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Abstract
The trailer is often the first time a viewer is exposed to the plot, cast, mood and style
of a film. In a world where short-form video content, on platforms such as TikTok, is
being consumed at a meteoric rate, the trailer is more important than ever to capture a
viewers attention. As such, it is vital that the elements of a film the viewer is permitted
to see within the trailer are those that are best suited for selling the film and making a
convincing advertisement. However, selecting these few moments from a film made
of hundreds, if not thousands, of individual shots is a challenging task, and is clearly
one that would benefit from automation. Many approaches to this have been proposed,
with recent methods utilising deep learning for feature extraction and classification
showing particular success. In this project we seek to develop and evaluate methods
for automating shot selection for trailers. We use the TRIPOD

⊕
dataset [33], formed

of films paired with trailers, and extract a variety of multi-modal deep features. Subse-
quently, we propose two methods for shot selection: an anomaly detection approach
taking inspiration from Movie2Trailer [46], and a supervised approach utilising neural
networks to learn to classify film shots as trailer-suitable. Our findings suggest that both
methods are capable of producing effective shot selections, however both suffer from
limitations that can be addressed with future work.
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Chapter 1

Introduction

A crucial element of a film’s marketing campaign is the trailer, providing audiences
with a taste of what to expect from the plot, cast, mood and style present in a film.
The rise of internet video has only amplified the importance of the trailer in capturing
viewer’s attentions. The instant access that online video platforms provide mean that a
well developed and distributed trailer can land millions of views in a very short time
frame, for example the first official trailer for Marvel’s Secret Invasion (2023) obtained
11 million views in just one day on YouTube [9].

Whilst traditional trailers are still a key vector for film marketing, the meteoric rise
in short-form video content pioneered by mobile apps such as TikTok has catapulted
the importance of quickly digestable, bite-sized content to the forefront of marketing
campaigns. With over a billion videos viewed each day on TikTok [8], it is clear that
taking advantage of this market is a crucial step to take for succeeding in generating buzz
for a film. In addition, streaming services such as Netflix have begun to increasingly
rely on short previews of films to entice users into watching recommended films. These
are less developed than a trailer, and consist of a small number of shots spliced together
to give the viewers an idea about the content of a film.

Whilst trailers and previews present a great opportunity for marketing, their development
is not a trivial task. Films contain, on average, around 1000 shots [3] and filtering
through these to find effective ones is an unavoidably time consuming job. This problem
is further exacerbated by the sheer volume of content available to consumers now,
with the streaming service Netflix hosting over 17,000 films as of 2022 [5]. Not only
does each film require a preview designed to interest viewers, but the possibility of
previews tailored to user-specific interests is now also being explored[6]. Generating
user tailored previews for 17,000 films is clearly a task that not only would benefit from
automation, but requires it.

Automating this task, however, is an inherently challenging problem. Firstly, one must
develop a method for understanding the contents of film shots such that desirable char-
acteristics can be identified and shots can be selected. This, however, introduces another
problem - once shots are processed, the aforementioned ’desirable’ characteristics must
be identified, either manually or by other means. This is no trivial task, since the key
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Chapter 1. Introduction 2

characteristics of a film shot making it suitable for a trailer or preview are certainly not
immediately obvious.

Our goal with this research project is to build upon previous work and explore different
methods for selecting film shots for use within a trailer or preview. We split our work
into three major sections:

1. First, we explore methods for processing films and extracting salient informa-
tion from each shot. We use state of the art deep neural networks to extract a
comprehensive set of features for each shot with the goal of encapsulating all the
necessary information to select shots effectively.

2. Secondly, we build upon previous work to develop an unsupervised system for
shot selection utilising anomaly detection on the extracted features. Here, we
make the assumption that the ’desirable’ characteristic of a shot, making it suitable
for a trailer or preview, is that it is in some way different to the other shots within
the same film.

3. Finally, we present a supervised method for shot selection, utilising films paired
with trailers to train neural networks to predict the ’trailer-suitability’ of each film
shot. Here, no assumptions are made about the characteristics of a successful
trailer or preview shot, and instead we rely on the model to learn these organically.

.



Chapter 2

Previous Work

Automated trailer generation has seen consistent work for many years, with a variety of
approaches producing promising results. Whilst several methods have attempted to solve
trailer generation with an end-to-end system including the selection and arrangement
of shots [24, 51] , many methods reduce the scope of the problem to shot selection
or ranking [44, 45]. These methods aim to assist in the trailer generation process by
recommending shots to a professional editor, rather than by creating an entire trailer.
A system of this sort has already seen commercial use in producing a trailer for the
horror film Morgan, utilising shot recommendations produced by an AI system from
IBM [45]. Considering the scope of this project, we will mainly focus on the problem
of shot selection or ranking.

To find a selection of suitable shots, each previous approach makes its own assumptions
regarding the features that make an effective trailer, and indeed what an effective trailer
is. Several methods seek to manually identify characteristics that signify a likely trailer
shot, then build a model to identify these characteristics and select shots based on this
[24, 46]. Other approaches aim to tackle the problem by viewing the trailer generation
task as a summarisation problem [20, 33]. These approaches assume that the shots
containing the most salient moments within a film are those that are likely to together
form an effective trailer. Finally, recent approaches have foregone any assumptions
about the characteristics of film shots making them suitable for a trailer, and have
instead built supervised models utilising existing trailers to automatically learn the
features of an effective trailer shot [49, 33]. All approaches have seen success, with
systems from all producing trailers highly rated by viewers.

First, we will consider the view of trailer generation as an effective shot selection
problem. Tarbernik et al [46] present movie2trailer (M2T), an unsupervised approach
which explores the assumption that the ’non-standard’ shots in a film are those that
are most suitable for use in a trailer. They investigate the use of anomaly detection
techniques for shot selection, using an ensemble of anomaly detection algorithms to
identify the ’non-standard’ shots. This method proves successful in selecting visually
appealing shots and producing trailers which are highly rated by user evaluation. Whilst
anomaly detection was shown to be effective in shot selection, vid2trailer (V2T) [24]
presents an end-to-end system based on affective content analysis (ACA), whereby the
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Chapter 2. Previous Work 4

assumption is made that trailer-worthy shots are those that elicit particular emotional
reactions in a viewer. Both of these methods produce trailers that are highly rated by
human evaluation, however both utilise classical techniques in computer vision and
audio processing to extract surface level shot features rather than features that encode a
deeper understanding of the content of a shot. Using modern methods to extract more
salient information about each shot whilst taking inspiration from these methods is a
promising avenue to explore.

Approaching trailer generation from a summarisation viewpoint, PlotsToPreviews (P2P)
[20], explores the concept of preview generation for films using publicly available
plot summaries and further metadata. Scene selection is performed by computing the
cosine similarity between embeddings obtained for candidate scenes and plot summary
using Sentence-Bert [37]. This method succeeds in retrieving relevant scenes for a
preview in a majority of films, however the authors conclude that the method could
benefit from using ’audio-visual and high-level semantic information’ [20]. Doing just
this, Papalampidi et al [33] build upon previous work in Turning Point (TP) prediction
[32] (key moments in a film according to screenwriting theory) to aid in shot selection
and arrangement for trailers. Incorporating both screenplay and shot level information,
the authors extract a variety of multi-model features for each shot using deep neural
networks, and combine this information with turning-point based screenplay analysis to
inform shot selection and arrangement, producing trailers which score highly in human
evaluation.

The previously discussed methods require assumptions to be made regarding the par-
ticular properties of a shot that will make it suitable for a trailer. However, recent
methods that have shown success focus on learning to rank or classify shots by using
existing trailers in a weakly supervised manner, thereby eliminating the need to focus
only on certain aspects of each shot and instead learn the shot ’properties’ that make
one suitable for a trailer. CCANet[49] accomplishes this by introducing a paired movie
and trailer database, and using a co-attention mechanism to learn soft labels for film
shots from trailer shots during the training process. This method obtains state of the art
results in the shot selection task without making assumptions about which character-
istics signify a shot suitable for a trailer. Whilst CCANet produces promising results,
it is limited to only using features extracted on the video modality, and the possibility
of expanding upon this method with more informative features is a possible research
direction. Furthermore, whilst Papalampidi et al [33] utilise screenplays and turning
points for trailer generation, they also show that obtaining impressive results is possible
using only shot-level features and a model trained on the binary task of predicting a
shots presence in a trailer.



Chapter 3

Dataset and Feature Extraction

3.1 Existing Datasets

Past work in automatic trailer generation can be partitioned, like many machine learning
problems, into supervised and unsupervised approaches. Whilst some supervised
approaches have been presented [49, 33], the prevalence of unsupervised methods
can be attributed to a range of reasons, with a major one being a lack of publicly
available datasets to use. Creating datasets for supervised trailer moment detection is an
inherently challenging task; Not only is the scale of the data large, with film video files
leading to huge datasets, but the labelling process itself is filled with ambiguity - should
human annotators manually inspect every shot and rate it’s suitability for a film trailer,
or is using existing trailer shots for each film enough to encompass the trailer suitable
moments from each film? Furthermore, the copyright issues arising from sharing film
video files further exacerbates these issues, as datasets that are created are then often
impossible to share freely.

CCANet [49] presents one of the first semi-supervised trailer moment detection methods,
at the same time authoring the first dataset, the Trailer Moment Detection Dataset
(TMDD), for selection of trailer shots. This features 150 films paired with their official
trailers, totalling 263,837 film shots and 15,790 trailer shots. These films are split
50/50/50 into Action/Sci-Fi/Drama genres, each split 45/5 for train/test split. Rather
than annotating shot labels by hand, they use visual similarity to compute binary labels
between film and trailer shots, followed by manual verification of the matches. Using
this dataset they obtain state of the art results, showing that a semi-supervised approach
pairing films with their trailers is sufficient to accurately perform trailer shot prediction.
However, this dataset is not publicly available and as such did not provoke further
research.

Papalampidi et al introduce the TRIPOD dataset [32] for movie plot analysis. This is
a paired screenplay and synopsis dataset with turning point annotions, and does not
feature any video or trailer information. However, in newer work for trailer generation
[33], TRIPOD is augmented into TRIPOD

⊕
with the addition of film videos and

corresponding trailers scraped from YouTube.
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Chapter 3. Dataset and Feature Extraction 6

In our work, we utilise TRIPOD
⊕

, however we do not utilise screenplay information.
This is due to difficulties with aligning screenplay scenes to shots with sufficient
accuracy, leading to an inability to utilise screenplay level textual features for usage in
shot selection.

3.2 Feature Extraction Background

Once a film is segmented into shots, extracting salient features for use in a selection
method is the next challenge. Much of the previous work in the automatic trailer
generation literature has relied heavily on traditional audio and image processing
techniques to extract shot-level features for use in their methods [24, 46, 51]. Whilst
these methods each show success, their feature representations suffer from not encoding
an understanding of the content of shots, and instead only encoding the surface level
visual or audio features. This has limited the ability of previous methods to choosing
shots that are visually or audibly interesting, without considering the content or actions
taking place within a shot. CCANet [49] and Papalampidi et al [33] both showcase
the impressive results that can be obtained by utilising features extracted with deep
neural networks to inform shot selection, emphasizing the benefits of using features that
encode a greater understanding of the content of film shots.

Utilising multi-modal (video, audio, text etc) features extracted with deep neural net-
works is not a new idea in video understanding. Zhu et al, working on using multi-modal
deep features for affective content analysis in videos, conclude that ”methods with deep
features perform better, and higher accuracy is achieved with the adoption of more
advanced DNN feature extractors”. Zhang et al [52] utilise multimodal deep features,
including visual and textual modalities, for relationship and interaction analysis of
movies, further cementing the use case for multi-modal deep features in video under-
standing. Whilst neither of these works are in the trailer generation domain, Palampidi
et al back up our hypothesis that multi-modal deep features will help with shot selection,
showing that using multi-modal features is an easy way to outperform models such as
CCANet which only uses image features.

As for the methods used for feature extraction itself, different modalities have had
different models present themselves as the de facto standard in feature extraction for
each domain.

In the field of image processing, the introduction of deep convolutional neural networks
(CNNs) has led to a huge improvement in the performance of neural networks on image
based tasks, including image classification [27] and object detection [13]. A key part
of this success can be attributed to deep neural networks ability to automatically learn
rich feature representations of their inputs to be used downstream. Networks trained on
datasets such as ImageNet [16] have been shown to dramatically boost performance
when their representations are used as inputs to models for new tasks [23], improving
performance and lowering the amount of required training data. Previous approaches in
trailer shot selection, such as CCANet, rely on features outputted by ResNet [22] based
architectures trained on ImageNet. Whilst these have shown impressive performance on
a variety of video understanding tasks, newer models such as CLIP [36] from OpenAI
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promise even more informative image encodings. CLIP is trained on an image-caption
pairing task and produces image embeddings that have been shown to outperform
those from ImageNet trained ResNet models on many vision-and-language tasks [43],
hopefully also translating to more informative features for trailer shot selection.

Whilst deep CNNs have been revolutionary for image understanding, we are dealing with
the video domain and as such utilising methods for understanding actions throughout
time is crucial for our task. A large variety of methods have been proposed for this, and
we will focus on the usage and development of 3D CNNs. 3D CNNs [47] augment the
traditional CNN architecture with one crucial detail – filters also process a temporal
window across adjacent frames, thereby learning spatiotemporal relationships. Building
on this work, the SlowFast [19] network dramatically improves results by processing
two distinct aspects of video. It utilizes a ‘slow’ pathway, dedicated to extracting
semantic information from, and across, each frame at a relatively low framerate, and a
‘fast’ pathway dedicated to processing motion with a much higher temporal resolution.

Subtitles, when available, can be crucially informative in video understanding. With the
advent of the transformer model [48], deep learning for natural language understanding
has seen a surge in effectiveness. Large pretrained language models, such as BERT
[18] have advanced the state of the art natural language understanding, inference and
generation. Using these large pretrained models to generate sentence level embeddings
for use in downstream tasks has been shown to be effective, with embeddings from
Sentence-Bert [37] obtaining state of the art performance whilst providing fast inference
times.

Pretraining large neural networks on large amounts of generic labelled or unlabelled data
followed by finetuning on a smaller amount of task-specific labelled data is a paradigm
that has proved very successful for applying deep neural networks to problems with a
relatively small amount of labelled training data. This has been used in image process-
ing, where networks pretrained on ImageNet are finetuned for different downstream
tasks, and in natural language processing, where large language models pretrained
on unlabelled data are then finetuned on task specific labelled data. However, whilst
finetuning is an attractive option, it has been shown that for many tasks only training
the classification head, known as linear probing, is sufficient to deliver performance
on par with, or only slightly worse than, finetuning for both text [34] and image [35]
modalities. Therefore, in this project we only consider the usage of pretrained models
for feature extraction, rather than for finetuning as it is much more resource efficient
with comparatively small performance impacts.

3.3 Data Processing

3.3.1 Feature Extraction

We utilise a number of features for each shot, across a variety of modalities and
timescales, including single frame features, video motion features, audio features,
subtitle based textual features and facial emotion features. Before feature extraction,
films are first segmented into shots using PySceneDetect [7], and subtitle timestamps
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are used to align them with the segmented shots. Shots of less than 100 frames are
discarded, as they are too short for processing and displaying in a trailer. An overview
of the data processing pipeline is shown in Figure 3.1.

A film shot is a collection of still images played in sequence, and as such the features
extracted need to represent both the content of each frame, and what is happening across
frames. To extract frame level features we sample one in every ten frames and feed each
through two different networks; The first is a ResNet network pretrained on ImageNet
for image classification, the second is CLIP. The penultimate layer embeddings from
both of these networks are saved and mean-pooled across all sampled frames. For
temporal video features, we utilise SlowFast [19] pretrained on the Kinetics dataset for
human action recognition, again utilising the penultimate layer output as an embedding
vector.

Whilst trailers often do not directly feature the original audio of a shot, instead opting
to overlay music or narration, subtitles can provide information about a shot that is hard
to obtain using only video. To obtain subtitle textual features, we utilise Sentence-Bert
[37] to extract sentence level embeddings from the subtitles and mean pool these across
all the utterances present in a shot.

Furthermore, alongside the subtitles, a shot’s original audio is also assumed to be
informative in classification. We extract shot-level audio features using YAMNet [2]
trained on Audio Set [21] to classify audio clips into 521 classes. We input the entire
audio segment from each shot to the network, and save the final activations as audio
features.

Taking inspiration from the work of vid2trailer [24], which utilises affective content
analysis for shot selection, we make the assumption that utilising the emotions present
on faces within a shot will be an effective input feature to our model. To obtain
emotion features, we first sample one frame per second for each shot to use for facial
recognition. For each frame, we utilise RetinaFace [17] to extract face bounding boxes
and facial landmarks such as eye positions. This system is capable of recognising faces
at extremely low resolution, and very high rotation angles relative to the camera. As
such, it tags many faces that are a) too small or b) too turned away from the camera
to effectively determine an emotion. We therefore implement two filtering stages;
Firstly, bounding boxes with any side smaller than 80 pixels are filtered out. After this,
any detected faces where the eyes are too close together relative to the height of the
bounding box are filtered, as this is an effective metric to determine if a face is rotated
too much away from the camera. Finally, for feature extraction, we utilise HSEmotion
[40, 41, 42], a model used for emotion recognition detection and feature extraction. For
each face that passes the filtering stage, we extract features using the HSEmotion model
on the cropped frame image. For the final shot facial emotion features, we mean-pool
all the emotion feature vectors across all extracted faces.

For extracting the visual features, including CLIP, ResNet and SlowFast, we utilise the
HERO Feature Extractor [30] repository. This was previously used in work for video
and language understanding with multi-modal features.

The dimensionality of each of the extracted features is shown in Table 3.1.
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Group Feature Dimensionality
Visual CLIP 512

ResNet 2048
SlowFast 2304

Linguistic Sentence-Bert 384
Audio YAMNet 521
Emotion HSEmotion 1280

Table 3.1: Feature Statistics.

Figure 3.1: Data processing pipeline.

3.3.2 Automatic Labelling

To both evaluate and train models for trailer shot selection, shot level annotations
indicating the presence of a shot in a trailer are needed. These can be obtained by
hand, with human annotators manually comparing film and trailer shots, however this
is an incredibly labour intensive task, requiring resources beyond the scope of this
project. Instead, silver standard labels are utilised. These are obtained by computing
the similarity between film shot features and trailer shot features. In particular, the
cosine similarity between the visual shot and trailer features are used, and the highest
similarity film shot is given a positive label. A similarity threshold of 0.85 is set, as a
trailer often features many shots or visuals that do not feature in the original film.

3.4 TRIPOD
⊕

Summary

The statistics for the TRIPOD
⊕

are shown in Table 3.2. In the train and development
sets, films are paired with a number of trailers found online, leading to an average of
around 30 positive trailer labels per film. In the test set, however, each film is paired
with only its official trailer, leading to an average of only 18 positive labels per film.
Subsequently, in the train and dev set the average percentage of positive labels per film
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TRIPOD
⊕

Train Dev Test
No. Films 84 38 41
No. Shots 81,400 34,100 48,600
No. Trailers 277 155 41
Avg. Trailers per film 3.3 4.1 1.0

Table 3.2: Dataset Statistics.

is 8.3%, and in the test set the average percentage is only 4.2%.



Chapter 4

Anomaly Detection

4.1 Background

Anomaly detection, often referred to as Outlier Detection, refers to the task of ’finding
patterns in data that do not conform to expected behaviour’ [14]. It is an area that
sees applications across a variety of domains and modalities, from classical problems
on tabular data such as intrusion detection within computer networks [25] and fraud
detection [10] to newer applications on a variety of modalities, such as surface defect
detection in images [29].

A large variety of methods for anomaly detection have been proposed, with the ef-
fectiveness of each approach varying wildly depending on the type of data and its
distribution. Typically, methods involve building a model that expresses the properties
of regular data, and then using this to identify unusual, or ’anomalous’, data. . Whilst
methods for anomaly detection are often supervised or semi-supervised (models using
only data labelled as ’normal’), many of these can be adapted to the unsupervised
domain. Unsupervised methods make the assumption that ’normal’ instances are far
more prevalent than the anomalous ones, meaning that an accurate model of the regular
data can be made from samples which contain anomalous instances. We will explore
several options for unsupervised anomaly detection when developing our system.

Diving deeper into previous work in anomaly detection on features extracted with
deep neural networks, we see many publications dealing with the image modality
[12, 38, 31, 50], but relatively few from other domains. We will look to apply methods
used in the works focused on the image modality to all the multi-modal features in
our dataset discussed previously. Exploring the methods the previous work employs,
we see a variety of existing anomaly detection methods proving effective for use on
deep features. K-Nearest Neighbours (kNN), an algorithm for both supervised and
unsupervised anomaly detection which uses the largest distance to each data points K
neighbours as an anomaly score, is shown to work effectively on features extracted by
networks pretrained on ImageNet in both the static image defect detection domain [12]
and the continuous video surveillance domain [31]. In particular, the success of kNN
on the video surveillance problem is a result that will hopefully effectively translate to
the anomalous shot detection task, both of which deal with a continuous video domain.

11
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Both One-Class Support Vector Machine (OC-SVM) [50], an unsupervised method
that fits an SVM to the data and uses the hyperplane distance as a anomaly score, and
Multi-Variate Gaussian [38] are also shown to be effective in the static image defect
domain. The variety of effective methods is a promising sign that employing the same
ensemble technique used in M2T, which combines 8 different anomaly detectors, will
be an effective route to take.

As explored in our Previous Work chapter, utilising anomaly detection as a solution
to the effective shot selection problem is not a new idea. Movie2Trailer (M2T) [46]
makes the assumption that the shots within a film that are suitable for a trailer are
characterised by being in some way ’different’ from the other shots within the same
film. To exploit this assumption, anomaly detection is performed on surface level visual
and audio features in the hope of finding visually and audibly interesting shots. This
approach proves effective, producing shot selections and trailers that are highly rated in
viewer evaluations. However, whilst effective, this approach does not make use of an
understanding of the content of shots, instead focusing on surface level shot features.
The success, and limitations, of M2T, when combined with the success of anomaly
detection on deep features gives a good indication that transferring the techniques
utilised in M2T to the deep features we have extracted is a promising direction to take.
For the rest of this chapter we will develop and evaluate a method for shot selection
utilising anomaly detection on deep features.

4.2 Method

4.2.1 Overview

The overall architecture of our anomaly detection system is presented in Figure 4.1. It
is similar to that used in the M2T, with a few differences. A key aspect of the system is
to process each film in isolation, finding the most anomalous shots with respect to only
the shots from the same film, rather than across all films.

First, shot level features are extracted with the methods described previously. These
include frame, motion, audio, subtitle and facial emotion features. Each feature, across
all shots, is used in isolation of the other features until the final combination stage.
Features are pre-processed before anomaly detection, involving normalization and
dimensionality reduction. Each feature, across all the shots, is then run through a
selection of anomaly detection methods, each outputting an anomaly score for each
feature and shot pair. These scores are then combined across all features and all detectors
with an ensemble method to produce a final score. Finally, the shots with the top K
scores are selected for use in the trailer.

4.2.2 Pre Processing

The high dimensional deep features extracted for each shot present a challenge for
anomaly detection [56]. Nazare et al perform a comprehensive analysis of the effect
of normalization and dimensionality reduction using principle component analysis
(PCA) on the performance of anomaly detection on high dimensional features from
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Figure 4.1: Anomaly Detection Model Overview

a deep neural network, finding both to have significant effects on results. As such,
we implement the same [0-1] normalization scheme they show to be effective, and
experiment with a variety of PCA dimensions, finding 100 to be the most effective.

4.2.3 Anomaly Detection Methods

A key advantage of the system presented by M2T is its unsupervised nature, and we
seek to fulfil the same requirement by using only unsupervised anomaly detection
methods. As stated earlier, unsupervised methods rely on ’normal’ instances being far
more frequent than their anomalous counterparts. With our analysis of the dataset in
section 3.4 showing such low percentages of positive labels, we conclude that it is safe
to make this assumption for our data. Following the logic of M2T, we explore the usage
of a variety of methods, hoping to take advantage of the different properties of each
method to create informative anomaly scores.

We first select methods that have previously been reported to perform well on high
dimensional deep features:

• K-Nearest Neighbour (kNN) [12, 31] - The largest distance (Euclidean) from
each sample point to its K nearest neighbours is considered and used as an
anomaly score.

• Multi-Variate Gaussian (MCD) [38] - The data is modelled with a Multi-variate
Gaussian Distribution, with a covariance matrix estimated with minimum covari-
ance determinant (MCD) [39], and the Mahalanobis distance to each data point is
used as its anomaly score.

• One-Class Support Vector Machine (OCSVM) [50] - A single class support
vector machine is fitted to the data, with an radial basis function (rbf) kernel to
learn a non-linear decision boundary. Outlier scores are based on distance to the
fitted hyperplane.
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In addition to previously used methods for anomaly detection on deep features, we also
experiment with a variety of other methods used in M2T including:

• AutoEncoder - An autoencoder network is trained on the input data, and the
reconstruction loss is used as the anomaly score.

• Feature Bagging - A meta estimator that fits a number of base detectors (in our
case KNN) on sub-samples of the features of the dataset, and aggregates score
across all detectors.

• Local Outlier Factor (LOF) - Similarly to KNN, for each sample K nearest
neighbours are found. Instead of using the largest distance, however, the local
density is computed. Samples with lower local densities are considered more
anomalous.

• Isolation Forest - Each sample is isolated from every other sample through
recursive axis-parallel subdivisions using a forest of decision trees. Those samples
that are most easily isolated are determined to be the most anomalous.

• Isolation-Based Nearest Neighbour Ensembles (INNE) - An isolation-based
approach similar to Isolation Forest, but uses a nearest neighbour based approach
to perform isolation rather than an axis subdivision approach.

Methods employed by M2T such as Histogram Based Outlier Detection are disregarded
due to their feature independence assumption, which cannot be made when dealing with
deep features.

We utilise the PyOD (Python Outlier Detection) [53] library for anomaly detection, as
it supports all selected methods.

4.2.4 Ensemble Method

Since different anomaly detection methods utilise different underlying logic, appro-
priately combining scores such that the combined score is more informative than any
single score is a task with many possible solutions. In M2T, the authors use a simple
majority voting rule to determine if a single frame should be anomalous. This works
well when dealing with binary predictions, however in our case we are dealing with a
continuous anomaly score outputted from each detector. Combining these scores is an
area with relatively few published works, however Zhao et al [54] detail several options
which we explore:

• Mean Scoring - Average all scores for each shot.

• Top N Mean Scoring - Average the top N scores for each shot.

• Max Scoring - Taking the maximum score for each shot.

• Max Ranking - Ranking each shot for each detector from least to most anomalous,
and taking the maximum rank for each shot.

• Mean Ranking - Ranking each shot for each detector, and taking the mean rank
for each shot.
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Examining the chosen detector models, it becomes clear that each produces scores of
different scales. Therefore, it is crucial to normalise the output of each detector [54]
before using ensemble methods that directly utilise the score output such as Mean, Top
N and Max scoring, such that no one detector dominates the ensemble score.

4.3 Results

Whether or not shots selected with this system will align with those used in a trailer
is hard to determine without experimental results. The underlying assumption behind
M2T is that how ’abnormal’ a shot is, based on surface level audio and visual features, is
a good indicator of the ’trailerness’ of a shot, and this seems to result in good selections.
However, the question of if the anomalies encoded by the deep features extracted for
each shot will indicate suitability for a trailer is hard to determine. Considering a
majority of film shots consist of fairly benign actions and image contents, hopefully
the shots with anomalous content also prove to be ones suitable for a trailer. However,
it may also be the case that the ’non-trailer’ shots within a film are not sufficiently
partitioned within the feature space from their trailer suitable counterparts to prove
anomaly detection an effective method.

For our evaluation, we consider a budget of K=10 shots per trailer, creating trailers
of roughly 2 minutes. Therefore, we take the top 10 shots with the highest anomaly
scores and use them as the shot selection. Furthermore, we adjust the features used on a
per shot basis to account for certain features missing from each shot. For example, for
several shots there are no subtitles, resulting in a range of the extracted features missing.
This is accounted for by simply passing the reduced set of feature anomaly scores to the
ensemble method.

4.3.1 Quantitative Analysis

To analyse the performance of the system, we use accuracy as our metric, that is the
percentage of correctly identified shots within the 10 selected. We first examine the
performance of each individual anomaly detection method on the development set in
Figure 4.2. We use all features and combine scores with a simple mean combination.
We find that the methods used previously on deep features (OCSVM, MCD, KNN) all
perform well. Using the intuition that the detectors which are unable to achieve better
than random accuracy on shot selection will not be useful to the ensemble method, we
disregard the scores from AutoEncoder, Isolation Forest and Feature Bagging in our
future combination methods.

Next, we analyse the performance of different methods for combining the anomaly
feature scores in Table 4.1. Again, we utilise all features, and find that using the top-N
mean scoring method with N=3 gives the best results, with the max scoring method
showing similar performance and the ranking methods showing poor performance. The
hyperparameter N is tuned through a search from N=2 to N=10.

With the anomaly detection methods and combination method chosen, we perform
an ablation study over the accuracy of the system using different features on both
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Figure 4.2: Anomaly Detection methods accuracy (dev) using mean combination across
all extracted features. Abbreviations for anomaly detection methods are those used
previously in Section 4.2.3.

Combination Method Accuracy (Dev)
Random 0.103
Mean 0.155
Top-3 Mean 0.171
Max 0.168
Max Rank 0.116
Mean Rank 0.0895

Table 4.1: Accuracy results on development set using different combination methods.

the development and the test set in Table 4.2. The reported numbers are higher on
the development set due to the development set including a range of trailers found
for each film, increasing the number of positive labels per film, whereas the test set
consists of labels from only the final official trailer per film. These results are promising,
and show that a fusion of different features is able to produce better results than any
one feature alone. We find that the frame and subtitles features show the strongest
individual performance, with features extracted using CLIP proving more informative
than those using ResNet. This can be attributed to the nature of the task each network
is trained on: ResNet is trained purely for image classification, so features will lack
an understanding of what is happening within an image, whereas CLIP is trained on
image-text pairs, so produces features that encode an understanding of the content of
a scene within an image. Whilst the results for some features are promising, we do
observe the system failing to effectively take advantage of the audio and facial emotion
features. An explanation for this is not clear, and we hope that future methods will be
able to use these features more effectively to aid in shot selection, as intuitively both
could be useful for the task.

The results are generally more mixed on the test set due to its noisier labels - if we
assume that a film has many trailer suitable moments in it, positive labels for only a
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Features Accuracy (Dev) Accuracy (Test)
Random 0.103 0.0418
Frame (CLIP) 0.147 0.0572
Frame (ResNet) 0.125 0.0502
Motion 0.126 0.0561
Face Emotion 0.108 0.0438
Audio 0.105 0.0488
Subtitles 0.113 0.0390
All Features 0.171 0.0592

Table 4.2: Ablation study examining the effectiveness of each feature in Anomaly Detec-
tion, Top-3 Mean Combination of all selected anomaly detection methods.

Group Genres
Action Action, Adventure, Fantasy, Sci-Fi, Western
Emotion Comedy, Romance, Drama
Suspense Thriller, Horror, Crime, Film-Noir, Mystery

Table 4.3: Genre grouping

single trailer will mean many false negatives, leading to noisier and less reliable metrics.

We further analyse the impact of film genre on the performance of the system. Film
genres are obtained from IMDB [4]. To do this effectively, we first from three groups
of similar genres shown in Table 4.3. These groups are based on manual inspection of
trailers showing similar characteristics in type of shot used. This is done to increase the
individual dataset sizes for more reliable metrics, since using the fine-grained genres
results in datasets of only a couple of films per genre. We report the accuracy on each
group in Table 4.4, and find that the system performs best on the Action and Suspense
groups. This aligns with expectations; The genres present in these two groups generally
have trailers characterised by the more ’bombastic’ or action-heavy shots in a film,
which we expect to be easier to detect through anomaly detection. The trailers for
genres present in the Emotion group, however, have generally more nuanced trailers
with shots which are less obviously different to the others in the film, and as a result
suffer from worse accuracy scores.

4.3.2 Qualitative Analysis

Whilst the dataset contains soft labels for each shot based on similarity to trailer shots,
these labels are not a comprehensive indicator of all the suitable trailer shots in a film,
and the metrics presented may not paint the full picture of the effectiveness of the
system. Therefore, we manually inspect the most and least anomalous shots from a
variety of films to better understand the selections the system makes. 1

1Trailers generated with shot suggestions from the Anomaly Detection system can be viewed
here: https://drive.google.com/drive/folders/1h7_6KXJnwrlwXPAfxZNhKC3xeJUOAJbI?
usp=sharing

https://drive.google.com/drive/folders/1h7_6KXJnwrlwXPAfxZNhKC3xeJUOAJbI?usp=sharing
https://drive.google.com/drive/folders/1h7_6KXJnwrlwXPAfxZNhKC3xeJUOAJbI?usp=sharing


Chapter 4. Anomaly Detection 18

Group Accuracy (Dev) Accuracy (Test)
Action 0.174 0.0725
Emotion 0.148 0.0497
Suspense 0.213 0.0647

Table 4.4: Results for different film genres, using all features

In Figure 4.3, we present key-frames from the most anomalous (top row) and least
anomalous (bottom row) shots from a film in each of the genre groups. On manual
inspection, we find that the most anomalous shots are especially effective as trailer
shots in the ’Action’ and ’Suspense’ categories, with the generated trailers providing
interesting moments and an overall effective trailer. This is in contrast to the accuracy
metrics, for example with ’Total Recall’ the generated trailer is quite effective, however
it has a low accuracy of 0.1, indicating the accuracy metric is not an entirely reliable
method for evaluating output quality. Whilst the most anomalous shots for the ’Action’
and ’Suspense’ groups are effective, the shots vary wildly in their content, with little
consistency in a certain ’type’ of shot being prevalent. This is to be expected given
the nature of the system - it is not learning what makes an effective shot and therefore
selected shots cannot be expected to be consistent in content. This inconsistency
continues for the least anomalous shots, with several being particularly suitable for a
trailer despite their low anomaly score, especially in the case of ’Total Recall’ and ’The
Shining’. Unsurprisingly, given the much lower accuracy score, the shot selections for
films from the ’Emotion’ group are even more inconsistent, with the generated trailers
containing only few shots that could be construed as trailer worthy.

Overall, on manual inspection, the system shows mixed performance. In the range of
shots identified as the most anomalous, many shots are shown to be suitable for a trailer
and potentially ’anomalous’, however this is not consistent across all of these shots.
Furthermore, the system shows poor performance on the other end of the spectrum
where it identifies ’mundane’ shots but also mixes in shots that would not be out of
place in a trailer. As expected, the system performance is vastly superior on films from
the Action and Suspense groups, and we hope that more advanced methods will be
better able to take advantage of the deep features to aid in shot selection for films from
the ’Emotion’ group.
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Figure 4.3: Most and least anomalous shot selections for a film from each genre group
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Supervised Learning

5.1 Introduction

Whilst unsupervised approaches to trailer shot selection have shown significant success,
newer models have benefited from directly using films alongside their trailers in a super-
vised manner. These methods disregard making direct assumptions about what makes
an effective trailer shot and instead rely on training to identify these characteristics.

CCANet [49] accomplishes this with a novel architecture whereby soft labels are learnt
whilst training, rather than using hard binary labels. They utilise Co-Attention between
film shot features and all the corresponding trailer shot features to compute a soft label.
This label is used within a ranking loss, rather than a binary cross entropy loss. The aim
of this is to tackle the problem of labelling film shots that are similar to trailer shots
with a hard label of 0 when using binary labelling, whilst they are still similar enough
to warrant using as a positive training example. Furthermore, CCANet incorporates the
usage of Contrastive Attention in order to augment the input features such that the trailer
shot features stand out from features from non-trailer shots. Whilst these methods are
shown to be effective, their usage is limited to only utilising visual features from both
the trailer and the film, and the authors cite utilising more, multi-modal features as a
possible avenue for future research.

Papalampidi et al [33] show that sacrificing these sophisticated mechanisms in favour
of utilising more, multi-modal features alongside silver standard binary labels is in fact
a more effective approach. Incorporating visual, audio and linguistic features, they train
a transformer model on the binary task of identifying a shot as a trailer shot, obtaining
results surpassing CCANet. Furthermore, scene-level features from the screenplay are
utilised to identify Turning Points (TPs) and sentiment labels for each scene. These
features are propagated to the shot-level and used to help inform trailer shot selection.

5.2 Baseline Model

We start with a baseline Multi-Layer Perceptron (MLP) model, trained on the binary
classification task of identifying a shot as being in a trailer.

20
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Hyperparameter Values
Feature Projection Dimension 64, 128, 256
Number of Hidden Layers 1, 2, 3
Hidden Layer Dimension 64, 128, 256, 512

Table 5.1: MLP hyperparameter grid-search

Recognising that film genre is crucial to the type of shot selected for a trailer, we
explore the use of multi-task learning to incorporate genre information into the training
process. Here, we task the model with learning to predict both the ’trailerness’ and
the genre group of the input shot, as defined earlier in Table 4.3, whilst using a shared
representation. The genre-groups are used, rather than fine-grained genres such as
Comedy and Sci-Fi, such that there are sufficient training examples per class. Multi-
Task learning is used in the hope that learning to predict the shot genre group helps the
model learn a representation that will more effectively predict ’trailerness’ in different
genre groups.1

Architecture The model architecture is outlined in Figure 5.1. Each input feature
(visual, linguistic, audio and emotion) is projected down to 128 dimensions with a
linear layer, then all are concatenated to a single vector. This is then passed through
two feed forward layers of 128 and 64 dimensions respectively with ReLU activation,
before a final feed forward layer to 1 dimension with sigmoid activation for trailer
prediction. These model hyperparameters are determined with a gridsearch over the
feature projection dimension, number of hidden layers and hidden layer dimensionality,
shown in Table 5.1. For the layer dimensions, we only test configurations where
subsequent layers have a smaller dimension than the previous layer. When using multi-
task learning, a second feed forward layer is used to project to 3 dimensions with
softmax activation for genre prediction.

Implementation Details We implement our model in Tensorflow [1] with the Keras
deep learning library [15]. We use the Adam optimiser [26] and train with a learning
rate of 1 ·10−4 for 20 epochs, with a dropout of 0.3. The high dropout is configured to
avoid overfitting to the training data, which was occurring too quickly when using less
dropout. The loss on both the training and development sets whilst training is shown
in Figure 5.2, we can see the development loss for trailerness prediction plateaus after
around 20 epochs and fails to improve further.

For the multi-task model, we combine binary cross-entropy loss for trailer prediction
and categorical cross-entropy loss for genre prediction with a weighted sum, and find
weights of α = 0.9 and β = 0.1 to be the most effective.

Lossmultitask = α ·Losstrailer +β ·Lossgenre

1We also explore training individual models on the training data from each genre group, however find
these to overfit too quickly before generalising well.
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Figure 5.1: Architecture of baseline MLP model for multi-task learning, layer output
shapes in brackets.

Features Accuracy (Dev)
Frame (CLIP) 0.192
Frame (ResNet) 0.185
Motion 0.178
Faces 0.131
Audio 0.127
Subtitles 0.163
All Features 0.211

Table 5.2: Ablation study of the effectiveness of each feature for classification.

5.2.1 Results

We use the same accuracy metric presented in section 4.3.1, with each metric being
averaged over 5 training runs with different seeds. First, we examine the performance
of the system using each of the shot features in Table 5.2, and no genre information
incorporated. We find that the baseline MLP model outperforms the anomaly detection
in accuracy by a large margin. Again, CLIP features are shown to be the most valuable
for the task, with ResNet features close behind. We also observe that the model is also
able to effectively use the subtitle features, unlike the anomaly detection model.

The accuracies using different methods for incorporating genre information are shown
in Table 5.3. We find that utilising multi-task learning is the most effective method
for incorporating genre-specific information, and found that training genre-specific
models quickly overfits the training data before it is able to generalize as well as the
base model with no genre information. Films in the ’Emotion’ genre group show the
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Figure 5.2: Loss on train and development sets whilst training baseline model.

MLP Model Action Emotion Suspense
No Genre Information 0.218 0.206 0.212
Genre-Specific Model 0.203 0.198 0.205
Multi-Task Learning 0.225 0.212 0.223

Table 5.3: Development set accuracy after incorporation of genre information.

largest improvement over the anomaly detection model, increasing from 0.148 to 0.212.
Whilst we cannot completely identify why this model is much better able to predict
trailer shots for this group, the increase in accuracy in using subtitle features is a good
indicator that the model is able to infer more subtle properties of shots, relevant for
trailers from this group more than the others.

Examining the overall results in Table 5.4, we find that the baseline model with multi-
task learning outperforms the anomaly detection model by a large margin. Whilst this is
a good improvement, We will see that these results can be improved upon with a more
sophisticated model.

5.3 Transformer Model

5.3.1 Motivation

Whilst the baseline model reports improvements over the anomaly detection method,
there is still room for improvement. The baseline model is naive, in that it considers each
film shot in isolation and judges its value as a trailer shot. Whilst this is effective, have
we not established with the anomaly detection method that considering each shot with
respect to the other shots within the same film is useful for effective shot recognition?
Therefore, we can hypothesise that augmenting our baseline model to account for the
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Model Accuracy (Dev) Accuracy (Test)
Random 0.103 0.0418
Anomaly Detection 0.171 0.0592
MLP + Multi-Task 0.218 0.119

Table 5.4: MLP Model comparison.

context of a shot, that is the other shots within the same film, will lead to improved
performance.

This contextualisation of each input shot can be accomplished in a variety of ways,
each with their own benefits and limitations. Recurrent models, such as an LSTM, can
be used to produce contextualised feature vectors. Whilst using an RNN is a valid
option, recurrent models suffer from a difficulty learning long distance dependencies
[28], leading to the contextualised feature vector produced for each shot being weighted
heavily towards those shots closest to it. This is not always an issue, however for our use
case we predict that a representation with respect to the whole film will be much more
informative than one with respect to the localised area around each shot. An alternative
to the LSTM model that will allow this to be accomplished is the Transformer model
[48]. This model has seen significant success in the field of natural language processing,
due to its ability to learn arbitrary length dependencies and produce informative context
vectors.

A key factor contributing to the success of a transformer is its method of contextualising
input feature vectors with Multi-Head Attention. Using this, input feature vectors
are contextualised with respect to every other input, with each ’head’ in the multi-
head attention module learning different relationships between inputs. Traditionally,
Transformer encoders are stacked to produce deeper features, and whilst we will
experiment with this, the large number of parameters each encoder layer introduces will
likely make more than one encoder unrealistic with the limited amount of training data
we have available.

Architecture The new model architecture is similar to the baseline model, but operates
on a sequence of shot features rather than a single shot at a time. Each input feature
(visual, linguistic, audio and emotion) is projected to 128 dimensions with a linear layer
and concatenated as before, however after this the sequence of input features is fed
through a transformer encoder with 4 attention heads and a 512 dimension intermediate
representation. The contextualised output features are then projected to 1 dimension
with a feed forward layer with sigmoid activation for trailerness prediction.

For multi-task learning, the contextualised feature vectors are average pooled and
projected to 3 dimensions with a feed forward layer with softmax activation.

Model hyper-parameters such as number of attention heads and encoder intermediate
dimension are determined through a grid-search over hyper-parameters configurations
shown in Table 5.5. We also experiment with using positional encodings to incor-
porate location information for each shot, however we do not find them to improve
performance.



Chapter 5. Supervised Learning 25

Figure 5.3: Architecture of Transformer Model, layer output shapes in brackets.

Hyperparameter Values
Feature Projection Dimension 64, 128
Intermediate Dimension 128, 256, 512, 1024
Attention Heads 1, 2, 4, 8
Encoders 1, 2

Table 5.5: Transformer hyperparameter grid-search.

Implementation Details Again, we use the Adam optimiser with a learning rate of
1 ·10−4 and a dropout of 0.3. Our training, however, is not as straightforward as for
the baseline model. Since our model is now accepting a sequence of shots rather than
single shots, we must adjust our training to account for this.

We consider two training regimes for the transformer architecture:

1. Train with a batch size of one and input each film in its entirety. This strategy
may be liable to overfitting and noisy training due to the single film batch size
and the number of training examples being limited to the number of films.

2. For each sample in a batch, randomly sample positive and negative shots from
a film. The motivation behind this is that there is always far more non-trailer
shots than trailer shots, and using a random sampling method we can introduce a
variety of contexts for training the transformer, and help prevent overfitting.

Experimenting with both, we find that using random sampling produces better results
than using whole films as input. We posit that this is due to the variety of contexts
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Figure 5.4: Loss on train and development sets whilst training transformer model.

Training Regime Accuracy (dev)
Whole Film 0.241 (0.011)
Random Sampling 0.252 (0.005)

Table 5.6: Training regime results, standard deviation in brackets. No genre information
incorporated.

that arise from random sampling resulting in learning more generalized weights for the
transformer encoder, leading to better generalization to the development and test sets.

Using the random selection method, we pick 9 random trailer shots and 21 random
non-trailer shots from the same film for each sample and use a batch size of 16. We
show the loss on the training and development in Figure 5.4, and see the loss plateau
and begin to overfit around 60 epochs, where we early-stop.

5.3.2 Results

We first show the results from utilising each training regime described earlier in Table
5.6. We average results over 5 runs with different seeds. Not only do we observe
that the random sampling method results in better performance, the standard deviation
in accuracy is much lower than that from the whole film regime, confirming our
assumption that using whole films as single inputs per batch would result in noisy
training. Therefore, for all future experiments we utilise the random sampling training
regime.

To confirm that the multi-task model is indeed jointly learning to predict trailerness
and genre group, we examine the genre group prediction confusion matrix in Figure
5.5. We see that all classes are predicted with decent accuracy, thereby confirming that
the multi-task learning is jointly learning genre-specific information whilst learning to
predict trailerness. We do observe that the model is able to predict shots in films from
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Figure 5.5: Genre Classification Confusion Matrix (Development set).

Model Action Emotion Suspense
Anomaly Detection 0.174 0.148 0.213
MLP + Multi-Task 0.225 0.212 0.223
Transformer 0.255 0.249 0.256
Transformer + Multi-Task 0.259 0.252 0.257

Table 5.7: Accuracy on genre groups (Development set).

the ’Emotion’ genre group with much more accuracy than the other classes. This may
be due to the films this group being quite distinct from those in the Action and Suspense
groups, whereas films in the other groups share several common characteristics. This
hypothesis is further backed up by the observation that the Action and Suspense groups
are most commonly misclassified as each other, whilst rarely being misclassified as the
Emotion group.

Exploring the performance of the model for trailer shot detection on different genre
groups in Table 5.7, we find that using multi-task learning boosts model performance
only slightly across genre groups. Multi-task learning was found to improve results
far more in the baseline MLP model, a result that can perhaps be explained by the
nature of the Transformer model taking context into account and thereby not gaining as
much information from the genre group target in comparison to the MLP model. Again,
the model performs best on films from the Action and Suspense groups, however we
find that the performance gap to the Emotion group is greatly reduced compared to the
previous models.

We show the results from all the models in Table 5.8. The transformer model obtains
the best results by a wide margin, confirming our hypothesis that utilising context for
shot selection is essential to improve accuracy over considering each shot in isolation.
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Model Accuracy (Dev) Accuracy (Test)
Random 0.103 0.0418
Anomaly Detection 0.171 0.0592
MLP + Multi-Task 0.218 0.119
Transformer + Multi-Task 0.255 0.132

Table 5.8: Comparison of accuracy from all models.

5.4 Qualitative Analysis

Whilst the transformer model reports higher accuracy on the development and test sets
than the anomaly detection model, manual inspection of the selected shots is required to
identify any trends or features that the model appears to be picking up on. Furthermore,
as shown in section 4.3.2, the accuracy score is not a comprehensive indicator of the
effectiveness of the predictions, making manual inspection essential.

Examining the trailers produced by the transformer model by hand2, we observe a
certain amount of consistency in the identified shots, unlike those outputted from the
anomaly detection method. In Figure 5.6 we show the shots identified as most trailer-
worthy and least trailer worthy from a film from each genre group. On inspection,
we see that in these films and others the model is quite heavily biased towards shots
featuring faces as the main element. In all three films shown in Figure 5.6, shots
which feature a face close-up dominate both the most trailer-worthy shots shown in the
diagram and those which aren’t shown. Whilst consistently choosing the same style of
shot is not ideal, we do find that the facial shots chosen by the model are ’emotionally
charged’ and therefore predominantly shots that would be suitable for a trailer. This
observation is also helpful for explaining the observed increase in accuracy of shot
selection for films from the Emotion group, since these shots are particularly suited to
trailers for these films.

As for the shots that do not follow the full face theme, there is more variety and less of
an obvious pattern. In each of the shots selected from the three groups, the wider angle
shots often feature a more active subject and are well suited to a trailer. Furthermore, the
model often selects shots featuring logos or title cards, with these featuring in the top
shots for 500 Days of Summer and The Shining, and in particular featuring for almost
all of the selected shots for the ’A Walk to Remember’ trailer. This is unsurprising, since
many trailers feature the logo and title cards and this would be apparent in the training
data, however selecting these shots does not align with the goal of the model. The logo
and title card shots can easily be added by an editor and our model recommending them
is not particularly helpful. Removing these shots from the training data, therefore, could
be a path to improving the shot recommendations from the model and we leave this to a
future work.

All in all the model performs well, however it is by no means perfect. Each generated
trailer features shots that are questionable in the context of a trailer or preview, and

2Trailers generated with shot suggestions from the Transformer model can be viewed here: https://
drive.google.com/drive/folders/1gt8NS6lsGDRQUWIr5S2VH62ZybG0pGrY?usp=share_link

https://drive.google.com/drive/folders/1gt8NS6lsGDRQUWIr5S2VH62ZybG0pGrY?usp=share_link
https://drive.google.com/drive/folders/1gt8NS6lsGDRQUWIr5S2VH62ZybG0pGrY?usp=share_link
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Figure 5.6: Transformer model shot selection

combined with the black-box nature of the model this makes for a system that is tricky
to debug. Furthermore, whilst the accuracy metrics for this model are vastly superior to
those from the Anomaly Detection model, on manual inspection several of the Anomaly
Detection trailers are shown to be equally, if not more, interesting than their supervised
counterparts. For example, in the ’2012’ trailer the Anomaly Detection model selects
many interesting, action-heavy shots, whereas the supervised model shows a much more
mixed performance, with a couple of interesting shots but also many of the previously
discussed face close-ups. This could be attributed to the nature of the supervised model
- it predicts shots similar to those it has seen in its training data, leading to the inclusion
of many title cards and face close-ups, but less consistency in the other shots chosen.
Despite the Action and Suspense genres scoring the best accuracy metrics, the Emotion
films appear to be the most improved over their Anomaly Detection counterparts, with
the dialogue scenes chosen consistently being more interesting and ’emotionally heavy’
than those chosen by the Anomaly Detection model. We posit that this is an indicator
that the model is successful in the original goal of utilising deep features to choose
shots based on a deeper understanding of the content of a shot.
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Conclusions

In this project we explored the task of automated film shot selection for trailers. We
utilised previous work to hypothesise that multi-modal, deep features extracted with
modern deep neural networks would provide the necessary information to effectively
develop methods for shot selection. Using the previously introduced TRIPOD

⊕
dataset

[33], we extracted a variety of multi-modal features with state-of-the-art deep learning
models. We then presented two methods using these features; First, an unsupervised
system based on Anomaly Detection taking inspiration from movie2trailer [46], and
second, a supervised method utilising the Transformer architecture for shot labelling
using noisy training labels (obtained through similarity scores between trailer and film
shot features).

Our evaluation of the Anomaly Detection system finds that previously reported methods
for anomaly detection on deep features are also helpful for our use-case. Furthermore,
we find the system is capable of producing effective shot selections for the films from
genres such as Action and Horror, however we observe it failing to produce consistent
results for films requiring more nuanced selections in genres such as Romance or Drama.
On manual inspection of generated shot selections, we find that the accuracy metric
used for quantitative analysis is not a completely reliable indicator of the effectiveness
of the selected shots, with film trailers showcasing effective shot selections achieving
lower than expected accuracy scores.

Turning to supervised methods, we experiment with both a simple MLP model and a
Transformer model, finding the Transformer to obtain superior accuracy scores by a
large margin, and we utilise multi-task learning to further augment model performance.
On manual inspection of the shots selected, we observe much more consistency in the
style of shot chosen than with the Anomaly Detection model, a promising sign that the
supervised system is indeed utilising training data effectively to identify characteristics
of effective shots. However, we find that this comes at the cost of more repetitive shot
selections than those observed by the Anomaly Detection system, with face close-ups
and titles cards dominating the selected shots. This consistency certainly helps the
model to achieve superior and more consistent accuracy scores, however we find that
trailers produced by the Anomaly Detection system are sometimes superior to those
from the supervised model, even when reporting a lower accuracy metric.
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Given these observations, we conclude that utilising human evaluation of selected shots
is essential to effectively quantify the quality of the output from each method. Whilst
the presented accuracy metric is useful for development, its unreliable nature opens
avenues for future work, such as incorporating better automatic metrics and large-scale
human evaluation.

In terms of future work, we see several opportunities to improve upon the supervised
method presented. Firstly, manually cleaning the training data of logo and title-card
shots should help the model to avoid predicting these as appropriate for a trailer.
Furthermore, whilst we attempt to incorporate emotion information from faces, we
foresee that utilising datasets and models dedicated to multi-modal emotion detection in
video would provide even more informative features than those already used. A possible
avenue for this could be to utilise the LIRIS-ACCEDE [11] dataset alongside a model
such as MMDQEN [55], a dataset and model dedicated to affective content analysis, to
extract more informative emotion-based features. Another limitation of our model is
our reliance on the noisy binary labels obtained through soft labelling. As observed by
the authors of CCANet [49], this strategy leads to negative labels on shots that are very
similar to trailer shots, and as such increasing the noisy nature of the training data. To
combat this, we could use strategies such as the Co-Attention mechanism proposed by
CCANet to learn soft labels whilst training, rather than relying on hard binary labels.
This strategy, combined with the more informative multi-modal features extracted not
used in CCANet, is a promising avenue for future research. Finally, as explored in our
Introduction, automatically generated content tailored to viewers is a topic that is seeing
a surge of interest. As such, developing techniques for conditioning the supervised
methods on viewer specific requirements is an interesting direction for future research.
However, the resources required in obtaining the data necessary for exploring such an
avenue may limit its development to private companies.
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