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Abstract
This paper reproduces a system described by the paper ‘On ∃∀∃! Solving: A Case Strudy
on Automated Synthesis of Magic Card Tricks’. Which automatically synthesises a
magic trick named ‘The Baby Hummer’. I identify areas of the system which make
the system hard to reproduce and give clear, formal descriptions of the these areas,
discussing the relevant engineering choices.

The paper mentions as further work the desire to encode a constraint which prevents
deterministic looping subsequences in the tricks. I discuss this problem in detail
and come up with a solution. I report the synthesised tricks and demonstrate the
effectiveness of preventing these deterministic looping subsequences with a user study
which compares reported audience engagement for each trick.
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Chapter 1

Introduction

Program synthesis is the task of automatically generating a program from a given logical
specification. Due to the large solution space of even simple programs, this problem
is very hard with general formula solvers [1]. A common way of solving this problem
is using Component Based Synthesis [8] where a program is created as a combination
of components from a finite library. This technique has many applications and a paper
from 2016 showed that it can be used to synthesise card magic tricks [10]. These magic
tricks can be used as classroom exercises, as entertainment or as outreach resources.

The original paper is very short and gives only sparse details about both the formulation
and implementation of the system. This makes it difficult to reproduce. In this paper I
build a component based synthesis system which reproduces the results from the original
paper. I document aspects of the implementation and formulation of the problem that
were omitted from the original paper and discuss any important engineering decisions I
made which makes the system introduced by [10] easier to reproduce.

I define a deterministic loop as a section of a trick which always loops and never
changes the state of the deck. I make the argument that this property leads to non-
interesting magic tricks. I extend the methods used in the original paper to introduce
constraints which prevent the generation of magic tricks which contain a deterministic
loop. I provide details on the formulation of this problem as well as a discussion of its
implementation challenges.

I evaluate and compare my implementation against the results from the original paper. I
also demonstrate the effectiveness of the new deterministic loop constraints with a user
study.

1.1 Background

1.1.1 CEGIS

In 2008 Solar-Lezama published ‘Sketching for Program Synthesis’ [15] which intro-
duced a novel way to synthesise programs. The method takes a ‘sketch’ which is a
partial program of the desired program as input and generates the complete program.

1



Chapter 1. Introduction 2

Figure 1.1: Figure showing the the CEGIS process

To generate this complete program, Solar-Lezama developed an iterative synthesis
algorithm named Counter-Example Guided Iterative Synthesis (CEGIS). Although the
aims of the ‘Sketching’ paper are not directly aligned with my project, the CEGIS
algorithm which it introduces is at the core of my project. It is central to producing the
magic tricks. The CEGIS process at a high level takes an input of the form:

∃P.∀I : φ(P, I)

One can think of P as a program, I as a vector of inputs and φ() as a logical specification
of the desired behaviour of the program with respect to its inputs. Finding some P that
satisfies this formula would give us an automatically synthesised program purely from
a high level specification. Solving this problem through explicit enumeration would be
very expensive but the iterative nature of CEGIS makes large problem spaces feasible
by exploiting certain aspects of the domain. The process is illustrated in Figure 1.1 and
can be broken into three steps:

1. Initialisation

A set S is initialised with one arbitrarily chosen input value I0.

2. Synthesis

Finding a P that works over all possible inputs I is very expensive, the algorithm
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instead finds a program which satisfies the specification over only the inputs in
the input set S. This is called the synthesis step of the algorithm, a solver finds a
solution to the much more tractable formula:

∃P∀I ∈ S.φ(P, I)

There are many ways to find the solution to this formula. One common way is
to enumerate over the terms in a grammar [14]. I discuss this in more depth in
Section 1.1.3. If this query is unsatisfiable then, of course, the original formulation
would be unsatisfiable. If it is satisfiable then the algorithm is one step closer to a
program that satisfies the specification. This P is saved (call it P′) as a candidate
program and the algorithm moves onto the verification stage.

3. Verification

To check whether the candidate program satisfies the specification, rather than
checking whether each input in the space acts accordingly on the program, a
solver can be queried to search for an input I on which P′ will transgress the
specification. This can be formulated as so:

∃I.¬φ(P′, I)

If no such I can be found then the loop is broken and the candidate program is
returned as a program which is valid over all inputs, otherwise, the resulting input
(call it I′) is a counter-example. This counterexample will be used to further guide
the synthesis of our desired program. I′ is added to the set S and the algorithm
returns to the synthesis stage (or breaks if some timeout threshold is reached).

1.1.1.1 CEGIS summary

The inputs added to the set S over which the candidate program is being synthesised act
as constraints to the logical formula in the synthesis stage. A feature of the constraints
being generated from counterexamples is that they will never be entirely redundant - it
will always add some meaningful constraint since it covers a part of the search space
that was not covered by the other inputs in S [16]

An intuition for why this algorithm is able to efficiently generate programs from only a
small number of iterations can be found in the fact that most inputs to a program are
‘normal’, with only a handful of edge cases. A program that can handle one or two
‘normal’ inputs can usually handle the thousands of other ‘normal’ inputs.

This captures the heart of the CEGIS algorithm, though a simple function specification
φ as is shown will not be sufficient for the purposes of this project. The formulation of
further constraints will be explored in depth in the next section.
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1.1.2 Component Based Synthesis

A 2010 paper Component-Based Synthesis Applied to Bitvector Programs (Gulwani et
al)[8] builds on the work of Solar-Lezama. The synthesis algorithm used in this paper
is an instantiation of the CEGIS process but deals with programs as a composition of
components rather than as a partial ‘sketch’ as defined in Section 1.1.1. It also uses an
SMT solver to solve a set of constraints in the synthesis stage instead of an enumerative
approach which is more common. I introduce SMT solvers in Section 1.1.3. Although
the synthesis of Bitvector programs seems unlinked to the synthesis of magic tricks, the
power and scalability of the component-based synthesis technique is such that it can be
applied to both domains.

This paper uses separate syntax, semantic and specification constraints in the CEGIS
process rather than using one specification constraint φ as described in Section 1.1.1.
This enables the synthesis and verification constraints to be more expressive. For
example, the verification constraint is now formulated as

∃I.φdes(P′, I)∧¬φspec(P′, I)

Where φdes is a semantic constraint specifying the behaviour of the components and
φspec is the specification on the final state of the program. This forces the counterex-
ample found by the verifier to violate the specification with respect to the semantics
of the program. This reduces the number of possible counterexamples and forces the
counterexamples to cover a more meaningful area of the search space.

This paper also introduces syntax constraints, enforcing that the components are ar-
ranged such that the resulting assignment is a well-formed program. This constraint is
conjoined to the synthesiser but not the verifier. This is because the verifier receives its
components P′ from the synthesiser. If the synthesiser produced P′ under the syntax
constraint then the verifier does not need to follow this constraint. Following this, the
synthesis constraint is becomes

∃P∀I ∈ S.φdes(P, I)∧φsyntax(P)∧φspec(P, I)

Where φsyntax is the syntax constraint.

It is common in component based synthesis that each component in the library is only
allowed to be used once [8] [9]. This reduces the number of possible combinations of
components and makes it easier to control the output. To give the effect of a component
being used multiple times, multiple copies of a component are added to the library.

1.1.3 The Z3 Solver

The CEGIS algorithm relies on a function which takes a logical formula and returns
either UNSAT in which case the formulation is not satisfiable, or SAT in which case
there is some satisfying assignment to the free variables (this satisfying assignment is
also returned). This problem is known to be NP complete [11]. Fortunately, advances in
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Figure 1.2: Figure showing a magic trick modelled as a sequence of actions with respect
to non-deterministic audience choice. adapted from [10]

the field of Satisfiability Modulo Theory (SMT) solvers have produced tools which can
(in many practical cases) find solutions to nontrivial problems in a reasonable amount of
time [11][10]. SMT solvers apply this over theories such as integers or arrays allowing
them to reason at a higher level. One such tool is the Z3 solver developed by Microsoft
Research [5]. Many of the methods relied upon by Z3 are very sophisticated and beyond
the scope of this project. I have chosen to use it as it is freely available, state of the art
and there is evidence of its success in the context of other synthesis systems [8][7][10]

Though many aspects of Z3 will be treated as a black box, using it effectively requires
some understanding of a query’s representation. Z3 uses the Single Static Assignment
(SSA) form in which variables are assigned one value and never change. Transitive
variables, will have to be split into k variables numbered var1,var2, ...,vark where
k is the length of the trick. Similarly, constraints on variables must be extended to
constraints on every k variable with respect to the assigned value of the component.
This will result in very long queries, the formulation of which I will automate.

1.1.4 Modelling magic tricks

The paper I will be reproducing in this project is a Case Study on Automated Synthesis
of Magic Card Tricks [10]. This paper’s most important contribution is the description
of a magic trick as a ∃∀∃! problem. This makes the observation that many card tricks
can be summarised as a sequence of actions, some of which are non-deterministic
(depending on random audience choice), which due to some underlying mathematical
structure will always result in a predetermined final state. Figure 1.2 illustrates this
model.

The original paper [10] denotes the following:

A library {A1, ...,An} is a set of actions. An action is a move in a magic trick, for
example, turn the top card over or cut the deck. Since these actions change the state
of the deck, each action has a corresponding state transformer function Ti : S×C → S,
where C is a set of audience choices and S is a set of all possible states - a state being
any configuration of the cards at a single timestep. This applies the action to a state and
returns the resulting state.
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An action can be deterministic or non-deterministic. For a deterministic action, the
corresponding transformer function ignores the audience choice parameter C.

To allow for variable length tricks, actions An+1...An+k are added to the library which we
call noop actions. These are characterised by the fact that Tn+1(s,c) = ...= Tn+k(s,c) =
s. In other words, they do not change the state.

A vector i1, i2, ..., ik corresponds to a sequence of actions. The value of each element of
this vector is in the range [0,n+ k]1 and selects one of the actions. Let this vector be
named comps

The vector c1,c2, ...ck where each c j ∈C represents the sequence of non-deterministic
audience choices. It is named choices . The vector s0,s1, ...,sk where s j ∈ S is a state
of the trick.

Finally there is a parameterised state transformer T which uses an element of the comps
vector it to select a corresponding state transformer Tit which is applied to the second
and third arguments which are members of the set S and C respectively. For example, the
function T (it ,st ,ct) selects Tit (st ,ct) which returns the state resulting from performing
action Ait on state st with audience choice ct .

Note that the value k is the number of timesteps in the trick and also the number of
noop actions in the library. The original paper represents both of these with the same
symbol k and it is the same value. I have done this too to be consistent with the paper.

The paper also gives a very brief description of how these components can be manipu-
lated to produce a magic trick though it is not a clear description. Providing a clear and
detailed description of this is considered part of my project and so is not contained in
the introduction section.

Observe how this model of magic tricks corresponds to the program synthesis described
in Section 1.1.2; comps corresponds to a program P and choices corresponds to input
I. For a given comps and choices , there is a unique corresponding states , this is
constrained in the semantic constraint φdes introduced in Section 1.1.2. The magic tricks
paper [10] uses CEGIS with component based synthesis to find new versions of magic
tricks for a given specification.

1.2 Contributions

My contributions in this paper are as follows:

• My reproduction of the paper gives a clear explanation and discussion of the
methods used, providing the necessary formulae for the trick. Though the paper
formulates the constraints of the magic trick synthesis problem broadly, none of
the syntax nor semantic constraints, which are crucial to the system, are given at
any more than a high level.

1The paper states that the values of i are in range [0,n] though, to the best of my understanding, this
would give no opportunity to select a noop action. My discussion and implementation of the system will
treat i ∈ [0,n+ k]
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• I successfully prevent deterministic loops from appearing in the magic tricks.
This is mentioned in the original paper as a direction for further work. I explore
this problem and offer solutions which work in different search spaces. I discuss
related implementation challenges caused by the solution and evaluate its results.

• I conduct a user study, performing tricks generated with different parameters and
constraints to an audience. I compare audience ratings of the different tricks to
evaluate the importance of the deterministic loops mentioned above.



Chapter 2

Synthesising magic tricks with
component-based synthesis

The original magic trick synthesis paper gives only a very high level formulation of the
the task of magic trick synthesis. There are many details left out of these formulations
which make it hard to reproduce. I have reproduced the component-based magic trick
synthesis system described by the paper. This chapter identifies important details which
were omitted by the original paper and expands upon them, discussing and giving
formulae where appropriate. I also describe how I implemented the system, explaining
any design decisions I have made.

To allow me to go into sufficient detail, I will focus my analysis on one trick - specifically
‘The Baby Hummer’ (invented by Charles Hudson [6]) which is the first trick formulated
in the paper.

In ‘The Baby Hummer’, an audience member selects a card at random and places it at
the bottom of the deck (the original trick used a deck of 4 cards). All of the cards in
the deck are facing downwards. At this point, the magician claims they can find the
audience selected card by giving the audience member a set of instructions without
looking at the deck. Some of these instructions involve moves which depend on random
choices made by the audience member, this gives the audience member a sense of
control. This sense of control is undermined when, despite the randomness of the
audience member’s choices, the audience selected card appears to be facing the opposite
way from all of the other cards in the deck. The instructions given to the audience
member are a combination of the actions described in Table 2.1

2.1 Notation

The original paper uses a mixture of monospaced fonts and traditional Latex characters
in it’s formulae. For the sake of consistency, I have done this too. I also include
fragments of pseudocode to illustrate important parts of the implementation. To avoid
confusion, I state how I use these below.

• comps , states and choices refer to the vectors as defined in Section 1.1.4.

8
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Action Description
flip 2 flip the top two cards in the deck
turn top flip the top card in the deck
top 2 to bottom place the top two cards on the bottom of the deck
top to bottom place the top card on the bottom of the deck
cut cut the deck at random position (audience chooses)

and place the bottom packet on the top

Table 2.1: Table naming and describing the actions used in the Baby Hummer trick.
Notice how the cut action depends on the choice of the audience.

• depth refers to the number of cards in the deck. It is used in both implementation
and formulation contexts.

• I refer to the actions (or ‘moves’, see Section 2.4.3) in monospaced font, for
example, flip 2 or cut.

• I denote a logical formula which encodes the semantics of a move with the symbol
φ with the name of the move in subscript. For example, the semantic formula for
cut is φcut.

• For long formulae, I will nest sub-formulae within. The names of these sub-
formulae may also use monospaced font, for example, φcut a. These are also
abstract formulae and their function will always be explained.

• In this chapter, I define a function shift() in an abstract semantic formulation. I
have used monospaced font purely for readability and its use does not imply that
it refers to a concrete implementation.

• Whenever I illustrate a concrete implementation with pseudocode, I signpost
it clearly. In this case all text will be in monospaced font. All of the relevant
functions used are either apparent from the context or have clear explanations.

2.2 Representation

2.2.1 State space

The representation of a problem is important, particularly in SMT queries where the
number of possible solutions grows extremely quickly relative to the number of variables
[11]. In this section, I will explore options for representing the state of a trick.

When comparing the feasibility of problem representations, it is desirable to have some
formal metric. It is hard to predict runtime of an SMT query. There is not a clear
correlation between runtime and the number of variables. The difficultly of a formula
depends on many aspects: its structure can determine whether it is part of a decidable
or undecidable fragment of a theory [2], also, different theory symbols affect problem
difficulty in different ways, for example, a non-linear operator like ‘multiply’ typically
makes a formula more hard than ‘add’. Still, I have chosen to use the number of free
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variables as a proxy to compare different representations of the problem since the theory
symbols used remain the same.

Recall from Chapter 1.1.3 that the variables inside Z3 are immutable. For this reason,
we must use SSA (single static assignment) to express values which change through
time. This means that a new variable is introduced at each timestep of the trick. This
is important with respect to the state representation as the size of the state space at a
single timestep will be multiplied by the length of the trick k.

A simple way represent this problem could be to encode the state explicitly. In other
words, I can store every variable - the unique value, position and face (face being a
boolean value which is true if the card is face up) - of each card at each timestep of
the trick. Such a representation would be very expressive but also very large. For
example, for a trick of deck size d and length k there would be d! permutations of the
card values and 2d possible face-up, face-down permutations. Extending this through
every timestep results in a state space of d!×2d × k. Although state-of-the-art SMT
solvers are able to solve queries of many variables [11], there is redundancy in this
representation resulting in a needless increase in state space size.

The redundancy is in the encoding of card value. Recall the specification (the final
condition) of the Baby Hummer Trick, ‘the audience selected card is facing the opposite
way from all of the other cards in the deck’. The success of the trick is independent of
the card values of every card in the deck other than the one selected by the audience
member. It is possible, then, to successfully represent this problem, storing the face of
every card and the position of only the audience selected card. This reduces the d! in
the explicit representation to d. The state space of this more abstract representation is
then d×k×2d . This is how I chose to represent the search space in my implementation.
To keep notation consistent with my implementation of the trick state described above, I
have extended the definition of the states vector, introduced in Section 1.1.4. states
now contains vector s0, ...,sk where each st stores the face of every card in the deck at
timestep t, along with an audience selected vector a0, ...,ak where at stores the position
of the audience selected card at timestep t. In the original paper, a single element of the
states vector stored any necessary information about the state of the trick at a given
time. I have made this notation more precise to allow me to clearly express specific
constraints on these variables.

2.2.2 Implementation

2.2.2.1 Using Arrays

For the choices and comps vectors, I declare a symbolic integer variable for each
timestep in the sequence. Initially, this is how I implemented the face state for the
cards - for each timestep t, I declare variables s(t,0),s(t,1), ...,s(t,depth-1) where depth
is the number of cards in the deck. Though this seems intuitive, the state variable
cannot be implemented this way. This is because, in non-deterministic components, the
state must be indexed symbolically. In other words, the state variable which is being
constrained depends on the value of another variable. An example of this is in the
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semantic constraint for face state in the cut component.

φcut s =
depth-1∧

j=0

s(t−1), j = st,shift( j,ct)

where
shift( j,c) = ( j− c)%depth

Suppose each st, j is an individual variable representing the face value of the jth card
at timestep t. The precise function of this constraint is not important (it is explored in
depth in Section 2.4). It is important, however, to notice that the value of shift, and
thus the s varibale being constrained, depends on value of choice variable ct . In this
case, the above constraint would be impossible to encode. This is because at solving
time, Z3 does not have access to how these variables have been indexed; we cannot rely
on a naming system for indexing within the SMT query.

Instead, I store the state using the Z3 Array type [12]. There are two main operations I
use on an Array, select and store. (select a i) takes an Array a and returns the
value stored at position i. (store a i v) returns a new array which is the same as a
only the value at position i is value v. An important feature of these operations is that
the arguments a, i and v can be symbolic variables. This allows me - as is necessary
in encoding the above cut constraint - to access the value which is being constrained
(a card’s face value) with respect to a symbolic variable ct . In my case, I defined an
Array of type Array(Int, Int) named s <inst> <t> for each environment instance
<inst> and each timestep <t>.

2.2.2.2 Be careful with arrays

Z3 Arrays are unbounded [12]. This means that it is very difficult to constrain every
value inside the array. This can introduce difficulties when implementing constraints. I
will demonstrate how this can go wrong with an example. Suppose a formula constrains
two state arrays to not be equal implemented with array 1 != array 2. Suppose I
have constrained the values of these arrays from 0 to depth so that every card in the
deck behaves in accordance with the trick semantics relative to the comps , states and
choices vectors. In this scenario, it would be possible for the arrays to act as though
they satisfy the constraint array 1 != array 2 though return a trick which violates it.
This is because the semantic constraints on the state have only constrained each value
from 0 to depth, the unbounded number of array values from depth+1 and upward
have not been constrained. This is illustrated in Figure 2.1. A way to avoid this is to
never directly constrain equality between two arrays. Instead, one can iterate through
the positions of the array which are relevant to the trick, conjoining the non-equalities
of each position. This is shown in Figure 2.2, notice how it compares to Figure 2.1.

If such a fault as this appears in a system, there is no meaningful error message, nor is
there always an error - sometimes the constraint may be satisfied and sometimes it will
not. This gives an idea of how SMT queries are particularly difficult to debug. Such
faults delayed my progress with the project, though uncovering their mysteries has been
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Figure 2.1: Diagram showing the problem with constraints over unbounded Array vari-
ables. The white elements are equal across both arrays, the elements in green represent
those which are not constrained by semantics or specification, this means they can take
any value. Though the states the arrays represent are equal, the arrays themselves are
not equal.

a valuable learning experience. A description of some of the techniques that can be
used to debug such faults can be found in Section 2.7.

2.3 Specification

Recall from Section 1.1.2 that the specification φspec constrains that a specified result
is achieved by the program (or magic trick). The original paper does not discuss the
specifics of the specification, giving only its high level formulation. This section will
give a formula for the specification and discuss how it can be implemented so that it
can be more easily understood and reproduced.

The logical specification of a magic trick encodes its punchline - the part of the trick
which should undermine the sense of control given to the audience and inspire wonder.
In the Baby Hummer, this punchline is the fact that, at the end of the trick, the audience
selected card is facing the other way than all of the other cards in the deck. Recall the
states vector which I extended in Section 2.2.1. I formulate the specification of the
Baby Hummer trick, φspec(states), as follows:

φspec(states) = φdown(sk,ak)∨φup(sk,ak)

Recall that sk is the final face value of the trick and ak is the position of audience
selected card at the end of the trick. This formalisation splits the the spec into two main
scenarios. φup, a constraint which is satisfied when all of the cards are face down except
the audience selected card and φdown where the cards must be face up except the audience
selected card. This captures every scenario in which the specification is satisfied. The
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Figure 2.2: Diagram showing how the solution to the problem illustrated in Figure 2.1.
The individual relevant elements of the array are iterated over and conjoined. This allows
me to control the scope of the formula to only those values which are constrained by
magic trick semantics and specification.

specifics of these formulae depend on the implementation and representation of search
space - I will describe how I have implemented φup in my system which stores the state
of the deck as an array of integers where (−1) represents face down and 1 represents
face up:

φup(sk,ak) = φone up(sk)∧φselect up(ak)

where
• φone up(sk) = Sum(sk) =−(depth−2)
• φselect up(ak) = ak = 1

φone up is satisfied when only one card is facing up. In other words, when one element
in the array is equal to 1 and every other element is −1. In this case, there will be
(depth− 1) elements equal to −1 and only one element equal to 1. Adding these
together gets us −(depth−2).

φselect up simply states that the audience selected card ak must be face up.

If there is only one card facing up and the audience selected card is face up then φup,
and thus the specification, is satisfied. From the above, the formulation of φdown should
too be clear.

It is important to note that the Sum operation in φone up is one which requires care.
Recall from Section 2.2.2.2 that Arrays used in Z3 are unbounded. Summing over
an unbounded object is clearly problematic. To implement the desired Summing
functionality, one should instead add each relevant element in the final state array
(those at positions in the range [0,depth]) to a list. This enables the use of Z3’s Sum()
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function. This can be called on the list of symbolic variables which creates an expression
representing their sum. This is what I did in my implementation.

2.4 Semantics

2.4.1 Overview

The semantics of the trick constrains the values of the comps , states and choices
vectors such that they behave like cards in real life. For example, if I take a deck of
cards and flip the top card, we would assume that the resulting deck of cards is the same
as it was before the flip, only the face of the top card is changed. This assumption about
how certain actions affect the state of the deck is an example of semantics.

Recall from Section 1.1.4 the parameterised state transformer T (it ,ct ,st ,at) which for
a given it selects a transformer function Tit and action Ait and returns the result of
Tit (ct ,st ,at). Note that I have added the at variable to be consistent with the extended
states vector, the functionality of the T has not changed. The state which used to be
all stored in st is now distributed between st and at . Accordingly, the type of the state
transformers Tit is now S×C×A → (S×A).

The state transformer function Tit characterises how its corresponding action Ait changes
the state. Take for example the action of turning the top card which we will name
turn top. The corresponding state transformer for this action will take some input state
(s,a,c) (for now we will ignore c) as an argument and return the state (s′,a′) which
would result from flipping the top card of the input state.

The function T allows us to constrain the connections between states in states with
respect to the actions selected by comps and the audience choices in choices . The
original paper formulates these constraints in a formula named φdes, denoted as follows:

φdes(comps,choices,states) =
k∧

t=1

((st ,at) = T (it ,ct ,s(t−1),a(t−1)))

This can be interpreted as, for every timestep t of the trick, the state of the deck (st ,at)
must be equal to the result of performing action Ait with audience choice ct to the
previous state of the trick (s(t−1),a(t−1)).

2.4.2 Formulation

The paper’s formulation of φdes given above conveys the idea of how comps and
choices assignments constrain the states through semantics. Despite this, imple-
menting a function as complex as T inside of an SMT constraint proved to be very
difficult and I could not get it to work. Details, even on a high level, on how this might
have been implemented were not provided in the paper. Instead, I generated transition
system similar to the one used in [3], a logical formulae encoding the semantics for
each action for a given timestep t which returns true if and only if a valid transition
exists.
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The specifics of how any of the actions transform a state - even in the context of a
function T - are not given in the original paper. I have given the logical formulae for
each action in the Baby Hummer trick below.

2.4.2.1 turn top

φturn top(t,states) = (s(t−1),0 =−1∗ st,0)∧ (at = a(t−1))∧ (
depth−1∧

j=1

s(t−1), j = st, j)

This formula enforces the state transition of the action turn top for a given timestep t.
There are three conjoined expressions in the formula. The first expression enforces that
the 0th card at time (t −1) must be the opposite to the 0th card at time t. Since the state
values can be either 1 or (−1), multiplying a value by (−1) has the effect of flipping it.

The second expression enforces that the position of the audience selected card is the
same at timestep (t − 1) as it is at timestep t. This is consistent with the turn top
action as the cards in the deck do not change position.

The third expression iterates over the cards in the deck from index 1 to depth−1. This
covers all of the cards other than the top card. The expression asserts that these cards’
face are equal across t and (t −1).

2.4.2.2 flip 2

It may seem that the the flip 2 action is the same as turn top with an extra st−1,1 =
(−1)∗ st,1 term inside. The action is actually more subtle than that.

φflip 2(t,states) = φflip 2 s(t,states)∧φflip 2 a(t,states)

Above is the high level structure of the flip 2 action. Since it is quite complicated, I
will explain its components one at a time:

φflip 2 s(t,states) = (φsame =⇒ φmatch)∧ (¬φsame =⇒ φopp)

where
• φsame = (s(t−1),0 = s(t−1),1)

• φmatch = (s(t−1),0 =−1∗ st,0)∧ (s(t−1),1 =−1∗ st,1)
depth−1∧

j=2

s(t−1), j = st, j

• φopp =
depth−1∧

j=0

s(t−1), j = st, j

For brevity, I have omitted the arguments to the φ formulae. All formulae that are part
of φflip 2, unless otherwise stated have the arguments (t,states).
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Figure 2.3: Diagram showing face state before and after a flip 2 action. A cross-section
of a deck is shown. The grey represents the front of the card and the red represents its
back. Notice how the face state remains the same before and after the action.
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The φflip 2 s formula constrains the face values in the action. At its top level, it is an
if, then , else expression. The condition is whether the top two cards have equal face
value at the previous timestep. If the condition is satisfied, φmatch must be satisfied
which enforces that the top two positions have flipped face values while the remaining
positions stay the same over the timesteps. For example, if the face values at time
(t −1) are [1, 1, 0, 1, 0], we expect that flipping the top two cards will result in
[0, 0, 0, 1, 0] at time t. If the condition is not satisfied, then φopp must be true
which constrains that every face value remains the same across the timesteps. This
might seem unintuitive. To verify this, refer to the example given in Figure 2.3.

φflip 2 a(t,states) = (φontop =⇒ φtop)∧ (¬φontop =⇒ φnoopa)

where
• φontop = (a(t−1) = 1∨a(t−1) = 0)

• φtop = (a(t−1) = 1 =⇒ at = 0)∧ (a(t−1) = 0 =⇒ at = 1)

• φnoopa = a(t−1) = at

The φflip 2 a formula is responsible for constraining the position of the audience
selected card. This formula also takes an if, then, else structure. The condition is that
the audience selected card is either at the top or the second top of the deck. In this
case, the φtop formula must be satisfied which enforces that position of the selected
card becomes 1 if it was previously 0 and vice versa. This represents the swapping of
positions which happens when two cards are flipped.

If the original condition is not satisfied, then φnoopa must hold which enforces that the
selected card’s position remains the same as it was before. This is because only the top
two cards are being flipped.

2.4.2.3 top 2 to bottom

φtop 2 to bottom(t,states) = φtop2 state(t,states)∧φtop2 aud(t,states)
where

• φtop2 state(t,states) =
depth−1∧

j=0

s(t−1), j = st,shift(j)

• φtop2 aud(t,states) = at = shift(a(t−1))

• shift( j) = ( j+depth−2)%depth

The formula for top 2 to bottom is slightly more complicated. I have split it into two
conjoined expressions, one which encodes constraints on the face of the cards and one
on the position of the audience selected card. Both of these expressions make use of
the newly defined shift( j) function which given a card at position j returns the new
position for that card resulting from performing the top 2 to bottom action.
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The φtop2 state iterates through every card face, enforcing that the positions of the
current timestep’s faces are consistent with the expected new positions as returned by
shift( j).

For the φtop2 aud recall that the audience selected card at stores only the position of the
selected card. This formula enforces that the previous timestep’s position is shifted
according to shift applied to the previous position.

2.4.2.4 top to bottom

I have not given a full formal description of the top to bottom action as it is very
similar to top 2 to bottom. Both of these actions shift the position of the face and
audience selected card by a constant amount. The amount by which the cards are
shifting is encoded in the shift function. top to bottom is exactly the same as its
counterpart other than the shift function which, for top to bottom, is defined as so:

shift( j) = ( j+depth−1)%depth

2.4.2.5 cut

The cut action is perhaps the most important, it is the only action which gives the
audience control of the trick. In this move the audience selects a random point in the
deck and places all of the cards below that point at the top of the deck. The previously
described actions have all been deterministic, which is to say, given a state (s,a) the
action’s resulting state (s′,a′) will always be the same. cut is a non-deterministic action
as for a given state (s,a) the resulting state (s′,a′) depends on the audience choice and
is not pre-determined.

Recall that audience choices are represented in a vector c1, ...,ck named choices .
Although the audience choices are only used in the cut action, we store one at each
timestep. In deterministic actions, the transformer function ignores the c value, though
in cut, we use this value to determine the semantically correct proceeding state. The
formula for cut is denoted below:

φcut(t,states,choices) = φcut s(t,states,ct)∧φcut a(t,states,ct)

where

• φcut s =
depth-1∧

j=0

s(t−1), j = st,shift( j,ct)

• φcut a = a(t−1) = shift(at ,ct)

• shift( j,c) = ( j− c)%depth

The above constraint consists of two conjoined expressions, φcut s and φcut a, which
constrain the semantics for the card faces and audience selected card respectively. φcut s

works much like the the the constraints in top 2 to bottom, iterating through each
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position at the given timestep and enforcing that the previous face value position is
equal to the position according to the shifting function shift.

φcut a enforces that the audience selected card’s position at at the previous timestep is
shifted according to shift.

As well as the previous position j, this new version of shift takes also the audience
choice parameter c which governs how much the positions are shifted by. In this way,
the cut action can be thought of as a parameterised top to bottom action.

2.4.3 Structuring Semantics

The individual action semantic constraints formulated above only constrain the state for
a given timestep t. The order of the actions in the trick correspond to the assignment
to the comps vector which selects these actions. Recall from the introduction that
the actions are stored in a library {A1, ...,An+k}. An assignment to comps where
i1 = 3, i2 = 5, i3 = 2 would represent a trick where the action at timestep 1 is A3, the
action at timestep 2 is A5 and the action at timestep 3 is A2. To encode this functionality,
the semantic constraints must be structured such that whether their effect is active
depends on the assignment to comps .

It is possible that any action can be selected at any timestep. For this reason I encode
the semantics for every action at every timestep conditioned on the assignment to each
timestep’s corresponding component it . For example, for timestep t = 1, If i1 = 1, I
enforce the semantic constraint corresponding to action A1 on the state at timestep 1, if
i1 = 2, I do the same for action A2. Iterating this structure over all of the timesteps can
be formulated in the high level constraint φdes as follows:

φdes(comps,choices,states) =
k∧

t=1

n+k∧
i′=1

it = i′ =⇒ ((φi′(t,states,choices))

Where n+ k is the size of the library (and thus the maximum component value) and φi′

is the semantic constraint corresponding to action Ai′ which is enforced on the states
at time t if the tth value of comps (it) is equal to i′. This encodes the effect of the
assignments to comps selecting the actions.

The above formulation of φdes requires that each possible value of i has a unique
corresponding semantic constraint φi which is encoded explicitly at every timestep.
Recall that an action can only be used once; to create the effect of repeated actions in a
trick, multiple copies of an action must be added to the library. In such a case where the
library contains multiple copies of an action where, for example, Ai and Ai′ represent
the same move, φdes will contain redundant, repeated semantic constraints φi and φi′ .
To avoid these repetitions, I do the following.

I define a move m as a reference to a unique semantic constraint γm on states and
choices . The set M is the set of references to every unique semantic constraint referred
to by an action in the library. I say an action Ai corresponds to a move m if the action’s
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corresponding semantic constraint φi is logically identical to γm. The set libm is a set
of all indices i which select and action Ai corresponding to move m

With these definitions, I can now reduce the size of the φdes constraint by not including
redundant copies of semantically identical constraints. The new formulation is below:

φdes(comps,choices,states) =
k∧

t=1

|M|∧
m=1

it ∈ libm =⇒ γm(t,states,choices)

This enforces that if a component at a given timestep t selects an action which corre-
sponds to a move m, then that move’s corresponding semantic constraint γm must hold
with respect to the timestep t.

Encoding set or list membership in Z3 is difficult. A simple way of implementing
the antecedent of the above formula would be to iterate through the elements of libm,
disjoining whether they are equal to the given component value. I have given an example
below in pseudocode:

Or([i == comp for comp in lib])

where i is a value of the component vector and lib is the sub-library of a move.

2.4.3.1 Value range

It is important to constrain the values given to the variables such that the semantic
constraints work as expected. For example, I enforce that the values of s for every
timestep from position 0 up to position depth−1 are either 1 or (−1). If this constraint
was not enforced explicitly, a value outside of this range could be produced which ‘gets
around’ a semantic constraint leading to a false trick. I also enforce that the values of
choices are in the range [0,depth− 1]. This is so that each value corresponds to a
point in the deck at which the user can cut. These are extra semantic constraints which
must be conjoined to φdes to ensure that the solver engages with the other semantic
constraints appropriately.

2.5 Syntax and other constraints

Though the original paper gave a high level formulation of how trick semantics were
constrained in the system, the formulation of syntax in the magic trick is never men-
tioned directly, also, there is no mention of where syntax should be used in the CEGIS
process. This section discusses these issues.

2.5.1 Unique action

The syntax of a magic trick encodes which arrangements of components correspond to
a valid trick. To enforce that an action in the library can only be used once, I impose a
constraint which forces the values of comps to be unique. I name this constraint φuniq.
This constraint is very simple and I have omitted its explicit formulation for brevity.
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2.5.2 Trivialities

The paper states that initially, the tricks resulting from their system were ‘non-interesting’.
They identify three properties as making a trick ‘non-interesting’ and enforce constraints
to rule them out. Since these constraints encode how components can be combined and
only depend on the components themselves, I view them as syntax constraints. Though
the paper identifies these properties, it does not provide the constraints themselves. I
include constraints to rule out these properties above as follows.

I name the conjunction of all these trivialities constraints φtriv.

2.5.2.1 The cut action is not used

The cut action is the only action which introduces non-determinism into the trick. If we
do not force this action to appear at least once, the solver is likely to produce entirely
deterministic tricks since they are much simpler and easier to synthesise. Such tricks do
not give any control to the audience and so are trivial. I rule out such tricks with the
following constraint:

k−1∨
t=2

it ∈ cutlib

Where cutlib is the set of indices which select actions corresponding to the cut move.
This disjunction is over every timestep t in the trick other than the first and last. The set
membership operation would be implemented as is described in Section 2.4.3

2.5.2.2 cut appears at the start or end

In the above constraint, I did not iterate over the first and last components for a reason.
The paper mentions that tricks where cut is the first or last component also appear
‘non-interesting’. Such tricks can be ruled out with the very simple constraint

i1 /∈ cutlib∧ ik /∈ cutlib

.

2.5.2.3 Flipping actions are not mixed with cut

If all of the actions which change the face of a card appear before the first cut action,
then there is no non-determinism contributing to the changing of the face. In a situation
such as this, the audience’s choices will not affect the face of any of the cards in the
deck. Since the trick specification depends on the face of the card on the final state, the
audience will not feel as though they have control, this is an undesirable property for a
trick to have. I rule out such tricks as follows:

k−1∧
t=2

(it ∈ cutlib) =⇒
k∨

t ′=t

it ′ ∈ ( f lip2lib∪ turntoplib)
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Where f lip2lib and turntoplib are the sub-libraries for flip 2 and turn top respec-
tively; these are all of the flipping moves in the trick. The conjunction in the formula
above iterates over every timestep t at which a cut move can appear. If the component
at timestep t is a cut move then there must exist at least one component at timestep
t ′ > t which corresponds to a flipping action.

2.6 CEGIS

A high level introduction to how CEGIS works in general is given in Section 1.1.1.
The original paper gives a brief overview of the synthesis of magic tricks providing
some high level formulations. This overview does not make clear the meaning of the
formulations given, nor does it discuss important details about them. This section will
expand upon this, giving a detailed formulation and discussion of how CEGIS can be
used to synthesis magic tricks.

2.6.1 Synthesis

Recall that the synthesis stage of CEGIS should produce a semantically and syntactically
correct magic trick which satisfies the specification for a subset of input examples which
are, in our case, audience choice examples. I denote the set of audience choice examples
as {choices1,choices2, ...choicesL}. This is consistent with the original paper. Note
that for a given comps and choicesl there is a unique corresponding statesl .

The paper denotes the synthesis query given to the SMT solver at a high level as follows:

Fsynthesiser : ∃comps∃states1...∃statesL.ψsynth(comps)

where

ψsynth(comps) =
L∧

l=1

φdes(comps,choicesl,statesl)∧φspec(statesl)

Where ψsynth is the synthesis constraint. Recall that in the context of a trick comps , for
each choicesl there is a unique corresponding statesl .

The syntax constraint ψsynth enforces that for a trick comps to be valid, it must be both
semantically correct and satisfy the specification as constrained by φdes and φspec for
every audience choice example in choices .

The synthesiser searches for an assignment to comps which satisfies Fsynthesiser (and the
states vectors which uniquely correspond with choices ) which satisfies ψsynth. If
there exists a satisfying assignment for Fsynthesiser then the resulting comps is passed to
the verifier. Otherwise, there does not exist a trick which can satisfy the specification.

2.6.2 Verification

The verification stage of CEGIS should take a trick produced by the synthesiser and
find an audience choice which, according to the semantics of a magic trick, violate the
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specification. The original paper explains this in a convoluted way, I provide a clear
verification formula below.

Fveri f ier : ∃choices∃states.φdes(comps,choices,states)∧¬φspec(states)

φdes ensures that the choices affect the state in a way that corresponds to magic trick
semantics. φspec ensures that the resulting state violates the trick specification.

If an SMT solver queried with Fveri f ier results in valid counter example, then this counter
example is added to the set {choices1,choices2, ...,choicesL}. The synthesiser then
searches for a new trick, taking the new set of audience choices into account. If this
query is unsatisfiable then there exist no counter-examples. In other words, the sequence
of actions selected by comps is a valid magic trick.

2.6.3 What about syntax?

The original paper does not mention where the syntax of a trick should belong in the
CEGIS process. In the paper’s high level formulation of the synthesis and verification
constraints, only the φdes and φspec constraints are shown. Since the syntax relates
to whether a trick is valid, I originally added the syntax constraints φtriv and φuniq
introduced in Section 2.5 to φdes, treating their conjunction as one constraint so that it
could influence the tricks in the CEGIS process according to the paper’s formulation.

This technique produced semantically and syntactically correct magic tricks. Despite
this, I noticed there was a redundancy in the verification constraint. Recall from Section
1.1.2, if the synthesiser which produces a program P (in our case comps ) does so under
a syntax constraint, then I can assume that any P (comps vector) which is passed to the
verifier always obeys the syntax. This separation of syntax and semantics in CEGIS can
be found in [8] which uses a well-formed-program constraint ϕw f p in the synthesiser
though not in the verifier.

For this reason, I can enforce the syntax constraints only in the synthesis phase and
be sure that the resulting magic tricks will be syntactically correct. I give the syntax
constraints mentioned above a name φsyntax and conjoin it with the synthesis constraint
ψsynth introduced in section 2.6.1. This also produces correct magic tricks and it can
reduce the synthesis time for certain problems shorter time (Section 4.2)

2.6.4 Implementation

Though I have discussed the CEGIS framework (Section 1.1.1) as well as the formulation
of the synthesis and verification constraints (Section 2.6), the implementation of such
a system is not trivial. This section will discuss some of the CEGIS implementation
specifics of this system, providing details on a number of design challenges and their
solutions.
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2.6.4.1 Parameterised variables

Recall that the synthesis query Fsynthesiser enforces the semantic and specification
constraints over every audience choice vector choices1, ...,choicesL. A way one
might try to implement this is to generate all of the Z3 variables that will be used in the
trick (namely the comps , states , and choices vectors) call them vars for example,
and generate φdes and φspec on these variables for each audience choice in the input set
like so:

And[And(des(vars), spec(vars), to_constraint(input_list[0])), ...
And(des(vars), spec(vars), to_constraint(input_list[L-1]))]

Where to constraint(input list[0]) generates Z3 formula constraining that the
audience choice vector choices is equal to the 0th element of the input list. This
wouldn’t work since this is enforcing contradictions, cheifly, that choices is equal to
input list[0] and also input list[L-1]. In order to enforce that a given trick is
valid over a series of choice examples, I need to define a whole environment of variables
(choices and states ) for each choice example in the input list. I define a variable
instance which refers to the current iteration of the CEGIS loop. This corresponds to
the value l which selects the statesl and choicesl introduced in Section 2.6.

I created a function which generates Z3 trick variables and constraints named

initialise env(k, depth, instance)

where k is the length of the trick, depth is the depth and instance is a number by
which the name of the choices and states vectors are to be parameterised. I do
not parameterise the comps vector since I want to synthesise a single comps . the
parameterised states and choices vectors represent the effect that this single comps
has on the list of different inputs.

This function returns Variables, des, spec where Variables is an object from
which the generated Z3 variables can be accessed and des and spec are the semantic
and synthesis constraints over the variables generated by the function.

To give an example of this, suppose I call the function

initialise env(k=15, depth=4, instance=2)

The choices variables initialised by this function would have the names c 2 1, c 2 2,
..., c 2 15 where c indicates that it is a related to the audience choice, the number
after the first underscore is the instance and after the second is the timestep. The fact
that variables for different instances have systematically different names means that
I can constrain the different choice examples in the input list without unnecessary
contradictions, for example:

And[And(des_1, spec_1, to_constraint(input_list[0])), ...
And(des_L, spec_L, to_constraint(input_list[L-1]))]

Where des 1 and spec 1 are the semantic and specification constraint on only the
variables parameterised by instance 1. For now I assume that the variables in the input
list are parameterised using the same naming system.
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In the improved version of this system where the syntax constraints are removed from
φdes and are enforced only in the synthesiser (Section 2.6.3), I conjoin to each instance
a corresponding syntax constraint. This is generated by a function to syntax() which
imposes the syntax constraint on a Variables object. I call to syntax() on the
variables returned from initialise env() parameterised with each relevant instance.

2.6.4.2 Instances in the verifier

When a satisfying comps vector is found, it is passed to the verifier. Recall that the
Fveri f ier query searches for a semantically correct choices vector choices (and unique
corresponding states ) for a given candidate comps vector, where comps has been
produced by the synthesiser.

The instance by which the variables representing the counter-example are parameterised
by is important. This is because the assignment to these variables will be constrained
in the synthesiser with respect to other parameterised variables. When a new counter-
example is passed to the synthesiser, the synthesiser constrains the new counter-example
with respect to variables parameterised by the current instance. To preempt this, the
verifier searches for a counterexample which satisfies the verification constraint on
variables parameterised by instance+1

2.6.4.3 Re-using constraints

Although the variables and constraints for a given instance are generated automatically
by initialise env(), re-generating all of the necessary constraints at every instance
is inefficient. This is because both the constraints and the inputs accumulate over
the instances. I can reduce the number of calls to initialise env() by storing the
synthesis constraint for each instance, appending to it at every iteration. I call this list
synth list.

Using this technique, the system only needs to call initialise env() once for each
instance. In the synthesis stage, once the current instance’s constraint is added to
synth list, the entire synthesis constraint can be implemented as

And(And(synth list), And(input constraints))

Where input constraints is a list where every element is the result of
to constraint() applied to the input list.

2.7 Debugging

In the process of implementing this system, as with any system, I made mistakes.
Debugging these mistakes proved to be difficult. Though I interact with Z3 through a
Python API, an error in the verifier, for example, is only visible once an invalid trick
has been output. In this case, it is possible to examine the constraints passed to the
solver directly, though this is in the form of a large SMT query which is not human-
readable. There is also the problem that since the verifier is essentially an automatic
test, automatically testing the verifier would result in a copy of itself, which defeats the
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Figure 2.4: Figure representing assignments to comps , choices and states in a way
which can be read as a magic trick. Timestep 7 has been highlighted. This is because
the states at timestep 7 violates the expected behaviour of the cut action with audience
choice 2. Such a sequence being produced by the verifier indicates that there is a fault
in the semantics for the cut action.

purpose. These difficulties slowed my progress in the project. In this section, I discuss
some techniques that I used to find faults in this system.

2.7.1 Readability

Though the solver’s output can be difficult to read, a function can be defined to translate
it into a human readable format to improve debugging. In the synthesis phase, it is not
only a comps vector representing a trick which is produced but also assignments to the
states and choices vectors. Though these are internally represented as a sequence
of arrays and integers, I implemented a function which converts this into a sequence
which can be read as a magic trick in a format shown in Figure 2.4. This representation
enabled me to find areas where the expected behaviour of the trick is violated. For
example, in Figure 2.4, the transition of state between timestep 6 and 7 is incorrect.
This example suggests that there is a fault in the semantics of the cut action. Without
the perspective given by this representation, it would not be clear that the problem with
the trick lies in the cut action.

2.7.2 Truncating constraints

In situations where a known valid trick is not being accepted by the verifier, it is possible
to test this trick on the verifier multiple times, each iteration, removing a constraint.
With this technique, one can pinpoint a constraint which is preventing the valid trick
from being verified. Finding this point-of-failure does not always give an immediate
solution to the bug as the unsatisfiability of a valid trick is usually the result of the
interdependance of many constraints. Finding different points-of-failure for the same
trick, however, can uncover patterns of failure and give valuable insight into the cause
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of the problem.



Chapter 3

Trivial Pursuit: Ruling Out
Deterministic Loops

In the paper’s conclusion, the writers state: ‘We also plan to improve the quality of our
results by adding constraints to rule out subsequences being identity operations without
user-input. Efficient encoding of such constraints will also be useful in excluding dead
code in program synthesis [10].’ This chapter will explore the problem of preventing
these identity operations (or deterministic loops as I will occasionally refer to them).
As this was regarded as further work by the original paper, it had not been done before
and presented a conceptual challenge

I am using the word ’subsequences’ to describe what are traditionally referred to as
‘substrings’ in which all elements must be consecutive. This is to remain consistent
with the original paper [10].

3.1 Motivation

Identity subsequences lead to non-interesting tricks. There are two main reasons why
this is. I demonstrate these reasons with examples below:

• Obvious subsequences: Suppose a trick contained two consecutive turntop
components. Any audience memeber asked to flip the top card twice would notice
that the state has stayed the same and no magic shuffling was happening.

• Undermining other constraints: The original paper includes constraints to ‘mix
the card-turning actions with cut’ to avoid ‘non-interesting tricks’. As discussed
in section 2.5.2, this is achieved by ensuring that a flip operation takes place after
a cut operation. Observe the following trick reported by the original paper.

top_to_bottom, top_to_bottom, top_to_bottom, turn_top,
cut, top_2_to_bottom, cut, flip_2, flip_2, cut,
turn_top, turn_top

Not only are the consecutive turn_top_2 operations obvious, there is a greater
problem with this trick. Although the constraint which forces a flip action to take

28
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place after a cut is satisfied, its mixing with cut effect is undermined; as soon as
a flip happens, it is immediately reversed! For this reason I make the claim that
deterministic loops lead to non-interesting magic tricks.

A naive solution to these problems is to directly prevent flip components from appearing
consecutively. I experimented with this though it does not solve the problem. This
is, in part, a result of the noop operations discussed in section 1.1.4. Though I could
prevent against [flip, flip], the system may produce [flip, noop, flip] or
[flip, noop, noop, flip] etc. which would all behave the same way. Even if I
was to rule out a flip with any number of noop in between (which would be a very
large constraint), the problem still would not have been solved. As the size of the deck
changes, different trivial subsequences emerge. For example, with a deck of size 4, the
combination of [top_2_to_bottom, top_2_to_bottom] is an identity subsequence
though that is not the case in a deck of size 5.

It should be clear that adding constraints to rule out these trivial subsequences on a
case by case basis is neither a scalable nor a robust approach. I need instead a general
solution. This is what I have found.

3.2 Formulation

Central to ruling out deterministic identity subsequences is the φndl formula that I
created (ndl stands for ‘not a deterministic loop’).

φndl(q,states,comps) = φlooping(q,states) =⇒ φnon det(q,comps)
where

• φlooping(q,states) = (s(u−1) = sv)

• φnon det(q,comps) =
v∨

j=u

i j ∈ nondetlib

A subsequence q = q1,q2, ...,qd of list [1..k] where k is the trick length, represents
a window of consecutive timesteps in a magic trick. Q is a set of these subsequences.
To allow for noop operations, Q contains only subsequences where d (the length of the
subsequence) is greater than 1. Every other subsequence of length k is included in Q.

For brevity, I use the symbols u = q1 and v = qd to denote the values of the first and
last elements in a subsequence q.

Note that for a string of length n, there are n(n+1)/2 non-empty substrings. Remember
that I am using the term subsequences to mean what are usually known as substrings.

The helper formula φlooping evaluates to true if and only if the state of a model at the
start of the subsequence is equal to its state at the end of the subsequence. This captures
the idea of an identity subsequence. Note how the state at the start of the subsequence



Chapter 3. Trivial Pursuit: Ruling Out Deterministic Loops 30

Figure 3.1: Diagram showing how deterministic subsequences behave differently depend-
ing on their state. Observe how the two subsequences consist of the same components.
Though they are functionally the same, in the abstract search space, model B would be
considered a deterministic loop and model A would not.

is s(u−1). This is because st , the state at timestep t, is defined as the result of performing
the operator ct on s(t−1).

φnon det evaluates to true if and only if at least one of the model’s components at any
point in the subsequence is a non-deterministic component. The nondetlib used here is
a sub-library of all component values which select non-deterministic actions.

the φndl formula is now quite simple, it returns true if q is not a deterministic loop. The
reason φndl allows for loops which contain a non-deterministic component is to enable
situations such as a the zero-cut where a user’s choice for a cut operation is 0. This is a
valid move but does not change the state of the deck.

For now, for ease of explanation, let’s assume that my state representation explicitly
encodes the position and value of each unique card (I will later relax this assumption).
In this case, I can extend my semantic constraint φdes to include

∧
q∈Q

φndl(q,states,comps)

which would rule out any trick containing a deterministic subsequence.

As well as the discussed, double flip subsequences, this constraint also catches trivialities
which emerge only in particular environments. For example, the constraint rules out
a trick containing [top_2_to_bottom, top_2_to_bottom] where the deck size is 4,
though accepts such a combination in tricks of deck size 5.

3.3 Problems in the abstract search space

I have shown that the above constraint rules out deterministic loops in an explicit search
space, though the problem is not yet solved. Our φndl constraints run into serious
problems when searching in an abstract space. In a search space as described in section
2.2.1, certain subsequences may satisfy the φlooping formula even though they consist of
valid, non-looping moves. An example of such a subsequence is shown in Figure 3.1.
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The subsequence shown in Figure 3.1 has the property that it satisfies φlooping for some
choices though not for all choices . I will call such a subsequence a false loop

False loops prevent perfectly valid non-looping tricks from being created in the synthe-
siser. This is because any choice vector in the input set which would cause a model to
(falsely) appear as though it looped would seem to the synthesiser like a syntactically
incorect program and would not be synthesised.

As well as this, false loops cause a more serious problem. Suppose the syntax con-
tstraints in φdes contained the disjunction of φndl over subsequences defined in 3.2. Now
suppose a trick comps has been synthesised according to these constraints and passed
to the verifier. Suppose this trick contained a false loop. The verifier would search for a
counter-example by solving the CEGIS verification constraint (Section 1.1.1):

∃choices.φdes(comps,choices,states)∧¬φspec(states)

Since there exists a false loop in comps , there exist ‘valid’ (in terms of real world magic
trick syntax) assignments to the choice vector which would violate the φndl constraint.

To verify this, consider the example in Figure 3.1 - recall that in the verifier, the
components are concrete, therefore, any assignment to the choice vector which causes
the state to be as it is in model B would introduce a deterministic loop, violating φndl .

As can be seen from the verification constraint, a valid counter-example must satisfy
the constraint φdes. It follows that the φndl constraint has not only constrained the value
of the components (as intended), it has also indirectly constrained the choice values.

As a result of this, there arise situations in which the verifier returns a trick because
it can not find any counter-examples, even though there exist valid audience choices
which violate the trick specification. These are false magic tricks which undermine the
integrity of the whole system.

3.4 Exile the false loops

In Section 3.3 I described the two main problems that false loops cause.

1. Some invalid tricks are incorrectly verified

2. Some valid tricks are not created in the synthesiser.

This section will formulate the solution I have found for both of these problems.

3.4.1 Forbidding invalid tricks in the verifier

Recall that in the verification step, A component vector is given and the system searches
for a counter-example in the form of a choice vector - in this step, there is no assignment
that can be made to the choice vector which would change the value of the component
vector. If I assume that the given component vector does not contain any deterministic
loops then the verifier has no way to create them. For this reason, I am able to exclude
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the φndl constraint from the verifier though (to ensure that the synthesised models do
not contain deterministic loops) keep it in the synthesiser.

Suppose a model is passed to the verifier which contains a false loop. Even if the only
counter-example to this model was a choice vector which would cause the false loop
subsequence to behave like a loop (as in Figure 3.1 model B), the verifier would find
the counter-example as it is not constrained by φndl . I have shown that a verifier as
described here will never return a magic trick if there exists counter-example.

Excluding φndl from the verifier introduces a difference between the the synthesiser and
the verifier. This creates a further problem: The verifier can now add counter-examples
to the input set which contradict the φndl constraints in the synthesiser which will lead
to unsatisfiable magic tricks. This problem is addressed in the following section.

3.4.2 Including valid tricks in the synthesiser

When φndl constraints are embedded in φndl , the synthesiser will not generate a trick
unless, for all choicesl in the input set, the state doesn’t exhibit loop-like behaviour.
This means that many ‘valid’ tricks containing false loops may not be synthesised.

The goal of the φndl constraint is to allow for tricks containing false loops but to rule
out tricks containing real deterministic-loops. Recall the definition of a false loop: ‘a
trick that satisfies φlooping for some choices though not for all choices ’ (Section
3.3). I define a real looping trick as a trick that satisfies φlooping for all choices . It
follows that for a given subsequence q and trick comps , if there exists any possible
valid assignment to states (dependent on the synthesis constraint ψsynth) that satisfies
φndl(q,states,comps) then that subsequence does not contain a deterministic loop.

Of course, an existential quantification over the possible values of states is very
expensive. Looking at the problem intuitively, however, it becomes apparent that
choices vectors which undermine a false loop (if there is a false loop) are very dense.
In other words, most audience choices will make a false-looping subsequence appear
as though it doesn’t loop. To verify this, look again at figure 3.1, the only initial
states which make this subsequence appear to loop are [1, 1, 1] and [0, 0, 0],
every other state undermines this false loop. Following this intuition I found a way to
practically implement this constraint without using a very large quantifier.

This method depends on the fact that the synthesiser is always used in the context of
the CEGIS loop; a trick is only ever synthesised in the context of the input set. I am
able to exploit this. Instead of quantifying over every possible states assignment, I
can approximate it by quantifying over only the ones which arise from the choicesl
assignments in the input set (recall that there is a unique statesl vector for each
choicesl vector). As the number of iterations in the CEGIS loop are far fewer than the
size of the input space, this greatly reduces the size of the formula. The formula for the
synthesiser is then written as follows:
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Fsynthesiser : ∃comps∃states1...∃statesL

ψsynth(comps)∧∀q ∈ Q.
L∨

l=1

φndl(q,statesl,comps)

where ψsynth is the synthesis constraint as defined in Section 1.1.1 (this doesn’t contain
the φndl constraint) and Q is the set of subsequences.

Reducing the quantification over all possible states to only the ones resulting from
the input set means that valid tricks which contain false loops may be rejected by
the synthesiser. However, the synthesiser will never produce a trick which contains a
deterministic loop. The reasoning for this is as follows: suppose there existed a trick
comps which satisfied the ψsynth constraint and contained a real deterministic loop.
By definition, there would exist some subsequence q which for every valid choices
vector, φndl(q,states,comps) is violated (states is the unique corresponding vector
to choices ). It follows that Fsynthesiser would always reject such a trick as it de-
pends on finding at least one choices vector for every subsequence which satisfies
φndl(q,states,comps) which, as we have shown, it will never do.

Although I cannot guarantee that the synthesiser will consider all valid tricks, there are
properties of the input set that mean that it is less likely that a valid trick specification
returns UNSAT. The intuition behind this is that when the input set is small, Even
though the φndl constraint must be satisfied over one of the small number of choices
vectors, this is counterbalanced by the fact that satisfying tricks are very dense in the
search space. This is because the specification constraint only needs to hold for a small
number of user inputs. As the input set grows, valid tricks become more sparse in the
search space as the specification must hold for a larger number of inputs, at this point
the φndl constraint can consider a large amount of choices and it is more likely that if
a trick contains a false loop, a choices vector is found for which the false loop doesn’t
behave like a loop.

As well as the counterbalancing mentioned above, since the input set consists of counter-
examples from previous tricks, each input will cover a different area of the state space
[16]. For this reason, the types of states vectors resulting from the input set are more
likely to undermine a false loop than a random sampling of states vectors.

Though the constraint introduced in this chapter enforces the ordering of components,
I do not treat it purely as a syntax constraint. This is because the way in which it is
constrained depends on the semantics of the trick; off the shelf CEGIS solvers such as
CVC5 do not allow syntax constraints which depend on anything other than the output
components [13]. Looking through the literature, I was unable to find a paper which
approximates the CEGIS process by disjoining constraints over the input set as I have
done in this chapter. This was a novel approach which solves a problem regarded by the
authors of the original paper as further work.
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3.5 Implementation

Although the the augmentation of the sythesiser described above introduces a large
number of constraints. I store these constraints in such a way that minimises the amount
of time spent generating them. This approach, similar to the one discussed in Section
2.6.4.3, takes advantage of the fact that the constraints across iterations are largely the
same - in the conjunction/disjunction alternation:

∧
q∈Q

∨L
l , the number of subsequences

q is constant and the number of examples in the input set L increase by only 1. This
means that across iterations, there are |Q|× (L−1) constraints which stay the same.

To avoid recomputing these constraints at every iteration, I store a 2-d array of size
|Q|×L called conjunction. conjunction[q][l] points to the Z3 representation of
φndl(q,statesl,comps). At every iteration in the synthesis step, the input set will have
increased in size by 1. This is updated in conjunction as so:

i = 0
for dis in conjunction:

dis.append(phi_ndl(q[i], states[L-1], comps))
i ++

where phi ndl() is a function which returns φndl(q,states,comps), in Z3 form, q is
a list of all subsequences and states is a list of Z3 states variables indexed such that
states[L-1] is statesL

To add these constraints to a solver object Solver, I do the following

for dis in conjunction:
Solver.add(Or(dis))

The Or function of Z3 takes a list of Z3 objects and returns the disjunction of them.
Adding these constraints sequentially has the effect of conjoining them. The structure
of this array is illustrated in Figure 3.2.
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Figure 3.2: Diagram showing how the φndl constraint is implemented in the synthesiser
with a 2-d array. This can be stored and reused across iterations, only an extra input
must be added for each subsequence q. The addition of an extra input is represented by
the l = 4 block.



Chapter 4

Evaluation and conclusion

4.1 User study

In this section I evaluate the system with a user study comparing reported audience
engagement for different magic tricks. Magic tricks take place in the mind of the
audience and so the must be performed if they are to be evaluated. The original paper
does not evaluate its magic tricks, it only reports the time it takes to synthesise them. In
the original paper’s conclusion, the authors state that automated synthesis of magic tricks
can be used as an interesting example in computer science courses. Since engagement
is important in the classroom [4], I have used the participants report of how engaging a
trick was as a metric with which to compare the magic tricks.

To evaluate user engagement with the trick, I gathered consenting students at a number
of sessions and performed 3 different types of ‘The Baby Hummer’ trick at each session.
The different types are as follows:

1. baseline-4 This is the category of tricks that were reported by the original magic
trick paper that contain a deterministic loop as described in Chapter 3. These
tricks have a deck depth of 4. For example:

flip 2, top to bottom, top to bottom, turn top, cut,
top to bottom, cut, flip 2, flip 2, cut, turn top, turn top

2. ndl-4 The tricks produced by my system with the same parameters (length, depth)
as baseline-4, except deterministic loops are forbidden. For example:

flip 2, turn top, top to bottom, top 2 to bottom, straight cut,
flip 2, straight cut, flip 2, top 2 to bottom, straight cut,
turn top, top 2 to bottom, turn top

3. ndl-6 A trick produced by my system which forbids deterministic loops and has
depth of 6. For example:

flip 2, top 2 to bottom, turn top, top to bottom, flip 2,
top 2 to bottom, cut, turn top, flip 2, turn top,
top 2 to bottom

36
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After each trick, I asked the participants to rate how engaging the trick was out of 10.

For each category, there are a number of tricks. I select a random trick from each
category at each session to make the comparison more fair.

A comparison of the mean ratings for each trick can be seen in Figure 4.1. Observe
how the tricks which forbid deterministic loops receive a higher rating than the tricks
produced by the original paper. This is consistent with the claim made in Section 3 that
deterministic loops result in non-interesting tricks. It also demonstrates the effectiveness
of my constraint which forbids these loops.

Comparing the two categories which have forbidden deterministic loops shows that the
greater depth had a only a small positive effect on trick engagement. Since a trick of
length 6 takes a much greater amount of time to synthesise (Figure 4.2), a trick in the
category ndl-4 would likely be the best candidate for use as a classroom example.

4.2 Runtime

Throughout this project, I describe different ways of implementing the system. In this
section, I compare the runtime of some of these implementations over a series different
of trick depths. The different implementations are as follows:

1. baseline This category contains implementations of the system which enforce
only the constraints as described by the original paper.

2. base + ndl This category contains implementations which have all of the proper-
ties of the baseline but also has the constraints to prevent deterministic loops as
described in Section 3.

3. triv not in verifier This category contains implementations which have all of the
properties of base + ndl except the syntax constraints are separated out from the
semantic constraints and only enforced in the synthesiser as described in Section
2.6.3. I report some of the tricks produced in this category in Section 4.3.

For each implementation, I synthesise 6 tricks and calculate the mean synthesis time. I
repeat this for different trick depths. To ensure that different tricks are being synthesised
each time, I set the initial input example to be different for each synthesis run.

The results from this experiment can be seen in Figure 4.2. Observe how for all of
the depth values, the baseline is the quickest and appears to be negligibly affected
by the increase in depth. To explain why this happens, recall from Section 3 that the
deterministic loops can undermine the ‘flip after cut’ constraint by having a double flip
e.g. [flip 2, flip 2] which prevents the ‘mixing with cut’ effect. If the cards are
not mixed after a cut move (the only non-deterministic move), then the trick effectively
becomes deterministic. In this case, the depth of the deck will have only a minor affect
on the runtime.

Observe how the runtime for the implementations which contain ndl constraints grows
quickly as the depth increases. The triv not in verifier is faster than base + ndl for
the depth of 6. This is simply because the query is smaller in the former. Despite



Chapter 4. Evaluation and conclusion 38

this, for depth = 5, base + ndl is faster. This was not what I expected since there are
fewer constraints and an otherwise identical model. However, the runtime of an SMT
query cannot be garnered from query size alone [11]. In future work I would run this
experiment again with more data to get a better picture of how this implementation
affects performance.

It is worth mentioning that the quickest synthesis time for ‘The Baby Hummer’ reported
by the original paper was 11m 11sec. recall that the original paper did not enforce
any deterministic loop constraints. The longest synthesis time for this trick in my
implementation was 25sec. As this paper gave only a high level description of the
system, it is hard to know what contributed to this difference in runtime. However, the
original paper was written in 2016 which makes it very likely that a great part of the
difference in performance has come from the huge improvement of SMT solvers in the
last decade [11].

4.3 Magic tricks

In this section I report some of the magic tricks produced by the system with different
depths along with their runtimes. These tricks were produced with constraints that ruled
out deterministic loops, as described in Section 3. The syntax constraints were enforced
only in the synthesiser as described in Section 2.6.3. These tricks belong to the triv not
in verifier category described in Section 4.2.

• depth = 3

flip 2, top 2 to bottom, top 2 to bottom, straight cut, turn top,
flip 2, turn top, flip 2, top to bottom, top to bottom, turn top

Runtime: 30.5 seconds

• depth = 4

flip 2, turn top, straight cut, straight cut, top 2 to bottom,
top to bottom, turn top, top to bottom, top to bottom, turn top,
top 2 to bottom

Runtime: 14.9 seconds

• depth = 5

flip 2, top 2 to bottom, flip 2, straight cut, straight cut,
top to bottom, straight cut, flip 2, turn top, top to bottom,
turn top, top to bottom

Runtime: 123.6 seconds

• depth = 6

turn top, top to bottom, flip 2, top 2 to bottom,
flip 2, straight cut, top 2 to bottom, top to bottom, turn top,
flip 2, turn top
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Runtime: 899.1 seconds

4.4 Contributions

Throughout this paper, I have given a clear and detailed discussion of the system,
providing formulae and implementation details where appropriate. This has made the
original magic trick paper, as well as synthesis systems for different magic tricks, easier
to reproduce.

I have improved the system described by the original paper, encoding constraints
which rule out deterministic subsequences. This was an improvement suggested by the
authors as further work. I have explored the problem on a high level and also discussed
implementation details and challenges with different search spaces.

I have evaluated these tricks with a user study and demonstrated that my improvement
to the system leads to more engaging magic tricks.

4.5 Further work

The original paper mentions that the efficient encoding of constraints which rule out
deterministic subsequences could be used to exclude dead code in program synthesis
[10]. Although the solution I proposed works well in the domain of magic tricks,
applying this technique to program synthesis would be an interesting direction for
further work as there is a wider range of applications for program synthesis than
for magic trick synthesis. Specifically, I would like to investigate whether the space
of solutions for practical program specifications is sufficiently dense such that my
technique does not prune all valid programs.
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Figure 4.1: Plot comparing the reported audience engagement for different trick types.
The error bars represent the standard deviation. This plot was created from 27 data
points gathered from 9 participants.

Figure 4.2: Plot showing the how the synthesis runtime for different implementations of
the system vary with the depth of the trick. Tricks are all synthesised on a student DICE
account
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Participant Information Sheet

Project title: The automated synthesis of card magic tricks

Principal investigator: Elizabeth Polgreen

Researcher collecting data: Rory Fotheringham

Funder (if applicable):

This study was certified according to the Informatics Research Ethics Process, RT 

number 7241 Please take time to read the following information carefully. You should

keep this page for your records. 

Who are the researchers?

Rory Fotheringham Elizabeth Polgreen 

What is the purpose of the study?

The aim of the study is to identify a relationship between the attributes of a magic 

trick (number of cards, number of moves etc.) and how engaging the trick is. The 

study will also record the effect that learning the trick oneself has on engagement. 

The data collected from this study will feed into the design of more engaging tricks 

which can be used in the classroom as a teaching resource. 

Why have I been asked to take part?

You have been asked to take part because you are a university student in a STEM 

degree. This group is most likely to benefit from the results of this study as it will lead

to the development of an improved STEM resource. 

Do I have to take part?

No – participation in this study is entirely up to you. You can withdraw from the study 

at any time, up until you hand in your answer form without giving a reason. After this 

point, personal data will be deleted and anonymised data will be combined such that 

it is impossible to remove individual information from the analysis. Your rights will not

be affected. If you wish to withdraw, contact the PI. We will keep copies of your 

original consent, and of your withdrawal request.
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What will happen if I decide to take part? 

Specify:

After a short introduction, Rory (the researcher) will show you a series of short magic

tricks. You will then be split into small groups where you will each learn a magic trick 

from a list of simple instructions and show it to the others in your group. After each 

trick you will be asked to assign a number between 0 and 4 representing how 

engaged you were by the trick. The session will last 45 minutes there will be no 

audio or video recording of the session.

Are there any risks associated with taking part?

There are no significant risks associated with participation. 

Are there any benefits associated with taking part?

There will be an array of gluten free and vegan baked goods at the session

What will happen to the results of this study? 

The results of this study may be summarised in published articles, reports and 

presentations. Key findings will be anonymized: We will remove any information that 

could, in our assessment, allow anyone to identify you. With your consent, 

information can also be used for future research. Your data may be archived for a 

maximum of 4 years. All potentially identifiable data will be deleted within this 

timeframe if it has not already been deleted as part of anonymization. 

Data protection and confidentiality.

Your data will be processed in accordance with Data Protection Law.  All information 

collected about you will be kept strictly confidential. Your data will be referred to by a 

unique participant number rather than by name. Your data will only be viewed by the 

researcher/research team [Elizabeth Polgreen, Rory Fotheringham].  

All electronic data will be stored on a password-protected encrypted computer, on 

the School of Informatics’ secure file servers, or on the University’s secure encrypted

cloud storage services (DataShare, ownCloud, or Sharepoint) and all paper records 

will be stored in a locked filing cabinet in the PI’s office. Your consent information will

be kept separately from your responses in order to minimise risk. 
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What are my data protection rights?

The University of Edinburgh is a Data Controller for the information you provide.  You

have the right to access information held about you. Your right of access can be 

exercised in accordance Data Protection Law. You also have other rights including 

rights of correction, erasure and objection. For more details, including the right to 

lodge a complaint with the Information Commissioner’s Office, please visit 

www.ico.org.uk. Questions, comments and requests about your personal data can 

also be sent to the University Data Protection Officer at dpo@ed.ac.uk. 

Who can I contact?

If you have any further questions about the study, please contact the lead 

researcher, Rory Fotheringham at s1849475@ed.ac.uk 

If you wish to make a complaint about the study, please contact 

inf-ethics@inf.ed.ac.uk. When you contact us, please provide the study title and 

detail the nature of your complaint.

Updated information.

If the research project changes in any way, an updated Participant Information Sheet

will be made available on http://web.inf.ed.ac.uk/infweb/research/study-updates. 

Alternative formats.

To request this document in an alternative format, such as large print or on coloured 

paper, please contact Rory Fotheringham at s1849475@ed.ac.uk

General information.

For general information about how we use your data, go to: edin.ac/privacy-research
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Participant number:_______________________

Participant Consent Form

Project title: The Automated Synthesis of Card Magic Tricks

Principal investigator (PI): Elizabeth Polgreen

Researcher: Rory Fotheringham

PI contact details: Elizabeth.polgreen@ed.ac.uk

By participating in the study you agree that: I have read and understood the Participant 

Information Sheet for the above study, that I have had the opportunity to ask questions, and 

that any questions I had were answered to my satisfaction.

 My participation is voluntary, and that I can withdraw at any time without giving a 
reason. Withdrawing will not affect any of my rights.

 I consent to my anonymised data being used in academic publications and 
presentations.

 I understand that my anonymised data will be stored for the duration outlined in the 
Participant Information Sheet. 

Please tick yes or no for each of these statements. 

1. I allow my data to be used in future ethically approved research.

Yes No

2. I agree to take part in this study.

Yes No

Name of person giving consent Date Signature
dd/mm/yy

Name of person taking consent Date Signature
dd/mm/yy


