiacheng Li, Wei Zhou, Jizhong Han, and Songlin Hu. Sockpuppet detection in
social network via propagation tree. In Jodo M. F. Rodrigues, Pedro J. S. Cardoso,
Janio Monteiro, Roberto Lam, Valeria V. Krzhizhanovskaya, Michael H. Lees,
Jack J. Dongarra, and Peter M. A. Sloot, editors, Computational Science — ICCS
2019, pages 507-513, Cham, 2019. Springer International Publishing.

[20] Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of trans-
formers. Al Open, 2022.

[21] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space, 2013.

[22] Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing
Huang. Pre-trained models for natural language processing: A survey. Science
China Technological Sciences, 63(10):1872-1897, 2020.

[23] Thamar Solorio, Ragib Hasan, and Mainul Mizan. A case study of sockpuppet
detection in wikipedia. In Proceedings of the Workshop on Language Analysis in
Social Media, pages 59—68, 2013.

[24] Thamar Solorio, Ragib Hasan, and Mainul Mizan. Sockpuppet detection in
wikipedia: A corpus of real-world deceptive writing for linking identities, 2013.

[25] Michail Tsikerdekis and Sherali Zeadally. Multiple account identity deception
detection in social media using nonverbal behavior. IEEE Transactions on Infor-
mation Forensics and Security, 9(8):1311-1321, 2014.

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, L.ukasz Kaiser, and Illia Polosukhin. Attention is all you need.
Advances in neural information processing systems, 30, 2017.

[27] Pawan Kumar Verma, Prateek Agrawal, Vishu Madaan, and Charu Gupta. Ucred:
fusion of machine learning and deep learning methods for user credibility on
social media. Social Network Analysis and Mining, 12(1):54, 2022.

https://www.mediawiki.org/wiki/API:Usercontribs
https://www.mediawiki.org/wiki/API:Usercontribs
https://www.mediawiki.org/wiki/API:Users
https://www.mediawiki.org/wiki/API:Users
https://jesusleal.io/2020/10/20/RoBERTA-Text-Classification/
https://jesusleal.io/2020/10/20/RoBERTA-Text-Classification/
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

Bibliography 43

[28] Mudasir Ahmad wani, Nancy Agarwal, Suraiya Jabin, and Syed Zeeshan Hus-
sain. Analyzing real and fake users in facebook network based on emotions.
In 2019 11th International Conference on Communication Systems & Networks
(COMSNETS), pages 110-117, 2019.

[29] Wikimedia. Wikimedia Database Dump of 2023/01/01. https://dumps.
wikimedia.org/enwiki/20230101/, 2023.

[30] Wikimedia. Wikimedia Downloads. https://dumps.wikimedia.org/}, 2023.

[31] Wikipedia. Talk:ARM DynamlQ. https://en.wikipedia.org/wiki/Talk:
ARM_DynamIQ, 2018.

[32] Wikipedia. Talk:Archdeacon of Raphoe. https://en.wikipedia.org/wiki/
Talk:Archdeacon_of_Raphoe, 2020.

[33] Wikipedia. User:SineBot. https://en.wikipedia.org/wiki/User:SineBot,
2021.

[34] Wikipedia. Wikipedia:Signs of sockpuppetry. https://en.wikipedia.org/
wiki/Wikipedia:Signs_of_sockpuppetry, 2022.

[35] Wikipedia. Wikipedia:Sockpuppet investigations. https://en.wikipedia.org/
wikl/Wikipedia:Sockpuppet_investigations, 2022.

[36] Wikipedia. Talk:Donald Trump. https://en.wikipedia.org/wiki/Talk:
Donald_Trump, 2023.

[37] Wikipedia. Wikipedia:Administrators. https://en.wikipedia.org/wiki/
Wikipedia:Administrators#Involved_admins, 2023.

[38] Wikipedia. Wikipedia:Categorization. https://en.wikipedia.org/wiki/
Wikipedia:Categorization, 2023.

[39] Wikipedia. = Wikipedia:CheckUser. https://en.wikipedia.org/wiki/
Wikipedia:CheckUser, 2023.

[40] Wikipedia. Wikipedia:Edit warring. https://en.wikipedia.org/wiki/
Wikipedia:Edit_warring, 2023.

[41] Wikipedia. = Wikipedia:Five pillars. https://en.wikipedia.org/wiki/
Wikipedia:Five_pillars, 2023.

[42] Wikipedia. = Wikipedia:Namespace. https://en.wikipedia.org/wiki/
Wikipedia:Namespace, 2023.

[43] Wikipedia. Wikipedia:Size of Wikipedia. https://en.wikipedia.org/wiki/
Wikipedia:Size_of_ Wikipedia, 2023.

[44] Wikipedia. Wikipedia:Sockpuppet investigations/SPI/Administrators in-
structions. https://en.wikipedia.org/wiki/Wikipedia:Sockpuppet_
investigations/SPI/Administrators_instructions, 2023.

https://dumps.wikimedia.org/enwiki/20230101/
https://dumps.wikimedia.org/enwiki/20230101/
https://dumps.wikimedia.org/
https://en.wikipedia.org/wiki/Talk:ARM_DynamIQ
https://en.wikipedia.org/wiki/Talk:ARM_DynamIQ
https://en.wikipedia.org/wiki/Talk:Archdeacon_of_Raphoe
https://en.wikipedia.org/wiki/Talk:Archdeacon_of_Raphoe
https://en.wikipedia.org/wiki/User:SineBot
https://en.wikipedia.org/wiki/Wikipedia:Signs_of_sockpuppetry
https://en.wikipedia.org/wiki/Wikipedia:Signs_of_sockpuppetry
https://en.wikipedia.org/wiki/Wikipedia:Sockpuppet_investigations
https://en.wikipedia.org/wiki/Wikipedia:Sockpuppet_investigations
https://en.wikipedia.org/wiki/Talk:Donald_Trump
https://en.wikipedia.org/wiki/Talk:Donald_Trump
https://en.wikipedia.org/wiki/Wikipedia:Administrators#Involved_admins
https://en.wikipedia.org/wiki/Wikipedia:Administrators#Involved_admins
https://en.wikipedia.org/wiki/Wikipedia:Categorization
https://en.wikipedia.org/wiki/Wikipedia:Categorization
https://en.wikipedia.org/wiki/Wikipedia:CheckUser
https://en.wikipedia.org/wiki/Wikipedia:CheckUser
https://en.wikipedia.org/wiki/Wikipedia:Edit_warring
https://en.wikipedia.org/wiki/Wikipedia:Edit_warring
https://en.wikipedia.org/wiki/Wikipedia:Five_pillars
https://en.wikipedia.org/wiki/Wikipedia:Five_pillars
https://en.wikipedia.org/wiki/Wikipedia:Namespace
https://en.wikipedia.org/wiki/Wikipedia:Namespace
https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
https://en.wikipedia.org/wiki/Wikipedia:Sockpuppet_investigations/SPI/Administrators_instructions
https://en.wikipedia.org/wiki/Wikipedia:Sockpuppet_investigations/SPI/Administrators_instructions

Bibliography 44

[45] Wikipedia. Wikipedia:Sockpuppet investigations/SP1/Clerks. https:
//en.wikipedia.org/wiki/Wikipedia:Sockpuppet investigations/
SPI/Clerks#List of clerks, 2023.

[46] Wikipedia. Wikipedia:Sockpuppetry. https://en.wikipedia.org/wiki/
Wikipedia:Sockpuppetry, 2023.

[47] Wikipedia. Wikipedia:Username policy. https://en.wikipedia.org/wiki/
Wikipedia:Username_policy#Using _multiple_accounts, 2023.

[48] Wikipedia. = Wikipedia:WikiProject. https://en.wikipedia.org/wiki/
Wikipedia:WikiProiject, 2023.

[49] Wiki Workshop. Wiki Workshop 2023. https://wikiworkshop.org/2023/,
2023.

[50] Zaher Yamak, Julien Saunier, and Laurent Vercouter. Detection of multiple identity
manipulation in collaborative projects. In Proceedings of the 25th International
Conference Companion on World Wide Web, pages 955-960, 2016.

[51] Zaher Yamak, Julien Saunier, and Laurent Vercouter. Sockscatch: Automatic

detection and grouping of sockpuppets in social media. Knowledge-Based Systems,
149:124-142, 2018.

[52] Kai-Cheng Yang, Onur Varol, Pik-Mai Hui, and Filippo Menczer. Scalable and
generalizable social bot detection through data selection. In Proceedings of the
AAAI conference on artificial intelligence, volume 34, pages 1096-1103, 2020.

[53] Hang Yu, Feng Hu, Li Liu, Ziyang Li, Xiangpeng Li, and Zhimin Lin. Sockpuppet
detection in social network based on adaptive multi-source features. In Victor
Chang, Muthu Ramachandran, and Victor Méndez Muioz, editors, Modern Indus-
trial IoT, Big Data and Supply Chain, pages 187-194, Singapore, 2021. Springer
Singapore.

[54] Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain
generalization: A survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(4):4396-4415, 2023.

[55] Wei Zhou, Jingli Wang, Junyu Lin, Jiacheng Li, Jizhong Han, and Songlin Hu.
A time-series sockpuppet detection method for dynamic social relationships. In
Guoliang Li, Jun Yang, Joao Gama, Juggapong Natwichai, and Yongxin Tong,
editors, Database Systems for Advanced Applications, pages 36-51, Cham, 2019.
Springer International Publishing.

https://en.wikipedia.org/wiki/Wikipedia:Sockpuppet_investigations/SPI/Clerks#List_of_clerks
https://en.wikipedia.org/wiki/Wikipedia:Sockpuppet_investigations/SPI/Clerks#List_of_clerks
https://en.wikipedia.org/wiki/Wikipedia:Sockpuppet_investigations/SPI/Clerks#List_of_clerks
https://en.wikipedia.org/wiki/Wikipedia:Sockpuppetry
https://en.wikipedia.org/wiki/Wikipedia:Sockpuppetry
https://en.wikipedia.org/wiki/Wikipedia:Username_policy#Using_multiple_accounts
https://en.wikipedia.org/wiki/Wikipedia:Username_policy#Using_multiple_accounts
https://en.wikipedia.org/wiki/Wikipedia:WikiProject
https://en.wikipedia.org/wiki/Wikipedia:WikiProject
https://wikiworkshop.org/2023/

Appendix A

First appendix

A.1 Formulas of metrics

TP
TPR = Recall = ———— (A.1)
TP+ FN
FP
FPR= —— (A2)
TN+ FP
TP
Precision = ——— (A.3)
TP+ FP
F — score — 2% Pre'cfsion * Recall _ 2xTP (A4)
Precision + Recall 2xTP+FP+FN
Metricmacm—avemge =0.5 *Metricsockpuppets + 0.5« Metriccontrol (A.5)

NB: For TPR and FPR positive class (1) is sockpuppets, negative class (0) is legitimate
accounts, i.e. control group. For precision and f-score, since the macro-average of
these metrics are reported, positive and negative classes are variable and depends on the
group (sockpuppets or control) whose score is being calculated.

45

Appendix A. First appendix

A.2 Extended results of RQ1

Textual features models
SVM RF NB KNN ADA

TPR AVG 0.329 0.239 0.378 0.385 0.268
FPR AVG 0.235 0.068 0.294 0.208 0.132
Precision AVG 0.559 0.665 0.548 0.604 0.607
F-score AVG 0.524 0.528 0.528 0.569 0.523

Training AVG (ins) 71.520 61.368 0.895 0.065 37.531
Testing AVG (ins) 22.226 1.130 0.395 77.503 1.571

TPR SD 0.029 0.043 0.046 0.086 0.059
FPR SD 0.034 0.010 0.044 0.020 0.033
Precision SD 0.010 0.010 0.006 0.031 0.003
F-score SD 0.008 0.031 0.012 0.044 0.030

Training SD (ins) 35.491 17.540 0.033 0.003 1.429
Testing SD (in s) 12.420 0.317 0.020 0.996 0.160

Table A.1: Extended results of models based on textual features.

Non-textual features models
SVM RF NB KNN ADA

TPR AVG 0.618 0.693 0912 0.709 0.694
FPR AVG 0.324 0.300 0.781 0.388 0.278
Precision AVG 0.681 0.697 0.627 0.666 0.708
F-score AVG 0.626 0.696 0.506 0.657 0.708

Training AVG (ins) 0.678 0.456 0.003 0.005 0.150
Testing AVG (ins) 0.154 0.029 0.001 0.116 0.013

TPR SD 0.205 0.013 0.019 0.072 0.016
FPR SD 0.229 0.007 0.028 0.082 0.000
Precision SD 0.005 0.003 0.013 0.006 0.008
F-score SD 0.025 0.003 0.018 0.012 0.008

Training SD (ins) 0.048 0.120 0.000 0.000 0.068
Testing SD (in s) 0.003 0.007 0.000 0.017 0.005

Table A.2: Extended results of models based on non-textual features.

Appendix A. First appendix

Combined features models
SVM RF NB KNN ADA

TPR AVG 0.709 0.776 0.910 0.654 0.749
FPR AVG 0.328 0.230 0.730 0.395 0.265
Precision AVG 0.691 0.773 0.653 0.629 0.742
F-score AVG 0.690 0.773 0.543 0.629 0.742

Training AVG (ins) 32.271 17.383 0.012 0.004 1.039
Testing AVG (in s) 0.261 0.282 0.005 0.996 0.026

TPR SD 0.009 0.008 0.011 0.009 0.010
FPR SD 0.032 0.009 0.010 0.021 0.016
Precision SD 0.012 0.003 0.007 0.009 0.008
F-score SD 0.013 0.003 0.006 0.009 0.008
Training SD (ins) 32964 9.746 0.000 0.000 0.397
Testing SD (in s) 0.005 0.141 0.000 0.035 0.008

Table A.3: Extended results of models based on combined features.

Appendix A. First appendix

A.3 Additional data for RQ2

Libraries ((PICRSeR1) Languages Licenses Other Models

distilbert-base-uncased

roberta-base

cl-tohoku/bert-base-japanese-whole-word-maskin

roberta-large

bert-large-uncased

1

48

Figure A.1: Most downloaded Hugging Face transformers trained on Wikipedia as of

14/02/2023.

Transformers

TPR AVG
FPR AVG
Precision AVG
F-score AVG

Training AVG (in s)

Testing AVG (in s)
TPR SD

FPR SD

Precision SD
F-score SD
Training SD (in s)
Testing SD (in s)

RoBERTa
0.844
0.098
0.893
0.867

738.605
42.261
0.010
0.010
0.012
0.005
1.092
0.288

DistilBERT
0.766
0.278
0.727
0.746

371.902
22.729
0.017
0.006
0.012
0.011
1.920
0.122

BERT
0.744
0.274
0.725
0.734

726.550
45.376
0.005
0.021
0.009
0.004
1.733
0.308

XLNet
0.632
0.385
0.646
0.566

1321.469
139.208
0.335
0.268
0.060
0.200
2.118
0.638

Table A.4: Extended results of transformers (belong to textual group).

	Introduction
	Background
	Sockpuppetry problem in Wikipedia
	Motivations
	Reporting a sockpuppet account
	Reviewing a reported sockpuppet account
	Automation need
	Current state of the sockpuppetry problem in Wikipedia

	Related work
	Models based on textual features
	Models based on non-textual features
	Models combining different features
	Recent works

	Research questions

	Data
	Motivation for a new dataset
	Gathering data from Wikipedia
	Source
	Sockpuppets
	Non-sockpuppets
	Metadata

	Cleaning data
	Cleaning main files
	Cleaning metadata files

	Comparing different model groups on standard metrics (RQ1)
	Methodology
	Recreating models
	Evaluating models

	Results
	Interpretation of results

	Sockpuppet detection with transformers (RQ2)
	Motivation
	Methodology
	Selecting transformers
	Fine-tuning transformers
	Evaluating transformers

	Results
	Interpretation of results

	Practical evaluation of top-performing models (RQ3)
	Motivation
	Methodology
	RQ3a
	RQ3b

	Results
	Interpretation of results

	Discussion
	Implications
	Comparison with existing literature
	Critical evaluation
	Design limitations
	Implementation limitations

	Possible future work
	Conclusion

	Bibliography
	First appendix
	Formulas of metrics
	Extended results of RQ1
	Additional data for RQ2

