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Abstract
This project analyses whether the data collected by the respiratory monitoring device,
RESpeck, can be used for estimating the health status of COPD patients and how reli-
able and informative the breathing rates measured by the RESpeck are in comparison to
breathing rates measured by nurses. The health status of COPD patients is recorded
as CAT scores. A prediction model using RESpeck and associated Rehab data from
pulmonary rehabilitation exercises achieves an MAE of 3.3, an RMSE of 4.5 and an
accuracy of 73% for predicting the CAT score of the next day. An associative model
achieves an MAE of 3.0, an RMSE of 4.1 and an accuracy of 75% for estimating the
CAT score on the same day as when the RESpeck and Rehab data were collected from.
Statistical analysis of the hourly averages of the breathing rates measured by the RE-
Speck and nurses showed that RESpeck breathing rates were on average 0.9 bpm higher
than the nurse breathing rates. An analysis of the information content and uncertainty
coefficient indicates that the RESpeck breathing rates are more informative (2.75 nats
in comparison to 2.34 nats) and that RESpeck breathing rates reduce uncertainty about
the nurse breathing rates more than the nurse breathing rates reduce uncertainty about
the RESpeck breathing rates.
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Chapter 1

Introduction

Monitoring a patient’s health is an important part of assessing how a patient responds to
treatment and whether a disease becomes more severe and dangerous. The RESpeck
device and the system of accompanying apps are designed as a real-time alarm system
that monitors the development of a patient’s health status and can be used to inform
patients and their physicians when the patient’s health worsens or to review changes in
the patient’s health at an appointment.

As part of this project, data from two studies was analysed. The overall aim was to
evaluate the descriptiveness of the data collected from the RESpeck and accompanying
apps.

The first study collected data from COPD patients. COPD is a prevalent pulmonary
disease that can cause life-threatening exacerbations, so close monitoring of patients’
health is important. During the study, the patients recorded CAT scores which give an
indication of their health, performed pulmonary rehabilitation (PR) exercises which
were recorded by one of the apps accompanying the RESpeck, and wore the RESpeck.

The hypothesis is that data collected by the RESpeck device and by recording PR
exercises during a specific day can be used to estimate a patient’s CAT score for that day
and to predict the score for the following day. To test this hypothesis, various features
of the given data and their correlation with the CAT score are examined, and association
and prediction models are trained and evaluated for data from the same day and the day
preceding the CAT score respectively.

In the second study, the breathing rate of post-operative patients was measured by the
RESpeck and nurses. The breathing rate is an essential indicator of a patient’s health
status, nonetheless, nurses often take measurements during very short time periods [1]
or not at all [2]. The RESpeck would provide a device that consistently measures the
breathing rate without requiring much of the nurses’ time. The aim of the analysis of this
dataset is to investigate the differences between the automatic RESpeck measurements
and the manual measurements by nurses. The hypothesis is that breathing rates collected
by the RESpeck are more reliable and informative than the breathing rates measured
by the nurses. To that end, the RESpeck and nurse breathing rates are analysed using
methods from statistics and information theory.
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Chapter 1. Introduction 2

1.1 Contributions

The main contributions of this project are

• a detailed analysis of the correlations of CAT scores with the breathing and
exercise data as recorded by the RESpeck and accompanying apps,

• the development of machine learning models that can estimate the CAT score for
a specific day given breathing and exercise data from the same day and given data
from the previous data,

• experiments on patient clustering according to how patients usually choose CAT
scores in an attempt to improve machine learning models,

• a comparison of breathing rates measured by the RESpeck and breathing rates
measured by nurses using hypotheses testing, information content and uncertainty
coefficients.

1.2 Report outline

The report is divided into five chapters. The remaining chapters are structured as follows

• Chapter 2 introduces related literature concerning COPD, respiratory monitoring,
identifying reliable RESpeck data and predicting the CAT score using RESpeck
data.

• Chapter 3 concerns the analysis of the NHS Borders data. It explores the data,
describes how it was preprocessed, what features were considered and how they
correlate with the CAT score, and evaluates how models based on these features
perform at estimating the CAT score of the same day and predicting it for the
next day.

• Chapter 4 concerns the analysis of the QIP data. The data exploration, identifica-
tion of reliable data and comparison of RESpeck and nurse data are described.

• Chapter 5 summarises the results of the analyses and provides suggestions for
future works.



Chapter 2

Background

This chapter presents background knowledge for understanding the main contents of
this report. First, COPD is introduced as well as ways to measure COPD and what
pulmonary rehabilitation is. Next, the respiratory monitoring device, RESpeck, is
described and finally previous work related to the analysis of the NHS Borders dataset
is presented. There is no previous work related to the analysis of the QIP dataset.

2.1 Chronic obstructive pulmonary disease (COPD)

Chronic obstructive pulmonary disease (COPD) is a respiratory disease. It is “a hetero-
geneous lung condition [...] due to abnormalities of the airways [...] and/or alveoli [...]
that cause persistent, often progressive, airflow obstruction.”[3] Common symptoms are
dyspnea (shortness of breath), chronic coughs with or without phlegm, frequent chest
infections and persistent wheezing [3, 4, 5].

The Global Initiative for Chronic Obstructive Lung Disease (GOLD) classifies COPD
as a preventable and treatable disease. COPD is mainly caused by long-term exposure
to noxious particles or gases due to tobacco smoking, indoor and outdoor air pollution
and other environmental factors [3, 5]. Possible treatments include smoking cessation,
pharmacological therapy, vaccines to reduce the risk of infections, and pulmonary
rehabilitation exercises (see 2.1.3).

Even though COPD is preventable and treatable, it is one of the main causes of death.
The World Health Organization has predicted COPD to be responsible for 8.6% of
deaths by 2030 and hence to become the third leading cause of death after ischaemic
heart disease and cerebrovascular disease [6]. The GOLD estimates that every year
about three million people die due to COPD (6% of all deaths globally) and that it will
be over 5.4 million by 2060 [3]. This rise in deaths due to COPD is expected because
of an aging population and continued or increased exposure to COPD risk factors such
as tobacco smoking [3, 6].

3



Chapter 2. Background 4

2.1.1 Measuring well-being of COPD patients

To diagnose COPD, patients are tested using spirometry [5]. This test measures the
volume of air that a patient can breathe out with one forced breath [7]. The outcomes of
spirometric assessments are not only used for diagnosing COPD but are also commonly
used to guide decisions about COPD management and treatment [8]. However, the
correlation between spirometry results and a patient’s health status is considered too
low so the GOLD recommends the use of formal symptom assessments such as the
COPD assessment test (CAT) or the COPD Questionnaire (CCQ) [5].

The IPCRG Users’ Guide to COPD “Wellness” Tools [9] assesses the quality of nine
out of over 42 tools with respect to the validity/reliability, responsiveness, applicability
to primary care population, ease of administration, applicability in practice and the
support of other languages. It includes tools that “measure the health status or quality
of life as well as tools that measure COPD features such as dyspnoea and breathing
problems”. Overall, the CCQ is ranked best followed by the Chronic Respiratory
Disease Questionnaire (CRQ), Medical Research Council - Dyspnoea (MRC-D) and
CAT.

2.1.2 COPD assessment test (CAT)

The NHS Borders dataset includes CAT data to document the patients’ health status
and Quality of Life. The CAT is a questionnaire that consists of eight questions. For
each question the patient can give a score between 0 and 5. The questions are [10]:

1. I never cough. / I cough all the time.

2. I have no phlegm (mucus) in my chest at all. / My chest is completely full of
phlegm (mucus).

3. My chest does not feel tight at all. / My chest feels very tight.

4. When I walk up a hill or one flight of stairs I am not breathless. / When I walk up
a hill or one flight of stairs I am very breathless.

5. I am not limited doing my activities at home. / I am very limited doing activities
at home.

6. I am confident leaving my home despite my lung condition. / I am not at all
confident leaving my home because of my lung condition.

7. I sleep soundly. / I don’t sleep soundly because of my lung condition.

8. I have lots of energy. / I have no energy at all.

The scores for the individual questions are summed up to give the overall CAT score
for a patient. Hence, CAT scores range from 0 to 40. They are classified into four
impact levels [11]. Based on the correlation between the CAT and the St George’s
Respiratory Questionnaire for COPD (SGRQ-C), items of the SGRQ-C were mapped
to the CAT impact levels for better interpretation of the CAT scores (see Table 2.1 for a
representative selection) [12].
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Impact level Description
low impact
(0-9)

breathless several days a week, breathless walking up
hills, most days are good in average week

medium impact
(10-20)

breathless most days of the week, housework takes long
or stop for rests, wheezing attacks a few days a month, a
few good days in average week

high impact
(21-30)

breathless walking on level ground, cough and/or breath-
ing disturbs sleep, stops patient doing most things they
want to do, ≥ 3 attacks of chest trouble in last year, no
good days in average week

very high impact
(31-40)

cannot move far from bed or chair, stops patient doing
everything they want to do

Table 2.1: SGRQ-C items mapped to CAT impact levels [11, 12]

In a systematic review of the CAT in 2014 [13], studies assessing the CAT were con-
sidered with regards to the reliability, validity, responsiveness and minimum clinically
important difference (MCID) of the CAT. Several studies showed that the CAT score
stays consistent when evaluated under similar conditions. The studies further indicate
that the CAT can reliably differentiate between healthy individuals and individuals
diagnosed with COPD, infrequent exacerbators and frequent exacerbators, and exacer-
bation states and stable states. Overall, the CAT has been shown to provide a “reliable
measurement of health status and [to be] responsive to change with treatment and
exacerbations” [11].

The MCID is “the smallest difference in score in the domain of interest which patients
perceive as beneficial” [14]. In the systematic review of the CAT in 2014 [13], four
papers that tried to calculate the MCID for the CAT were reviewed. The MCID is
concluded to be debatable as the individual studies get varying MCID values of 2 or
up to almost 4 units. In 2018, the same four papers and an additional two papers were
considered in a systematic review on clinically relevant differences in COPD health
status [15]. Using triangulation, the MCID is estimated to be -2.54 for improvement
and 1-2 for deterioration. However, in the individual studies that were considered the
MCID for improvement varied between -1 and -4 for individual studies and there were
only two studies that considered the MCID for deterioration.

2.1.3 Pulmonary rehabilitation

The American Thoracic Society (ATS) and European Respiratory Society (ERS) define
pulmonary rehabilitation (PR) as “a comprehensive intervention based on a thorough
patient assessment followed by patient-tailored therapies, which include, but are not
limited to, exercise training, education, and behavior change, designed to improve the
physical and psychological condition of people with chronic respiratory disesase and to
promote the long-term adherence of health-enhancing behaviors.” [16] PR programs
usually last six to eighth weeks [3]. A key element of PR is exercise training which
consists of endurance and interval training, resistance/strength training, upper and
lower limb exercises, walking, flexibility exercises, inspiratory muscle training and
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neuromuscular electrical stimulation [16, 3]. Its primary effect is an improvement in
muscle function in COPD patients but also an increase in motivation to exercise in
general, a reduction of mood disturbances such as anxiety and depression, a decrease of
the symptom burden and improvements of cardiovascular functions [16, 3].

Despite several guidelines recommending the use of PR [3, 17, 18, 19] for COPD
patients, environmental barriers, lack of awareness and misleading beliefs of the con-
sequences of PR keep many eligible patients from attending PR programs [20]. Long
distances to the next PR centre present a key barrier to patients because they have to
spend long times travelling, they are often not able to travel independently and the
access to public transportation and car parking is often restricted [21].

As an alternative to PR in centres, home-based PR might help circumvent these barri-
ers. A review [22] of eighth studies comparing centre and home-based PR found no
statistically significant differences in the exercise capacity and health-related quality
of life. So home-based PR offers an alternative that is as effective as centre-based PR.
Three of the reviewed studies reported the proportion of attended PR sessions. While
the proportion of attended sessions for centre-based PR varied between 49% and 93%,
it varied between 73% and 98% for home-based PR. This suggests that home-based PR
might improve the attendance of PR programs. However, further research needs to be
done.

2.2 Respiratory monitoring

There are several ways to monitor a patient’s breathing. Traditional techniques are
manual counting, spirometry, capnometry and pneumography. Manual counting is
usually done by nurses but it is time-consuming and often inaccurate as measurements
depend on monitoring periods and the patient’s awareness [1][23]. In general, the
traditional methods “often require cumbersome and expensive devices that may interfere
with natural breathing” [24].

An alternative are wearable physiological monitoring systems that continuously collect
data. Examples for these devices are RESpeck, RespiraSense and Sensecho. While the
RESpeck and RespiraSense are small devices that are attached to the lower part of the
chest, the Sensecho is a multi-sensor vest [25, 26]. The following section will consider
the RESpeck in more detail.

2.2.1 RESpeck device

The RESpeck device is an accelerometer sensor that is worn on the left-side of the chest,
just below the last rip. It is about 4 cm×3.5 cm×1 cm in size. Together with a group
of mobile apps, the RESpeck is part of a home-based PR system. The Pairing App
connects the RESpeck device with the phone, the AirRespeck App is used to access
the sensor data from the RESpeck, the Rehab App is used to guide the patient through
exercises and to record data related to the exercises, and finally the user can fill out the
COPD assessment test (CAT) in the Diary App. A detailed description of the system
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can be found in [27]. The CAT and PR were described in Sections 2.1.2 and 2.1.3
respectively.

2.2.2 Identifying reliable RESpeck data

The RESpeck measures a patient’s breathing based on the movement of the chest.
However, movement of the entire body and other environmental movements are detected
by the RESpeck as well and might obscure the movement caused by the patient’s
breathing. Comparing the respiratory rate as measured by the RESpeck with the
respiratory rate as measured by the nasal cannula, the model presented in [28] was
trained to select reliable periods in the RESpeck data.

A disadvantage of taking nasual cannula data as the gold standard is that the nasual
cannula itself is not infallible. As [28] mentions, some of the data from the nasual
cannula was affected by the patient speaking, coughing or breathing through the mouth,
or by displacement and disconnection of the cannula.

Testing the model on an unseen dataset resulted in about 50% of the RESpeck data
being classified as reliable. For a particular patient, only 10% of the data was considered
reliable. However, taking into account that 10% of an hour are 6 minutes, this is still
much more time than what nurses usually have available for measuring the breathing
rate of a single patient.

2.3 Previous work on predicting the CAT score using
RESpeck data

The goal for the first dataset is to assess a patient’s well-being based on RESpeck data.
Considering that the CAT provides a reliable indication of COPD patients’ health status
(see 2.1.2), predicting CAT scores using RESpeck data is a significant step.

In 2016, Darius Fischer [29] built a first model to predict CAT scores based on the
RESpeck data that was recorded while patients performed PR exercises. The results of
his work were published in a summarising paper in 2022 [27]. The model is based on
data collected from 31 COPD patients over 4.5 months. A model that always predicts
the mean CAT score of all seen CAT scores is used as a baseline (MAE: 11.3, RMSE:
12.0). Features based on the activity level, breathing signal and breathing rate during
breaks and exercises are considered as well as features describing the recovery after
an exercise such as the length of rest periods. Because these features are based on the
patient performing exercises, only CAT scores that were preceded by a valid exercise
block within the last 48 hours were included in the analysis. An exercise block is
considered valid if it consists of ten exercises and rest periods that are only related
to one CAT score and include no NaN values. Hence, effectively only the data of 20
patients was investigated, ignoring 11 patients with invalid or missing exercise blocks.

The expressiveness of each feature was evaluated by calculating its correlation with the
CAT score. Linear regression models based on individual features that were considered
to be predictive of the CAT score achieved a model performance of up to 5.4 for the
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MAE and 6.6 for the RMSE (corresponding to the mean angles during rest feature).
Further models such as Ordinary Least Squares (OLS), Lasso, Ridge and Elastic Net
regression, Artificial Neural Networks (ANN) and neural network ensembles were
considered. An ensemble of six two-hidden-layer neural networks performed best
(MAE: 2.8, RMSE: 4.6).

In 2022, Ioana Mihăilescu [30] revisited the problem of predicting CAT scores. An
earlier version of the NHS Borders dataset which will be considered in this report was
investigated there. The dataset included data from eleven COPD patients. However,
two patients had no Diary data so they were excluded from the analysis. Overall, the
data corresponding to 67 CAT scores was used.

The breathing rate during resting periods after some exercises was shown to have a high
correlation with the CAT scores. As there were only few data points available for each
exercise type, a combination of breathing rates during resting periods for all exercise
types was used. A linear regression model based on the breathing rate during rest was
trained and achieved an MAE of 5.9 and an RMSE of 6.8. These errors are comparable
to the error values obtained for the linear regression model using only the mean angles
during rest feature in [29] (MAE: 5.4, RMSE: 6.6). It was not possible to build a more
complex model because of the limited amount of data.
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NHS Borders data

The NHS Borders dataset contains data recorded for COPD patients over several weeks.
It contains RESpeck, Rehab and Diary data. The Diary data describes a patient’s
wellbeing as assessed by the patient themself. The goal is to find an association between
the RESpeck and Rehab data with the Diary data which could eventually be used to
estimate the Diary data on the basis of the other two.

3.1 Data exploration

NHS Borders is part of the Scottish public healthcare system, NHS Scotland. From
2021 onwards, NHS Borders has been collecting data from COPD patients wearing the
RESpeck device over several weeks. Up to this point, 22 patients have been involved
in the study. However, there is no data for PRB002, and PRB008 is not included in
the data because they are still wearing the RESpeck so the data is incomplete and only
minute-averaged RESpeck data is available. Alongside wearing the RESpeck, patients
performed recorded Rehab exercises and filled in surveys about their well-being.

Concerning the patient ids, it should be noted that ids containing an ‘X’ usually refer to
testing data that was artificially created. In this case however, PRX018 and PRX900 are
real patients. Information on any special circumstances for the patients was collected
for this study but the document in which they were stored was lost. Any circumstantial
information mentioned here was obtained by specifically asking NHS Borders about
unusual data in certain time periods.

3.1.1 RESpeck data

The RESpeck data consists of measurements taken at 12.5 Hz. Each measurement
contains

• the interpolated phone timestamp,

• the RESpeck timestamp expressed as a Unix timestamp,

• a sequence number,

9
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• the magnitude of acceleration along the x, y, and z axes,

• the breathing signal, calculated using the approach in [31],

• the breathing rate, calculated using the approach in [29],

• the activity level which is the Euclidean length of consecutive acceleration values,

• the activity type.

In Figure 3.1 the amount of RESpeck data is visualised. It can be seen that patients had
the RESpeck for periods of 4 days (PRB106) to 15 weeks (PRB202). However, patients
did not wear the RESpeck for the entire duration. This is expressed in the completeness
value for each patient. Patients PRB004 and PRB106 actually only contain RESpeck
data for a little less than 2 days or a couple of hours, respectively. Not taking these
patients into consideration, patients had the RESpeck for periods of 38 days (PRB109)
to 15 weeks (PRB202) with RESpeck data being actually recorded for 12 days (PRB109)
to almost 9 weeks (PRB203). For how many complete weeks the RESpeck was worn
can be seen in Figure 3.2. The RESpeck was given to patients most frequently for 7 to
9 complete weeks. This reflects the usual length of PR programs of 6 to 8 weeks (42
to 56 days). However, the RESpeck was actually only worn for 1 to 8 complete weeks
with missing time periods of up to several days.

3.1.2 Rehab data

The Rehab data consists of recorded exercise sessions. For each session, there is the
average and standard deviation of the breathing rate, the start and end timestamp, and a
name. Additionally, there is information on the individual exercises performed during
the session. For each exercise in the session, there is

• a list of breathing rates,

• the standard deviation of the breathing rate,

• the percentage correctness,

• timestamps of the start and end of the exercise,

• timestamp of the end of the resting time, and

• the exercise id.

Exercise IDs refer to the type of exercise performed (see Table B.1). According to a
physiotherapist at NHS Borders, patients consistently rate PR SIT TO STAND to be
the most intense exercise and patients were discouraged from using the Rehab app to
perform walking exercises (PR WALKING) because of reoccurring crashes of the app
during that exercise. So PR WALKING exercises that were recorded nevertheless are
removed from the analysis.

The amount of recorded sessions and exercises per patient can be seen in Figure 3.3.
From the figure it is apparent that sessions are made up of varying amounts of exercises.
For patient PRB007, the number of exercises exactly equals the number of exercise
sessions. Closer inspection of this patient shows that each sessions consists of exactly
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one exercise. However, some of these sessions happen so closely in time that they might
be considered one session. Other patients like PRB107 have a very high exercise per
session ratio. Looking more closely at PRB107 shows that most exercise sessions are
clearly separated in time while some might again be considered one session because of
their closeness in time.

Because exercises are grouped together into session inconsistently, exercises should
be considered separately or by grouping them together according to specific time
constraints, e.g. taking all exercises of a specific day. In the following discussion
exercises will usually be considered individually. If they are grouped together, the way
in which they are grouped will be described.

Patient PRX900 has no exercise data. Patients PRB004 and PRB106 have only very
little exercise data consisting of 1 and 14 exercises respectively. The remaining patients
have between 26 and 368 exercises (PRB109 and PRB107 respectively).

3.1.3 Diary data

Patients were asked about their well-being using the CAT via the Diary app. As
discussed in Section 2.1.2, the resulting CAT score lies between 0 and 40 where 0
corresponds to good health and 40 corresponds to poor health (see Section 2.1.2). CAT
scores were reported by 19 patients. Patient PRB001 did not report any CAT scores.

Figure 3.4 presents an overview of the CAT scores chosen by patients. This overview
and graphs plotting the CAT scores in time for each patient (see Appendix D) form the
basis for the following analysis.

Patients PRB004, PRB005, and PRB102 only have very few CAT scores. For a COPD
patient, patient PRB003 has relatively low scores with only one score being above
10. A closer investigation of the data shows no weird jumps so the data seems to be
consistent within itself. Patient PRB103’s scores are too constant and too low, being
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almost all 1, to be a likely reflection of the patient’s health. The CAT scores for patient
PRB106 are only few, irregular and jump between values of 7 and 29. Patient PRB107
and PRX900 chose values from a broad range. However, considering the development
of scores over time there are only few jumps. The largest of these jumps for PRB107 is
from 11 on March 14, 2022, to 27 on March 17, 2022. On speaking with NHS Borders,
the jump was explained with a virus infection at that time. Overall, there are many
scores over a duration of 3 months for PRB107 and almost 2 months for PRX900 so
it seems reasonable that scores of a broad range are obtained. The CAT scores for
patient PRB201 are largely consistent but there is a jump down to 15 on June 21, 2021.
Patient PRX018’s scores are mostly consistent except for the initial score of 4 which is
significantly different from the other scores and 2 months away from the other scores.
This score will be considered as an outlier and removed. Patients PRB111 and PRB202
contain scores of 0 that do not seem to belong to the data as they do not fit in with CAT
scores close by. These outliers most likely originate from mistakes when recording
the CAT scores, especially as there is often another CAT score on the same day. Apart
from that, the scores of PRB111 suddenly jump up to 31 and 23 at the end of October
which corresponds to an infection with COVID-19 according to NHS Borders. Patient
PRB202 has an outlier score of 2 on May 19, 2022, which originates from the initial
assessment of the patient where the physiotherapist showed them how to use the app.

Overall, the CAT scores of 14 patients look reasonably reliable when removing the
discussed outliers.

3.2 Data preprocessing

In conclusion of the data exploration, data for 13 patients is used in the analysis. See
Table C.1 for a summary of the available data and which patients’ data is included. The
RESpeck data for PRB201 contains an entry from January 1, 1970, 00:00:00 which
corresponds to a unix timestamp of 0. This datapoint was removed. As described above,
all PR WALKING exercises were removed because of frequent app crashes during this
exercise. Further, all 0 CAT scores, the 2 CAT score for PRB202 and the initial score of
4 for PRX018 were removed. Patients with only few CAT scores are not included in
the analysis because the CAT scores are too few and vary too much in some cases to
evaluate their reliability.

3.2.1 Associating RESpeck and Rehab data with CAT scores

To understand how the RESpeck and Rehab data reflect a patient’s well-being, the
association between them and the CAT scores was investigated. To this end, each CAT
score has to be associated with some RESpeck and some Rehab data.

For this association, two different approaches were taken. In the first approach, each
CAT score is associated with RESpeck data and exercises from the day on which the
CAT score was recorded. This includes data from after the CAT score was recorded.
The hypothesis underlying this approach is that the CAT score reflects the well-being of
a patient during the entire day, independent of the time of day when it was recorded.
The second approach takes all RESpeck data and exercises from the day prior to the
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day the CAT score was recorded. The hypothesis underlying this approach is that the
RESpeck and Rehab data of a certain day are predictors of the patient’s well-being,
the CAT score, on the next day. Both approaches are based on taking data from 24 h
windows into consideration because patients were asked to report CAT scores on a daily
basis. Overall, there are then 431 sets of CAT scores with corresponding RESpeck and
Rehab data.

3.2.2 Identifying reliable RESpeck data

A model for identifying reliable RESpeck data was introduced in Section 2.2.2. The
code corresponding to this model lacked documentation and was outdated, so it had to
be analysed thoroughly and rewritten.

The model assesses the data by using a sliding window. For each window, the following
features are considered:

• standard deviation of the breathing rate,

• mean difference between consecutive values of the breathing rate,

• number of non-NaN values of the breathing rate,

• time between maximum and minimum values of the breathing rate,

• standard deviation of the breathing signal, and

• mean time between consecutive peaks of the breathing signal.

The values for these features are fed into the model which returns either True or False
classifying the data within the time window as reliable or unreliable, respectively. If
any of the features can not be evaluated, the model can not assess the reliability for the
data in this window.

The model was trained on 20s windows that overlap by half a window, so each datapoint
is assessed twice by the model (apart from the datapoints in the first and last 10s).
Within the QIP data analysis, the window sizes and overlaps are analysed in detail.
For this dataset, the default parameters of 20s windows with 50% overlap are kept.
For features based on the RESpeck data, three types of RESpeck data are considered.
‘All’ RESpeck data corresponds to all the collected RESpeck data without filtering
for reliable data. ‘Strictly reliable’ RESpeck data refers to the subset of RESpeck
data where both windows that a datapoint lies in are considered reliable by the model.
Including datapoints as well for which only one of the windows is considered reliable is
referred to as ‘somewhat reliable’ RESpeck data. Filtering for reliable data drastically
reduces the amount of data that can be used, so considering multiple levels of reliability
allows to investigate how much filtering is needed to find an association with the CAT
scores.
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3.3 Correlations with the CAT score

To estimate the CAT score, different features from the RESpeck and Rehab data are
considered. The descriptiveness of each feature is measured by the Pearson correlation.
Alternative correlations would be the Spearman and Kendall correlations but the Pearson
correlation is the most common and has been used in previous works related to this
project [29, 30]. Correlation coefficients with high magnitudes (i.e. that are close to
−1 or 1) suggest a strong linear relation between the feature and CAT score while
correlation coefficients close to 0 suggest a weak or non-existing linear relation. The
p-value associated with the correlation describes how likely it is that the correlation
arose by chance. A significance level of α = 0.05 will be used, so p-values below α

show that there is sufficient evidence that confirms the existence of a linear relationship
for the correlation to be considered significant.

Overall, 115 features are included in the analysis. These are considered for data from
the same day as the CAT score and data from the previous day. Appendix E shows an
overview of the correlation coefficients and corresponding p-values of all features.

3.3.1 CAT scores and exercises

There are 9 types of exercises (excluding PR WALKING). Exercises in the selected
24h window that are of the same type are considered together. For each exercise type,
the following features are considered:

• avgBreathingRate: the average breathing rate,

• avgCorrectness: the average correctness of the exercises,

• runThroughs: how often this type of exercise was performed,

• avgExerciseDuration: the average exercise duration,

• avgBreakDuration: the average duration of the breaks following the exercises,

• avgExerciseBreakDurationRatio: the ratio of the average exercise and break
durations,

• actLevelDuringExercises: the average activity level during the exercises,

• actLevelDuringBreaks: the average activity level during the break following
the exercises.

In addition, features that summarise the exercises of the specified time period are
included. These features are similar to the features for individual exercise types but
instead of just considering the average of the breathing rates, correctness values, exercise
durations and break durations, the standard deviations, minima and maxima of these
values are considered as well.

The Pearson correlation coefficients of the CAT scores with these features are visualised
in Figures 3.5 and 3.6 using RESpeck and Rehab data from the same day as the CAT
score or the previous day, respectively. The figures show the correlation coefficients of
the CAT scores with the described features for all exercise types, including exercises
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Figure 3.5: Correlations between CAT scores and exercises on the same day. The
asterisk ∗ highlights significant correlations, i.e. where the p-value < 0.05.

which takes into account exercises of all types. The correlations with some of the
exercises features that were not considered for individual exercise types are not
shown here but will be discussed later.

A positive correlation implies that the corresponding feature decreases as the CAT score
increases, i.e. when the patient feels worse. On the other hand, a negative correlation
implies that the corresponding feature increases as the CAT score increases.

Some of the strongest positive correlation coefficients correspond to the breathing rate
features. Intuitively, it makes sense for the average breathing rate to have a positive
correlation with the CAT scores because it can be expected that patients are out of breath
more easily when they are not feeling well. This agrees with the majority of correlation
coefficients for the breathing rate features being positive, both for the features based
on exercises from the same day and the previous day. In particular, the correlations of
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Figure 3.6: Correlations between CAT scores and exercises on the previous day. The
asterisk ∗ highlights significant correlations, i.e. where the p-value < 0.05.

CAT scores with the average breathing rates for PR STEP UPS, PR SIT TO STAND
and PR LEG SLIDE exercises are strongly positive with correlation coefficients of
up to 0.52 and statistically significant. For the exercises of the previous day, the
average breathing rates of PR WALL PUSH and PR SQUATS exercises also have a
significant correlation with the CAT scores. Important to note is that the correlation of
PR WALL PUSH avgBreathingRate with the CAT score is negative with a correlation
coefficient of −0.25. Hence, the average breathing rate during wall pushs being low
relates to the patient feeling unwell the next day. Correlations with the average breathing
rate for the other exercise types are not significant.

The correlation coefficients for the average correctness features are mostly negative.
The strongest negative correlations are found for PR HEEL RAISES, PR SQUATS
and when considering all exercise types together. These correlations are significant
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both when considering same day’s and previous day’s data. Using data from the
day prior to the CAT score being reported, the correlations are stronger and in addi-
tion to PR HEEL RAISES, PR SQUATS and considering all exercise types together,
PR LEG SLIDE’s and PR KNEE EXTENSION’s average correctness values have
a significant negative correlation with the CAT scores as well. Intuitively, it can be
expected that exercises are done less accurately when a patient is feeling worse, so
negative correlations would be expected. However, for PR SHOULDER PRESS and
PR STEP UPS the average correctness has a positive correlation with the CAT scores.
In the case of PR SHOULDER PRESS the correlation is significant considering the
same day’s data and in the case of PR STEP UPS it is significant for the previous day’s
data. These positive correlations might be connected to patients performing exercises
more slowly or only exercises with which they feel more comfortable when they are
unwell.

There are significant positive correlations for the number of run throughs with the CAT
scores for PR LEG SLIDE and PR HEEL RAISES independent of whether the same
day’s or previous day’s data is used. Using the same day’s data, there is as well a
significant negative correlation for PR STEP UPS. Using the previous day’s data, there
is another positive correlation for PR SHOULDER PRESS. Examining the data more
closely, it can be seen that an exercise of a specific type is either done or not done on a
certain day and rarely repeated, so runThroughs is an indicator of whether an exercise
of the specific type was done or not. Following on from that, a positive correlation
indicates that exercises of this type are done more often when the patient is feeling
unwell while a negative correlation indicates that the patient is doing the exercise less
often when feeling unwell.

The CAT score is negatively correlated with the duration of exercises on the same
day for all exercise types both when considering them individually and together. The
correlation is significant for PR SIT TO STAND, PR SQUATS, PR HEEL RAISES,
PR SHOULDER PRESS and when considering all exercise types together. The cor-
relations are negative with correlation coefficients between −0.27 and −0.13. For
PR SIT TO STAND, the correlation is strongest. As this is often considered to be
the most strenuous exercise type and a negative correlation indicates that the exercise
duration is reduced when the patient is feeling unwell, this makes sense intuitively.
Considering exercises of the previous day, correlations of the exercise duration with the
CAT score are much weaker. The correlation coefficient is positive for PR STEP UPS
but the p-value is 0.24 so this could well be due to chance. The only strong correl-
ation between CAT scores and the duration of previous day’s exercises remains for
PR SIT TO STAND. With a correlation coefficient of −0.26 and a p-value of 0.003
this correlation is significant and strongly negative.

Correlations between average break durations and CAT scores vary. For most exercise
types and when considering them together the data does not show any significant
correlation. The break durations after PR BICEP CURL exercises are negatively
correlated with CAT scores both when considering exercises on the same or the day
before the CAT score. PR LEG SLIDE also has a significant negative correlation
when considering exercises of the same day. PR SQUATS has a significant negative
correlation when considering data from the previous day. These negative correlations
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indicate that breaks become shorter when patients are unwell. Patients might try to
power through exercises and not make their usual breaks to get it done with quickly
when they are not feeling good. For PR SIT TO STAND the correlations are the other
way around. It is significant when considering exercises from the same day as the CAT
score and even though it is insignificant for exercises of the previous day, there is a
tendency towards a a positive correlation there as well. This might be explained by
PR SIT TO STAND being considered one of the most demanding exercises so while
patients might try to reduce break times for other exercises to be done with it more
quickly when feeling unwell, this exercise might be so exhausting that they have to take
longer breaks.

The ratio of exercise and break durations is high when the duration of an exercise is
relatively long compared to the duration of the following break. The ratio is low if it
is the other way around. Hence, a positive correlation with CAT scores indicates that
exercise durations become longer in relation to break durations when a patient is feeling
unwell. A negative correlation indicates that break durations become longer in relation
to exercise durations. For most exercise types, there are no significant correlations so
the data does not show any clear linear patterns. Considering all exercise types together,
there is a significant negative correlation for exercises of the same day as the CAT score.
So overall, exercise durations are reduced in relation to break durations on the day that
a patient is feeling unwell. For PR SHOULDER PRESS this correlation is particularly
pronounced and becomes even stronger when considering previous day’s exercises with
correlation coefficients of −0.21 and −0.28. For PR HEEL RAISES exercises on the
day before the correlation is inverted indicating that exercise durations are increased in
relation to break durations on the day before the patient is feeling unwell.

The final two groups of features describe the average activity level during exercises or
the breaks following these exercises. Generally we might expect correlations between
the average activity level and CAT scores to be negative such that the activity level goes
down as the patient is feeling worse. Considering the activity level during exercises,
this is only reflected in the significant negative correlation for PR SHOULDER PRESS
exercises on the previous day. Most of these correlations are insignificant. Considering
the activity level during breaks, many exercise types and all exercise types considered
together have significant negative correlations with the CAT score on the same and next
day. Interestingly, for PR SIT TO STAND the correlations for activity levels during
exercises and breaks and with CAT scores for the same and next day are all positive and
significant.

Overall, the PR SIT TO STAND features have the highest amount of significant
correlations, closely followed by features based on PR SHOULDER PRESS and
PR LEG SLIDE. Considering all exercise types together results in a similar amount
of significant correlations when exercises of the same day as the CAT score are used.
For exercises of the previous day, considering all exercise types there are almost no
significant correlations with the CAT scores.

In addition to the exercises visualised in Figures 3.5 and 3.6, more features related to ex-
ercises of all types are considered. For the breathing rate, correctness, exercise duration
and break duration, there are not only features for the average but also for the maximum,
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Figure 3.7: Correlations between CAT scores and RESpeck data on the same day. The
asterisk ∗ highlights significant correlations, i.e. where the p-value < 0.05.

minimum and standard deviation. The features exercisesMinBreathingRate and
exercisesStdCorrectness have significant positive correlations with the CAT score
for exercise on the same and previous day with correlation coefficients from 0.13 to 0.23.
The features exercisesMinBreakDuration, exercisesStdExerciseDuration and
exercisesMinCorrectness have significant negative correlations for both days with
correlation coefficients of −0.15 to −0.22. For exercises on the same day, exercises
MaxExerciseDuration has a significant negative correlation with ρ =−0.16. For ex-
ercises on the previous day, exercisesStdBreathingRate has a significant negative
correlation with ρ =−0.19.

3.3.2 CAT scores and RESpeck data

The remaining features involve only data collected by the RESpeck. As before, data
from the same day as the CAT score and data from the previous day is examined. From
the available REspeck data, the breathing rate and activity level are used as features. For
each of them, averages, standard deviations, minima and maxima are considered. These
features are calculated using all RESpeck data and only using “somewhat reliable” and
“strictly reliable” data (see 3.2.2).

Figures 3.7 and 3.8 show the correlation coefficients for these features with the CAT
score for data from the same day and data from the previous day respectively. Overall,
it can be noticed that more correlations with RESpeck data from the previous day are
significant than correlations with data from the same day. Further, a pattern similar
to steps going upwards (downwards for negative correlations) can be observed when
comparing the features for “all data”, “somewhat reliable data” and “strictly reliable
data” where correlations are strongest for “strictly reliable data”. This indicates that
the model used for filtering for reliable data is good at reducing noise which might
obscure the correlation with the CAT score. The opposite pattern can be observed for
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Figure 3.8: Correlations between CAT scores and RESpeck data on the previous day.
The asterisk ∗ highlights significant correlations, i.e. where the p-value < 0.05.

the average activity level when considering data from the same day as the CAT score.

Correlations with the average breathing rate, average activity level and standard devi-
ation of the activity level are generally significantly positive indicating that they increase
when a patient is feeling unwell. The positive correlation for the average breathing rate
agrees with the positive correlations that were identified for the average breathing rates
during exercises. The maximum of the activity level also has a positive correlation with
the CAT scores but only for “somewhat reliable” and “strictly reliable” data.

For the standard deviation and maximum of the breathing rate, an interesting pattern
can be observed where the correlation is negative when including all RESpeck data
and positive when filtering for more reliable data. Nevertheless, all correlations are
significant according to their p-values. This might have something to do with what
RESpeck data is treated as unreliable and what the patient is doing at that time.

The minimum breathing rate has no correlation considering RESpeck data on the
same day as the CAT score but a strong positive correlation on the previous day for
“somewhat reliable” and “strictly reliable” data. This positive correlation indicates that
the minimum breathing rate goes up on the day before the patient is feeling worse.

The minimum activity level of “somewhat reliable” and “strictly reliable” data has a
significant but weak negative correlation with the CAT score on the same day. When
the CAT score of the following day is considered, there is no correlation. The weak
negative correlation indicates that the minimum activity level tends to be smaller when
the patient is feeling unwell. This might be because the patient is avoiding movement
when feeling unwell.

In conclusion, the RESpeck data already provides good indicators of the CAT score
without considering the Rehab data. High correlations identified here had correlation
coefficients between about 0.2 and 0.4. Including the exercise data results in features
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that have correlations up to the same range (flipping the sign for negative correla-
tions). Only the feature PR STEP UPS avgBreathingRate is above this range with a
correlation coefficient of 0.52.

3.4 CAT score association and prediction

The CAT score can be seen as an indicator of a patient’s well being. Hence, CAT
score association and prediction corresponds to evaluating a patient’s current well being
and predicting the future well being. CAT score association will be based on using
the features that were calculated from RESpeck and Rehab data of the same day as
when CAT scores were reported. CAT score prediction will be based on using the
features from the previous day. After preprocessing the data as described, 431 CAT
scores remain so the association and prediction models will be based on 431 feature
sets with their corresponding CAT scores. For training the models and comparing their
performances, only 70% of the data (301 feature sets) are used. The remaining 30%
(130 feature sets) are the test set on which the final model will be evaluated.

3.4.1 Baseline and measures of error

As in [30] and [29] a baseline model that always outputs the average of the seen CAT
scores is used. The performances of the models developed in [30] and [29] will be
considered for comparison purposes (see Section 2.3). However, [30] used an earlier
and much smaller version of the dataset while [29] used an entirely different dataset.

To quantitatively assess model performances, the mean absolute error (MAE) and root
mean squared error (RMSE) are used as in [30] and [29]. This is a common combination
for assessing model performances because MAE is easy to interpret while RMSE is
better for comparing models because it magnifies large deviations from the true score
and reduces the error caused by small deviations. To include an error metric that focuses
less on the mathematical properties of CAT scores and more on how they are used in
practice, the accuracy of whether the true and predicted CAT scores lie in the same
impact level group (see 2.1.2) will be used as an additional error metric. The dataset is
relatively small so it can be expected that the model performances vary a lot depending
on exactly which CAT scores are used for training and which for validation. Hence,
10-fold validation is used in the evaluation of all models to stabilise the error values.

For both CAT score association and prediction, the baseline model outputs the average
CAT score. Hence, the baseline model performs the same for association and prediction.
It has an MAE of 5.7, an RMSE of 6.8 and an accuracy of 47%. The MAE implies
that the estimated CAT score is on average 5.7 units away from the true CAT score.
On a scale from 0 to 40 that is an error of 14% relative to the scale. An accuracy of
47% implies that for more than half of the samples the estimated CAT score was within
a different impact level group than the true CAT score. In [29], the baseline model
achieved an MAE of 11.3 and an RMSE of 12.0. This indicates that in the dataset
analysed there, the CAT scores were much more spread out and less close to the average
CAT score. In [30], the baseline model had an MAE of 7.5 and an RMSE of 8.3. These
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values are more similar but still significantly higher than for the baseline model used
here.

3.4.2 Histogram-based Gradient Boosting Regression Tree

From the 431 feature sets, only 10 feature sets of the same day’s data and 8 feature
sets of the previous day’s data do not contain NaN values. Because not every patient is
doing every type of exercise on the day and the day prior to reporting a CAT score, this
was to be expected. As a consequence, the model used for estimating the CAT score
must be able to handle NaN values.

The histogram-based gradient boosting regression tree as implemented in ensemble
in sklearn allows NaN values. The model is based on an ensemble of decision trees
that are fitted using gradient descent. Gradient boosting is in general considered to be a
powerful and popular machine learning algorithm [32].

The model is trained and evaluated with different feature subsets. First, all features are
considered. Then, only those features for which a significant correlation with the CAT
score was found, i.e. the corresponding p-value is below 0.05, are included. Finally,
in an attempt to find the best set of features to use, all features are sorted according
to the significance of their correlation and the correlation coefficient. To this end, the
p-value is rounded to two decimal places and sorted in ascending order. Features with
the same rounded p-value are sorted in descending order according to the absolute
value of their correlation coefficient. The model is then trained and evaluated for the
first n features of this list. Figures 3.9a and 3.9b show how well the model performs
for varying n in CAT score association and prediction respectively. For CAT score
association, the maximum accuracy is reached by choosing the best 24 features while
the minimum MAE and RMSE are only reached for 94 and 103 features respectively.
There is a distinct reduction in MAE and RMSE when going from chosing 90 features
to 91 features. For CAT score prediction, the MAE and RMSE values initially decreases
rapidly for a growing number of features. From about 40 features onward, both MAE
and RMSE stay relatively consistent. The accuracy is much more volatile and reaches a
clear maximum at 100 features.

For all feature subsets, a histogram-based gradient boosting regression tree was trained
and evaluated using 10-fold validation. The models’ performances are displayed in
Table 3.1. For the CAT score association, including only significant features compared
to including all features reduces the model’s performance slightly. For the CAT score
prediction, it does not really make a difference. As would have been expected, using
only the best features according to RMSE and accuracy optimises the corresponding
error metrics.

For CAT score association, the big change in accuracy from optimising according to
RMSE to optimising according to accuracy aligns with the observations of Figure 3.9a.
Whether using the best features according to RMSE or accuracy is better depends on
whether it is more important that the estimated CAT score is close to the true CAT score
or that they belong in the same impact level group. Considering that the MAE value,
which describes the mean absolute distance between true and estimated CAT score,
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Figure 3.9: Training and evaluating the model with varying numbers of features

MAE RMSE Accuracy
Baseline 5.7 6.8 47%

Association

all features 3.7 4.9 70%
only significant features 4.0 5.3 69%
best features according to RMSE 3.5 4.7 70%
best features according to accuracy 3.8 5.0 74%

Prediction

all features 3.8 4.9 69%
only significant features 3.7 4.8 70%
best features according to RMSE 3.7 4.8 71%
best features according to accuracy 3.8 4.9 72%

Table 3.1: Model performances

only changes by 0.3 units, the accuracy improvement by 4 percent points when using
the best features according to accuracy seems more significant. Based on this argument,
the model using the best features according to accuracy is the best model for CAT score
association. Figure 3.10a illustrates CAT score estimates made by this model. The
instances are sorted by the true CAT score so the upwards trend of estimated CAT scores
illustrates a good correlation between true and estimated CAT scores. Quantifying this
correlation, the correlation coefficient is 0.67 with a p-value of about 10−40. Hence, the
correlation is very significant and relatively strongly positive as would be expected.

For CAT score prediction, all models perform very similar with respect to MAE and
RMSE values. There are only slight differences in accuracy values but based on these
differences, the model using the best features according to accuracy is the best model
with an MAE of 3.8, RMSE of 4.9 and accuracy of 72%. CAT score predictions made
by this model are illustrated in Figure 3.10b. The correlation of the estimated and true
CAT scores has a coefficient of 0.69 and a p-value of about 10−44. So, as for CAT score
association, the correlation is very significant and even slightly more strongly positive.
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Figure 3.10: Model estimations

3.4.3 Final model’s performance

Until this point, the model evaluation was based solely on using data from the training
and validation sets. For a final evaluation of the best model, a test set was set aside in
the beginning. On this test set, the model achieves an MAE of 3.6, an RMSE of 4.7 and
an accuracy of 67% for CAT score association and an MAE of 3.5, an RMSE of 4.7
and an accuracy of 72% for CAT score prediction. The MAE and RMSE values are
similar or even a bit better than the ones achieved previously. However, the accuracy for
CAT score association is the worst one so far, excluding the baseline model’s accuracy,
even though feature selection was optimised for accuracy.

Histograms of the true and estimated CAT scores illustrate how the estimated CAT
scores are smoothed out in comparison to the true CAT scores. In particular, the
relatively low frequency of scores from 18 to 19 is not reflected in the estimated scores.
Scores close to the impact level borders like these are important for accuracy but the
used model, a regression model, does not put any emphasis on differentiating between
scores of different impact levels. To put focus on the accuracy of the impact levels, a
classifier that differentiates between these impact levels should have been used directly.
As all considered models are regressors, the model selection should be based on MAE
and RMSE values that are more closely related to the aim of regression. Evaluating the
model using the best features according to RMSE on the test set achieves an MAE of
3.0, an RMSE of 4.1 and an accuracy of 75% for CAT score association and an MAE
of 3.3, an RMSE of 4.5 and an accuracy of 73% for CAT score prediction. These are
the best values so far. This demonstrates that models should be selected with respect
to an error metric that is related to the intrinsic error metrics of the model. Further, it
demonstrates that optimising with respect to reasonable error metrics results in better
accuracy values than directly optimising with respect to accuracy.
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Considering the CAT’s minimum clinically important difference (MCID) for improve-
ment is estimated to lie between −1 and −4 (see Section 2.1.2), models with MAE
values of 3.0 and 3.3 are already reasonable CAT score estimators. Finally, the im-
provement of all error metrics in comparison to all previous models shows that the
additional data from using the entire training set for training, and not splitting it into
training and validation sets, improves the model’s performance. This suggests that the
model’s performance might be significantly improved by training on more data.

In [29] and [30], the features are only built on the data preceding the CAT scores so
the models are predictors. In [29], the best model has an MAE of 2.8 and an RMSE
of 4.6 while in [30], the best model has an MAE of 5.4 and an RMSE of 6.6. Hence,
this model’s performance is similar to the model’s performance in [29]. It is better than
the model’s performance in [30] which was to be expected because the data originated
from the same study but since [30] more data has been collected.

3.4.4 Patient clustering

In an initial approach to the preprocessing of the data, no CAT scores were classified as
outliers, so no values were removed. In addition, all patients that had at least one CAT
score, some RESpeck data and some exercise data were included in the analysis. As
a consequence, only patients PRB001, PRB002 and PRX900 were excluded from the
analysis. At the point when this approach was taken, the data from PRB111 was not
collected yet, so the analysis included data from 17 patients.

Considering all scores as valid, it can be observed in Figure 3.4 that patients differ
greatly in how they chose CAT scores. Some patients only chose values from a narrow
range and some patients use almost the entire range of values. The patients choosing
values from a narrow range seem to have an absolute scale in mind, while patients
choosing form a wide range seem to have a more relative scale in mind. A clustering
method was applied to split patients into groups of similarly behaving patients. For each
patient, their behaviour was quantified by calculating the average and standard deviation
of the chosen CAT scores. Figure 3.11 illustrates the similarities and differences in
which patients are choosing CAT scores. The axes show the average and standard
deviation of the CAT scores of each patient while the size of each patient’s marker
visualises the amount of recorded CAT scores.

Because clustering algorithms aim to minimise the distance between elements in a
cluster, without further constraints, the optimal clustering would be putting each patient
in a separate cluster. However, small clusters have little data which makes them prone
to overfitting, and the goal is not to consider patients individually but to group them
together according to similarities in behaviour. Hence, a sensible number of clusters has
to be decided in advance of applying a clustering algorithm. From inspection of Figure
3.11 (and ignoring the clustering suggested by the colours), a number of six clusters
makes sense taking into account that small clusters should be avoided.

Applying KMeans clustering with six clusters and normalised features yields the cluster-
ing visualised by the colouring in Figure 3.11. Clusters 0, 2, 3, and 5 have low standard
deviations and differentiate between patients by their CAT score ranges. Cluster 1



Chapter 3. NHS Borders data 28

PRB004
PRB201

PRB006

PRB203

PRB202

PRB005

PRB107

PRB106

PRB003

PRB103

PRB108 PRB105

PRB104

PRB102

PRB007

PRB109

PRX018

10 20 30 40 50 60

0 5 10 15 20 25

0

2

4

6

8

10

12

14 Clusters
0
1
2
3
4
5

How do patients choose CAT scores?

Average of CAT scores

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 C

AT
 s

co
re

s Number of CAT scores

Figure 3.11: Patient profiles with almost no data cleaning

includes patients that choose CAT scores from a broad range. Cluster 4 only consists of
patient PRB102 for whom only 2 CAT scores were recorded. Figure 3.12 shows what
the same figure looks like with data processed as described in Section 3.2. Note that
the ranges of the axes stay the same. The clusters described earlier do not make sense
in this setting. Because outlier CAT scores are removed, the standard deviations of
all patients are much smaller, and considering the CAT score averages, the distinction
between typical averages is much less clear. With the removal of outlier scores, the
ways in which patients choose CAT scores look much more similar.

Taking the almost uncleaned data, the baseline model has an MAE of 7.3, RMSE of
8.6 and an accuracy of 38%. In comparison with the baseline model performance on
the cleaned data (see Section 3.4.1) the values are worse because the uncleaned data
has much more variance. For each cluster of the almost uncleaned data, a gradient
boosting model was trained. Similarly to the feature subsets described in Section 3.4.2,
the models were trained and evaluated using varying subsets of the features. Sorting the
features by the absolute values of their correlation coefficients with the CAT score and
picking the best ni features for each cluster i according to the accuracy performs best.
For CAT score association, an MAE of 3.3, RMSE of 5.2 and accuracy of 77% was
reached. For CAT score prediction, the MAE is the same while the RMSE and accuracy
become slightly worse with values of 5.4 and 76% respectively. The RMSE values are
worse than those achieved for the cleaned data but the MAE is slightly and the accuracy
is much better. However, some of the estimated CAT scores are just random zero scores
or 20-25 units higher than the corresponding true CAT score which does not happen
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Figure 3.12: Patient profiles with properly cleaned data

for the models trained on the cleaned data as shown in Figures 3.10a and 3.10b. In
addition, investigating the model estimates more closely reveals that most estimates are
just the CAT score averages for each cluster. This is confirmed by building a second
baseline model that always outputs the CAT score average of the corresponding cluster
which achieves an MAE of 3.5, RMSE of 5.2 and accuracy of 73%. As a conclusion,
the average and standard deviation of chosen CAT scores might be useful features in
estimating future CAT scores.



Chapter 4

QIP dataset

The QIP datasets contains breathing rate data recorded by the RESpeck and nurses. The
aim is to investigate the reliability and information content of each in comparison of the
other.

4.1 Data exploration

The QIP dataset consists of overall 89 post-operative patients whose respiratory rate
was measured during their stay at the Western General Hospital in Edinburgh. The
respiratory rate was measured automatically by the RESpeck device and manually by
nurses of the hospital. Only the data for 43 patients is fully digitalised. For them, data
was collected from August 2019 until March 2020.

4.1.1 RESpeck data

There is only data for 36 patients wearing the RESpeck. They wore the device for 1.4
to 12.9 hours with an average of 8.3 hours and measurements taken at 12.5Hz. The
collected RESpeck data contains various information connected to a patient’s breathing
as described in Section 3.1.1.

4.1.2 Nurse data

The data collected by nurses consists of

• the timestamp,

• the extend to which the patient is able to move their eyes (scale from 4 to 1),
speak (scale from 5 to 1), and move their body (scale from 6 to 1), following the
Glasgow Coma Scale (GCA) [33] to assess a patient’s consciousness,

• the respiration rate in breathing rates per minute (bpm),

• the SpO2 scale and value to estimate the amount of oxygen in the blood [34],

• information on whether the patient breathes using air or oxygen supply,

30
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Figure 4.1: Divisibility of breathing rates as measured by nurses

• the systolic blood pressure in mmHg,

• the pulse per minute,

• the temperature in ◦C.

This report only considers the breathing rate and the associated timestamps. As the aim
is to compare nurse and RESpeck measurements, only data for patients for whom there
is also RESpeck data will be considered.

There are 386 nurse measurements with an average of 10.7 values per patient. The
minimum amount of measurements for a patient is two and the maximum amount of
measurements for a patient is 21. These measurements cover on average 9.2 hours
where 0.8 hours is the shortest covered time period and 12.5 hours is the maximum time
period.

As nurses work under a lot of time pressure, they often only count breaths for 15s or
30s and then multiply the results by 4 or 2 respectively to obtain the number of breaths
per minute [1]. A plot of the proportion of breathing rates that are divisible by 2 and 4
for this dataset can be seen in Figure 4.1. Clearly, the proportion of even breathing rates,
66%, is much higher than 50%, which would usually be expected. The same applies to
the proportion of breathing rates that are divisible by 4 which is 15% higher than what
would usually have been expected. Even taking 66% as the base proportion of even
breathing rates, we would only have expected 33% of breathing rates being divisible
by 4 and not 40%. Hence, the data indicates that it is likely that at least some of the
measurements are based on 15s and 30s monitoring periods.

4.2 Identifying reliable data

A model for identifying reliable data is introduced in Sections 2.2.2 and 3.2.2. By
default, the data is considered in 20s windows that overlap by 50%, so each datapoint’s
reliability is evaluated in the context of two windows. The graph in Figure 4.2 shows the
model’s results for patient QIXX09. ‘Not applicable’ are datapoints that were always
in windows in which some of the feature values were no numbers, so the model was
unable to classify them. ‘Reliable’ are datapoints for which the model classified all
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Figure 4.2: Data reliability for QIXX09 considering 20s windows with 50% overlap

corresponding windows as reliable. ‘Not reliable’ are datapoints for which the model
classified all corresponding windows as unreliable. Datapoints labelled as ‘unclear’
are datapoints for which the model classified one window as reliable and the other as
unreliable.

Periods in which the breathing rate is jumping around are correctly classified as un-
reliable. See the time period from 17:00 - 19:00 in Figure 4.2 for example. These
values most likely come from the patient moving around. Where the breathing rates
are more steady the model classifies the data as reliable as expected. Normal breathing
rates for adults at rest lie between 12 and 20 breaths per minute [35]. Breathing rates
in the reliable data lie mostly within this range. However, there are many ‘unclear’
datapoints. To reduce the amount of these, alternative window sizes and window overlap
proportions were considered.

The same model to detect reliable data was applied on features based on 10s, 20s,
30s, 46s and 60s windows overlapping by 50%, 67% and 80%. Figure 4.3 shows
the proportion of reliable data for different configurations. For a 50% overlap, most
datapoints are in two windows while for 67% and 80% overlaps, datapoints are in three
or five windows respectively. A datapoint is only classified as ‘unclear’ if it is in as many
windows classified ‘unreliable’ as windows classified ‘reliable’. When each datapoint is
in an odd number of windows, much less datapoints are classified as ‘unclear’ (a draw is
still possible because some windows can not be assessed by the model). This is reflected
in the graph: the proportion of reliable data is similar for 67% and 80% overlaps and
distinctly higher than the proportion of reliable data for a 50% overlap. There are even
fewer ‘unclear’ and ‘not applicable’ datapoints for a 80% overlap compared to a 67%
overlap, so we will continue working with an overlap of 80%.
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Figure 4.3: Proportion of reliable data
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Figure 4.4: Effect of varying window sizes

As the window size increases so does the proportion of reliable data. However, Figure
4.5 gives an indication that changing the windows size might not be a good idea. The
plot displays how frequent certain breathing rates are in the data classified as reliable
for varying window sizes. Interesting to note is the “upstairs” pattern for breathing rates
from 5 to 10 bpm and above 20 bpm which implies that these breathing rates are more
common for larger window sizes. On the other hand there is a “downstairs” pattern for
breathing rates between 15 and 20 bpm, and the breathing rates between 10 and 15 bpm
take up the biggest proportion of reliable data when using 20s windows. Considering
that normal breathing rates lie between 12 and 20 bpm [35], the frequency distribution
of breathing rates seems most sensible for the 20s windows. Even considering that the
patients are in a hospital and unusual breathing rates are to be expected, they are not
expected to come up as frequent as for the 60s windows for example.

Changing the window size affects the features that are given as input to the model.
Figure 4.4 shows how the average value for the features of each window varies as the
window size varies. The standard deviation of the breathing rate (F1) and breathing
signal (F6) increase as the window size increases as well as the number of non-NaN
breathing rates (F3) and the time between the maximum and minimum breathing
rates (F5). It is reasonable that these features depend on the size of the time interval
considered. The mean difference between consecutive breathing rates (F2) and the mean
time between peaks of the breathing signal (F4) do not vary much with the window
size. Both features consider the means of periodically occurring patterns (consecutive
breathing rates or consecutive peaks in the breathing signal). Varying the window
size implies only that more values are considered to calculate the means but the time
between values that are compared does not increase. Hence, it is reasonable that these
features do not vary much for different window sizes.

The model was trained on 20s windows so it assesses the reliability of a window in
comparison to what features look like in reliable 20s windows. For example, the average
number of non-NaN values of the breathing rate is 6.6 in 20s windows, so values above
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Figure 4.5: Proportion of breathing rate values in reliable data for varying window sizes
with 80% overlap

this can be considered high. However, by considering larger windows, naturally the
number of non-NaN values will increase as Figure 4.4 confirms. So if a higher number
of non-NaN values in the breathing rate implies higher reliability then larger windows
will always be more reliable. The results of applying the model on 60s windows can be
seen in 4.6. The model does not scale well with varying windows sizes. To adjust the
model to other window sizes it would need to be retrained. It is not possible to retrain
the model in this context because this dataset does not include measurements that could
be considered to be the true breathing rate. A possibility would be to use the dataset
with which the original model was trained but this would go beyond the scope of this
project. Hence, in this analysis the original model will be used with features based on
20s windows.

In contrast to the window size, the overlap does not matter to the model. The model
assesses each window individually and changing the overlap of windows will not change
the input features for the model. Hence, it will not affect the quality of classification of
the model, only the resolution with which the data is considered. During the following
analysis, only RESpeck data classified as ‘reliable’ based on 20s windows with 80%
overlap will be used. This corresponds to 47% of the original RESpeck data.

4.3 Comparing RESpeck and nurse data

4.3.1 Data overlap

Data collected by the RESpeck and nurses does not necessarily overlap. Figure 4.7a
shows an example where the nurses and RESpeck measured the breathing rate over
approximately the same period of time. In contrast, Figure 4.7b shows a case in which
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Figure 4.6: Data reliability for QIXX09 considering 60s windows with 80% overlap

the nurse and RESpeck data do not overlap at all. Figure 4.8 gives an overview of how
much the two types of data overlap. For each patient, the number of hours in which
only RESpeck data, only nurse data and both were collected are shown. For 6 patients,
there is no hour for which both RESpeck and nurse data was collected. For 13 patients,
there are more than 5 hours of shared data, and overall there are 118 hours of shared
data. To properly compare RESpeck and nurse data, values should be compared that
were recorded at similar times for the same patient. Hence, in the next sections only
data from the 118 hours for which there exists both nurse and RESpeck data will be
used if not stated otherwise.

4.3.2 Relationship between RESpeck and nurse data

Taking the hourly average of nurse and RESpeck data for the hours and patients for
which there is data from both sources, results in 118 breathing rate pairs. The average
of the signed difference of the nurse breathing rate minus the RESpeck breathing rate
over all pairs is −0.9 bpm. The RESpeck breathing rates are on average 0.9 bpm higher.
A hypothesis test is used to assess the significance of this difference. The null and
alternative hypothesis are chosen to be

Null hypothesis : P(average signed difference > 0) = 0.5
Alternative hypothesis : P(average signed difference > 0)< 0.5

The hypothesis test is one-sided. The null hypothesis will be rejected if the p-value is
smaller than α = 0.05. Using bootstrapping, we resample 10,000 times with replace-
ment from the set of breathing rate pairs. This results in an p-value of 0.002 which
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Figure 4.7: Qualitative description of overlap of RESpeck and nurse data

is smaller than α = 0.05, so less than 5% of the sampling distribution has an average
signed difference of more than 0. Hence, the null hypothesis can be rejected. The
RESpeck breathing rates are likely to be higher than the nurse breathing rates in general.

This result is supported by similar findings analysing the breathing rates as measured
by nurses. As mentioned in Section 2.2, the measured breathing rates are dependent on
the monitoring period. More specifically, [23, 1] found that short monitoring periods
lead to lower breathing rate estimates in manual measurements. Switching from 60s
to 30s counting periods lead to a reduction of 0.46 or 0.95 bpm and a change from
60s to 15s lead to a reduction of 1.22 or 2.19 bpm in [1] and [23] respectively. The
average difference between nurse and RESpeck breathing rates is close to the change
in breathing rates obtained by moving from 60s to 30s count periods. This fits in with
the observation in 4.1.2 that the nurse data contains a disproportionally high amount of
breathing rates that are divisible by 2.

4.3.3 Information content

The RESpeck and nurses sample data at very different frequencies. To compare them,
only hours for which there is data from both sources will be considered for now. If the
RESpeck were to take measurements consistently throughout one hour, it would collect
45.000 values because it works at 12.5Hz. In practice, the RESpeck does not sample
without interruption and during the preprocessing, less reliable data was removed (see
Section 4.2), so there is less data in each hour. This results in about 10.300 values per
hour on average. In contrast, a majority (55 of 118) of shared hours only contains one
measurement taken by nurses. During some hours, more than 5 measurements were
collected with a maximum of 8 in one hour. The average is 2.3 measurements per hour.

Does the amount of RESpeck data imply that it contains more information than the less
frequently sampled nurse data? In information theory, information content, or Shannon
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Figure 4.8: Quantitative description of overlap of RESpeck and nurse data

entropy, describes how difficult it is to predict the value of a variable. In other words,
it measures the level of surprise or uncertainty of this variable. Shannon entropy is
calculated using the frequency of values. Because RESpeck breathing rates usually have
many decimal places, the RESpeck breathing rates were rounded to integers to measure
the frequency of values. Using the natural logarithm, the entropy of the RESpeck
breathing rates is 2.75 nats and the entropy of the nurse breathing rates is 2.34 nats. A
hypothesis test with the following hypotheses,

Null hypothesis: P(RESpeck entropy < nurse entropy) = 0.5,
Alternative hypothesis: P(RESpeck entropy < nurse entropy)< 0.5,

using bootstrapping with 10,000 samples returns a p-value of 0.017. Hence, the null
hypothesis can be rejected with α = 0.05, so in general the RESpeck data entropy is
likely to be higher than the nurse data entropy. This implies that the RESpeck data
contains more information. However, nat is a difficult unit to interpret.

To compare how much more information the RESpeck breathing rates contain, mutual
information and the uncertainty coefficient are calculated. The mutual information
quantifies how much the knowledge of the value of one variable reveals about the value
of the other variable. If the mutual information is close to 0, the variables are mostly
independent. The larger the mutual information, the more one variable reveals about
the other. Mutual information values can go up to infinity and are not easy to interpret.
However, the uncertainty coefficient, which combines the mutual information and one
variable’s entropy, explains what fraction of this variable can be predicted given the
other variable.

For calculating the mutual information and uncertainty coefficient, the RESpeck and
nurse breathing rates were paired together. To avoid using averaged RESpeck values,
they were paired by choosing the closest nurse datapoint for each RESpeck datapoint
with a maximum distance of 1s, 30s, 1min, 10min, 30min, 45min or 60min. Table 4.1
shows the number of pairs, the mutual information (MI), and the uncertainty coefficient
(UC) given the RESpeck or nurse breathing rates for each maximum distance. For a
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Max. distance Number of pairs MI UC
Given RESpeck data Given nurse data

1s 27 1.32 62% 50%
30s 706 0.30 14% 11%

1min 1361 0.24 11% 9%
10min 11047 0.14 7% 5%
30min 22791 0.12 6% 4%
45min 26497 0.12 5% 4%
60min 29481 0.11 5% 4%

Table 4.1: Mutual information and uncertainty coefficient for RESpeck and nurse breath-
ing rates considering pairs of different maximum time distances

distance of maximal 1s, there are only 27 pairs, so this will not be considered further. For
the remaining distances there are enough value pairs to continue the analysis. As would
be expected, the mutual information decreases as more distance is allowed between
samples. This translates into decreasing uncertainty coefficients for increasing time
distances. Surprisingly, the uncertainty coefficients are indicating that knowing about
the breathing rate as measured by the RESpeck or nurses does not reveal much about the
value measured by the other. At first glance, this seems to cause a contradiction with the
relatively low average signed distance between RESpeck and nurse breathing rates of
−0.9 bpm found in Section 4.3.2. However, it is important to note that hourly averages
of the RESpeck and nurse breathing rates were used in that section. Here, the original
breathing rates were used. The slightly higher uncertainty coefficients for predicting
the nurse data given the RESpeck data in comparison to the uncertainty coefficients for
predicting the RESpeck data given the nurse data indicate that the RESpeck breathing
rates reveal more about the nurse breathing rate than the other way around.



Chapter 5

Conclusions

Based on the data of 13 patients, the NHS Borders dataset was investigated. During
data exploration, it became apparent that the exercises were grouped into sessions
inconsistently and that the CAT scores for some patients contained outliers or were
too few. As a consequence, exercises were considered individually, outlier CAT scores
were removed and patients with only a few scores were excluded from the analysis.
The correlations of various features with the CAT score were calculated and possible
explanations for these were discussed. The strongest correlation with the CAT score was
identified with the PR STEP UPS avgBreathingRate feature (ρ= 0.52, p= 2×106 for
the same day and ρ = 0.38, p = 0.02 for the previous day). The PR SIT TO STAND,
PR SHOULDER PRESS and PR LEG SLIDE exercises were generally very indicative
of the CAT score on the same and the following day. Filtering the RESpeck data for
reliable data was found to result in features that are more strongly correlated with the
CAT score. For CAT score association and CAT score prediction, the best model has
an MAE of 3.0 and 3.3, an RMSE of 4.1 and 4.5 and an accuracy of 75% and 73%
respectively. The CAT score prediction model’s performance is similar to what was
achieved in [29] and better than what was achieved in [30]. This is the first time that
CAT score association was tried for RESpeck data.

The initial hypothesis that the data collected by the RESpeck device and by recording
Rehab exercises during a specific day can be used to estimate a patient’s CAT score
for that day and to predict the score for the following day is confirmed by this analysis.
The CAT score estimation is not perfect but it is significantly better than the baseline
model and relatively close to the true score. The improved performance of the final
model that was trained on the entire training set suggests that the model’s performance
will be even better for even more data. Furthermore, it was discovered how important
it is to optimise models according to an error metric that makes sense with the model
architecture. If the aim is for model estimates to be as close as possible to the true
scores, a regression model optimised according to RMSE is reasonable. If the aim is to
get high accuracy with respect to the impact level, a classifier optimised according to
accuracy is more reasonable.

The QIP data was analysed for 36 patients. Before comparing the breathing rates
measured by the RESpeck with those measured by the nurse, the RESpeck data was

39
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filtered for reliable data. To increase the amount of reliable data without loosening the
restriction of what concerns reliable data, various parameter settings of the classification
model were investigated. Considering the data with 20s sliding windows that overlap
by 80% was shown to be the best approach. For most of the analysis, the breathing
rates measured by the RESpeck and those measured by nurses were compared on an
hourly basis for hours for which there is data from both sources. It was shown that the
average RESpeck breathing rates are on average 0.9 bpm higher than the average nurse
breathing rates. This coincides with the finding that nurses were likely to have measured
some breathing rates during 15s and 30s monitoring periods and studies showing that
shorter monitoring periods lead to lower estimates [1, 23]. This seems to indicate that
the RESpeck’s breathing rates are closer to the true breathing rates and more reliable.
Using methods from information theory, it was shown that the information content
of the RESpeck breathing rates is higher than the information content of the nurse
breathing rates. However, the uncertainty coefficient of unaveraged breathing rates
indicates that the breathing rates measured by the RESpeck and those measured by
the nurses do not give much information about each other. This puts the validity of
unaveraged RESpeck measurements into question.

The hypothesis that breathing rates collected by the RESpeck are more reliable and
informative than those measured by nurses could neither really be confirmed nor rejected.
Overall, it was shown that the hourly averages of RESpeck breathing rates are close to
the hourly averages of nurse breathing rates so the averaged RESpeck measurements
are at least as good as the nurse breathing rates. Considering the time pressure and
workload under which nurses usually work, a device that can automatically collect
reliable hourly averaged breathing rates is an improvement.

5.1 Future works

For the NHS Borders analysis, more features could be considered. From the RESpeck
data, only the breathing rate and activity level were considered in this project. A closer
look at the breathing signal might provide useful features. For the histogram-based
gradient boosting regression tree, only the default parameters were used. Having a
closer look at the parameters and adjusting them as necessary might improve the model
significantly. Furthermore, including more data would improve the model’s performance
as well.

For the QIP analysis, future projects might want to further investigate the data from an
information theory point of view. In particular, the differences in using averaged and
raw RESpeck measurements would be worthwhile to investigate and what averaging
intervals work best. For the classification model that analyses the reliability of RESpeck
data, the use of varying window sizes was discussed. Because it is important to use the
same window size during training and later usages, the original window size of 20s was
kept here. However, the law of large numbers would suggest that it is better to consider
larger windows for assessing the reliability of the data. Hence, it might be of value to
train the reliability model on the original data for varying window sizes, in particular
because [28] does not explain why a window size of 20s was used.
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NHS Borders  

Research, Development & Innovation 

Clinical Governance & Quality 

 

Clinical Governance & 

Quality 

Borders General Hospital 

Melrose 

Roxburghshire TD6 9BS 

 

Telephone   01896 826719 

Fax                01896 826040 

www.nhsborders.org.uk 

 
 

Professor D. K. Arvind 

Centre of Speckled Computing 

School of Informatics 

University of Edinburgh 

10 Crichton Street 

Edinburgh 

EH8 9AB 

 

Date    13 April 2021   

  

Our Ref    21/BORD/IN01  

 

Enquiries to    Joy Dawson 

Extension    01896 826717          

Email    research.governance@borders.scot.nhs.uk 

 

 
Dear Professor Arvind 

 

Study Reference Number: 21/BORD/IN01 

 

Study Title: Remote Monitoring and Pulmonary Rehabilitation of COPD ( and COVID-19 recovered)  

Patients in the NHS Borders Region 

 

Thank you for submitting your innovation project to NHS Borders. Your application has been reviewed and I 

am happy to confirm that NHS Borders has agreed to participate as a test bed site for the study.  

 

Conditions of Approval 

 

 NHS Borders will evaluate the use of the Respeck device in the home and agrees to approach patients to 

help to test the device and app.  

 The University of Edinburgh will provide the necessary devices to test the innovation. 

 Patients approached to participate will provide consent to providing data for the project; however no 

identifiable data will be shared with University of Edinburgh. 

 NHS Borders will support the project by providing clinical advice as to how the app can help support the 

clinical care pathway for the management of COPD 

 NHS Borders pulmonary rehab team have confirmed that they have capacity to support this project and 

that this can be undertaken without existing funding support 

 A summary report should be submitted by email to  research.governance@borders.scot.nhs.uk  within 2 

months of the project ending 

 The support of NHS Borders Pulmonary Rehab team will be acknowledged in any presentations and 

publications. 

 

May I wish you success with your project. Should you have any queries in relation to this letter please 

contact Joy Dawson on 01896 826717  or research.governance@borders.scot.nhs.uk.  

 

Yours Sincerely 

 

 
 

Joy Dawson 

Research Governance Manager & NHS Borders Innovation Champion 



Appendix B

Exercises

Exercise ID Description
0 PR SIT TO STAND
1 PR KNEE EXTENSION
2 PR SQUATS
3 PR HEEL RAISES
4 PR BICEP CURL
5 PR SHOULDER PRESS
6 PR WALL PUSH
7 PR LEG SLIDE
8 PR STEP UPS
9 PR WALKING

Table B.1: Exercise ID interpretation
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Appendix C

NHS Borders data: available data

Patient id How much data is available? Included
RESpeck Rehab CAT in Analysis

PRB001 17M datapoints (15.8 days) 194 exercises 0 scores No
PRB002 0 datapoints 0 exercises 0 scores No
PRB003 45M datapoints (41.9 days) 125 exercises 17 scores Yes
PRB004 2M datapoints (2.0 days) 1 exercise 2 scores No
PRB005 35M datapoints (32.0 days) 256 exercises 2 scores No
PRB006 23M datapoints (21.1 days) 40 exercises 13 scores Yes
PRB007 32M datapoints (29.6 days) 178 exercises 19 scores Yes
PRB008 only minute-averaged incomplete incomplete No
PRB102 60M datapoints (55.5 days) 99 exercises 3 scores No
PRB103 39M datapoints (35.8 days) 253 exercises 33 scores No
PRB104 57M datapoints (52.5 days) 43 exercises 20 scores Yes
PRB105 60M datapoints (55.5 days) 362 exercises 44 scores Yes
PRB106 0.2M datapoints (0.2 days) 14 exercises 8 scores No
PRB107 21M datapoints (19.7 days) 368 exercises 62 scores Yes
PRB108 39M datapoints (35.7 days) 120 exercises 26 scores Yes
PRB109 13M datapoints (12.3 days) 29 exercises 9 scores Yes
PRB111 15M datapoints (13.8 days) 135 exercises 27 scores Yes
PRB201 26M datapoints (23.7 days) 330 exercises 57 scores Yes
PRB202 29M datapoints (27.0 days) 355 exercises 66 scores Yes
PRB203 66M datapoints (61.0 days) 314 exercises 52 scores Yes
PRX018 62M datapoints (57.3 days) 105 exercises 30 scores Yes
PRX900 51M datapoints (47.3 days) 0 exercises 44 scores No

Table C.1: Summary of NHS Borders data exploration

47



Appendix D

NHS Borders data: CAT score
development
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Appendix E

NHS Borders data: correlations

E.1 Correlations for features of the same day
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