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Abstract
Synthetic measure theory uses commutative monads to develop an entirely categorical
language of measures and integration. This language has proven practically useful in
the development of higher-order statistical programming languages.

There is another purely categorical notion of integration: coends. Certain coends
arise from the presheaf construction, a monad-like structure that fails to be a model of
synthetic measure theory for several reasons. There are multiple ways in which one
could attempt to fix these problems.

In this report, we make a start at defining a strong relative pseudomonad that would be
suitable as the backbone of an extended synthetic measure theory. At each step, we
show how the presheaf construction gives rise to the required structure and how this
structure satisfies the necessary axioms.

Unfortunately, the strength of a monad does not lend itself to being generalised to
relative pseudomonads. We are thus neither able to give a complete definition of a
strong relative pseudomonad nor do we manage to extend synthetic measure theory to
admit the presheaf construction as a model.
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Chapter 1

Introduction

1.1 Synthetic measure theory

Kock observed that it is possible to characterise measure theory abstractly by a com-
mutative monad over a locally small cartesian closed category satisfying two further
axioms [8].

For practical purposes, it makes sense to consider models that account for traditional
Lebesgue integration. However, function spaces are never measurable [2] so the category
of measurable spaces is not cartesian closed. This means that conventional measure
theory is not a model of synthetic measure theory. It is therefore interesting to find
models that are close to conventional measure theory.

Measurable function spaces are desirable for other reasons, e.g. to formalise higher-
order probability theory, which is a problem that arises naturally when considering
probabilisitic programming languages. It is possible to extend measurable spaces to
quasi-Borel spaces in order to achieve cartesian closure [6]. While some care is required
when comparing quasi-Borel spaces to measure theory and rephrasing probability theory
in these new terms, they bring with them several convenient properties. In particular,
quasi-Borel spaces form a model of synthetic measure theory and the associated integral
is precisely the measure space integral [16].

Since synthetic measure theory turns out to be a practically useful tool, it is now also
valuable to consider models that are far removed from conventional measure theory.
One may think of this as testing the limits of the theory.

A classical example of a monad from functional programming is the list monad. This
fails to be commutative. If we forget about the ordering of elements, we obtain the
powerset monad taking sets to their powersets. This monad may be endowed with a
commutative strong structure that, moreover, forms a model of synthetic measure theory.
In this model, the measures over a set X are subsets µ ⊆ X and the integral of a function
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Chapter 1. Introduction 2

f : X →{0,1} with respect to µ is

∫
X

µ(dx) f (x) =

{
0 if ∀x ∈ µ. f (x) = 0
1 if ∃x ∈ µ. f (x) = 1

In other words, if we consider f to be the characteristic function of a subset B ⊆ X then
the integral is zero if and only if µ∩B = /0.

It is worth noting that Kock’s synthetic measure theory is not the only attempt at
formalising probability theory categorically. An alternative approach was taken by Fritz
in [5] who developed Markov categories by generalising probability theory directly.
This allows for more abstract reasoning, thereby improving clarity. In particular, Fritz’
theory unifies different types of probability theory and does not rely on measure theoretic
probability theory to the same degree.

1.2 Presheaves

Category theory has its own notion of integration: coends. A coend of a functor
C op ×C → D is a particular colimit in D. We tend to think of coends as integrals
because they behave like such.

However, as of right now there have been little to no formal developments relating
coends to integration. The motivation for this project is to establish such a connection
by considering a suitable model of synthetic measure theory. To construct this model,
we require the following:

1. a cartesian closed category C and

2. a commutative monad T on C such that

3. the extension operation of T involves coends.

These conditions are contradictory. Coends are not unique, so defining an extension
operation involves choosing particular coends. It is then not reasonable to demand that
this choice is consistent in the sense that all the monad laws are satisfied up to equality.
Thus we will not obtain a monad in the strict sense. Fortunately, monads have been
generalised to pseudomonads to account for this problem [13].

Now the obvious candidate model is the presheaf construction, taking each small
category C to its presheaf category Ĉ = [Cop,Set]. This is a great choice because a
functor C → Ĉ may be thought of as a functor Cop ×C → Set. Thus coends are closely
related to presheaves. Secondly, it is known that the presheaf construction exhibits
monad-like behaviour [4]. Unfortunately, the presheaf category of a small category is
itself not necessarily small. Thus the presheaf construction fails to be a pseudomonad.

One way to turn the presheaf construction into a pseudomonad is by considering small
presheaves [3]. This is still insufficient for our pruposes, as the functor category [C,D]
of small categories C and D is itself not small. This violates our first requirement of
cartesian closure. We have tried and failed to find a cartesian closed 2-category on
which the presheaf construction remains a pseudomonad.
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We thus opt for relative pseudomonads [4]. This generalisation allows for the possibility
that the pseudofunctor underlying a pseudomonad is itself not an endomorphism. We
know that the presheaf construction is a relative pseudomonad. Before we can extend
synthetic measure theory to include relative pseudomonads, we need to define the
corresponding notion of strength. This turns out to be a difficult problem that we are
not able to solve entirely.

1.3 Related work

There are four pieces of work that this project builds on:

• Kocks synthetic measure theory from [8] is our main motivation. It is therefore
especially helpful in making sure what requirements our theory needs to satisfy
and what simplifications we are able to make.

• Fiore et al. developed the theory theory of relative pseudomonads in [4]. This is
our main reference point for the first part of our project.

• Paquet and Saville defined strong pseudomonads in [14]. This serves as a guide
for the second part of our theory and will most likely be a valuable reference for
future work.

• Uustalu outlined in [17] how to construct a strong relative monad. While this
extended abstract does not justify the correctness of the definition, it has al-
lowed us to come up with a sensible structure of a strong relative pseudomonad
nonetheless.

1.4 Contributions

The following developments in this report are worth noting:

• We partially define strong relative pseudomonads with a particular focus on
generalising synthetic measure theory.

• We show that our definition coincides with relative pseudomonads in the sense
of [4].

• We show how our definition yields the structure of a strong pseudomonad in the
sense of [14].

• We demonstrate how to endow the presheaf construction with the necessary
structure and verify that it satisfies the corresponding axioms.

1.5 Overview

We structure this report as follows:

• Chapter 2 revisits introductory category theory. We define commutative monads
and relative monads in order to develop an intuition for later developments. We
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then focus our attention towards coends, getting used to the notation and proving
results that will be useful later on.

• Chapter 3 rigorously introduces 2-categories, pseudofunctors, and pseudonatu-
ral transformations. We pay particular attention to the strictness requirements,
making sure that our definitions are not more general than required.

• Chapter 4 consists entirely of novel developments: step by step we work towards
the definition of a strong relative pseudomonad. Along the way we show how the
structures and axioms relate to previous work and to the presheaf construction.

• Chapter 5 contains a critical evaluation.

• Chapter 6 summarises the remaining work and lists possible extensions.



Chapter 2

1-categories

There are two purely categorical notions of integration that we are interested in: the
integral arising from Kock’s synthetic measure theory [8] and coends as an integral of
certain functors.

We begin this chapter by revisiting some introductory category theory. We then proceed
to define commutative monads, the backbone of synthetic measure theory. After that,
we shift our attention to coends, outlining in what sense the coend of a functor may be
thought of as an integral.

2.1 Categories, functors, and natural transformations

This section presents standard constructions from the literature such as [11].

Recall that a category consists of objects, morphisms between objects, and a composition
operation that is associative and has identities. We call a category small if its collection
of objects is a set as opposed to a proper class.

Let C be a category. For objects X ,Y ∈ C we denote by HomC (X ,Y ) the class of
all morphisms X → Y and by idX the identity X → X . Moreover, we will drop the
composition ◦ and subscripts whenever it is convenient to do so. Such notational
conventions will prove particularly useful when considering larger structures later on.

One of the most important categories is Set whose objects are sets and whose morphisms
are functions. Composition is just the usual composition of functions and the identities
are the usual identity functions.

Each category C has a dual C op called the opposite category. The objects of C op

are exactly the objects of C but the morphisms in C op are reversed: each X → Y in
C corresponds to a morphism Y → X in C op. Composition in C op is the same as in
C . Despite their similarlities, C and C op are distinct categories and, in general, not
isomorphic.

Given two categories C and D, we have the product category C ×D which has as ob-
jects all pairs (X ,Y ) with X ∈ C and Y ∈ D and hom-sets Hom((X ,Y ),(X ′,Y ′)) =

5
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Hom(X ,Y )× Hom(X ′,Y ′). Composition is defined pointwise so the identites are
(id, id).

Functors are morphisms between categories. They act on objects and morphisms in
a way that preserves identities and distributes over composition. One particularly
important functor is Hom : Cop ×C → Set, where Cop is the opposite category. It takes
a pairs of objects in a small category to its hom-set and the action on morphisms is
given by composition: Hom( f ,g)(h) = gh f . We may also fix an object X ∈ C to obtain
the functors

Hom(X ,−) : C → Set, Hom(−,X) : Cop → Set.

Let F : C → D and G : D → E be functors. The composite GF : C → E is defined
as GF = G(F−). We thus have the category CAT of all categories and all functors
between them and its full subcategory Cat of small categories. Note that some set
theoretic considerations, such as the use of suitable universes, are required to avoid
Russel’s paradox.

Let F,G : C → D be parallel functors. A natural transformation φ : F ⇒ G consists of
morphisms φX : FX → GX in D , for all X ∈ C , that satisfy the naturality condition: for
all f : X →Y in C , φY ◦F f = G f ◦φX . We can compose natural transformations F ⇒ G
and G ⇒ H by composing the components. Thus, for all categories C and D , we have
the functor category [C ,D] with functors C → D as objects and natural transformations
as morphisms.

Consider functors F,G : C → [D,E ]. A natural transformation φ : F ⇒ G has compo-
nents φC : FC →GC in [D,E ]. This means that each φC is itself a natural transformation
with components (φC)D : (FC)D → (GC)D in E . Such functors and natural transfor-
mations will play a major role in later chapters. We will make sure to keep our notation
precise to assist the reader in peeling back the various layers of indirection.

2.2 Cartesian structure

Now recall that the product of objects X ,Y ∈ C is an object X ×Y together with
morphisms π1 : X ×Y → X and π2 : X ×Y → Y . It is universal in the sense that, for
all other pairs of morphisms f : W → X and g : W → Y , there is a unique morphism
⟨ f ,g⟩ : W → X ×Y such that the following commutes:

W

X X ×Y Y
π2π1

⟨ f ,g⟩f g (2.1)

We say that a diagram commutes if every two paths from the same source to the same
sink are equal. We will make heavy use of commutative diagrams, both as axioms that
we postulate and as statements that we prove. In the latter case, the commutativity
may be left implicit. Unfortunately, diagrams tend to get much more complex in later
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chapters. Therefore it will not be possible to write down every proof in full detail.
We will, however, occasionally include links to quiver [18], a graphical editor for
commutative diagrams. For example, the diagram 2.1 corresponds to this quiver link.
The purpose of these links is twofold: on one hand they should serve as a useful guide
through the less obvious proofs and on the other they may be a useful resource for
future reference. However, we believe that this report is entirely self-contained and
therefore the reader is not required to engage with the quiver links whatsoever.

We now take the product of morphisms f : X → X ′ and g : Y → Y ′ to be the morphism
f ×g : X×X ′→Y ×Y ′ given by f ×g= ⟨ f π1,gπ2⟩. Thus we have a functor C ×C →C .
It is important to realises that, in general, products are not unique. Fortunately, they
are unique up to canonical isomorphism. Therefore specifying such a product functor
amounts to choosing a product for each pair of objects.

As the product functor depends on the choice of products, we do not expect it to be
associative or commutative in the strict sense. However, there are natural isomorphisms
with components

αX ,Y,Z : (X ×Y )×Z ∼= X × (Y ×Z), γX ,Y : X ×Y ∼= Y ×X . (2.2)

It is worth pointing out that γ is its own inverse. That is, γ
−1
X ,Y = γY,X .

An object 1 ∈ C is terminal if, for all X ∈ C , there is a unique morphism X → 1. It
turns out that terminal objects are units for multiplication. That is, there is a natural
isomorphism with components

λX : 1×X ∼= X .

Combining this with γ from (2.2) yields the right unitor ρ = λγ : X ×1 ∼= X .

To tie all of this together, a cartesian category is a category with a choice of all (binary)
products and a distinguished terminal object.

Example 2.1. Two particular cartesian structures are going to be of interest to us: on
Set and on CAT (and thereby Cat). In Set, we take the product of two sets to be the
cartesian product with the usual projections (x,y) 7→ x and (x,y) 7→ y. The terminal
object 1 ∈ Set is a distinguished singleton 1 = {∗}. In CAT, the product of categories
C and D is the product category C ×D with the obvious projection functors and the
terminal category 1 ∈ CAT is a distinguished category with a single object and a single
(identity) morphism. Note that, for small categories C and D, C×D is small so Cat
inherits the cartesian structure.

2.3 Monads

Monads are central to the study of category theory. They arise naturally in practical
settings, e.g. to model computation with side effects, as well as for theoretical purposes,
e.g. monad algebras as a generalisation of algebraic theories.

We adapt the no-iteration definition of a monad [12] because it more easily generalises
to relative monads [1].

 https://q.uiver.app/?q=WzAsNCxbMiwwLCJXIl0sWzIsMSwiWFxcdGltZXMgWSJdLFswLDEsIlgiXSxbNCwxLCJZIl0sWzEsMywiXFxwaV8yIiwyXSxbMSwyLCJcXHBpXzEiXSxbMCwxLCJcXGxhbmdsZSBmLGdcXHJhbmdsZSIsMV0sWzAsMiwiZiIsMl0sWzAsMywiZyJdXQ== 
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Definition 2.2. Let C be a category. A monad T on C consists of

1. for all X ∈ C , an object T X ∈ C ;

2. for all X ∈ C , a morphism ηX : X → T X in C ;

3. for all X ,Y ∈ C , a map

(−)∗X ,Y : Hom(X ,TY )→ Hom(T X ,TY )

such that, for all X ,Y,Z ∈ C , f : X → TY , and g : Y → T Z, the following commute:

T X T X

η∗

X TY

TY

η

f ∗
f

T X TY

T Z

f ∗

g∗
(g∗ f )∗

(2.3)

The double line in the first diagram refers to the identity T X → T X .

Let us now investigate the powerset monad which we touched on in chapter 1.

Example 2.3. The powerset construction P takes each set X to its powerset P X . We
add a monad structure like so: the unit map takes elements to singletons, i.e. η(x) =
{x}. The extension of a function f : X → PY takes A ∈ P X to the union f T (A) =⋃
{ f (x) : x ∈ A}. This is known as the powerset monad.

Every monad T on C gives rise to an endofunctor C → C with object map X 7→ T X and
morphism map f 7→ (η f )T . We abuse notation and denote this endofunctor simply by
T and write T f : T X → TY , as usual. In the case of the powerset monad, the functorial
action takes a function f : X → Y to the direct image map A 7→ { f (x) : x ∈ A}.

2.4 Commutative monads

Given that a monad is just a monoid in the category of endofunctors [11], one might
expect that the commutativity of a monad is related to the commutativity of the cor-
responding monoid. This is not the case. The commutativity required for synthetic
measure theory refers to the strength of a monad. For our purposes, a monad is strong if
it interacts well with the cartesian structure of the corresponding category.

Fix a cartesian category C . A strength σ for a monad T on C is a natural transformation
with components

σX ,Y : X ×TY → T (X ×Y )

following certain conditions. A strong monad is a monad T equipped with a strength σ.

Such a strong monad is then called commutative [7], if the costrength

τX ,Y : T X ×Y → T (X ×Y )
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given by the composite

T X ×Y T (X ×Y )

Y ×T X T (Y ×X)
σ

T γγ

τ

(2.4)

makes the diagram below commute:

T X ×TY T (T X ×Y ) T 2(X ×Y )

T (X ×TY ) T 2(X ×Y ) T (X ×Y )

τ

σ T τ

T σ id∗

id∗ (2.5)

Example 2.4. In the case of Set, the product is the usual cartesian product of sets.
The powerset monad is a commutative monad with strength and costrength given by
σ(x,B) = {x}×B and τ(A,y) = A×{y}, respectively.

2.5 Relative monads

This section closely follows [1].

In section 2.3, we chose to present the no-iteration definition of a monad because it
avoids repeated applications of the object map. This now leads to an obvious generali-
sation of monads that are functors J → C rather than endofunctors. We require another
functor J → C to relate objects in J to those in the image of the relative monad. The
resulting definition is remarkably similar to 2.2.

Definition 2.5. Let J : J → C be a functor. A relative monad T over J consists of

1. for all X ∈ J , an object T X ∈ C ;

2. for all X ∈ J , a morphism ηX : JX → T X in C ;

3. for all X ,Y ∈ J , a map

(−)∗X ,Y : Hom(JX ,TY )→ Hom(T X ,TY )

such that, for all X ,Y,Z ∈ J , f : JX → TY , and g : JY → T Z, the following commute:

T X T X

η∗

JX TY

TY

η

f ∗
f

T X TY

T Z

f ∗

g∗
(g∗ f )∗

(2.6)
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Example 2.6. Let T be a monad on C . Then T is a relative monad over the identity
C → C . Moreover, for any functor J : J → C , we have a relative monad T ′ over J with
object map T ′X = T JX .

Our motivation for presenting this definition is the presheaf construction. It behaves like
a relative monad Cat → CAT but fails to satisfy the axioms in the strict sense because
coends, which we shall introduce next, are unique only up to isomorphism.

While our definition of a monad is easy to generalise to the relative case, the same
cannot be said for commutative monads. The axioms of strong and commutative monads
involve repeated applications of the object map (see 2.5). We therefore have to find
alternative conditions to impose. Fortunately, [17] already contains the definition of a
strong relative moand that we will make use of. However, we will encounter similar
problems when identifying suitable coherence conditions in chapter 4.

2.6 Coends

Let us now turn our attention to the categorical integral that we are hoping to capture
in a model of synthetic measure theory. There are two dual notions of an integral of
a functor C op ×C → D: ends and coends. We will focus on the latter because coends
arise naturally when considering the Yoneda embedding, one of the most fundamental
constructions in category theory.

We begin by defining a more general structure:

Definition 2.7. Let F : C op ×C → D be a functor. A cowedge of F consists of

1. an object W ∈ D;

2. for all X ∈ C , a morphism wX : F (X ,X)→W

such that, for all f : X → Y in C ,

F(Y,X) F(Y,Y )

F(X ,X) WwX

wY

F(Y, f )

F( f ,X) (2.7)

Let (W,wX) and (W ′,w′
X) be cowedges of F . A morphism h : W →W ′ is a morphism

of cowedges (W,wX)→ (W ′,w′
X) if, for all X ∈ C , hwX = w′

X .

Examples of cowedges that are both interesting and specific are hard to come by. What
the following lacks in specificity it makes up for in importance.

Example 2.8. Let P : C op → Set be a functor and W ∈ C an object. Consider the functor
C op ×C → Set given by

Y,X 7→ PY ×Hom(W,X).
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and, for each X ∈ C , the function

wX : PX ×Hom(W,X)→ PW

given by x, f 7→ (P f )(x). Now fix f : W → X , g : X → Y , and y ∈ PY . Then

w(y,g f ) = P(g f )(y) = P f Pg(y) = w(Pg(y), f ).

I.e. the diagram

PY ×Hom(W,X) PX ×Hom(W,X)

PY ×Hom(W,Y ) PW

Pg×Hom(W,X)

PY×Hom(W,g)

wY

wZ

commutes. Thus (PW,wX) is a cowedge.

We notice that, for any cowedge (W,wX), postcomposition with a morphism f : W →W ′

yields another cowedge (W ′, f wX), making f into a cowedge homomorphism. Now a
coend is an initial cowedge:

Definition 2.9. Let F : C op ×C → D be a functor. A coend of F is a cowedge (E,eX)
of F such that, for all cowedges (W,wX) of F , there exists a unique cowedge homomor-
phism (E,eX)→ (W,wX).

Coends are special colimits (see [10, Remark 1.2.3]). So, while there is no guarantee
that a particular functor has a coend, any two coends of the same functor are canonically
isomorphic. This allows us to fix a choice of coends without loss of generality, just as
we discussed for products.

Observe a useful property of coends: consider functors F,G : C op ×C → D, a natural
transformation φ : F ⇒ G between them, and assume that we have chosen coends of F
and G. By precomposing the coend diagram of G with φ, we obtain a cowedge of F .
Thus, for each choice of coends, there exists a unique cowedge homomorphism induced
by φ.

Thus a choice of coends assigns objects to functors C op ×C → D and morphisms to
natural transformations between such functors. This observations suggests that one
might want to think of coends as a functor [C op ×C ,D]→ D. There is one problem,
however: just like measure theoretic integrals, statements about coends rely on their
existence in the first place. Fortunately, all coends in this thesis will be of functors of
the form Cop ×C → Set where C is small. As Set is cocomplete, all such coends exist
and are indeed functorial. It is possible to construct coends in Set explicitly by taking
disjoint unions and quotienting them by a particular equivalence relation. Unfortunately,
the resulting construction is far from being intuitive so we will not investigate it further.

Notation 2.10. The notation that arises from the formal definition of coends does not
scale well to more complicated calculations. We improve it as follows:
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• For a functor F : C op ×C → D, we will denote the object and morphism of a
chosen coend by∫ C

F(C,C) and qX : F(X ,X)→
∫ C

F(C,C). (2.8)

Here the variable C is bound by the integral. That is, the choice of symbol is
arbitrary.

• For functors F,G : C op×C → D , a natural transformation φ : F ⇒ G, and choices
of coends, we denote the morphism of cowedges induced by φ by∫ C

φC,C :
∫ C

F(C,C)→
∫ C

G(C,C). (2.9)

We already saw an example of a coend in 2.8. We establish the universality by con-
structing a cowedge homomorphism to the chosen coend.

Example 2.11. The cowedge in 2.8 is a coend. To see this fix a choice of coend and
consider the morphism h given by the composite

PW PW ×Hom(W,W )

∫C PC×Hom(W,C)

⟨PW,∆id⟩

qh (2.10)

Here ∆ id is the constant function x 7→ id. Now let x ∈ PX and f : W → X . Then

(hw)(x, f ) = h(P f (x))a = q(P f (x), id) = q(x, f ).

where the last equality holds due to 2.7. Thus the diagram

PX ×Hom(W,X) PW

∫C PC×Hom(W,C)

h

w

q

commutes, showing that h is a cowedge homomorphism. By universality of the coend
we conclude that we have an isomorphism

h : PW ∼=
∫ C

PC×Hom(W,C).

This is sometimes referred to as the co-Yoneda lemma.

2.7 Properties of coends

We are now in a position to make precise the functoriality of the coend:
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Lemma 2.12. Let C be a small category. Every choice of coends for all functors
Cop ×C → Set induces a functor [Cop ×C,Set]→ Set given by

F 7→
∫ C

F(C,C), φ 7→
∫ C

φC,C.

Proof. Fix F,G,H : Cop ×C → Set. Consider natural transformations φ : F ⇒ G and
ψ : G ⇒ H. Now (∫ C

ψC,C

)(∫ C
φC,C

)
=

∫ C
(ψφ)C,C

because both sides are cowedge homomorphisms∫ C
F(C,C)→

∫ C
H(C,C).

By universality of the coend on the left, this is unique.

Preservation of identities follows by a similar argument.

While it is not at all obvious in what sense coends describe integration, we observe
that they tend to behave like integrals in the analytic sense. For example, we have the
following result about scalar multiplication:

Lemma 2.13. Let F : C op ×C → D be a functor where D is cartesian, and let D ∈ D.
For any choice of coend of F , there is a canonical isomorphism

D×
∫ C

F(C,C)∼=
∫ C

D×F(C,C).

Proof. We have a functor D×− : D → D with inverse π2 ◦−. In particular, D×− is
cocontinuous. By [10, Theorem 1.2.7], we have

(D×−)

(∫ C
F(C,C)

)
∼=

∫ C
(D×−)F(C,C),

as required.

Due to the canonical isomorphism of products A×B ∼= B×A, we immediately have a
similar statement for scalar multiplication on the right.

The final property that relates coends to conventional integrals is the Fubini rule:

Theorem 2.14 ([10, Theorem 1.3.1]). Let F : Bop ×B ×C op ×C → D be a functor.
Then there are canonical isomorphisms∫ B∫ C

F(B,B,C,C)∼=
∫ B,C

F(B,B,C,C)∼=
∫ C ∫ B

F(B,B,C,C).

That is, if one of the coends above exists, so do the other and there are unique isomor-
phisms of cowedges between them.



Chapter 3

2-categories

To account for the possibility of axioms holding only up to a specified isomorphism, we
need to consider 2-categories. We avoid confusion by referring to the usual categories
as 1-categories. Since 2-categorical notions tend to be straightforward generalisations
of their 1-categorical counterparts, many of the developments in this chapter are going
to seem unremarkable. The difficulty lies in choosing which axioms we allow to hold
only up to a coherent isomorphism. This type of problem rarely arises in 1-category
theory but is a central to the study of 2-categories.

Notation 3.1. It will be convenient to fix some notational conventions for the remainder
of this report. Unless otherwise indicated,

• curly upper-case letters denote 1-categories, e.g. C ;

• blackboard bold upper-case letters denote small 1-categories, e.g. C;

• plain upper-case letters denote objects, e.g. X .

3.1 Definition

The idea of a 2-category is straightforward. In mathematics, it has proven useful to
replace equality by different notions of isomorphisms. Commutative diagrams in 1-
categories are nothing but equalities between morphisms, so we would like to study
isomorphisms between morphisms instead. Thus 2-categories have morphisms between
morphisms. To disambiguate we call morphisms between objects 1-cells and morphisms
between morphisms 2-cells.

The concept of morphisms between morphisms should be familiar already. The 1-
category CAT has functors as morphisms and we know that natural transformations
are just morphisms between functors. We will make use of this and extend CAT to a
2-category 2CAT.

While the additional structure brings with it a lot of freedom, it comes with a price.
Firstly, 2-categorical concepts contain more data that needs to be specified and more
axioms that need to be verified. This makes 2-category theory more complex. Secondly,

14
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due to this additional complexity, it is not always desirable to state axioms up to
isomorphism. Thus, one has to make an informed choice about the degree of strictness
required at each step along the way.

Even when defining a 2-category itself, strictness plays a role: it is possible to demand
that the axioms hold only up to isomorphism. This consideration leads to weak 2-
categories or bicategories. (see [9]) We note that the weakness of the former has nothing
to do with the strength of a monad as in 2.4. We do not require the full generality of
bicategories and are thus going to restrict our attention to (strict) 2-categories:

Definition 3.2. A 2-category C consists of

1. a class of objects ObjC;

2. for all objects X ,Y , a 1-category HomC [X ,Y ] with composition • whose objects
f : X → Y are called 1-cells and whose morphisms u : f ⇒ g are called 2-cells;

3. for all X ∈ C, an identiy 1-cell idX : X → X ;

4. for all X ,Y,Z ∈ C, a composition functor

◦X ,Y,Z : HomC [Y,Z]×HomC [X ,Y ]→ HomC [X ,Z] ; (3.1)

such that the following hold:

1. for all composable 1-cells f ,g,h, h◦ (g◦ f ) = (h◦g)◦ f ;

2. for all f : X → Y , idY ◦ f = f = f ◦ idX .

We note that there are two ways to compose 2-cells:

1. For 1-cells f ,g,h : X → Y and 2-cells u : f ⇒ g, v : g ⇒ h we have the vertical
composite v•u : f ⇒ h given by the composition in Hom [X ,Y ]. In a diagram:

X Y

f

h

g

u

v

2. For 1-cells f ,g : X →Y , h,k : Y → Z and 2-cells u : f ⇒ g, v : h ⇒ k we have the
horizontal composite v◦u : h◦ f ⇒ k ◦g given by the composition functor ◦X ,Y,Z .
In a diagram:

X Y Z

f

g

h

k

u v

Notation 3.3. We adopt similar conventions as for 1-categories:
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• X ∈ C means X ∈ ObjC;

• We drop the 1-cell composition and therefore the horizontal composition of
2-cells. Thus vu : h f ⇒ kg means v◦u : h◦ f ⇒ k ◦g.

• To avoid unnecessary subscripts we identify objects and 1-cells with their respec-
tive identities. Thus we might write huX : h f X ⇒ hgX to mean

idh ◦u◦ ididX : h◦ f ◦ idX ⇒ h◦g◦ idX .

Note how we identify ididX with idX and thus with X .

Example 3.4. The most important 2-category that we will consider is 2CAT which has
as objects all categories, as 1-cells all functors, and as 2-cells all natural transformations.
That is, for all C ,D ∈ 2CAT, Hom [C ,D] is the functor category [C ,D]. Composition
of 1-cells is the usual composition of functors.

Given two 2-categories, we obtain the product 2-category which is entirely analogous
to the product 1-category:

Definition 3.5. Let C,D be 2-categories. The product 2-category C×D has

1. as objects all pairs (X ,X ′) with X ∈ C and X ′ ∈ D;

2. for all objects (X ,X ′) and (Y,Y ′), the hom-category

Hom
[
(X ,Y ),(X ′,Y ′)

]
= Hom [X ,Y ]×Hom

[
X ′,Y ′] ;

3. for all objects (X ,X ′), the identity 1-cell (idX , idX ′);

4. the composition functor given by pointwise composition in the respective 2-
categories, i.e. (g,g′)( f , f ′) = (g f ,g′ f ′).

3.2 Cartesian structure

Kock’s commutative monads are strong with respect to the cartesian structure of a
1-category. In order to formalise commutative relative pseudomonads, we require a
similar structure on 2-categories. We are fortunate in that our main 2-category of
interest, 2CAT, admits strict products. That is, the required 1-cell equations hold up to
equality and not merely up to isomorphism.

While it is straightforward to define larger product structures (e.g. [15]), the notion of
strength of a monad only requires binary products and a terminal object which serves as
the identity.

The standard definition of a 1-categorical product that we outlined in 2.2 requires an
alternative formulation before we may generalise it elegantly. We invite the reader to
verify that adapting the following definition to 1-categories in the obvious way does
indeed yields a product in the usual sense.

Definition 3.6. A cartesian structure for a 2-category C consists of



Chapter 3. 2-categories 17

1. an object 1 ∈ C;

2. for all W ∈ C, an isomorphism of categories Hom [W,1]∼= 1;

3. for all X ,Y ∈ C:

(a) an object X ×Y ∈ C;

(b) 1-cells π1 : X ×Y → X and π2 : X ×Y → Y called projections;

(c) for all W ∈ C, an isomorphism of categories

Hom[W,X ×Y ] Hom[W,X ]×Hom[W,Y ]

(π1◦−,π2◦−)

⟨−⟩

∼= (3.2)

The functor ⟨−⟩ is called tupling.

Example 3.7. Let C ,D be 1-categories. It is known that the product of categories C ×D
is a product in CAT. Let π1,π2 denote the corresponding projections in CAT. These
are 1-cells in 2CAT. Define the tupling functor by

⟨F,G⟩= (F−,G−)

⟨φ,ψ⟩X = (φX ,ψX)

By using the universal properties of the 1-categorical product it is straightforward to
verify that this is indeed an inverse to (π1 ◦−,π2,◦−). Thus the 1-categorical cartesian
structure of CAT extends to a 2-categorical cartesian structure of 2CAT.

3.3 Pseudofunctors

Category theory is in many ways about studying morphisms rather than objects. We are
therefore interested in defining the notion of a morphism between 2-categories which
we call pseudofunctors. Just as a functor specifies where objects and morphisms are
mapped to, a pseudofunctor is a map on objects, 1-cells, and 2-cells.

There is an important difference, however: pseudofunctors are not the most strict
morphism between 2-categories. In particular, we allow for the possibility that the
functor axioms hold only up to a canonical isomorphism. This is achieved by specifying
these isomorphisms as part of the structure: preservation of identities is witnessed by i
and distributivity is witnessed by d.

Now that the functoriality axioms are part of the structure, the axioms of a pseudofunctor
serve a different purpose entirely. While the structural 2-cells ensure that certain 1-
cells are isomorphic, we want to avoid the possibility of deriving multiple different
isomorphisms between the same 1-cells from this structure. This is referred to as
coherence. While proving coherence directly is hard in general, many structures come
with a sufficient set of conditions that lead to coherence.

Definition 3.8. Let C,D be 2-categories. Then a pseudofunctor F : C → D consists of
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1. for all X ∈ C, an object FX ∈ D;

2. for all X ,Y ∈ C, a functor FX ,Y : Hom [X ,Y ]→ Hom [FX ,FY ];

3. for all X ∈ C, an invertible 2-cell

FX

FX

FX ,X (idX )
iX (3.3)

4. for all f : X → Y and g : Y → Z in C, an invertible 2-cell

FX FY

FZ

F f

FgF(g f )

d f ,g (3.4)

such that

1. for all composable 1-cells f ,g,h,

F(hg f ) FhF(g f )

F(hg)F f FhFgF f

d

d

Fhd

dF f

(3.5)

2. for all 1-cells f ,

F f F(id) F f id

F( f id) F f

d−1

F f i
F(id)F f idF f

F(id f ) F f

d−1

iF f

(3.6)

A 2-functor is a pseudofunctor whose 2-cells i and d are identities.

As we will be dealing with at most one pseudofunctor with non-identity 2-cells, our
notation is unambiguous. One 2-functor that will be of interest is the product 2-functor
that allows us to take products not just of objects but also of 1-cells and 2-cells:

Example 3.9. Analogously to the 1-categorical case (see 2.2), we observe that taking
binary products in a cartesian 2-category yields a 2-functor C×C → C, given by the
following structure:

1. for all (X ,Y ) ∈ C×C, we have the object X ×Y ∈ C;



Chapter 3. 2-categories 19

2. for all X ,X ′,Y,Y ′ ∈ C, the functor on hom-categories is given by the composite

Hom[X ,Y ]×Hom[X ′,Y ′] Hom[X ×X ′,Y ]×Hom[X ×X ′,Y ′]

Hom[X ×X ′,Y ×Y ′]

⟨−k⟩

(−◦π1,−◦π2)

(×)(X ,X ′),(Y,Y ′)

(3.7)

We need to verify that 3.3 and 3.4 are identities. We verify, for all X ,X ′ ∈ C,

idX × idX ′ = ⟨π1,π2⟩= idX×X ′

where the last equality follows from the isomorphism (3.2). Similarly, consider ( f , f ′) :
(X ,X ′)→ (Y,Y ′) and (g,g′) : (Y,Y ′)→ (Z,Z′) in C×C. In the diagram

X X ×X ′ X ′

Y Y ×Y ′ Y ′

Z Z ×Z′ Z′

g

f f ′

g′⟨gπ1,g′π2⟩

⟨ f π1, f ′π2⟩

π1 π2

π1 π2

π1 π2

(3.8)

each tile commutes by (3.2). Now notice g f ×g′ f ′ = ⟨g f π1,g′ f ′π2⟩. The claim then
follows by the universal property of the product.

The presheaf construction gives rise to a pseudofunctor. We will show this in the next
chapter (see 4.11). For now, let us briefly investigate what this structure looks like
without spelling out the details:

Example 3.10. Consider the pseudofunctor structure −̂ : 2Cat → 2CAT:

1. for all X ∈ 2Cat, X̂ = [Xop,Set];

2. for all F : X → Y and P ∈ X̂,

F̂P =
∫ X

PX ×Hom(−,FX) ;

3. the natural isomorphism i has as components natural isomorphisms∫ X
PX ×Hom(−,X)∼= P;

4. for all composable functors F and G, the natural isomorphism dF,G has as com-
ponents isomorphisms∫ X

PX ×Hom(−,(GF)X)∼=
∫ Y

(∫ X
PX ×Hom(Y,FX)

)
×Hom(−,GY ).
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There are two functors corresponding to a particular relative monad: on the one hand
there is the functor that the monad is relative to and on the other we have the functor
induced by the monad [1]. Similarly, a relative pseudomonad has two corresponding
pseudofunctors. It is for this reason that we require two degrees of strictness: while
the inclusion 2Cat → 2CAT is a 2-functor, the pseudofunctor induced by the presheaf
construction is not. To limit complexity, we aim to make use of the strictness of the
former while allowing for the non-strictness of the latter.

3.4 Inclusions of cartesian 2-categories

Before we can endow the presheaf construction with a strength, we need to capture
some of the additional properties of the inclusion. It only makes sense to define a
strong pseudomonad relative to a 2-functor J → C if both its domain and codomain
are cartesian and the cartesian structures agree. We could treat this in full generality
by considering monoidal pseudofunctors, similar to [17]. However, the inclusion
2Cat → 2CAT preserves products and terminal objects so we are able to impose and
satisfy much stricter conditions.

An inclusion functor is injective on objects and morphisms. Similarly, we demand an
inclusion pseudofunctor be injective on objects, 1-cells, and 2-cells. Moreover, we
require inclusions to preserve the cartesian structure.

Definition 3.11. An inclusion of cartesian 2-categories consists of

1. cartesian 2-categories J and C;

2. a 2-functor J : J → C;

such that

1. J is injective on objects, 1-cells, and 2-cells;

2. for all X ,Y ∈ J,

J1 = 1, J (X ×Y ) = JX × JY, J(π1) = π1, J(π2) = π2.

Example 3.12. Define 2Cat as the 2-category with objects all small categories and,
for all C,D ∈ 2Cat, the hom-category Hom [C,D] = [C,D]. We now have the obvious
inclusion J : 2Cat → 2CAT that is the identity on objects and hom-categories. Define
the cartesian structure on 2Cat in the same way that we defined it for 2CAT. This is
justified as the product of small categories is itself small. Thus J forms an inclusion of
cartesian 2-categories.

3.5 Pseudonatural transformations

Naturally, we have morphisms between pseudofunctors. The naturality of a pseudonatu-
ral transformation is witnessed by a structural 2-cell which obeys a coherence axiom.
Once again, we have two levels of strictness. It is worth noting, however, that these are
not related to the strictness of the underlying pseudofunctors.
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Definition 3.13. Let F,G : C → D be pseudofunctors. A pseudonatural transformation
φ : F ⇒ G consists of

1. for all X ∈ C, a 1-cell φX : FX → GX ;

2. for all f : X → Y in C, a naturality 2-cell

FX FY

GX GY

F f

φ

G f

φn f (3.9)

such that, for all composable 1-cells f ,g ∈ C,

GgG f φ GgφF f φFgF f

G(g f )φ φF(g f )

d−1φ

Ggn nF f

φd−1

n

(3.10)

A 2-natural transformation is a pseudonatural transformation whose naturality 2-cell n
is the identity.

Example 3.14. Let C be a cartesian 2-category. We saw that the product 2-functor
is merely an extension of the usual product functor. Because n is the identity, each
natural transformation between product functors yields a 2-natural transformation
between product 2-functors. Thus the usual isomorphisms λ,α,γ are in fact 2-natural
transformations.



Chapter 4

Strong inclusion pseudomonads

We have now developed all the theory required to present our approach to defining a
generalisation of strong monads that admits the presheaf construction as a model. We
do so in three major steps, each of which we will justify by applying it to the presheaf
construction and comparing it to related work

Firstly, we present a structure that is similar to that of a relative pseudomonad. We
justify the differences and show how the presheaf construction gives rise to such a
structure. Secondly, we state the axioms that this structure is required to satisfy in
order to induce a relative pseudomonad. Finally, we extend the structure in a way that
induces a strong pseudomonad structure in the case where the inclusion is the identity.
Unfortunately, we are not able to postulate axioms that are sufficient to show that this
induced structure satsifies the axioms of a strong pseudomonad.

Fix an inclusion of cartesian 2-categories J : J → C.

4.1 Prestrong structure

A strong monad is a monad equipped with a suitable natural transformation. Hence
the obvious way to define a strong relative pseudomonad is by equipping a relative
pseudomonad with a suitable pseudonatural transformation. This approach would have
two notable benefits. Firstly, it would allow us to leverage already existing results about
relative pseudomonads without any overhead. Secondly, it would provide us with an
intuitive connection to strong pseudomonads that would, presumably, make some of the
axioms easier to postulate.

We investigate another approach. Rather than adding the strength as additional structure,
we choose to build it in to the extension operator. That is, we only allow 1-cells
f : W × JX → TY to be extended to f † : W ×T X → TY . This relates the extension to
the cartesian structure directly. Another reason why we believe that this idea is worth
entertaining is because it becomes very pleasant to describe commutativity of such a
structure. One can demand the existence of the following natural isomorphism:

22
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Hom[JX × JY,T Z] Hom[JX ×TY,T Z] Hom[TY × JX ,T Z]

Hom[JY × JX ,T Z] Hom[TY ×T X ,T Z]

Hom[JY ×T X ,T Z] Hom[T X × JY,T Z] Hom[T X ×TY,T Z]

−◦γ

(−)†

−◦γ (−)†

(−)† −◦γ

(−)†

−◦γ

∼=

Given that synthetic measure theory requires a commutative monad, it is possible that
this alternative structure is more convenient in the context of a generalised synthetic
measure theory.

Definition 4.1. A strong J-pseudomonad structure consists of

1. for all X ∈ J, an object T X ∈ C;

2. for all X ∈ J, a 1-cell ηX : JX → T X in C;

3. for all X ,Y ∈ J and W ∈ C, a functor

(−)†
X ,Y,W : Hom [W × JX ,TY ]→ Hom [W ×T X ,TY ] ; (4.1)

4. for all f : W × JX → TY in C, an invertible 2-cell

W × JX W ×T X

TY
f †f

W×η

r f (4.2)

5. for all X ∈ J, an invertible 2-cell

1×T X

T X

λ (ηλ)†lX (4.3)

6. for all i : V →W , f : JX → TY , and g : W × JY → T Z in C, an invertible 2-cell

V ×T X W ×TY

T Z
gT(gT (i× f ))T

i×( f λ)†λ−1

c f ,g,i (4.4)
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We note that this extension operator is defined on a narrower selection of 1-cells than
the extension operator of a relative pseudomonad. This is only a temporary limitation.
Using the left unitor λ, we obtain the usual extension functor

(−)∗X ,Y = (−λJX)
†
λ
−1
JX ; (4.5)

as in the diagram

Hom[JX ,TY ] Hom[T X ,TY ]

Hom[1× JX ,TY ] Hom[1×T X ,TY ]

−◦λ−1

(−)†

−◦λ

(−)∗

(4.6)

This will help us state the axioms in the following section more cleanly.

The purpose of 4.1 is to define a theory that admits the presheaf construction as a model.
While one might expect this result to be a straightforward statement, some work is
required to define the structure itself. One must pay special attention when working
with several layers of indirection. For example, we have a natural transformation whose
components are functors λX : 1×X → X. This problem is amplified by the fact that our
main point of study are objects [Xop,Set] which are themselves categories with functors
as objects and natural transformations as morphisms.

Nonetheless, we define the entire structure in detail:

Example 4.2. The prestrong presheaf construction consists of:

1. for all X ∈ 2Cat, the object X̂ = [Xop,Set];

2. for all X ∈ 2Cat, the unit functor ηX given by ηX(X) = Hom(−,X);

3. for all X,Y ∈ 2Cat and W ∈ 2CAT, the extension functor (−)†
X,Y,W given by

(a) for all F : W ×X → Ŷ, W ∈ W , and P ∈ X̂

F† (W,P) =
∫ X

PX ×F (W,X)(−) (4.7)

and, for all morphisms f in W and φ in X̂,

F† ( f ,φ) =
∫ X

φX ×F ( f ,X)(−) ; (4.8)

(b) for all F,G : W ×X → Ŷ, φ : F ⇒ G, W ∈ W , and P ∈ X̂,

φ
†
W,P =

∫ X
PX × (φW,P)(−) ; (4.9)
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4. for all F : W ×X → Ŷ, W ∈ W , and X ∈ X, the natural transformation (rF)W,X
has the components

F(W,X)Y Hom(X ,X)×F(W,X)Y

∫ X ′
Hom(X ′,X)×F(W,X ′)Y

⟨∆id,F(W,X)Y ⟩

q
((rF )W,X )Y

(4.10)

5. for all P ∈ X̂, the natural transformation (lX)P has the components

PX PX ×Hom(X ,X)

∫ X ′
PX ′×Hom(X ,X ′)

⟨PX ,∆id⟩

q
((lX)P)X

(4.11)

6. for all F : X → Ŷ, G : W ×Y → Ẑ, I : V → W, P ∈ X̂, and V ∈ V , the natural
isomorphism (cF,G,I)V,P has as components the canonical cowedge isomorphisms
given by

PX × ((FX)Y ×G(IV,Y )Z) (PX × (FX)Y )×G(IV,Y )Z

PX ×
∫ Y (FX)Y ×G(IV,Y )Z

(∫ X PX × (FX)Y
)
×G(IV,Y )Z

∫ X PX ×
∫ Y (FX)Y ×G(IV,Y )Z

∫ Y
(∫ X PX × (FX)Y

)
×G(IV,Y )Z

((cF,G,I)V,P)Z

q q

PX×q q×G(IV,Y )(−)

∼=

Even from this detailed description it is not clear that we have provided the necessary
structure: we have to make sure that the structural 2-cells are in fact invertible. For c,
this is immediate and we already showed the result for l in 2.11. For r, the proof is
similar:

Lemma 4.3. The function (4.10) is an isomorphism.

Proof. For each X ′ ∈ X, consider the function

w
(
X ′) : Hom(X ′,X)×F(W,X ′)Y → F(W,X)Y

given by ( f ,u) 7→ (F(W, f )Y )u. We note that, for all 1-cells f : X1 → X2 in X, the
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following commutes:

Hom(X2,X)×F(W,X1)Y Hom(X1,X)×F(W,X1)Y

Hom(X2,X)×F(W,X2)Y F(W,X)Y

Hom(X2,X)×F(W, f )Y

Hom( f ,X)×F(W,X1)Y

w(X2)

w(X1)

Thus F(W,X)Y and w define a cowedge. Consider the diagram

Hom(X ′,X)×F(W,X ′)Y F(W,X)Y

Hom(X ,X)×F(W,X)Y

∫ X ′
Hom(X ′,X)×F(W,X ′)Y

w(X ′)

q
q

⟨∆id,F(W,X)Y ⟩
((rF )W,X )Y (4.12)

Let g : X ′ → X and let u ∈ F(W,X ′)Y . Chasing elements we find

(qX ◦ ⟨∆ id,F(W,X)Y ⟩ ◦w(X ′))(g,u) = (qX ◦ ⟨∆ id,F(W,X)Y ⟩)((F(W,g)Y )u)
= qX(id,(F(W,g)Y )u)
= qX ′(g,u)

where the last step follows from the cowedge property of the coend. Thus (4.12)
commutes, making (4.10) into a cowedge morphism. By universality of the coend it
follows that this must be an isomorphism.

4.2 Induced relative pseudomonad structure

Strong monads are special monads. For our generalisation to make sense, strong J-
pseudomonads ought to be special relative pseudomonads over J. While this relationship
is not as obvious as in the 1-categorical case, the structure 4.1 already resembles that
of a relative pseudomonad. This observation makes it straightforward to see how the
former gives rise to the latter.

Definition 4.4. Let T be a strong J-pseudomonad. The relative pseudomonad structure
induced by T consists of

• for all X ,Y ∈ J, the extension functor (−)∗ as in 4.5;

• for all 1-cells f : JX → TY and g : JY → T Z, the 2-cell

m f ,g = c f ,gλλ
−1
T X
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as in the diagram

T X 1×T X 1×TY TY

T Z

λ−1

((gλ)†(1× f ))† (gλ)†

λ−1

1× f ∗

f ∗

(g∗ f )∗ g∗

c

(4.13)

• for all f : JX → TY , the 2-cell

e f = r f λλ
−1
JX

as in the diagram

JX 1× JX 1×T X T X

TY

η

λ−1

( f λ)†

λ−1

1×η

f λ

f ∗f

r (4.14)

• for all X ∈ J, the 2-cell

tX = lηX λ
−1
T X

as in the diagram

T X 1×T X

T X
ηT λ

λ−1

(ηλ)T
λ

l (4.15)

When considering the presheaf construction, the induced relative pseudomonad structure
consists of several isomorphisms that may be familiar from coend calculus. While we
are not concerned with the details, it is worth investigating the structure nonetheless:

Example 4.5. For the presheaf construction, we obtain the following relative pseu-
domonad structure:

1. for all F,G : X → Ŷ, φ : F ⇒ G, and P ∈ X̂,

F∗(P) =
∫ X

PX ×FX(−), (φ∗)P =
∫ X

PX ×φX ;

2. for all X ∈ X, ηX(X) = Hom(−,X);
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3. for all F : X → Ŷ and X ∈ X, there is a natural isomorphism with components

(eF)X : FX →
∫ X ′

Hom(X ′,X)×FX ′;

4. for all F : X → Ŷ, G : Y → Ẑ, and P ∈ X̂, (mF,G)P is a natural isomorphism with
components∫ X

PX ×
∫ Y

(FX)Y × (GY )Z →
∫ Y

(∫ X
PX × (FX)Y

)
× (GY )Z;

5. for all P ∈ X̂, t has as components isomorphisms

((tX)P)X :
∫ X ′

Hom(X ,X ′)×PX ′ → PX

4.3 Prestrong axioms

A prestrong J-pseudomonad should induce a relative pseudomonad over J. It is therefore
not surprising that the conditions which we impose are entirely analogous to those
stated in [4].

Definition 4.6. A prestrong J-pseudomonad is a prestrong J-pseudomonad structure
such that

1. r f is natural in f ;

2. c f ,g,i is natural in f , g, and i;

3. for all f : W × JX → TY ,

f † ( f †(1×η))†

f † f †(1×η∗)

r

c

f †(1×lλ−1)

(4.16)

4. for all suitable 1-cells f ,g,h, i, j,

((h†( j×g))†(i× f ))†

(h†( ji×g∗ f ))† (h†( j×g))†(i× f ∗)

h†( ji× (g∗ f )†) h†( ji×g∗ f ∗)

c

c

h†( ji×cλ−1)

c(i× f ∗)

(c(i× f ))†

(4.17)
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Now that we have stated some axioms, we need to make sure that they are sensible. The
first step is to verify that the presheaf construction remains a model.

Proposition 4.7. The prestrong presheaf construction in 4.2 is a prestrong J-pseudomonad.

Proof. We verify the axioms:

1. We note that

F(W,X)Y G(W,X)Y

Hom(X ,X)×F(W,X)Y Hom(X ,X)×G(W,X)Y

∫ X ′
Hom(X ′,X)×F(W,X ′)Y

∫ X ′
Hom(X ′,X)×F(W,X ′)Y

(φW,X)Y

Hom(X ,X)×(φW,X)Y

⟨∆id,F(W,X)Y ⟩ ⟨∆id,G(W,X)Y ⟩

q q

∫ X ′
Hom(X ′,X)×(φW,X)Y

rr

⟨∆id,−⟩-nat

r-def r-def

commutes due to (2.9) on the right. This shows naturality of r.

2. Naturality of c follows from naturality of the underlying isomorphism.1

3. We note that the following commutes:

PX ×F(W,X)Y PX ×
∫ X ′

Hom(X ′,X)×F(W,X ′)Y

PX × (Hom(X ,X)×F(W,X)Y )

(PX ×Hom(X ,X))×F(W,X)Y

PX ×F(W,X)Y
(∫ X PX ×Hom(X ′,X)

)
×F(W,X)Y

PX×q

PX×r

PX×⟨∆id,F(W,X)Y ⟩

q×F(W,X)Y

α

l×F(W,X ′)Y

⟨PX ,∆id⟩×F(W,X)Y

r-def

r-def

Postcomposition with the appropriate canonical morphisms yields (4.16).2

4. The proof of (4.17) is similar to the above.3

1Full diagram of naturality of cF,G,I in F and G in quiver.
2Full diagram for proof of (4.16) in quiver.
3Full diagram for proof of (4.17) in quiver.

https://q.uiver.app/?q=
https://q.uiver.app/?q=
https://q.uiver.app/?q=WzAsMjAsWzAsMCwiXFxpbnReVyBQV1xcdGltZXMgXFxpbnReWChGVylYXFx0aW1lcyBcXGludF5ZIChHWClZXFx0aW1lcyBIKEpJVixZKVoiXSxbNywwLCJcXGludF5XIFBXXFx0aW1lcyBcXGludF5ZXFxsZWZ0KFxcaW50XlgoRlcpWFxcdGltZXMgKEdYKVlcXHJpZ2h0KVxcdGltZXMgSChKSVYsWSlaIl0sWzcsNSwiXFxpbnReWVxcbGVmdChcXGludF5XIFBXXFx0aW1lc1xcbGVmdChcXGludF5YKEZXKVhcXHRpbWVzIChHWClZXFxyaWdodClcXHJpZ2h0KVxcdGltZXMgSChKSVYsWSlaIl0sWzcsMTAsIlxcaW50XllcXGxlZnQoXFxpbnReWFxcbGVmdChcXGludF5XIFBXXFx0aW1lcyhGVylYXFxyaWdodClcXHRpbWVzIChHWClZXFxyaWdodClcXHRpbWVzIEgoSklWLFkpWiJdLFsxLDEsIlBXXFx0aW1lc1xcaW50XlgoRlcpWFxcdGltZXNcXGludF5ZKEdYKVlcXHRpbWVzIEgoSklWLFkpWiJdLFsyLDIsIlBXXFx0aW1lcyBcXGxlZnQoKEZXKVhcXHRpbWVzIFxcaW50XlkoR1gpWVxcdGltZXMgSChKSVYsWSlaXFxyaWdodCkiXSxbMCwxMCwiXFxpbnReWFxcbGVmdChcXGludF5XIFBXXFx0aW1lcyAoRlcpWFxccmlnaHQpXFx0aW1lcyBcXGludF5ZIChHWClZXFx0aW1lcyBIKEpJVixZKVoiXSxbMSw5LCJcXGxlZnQoXFxpbnReVyBQV1xcdGltZXMgKEZXKVhcXHJpZ2h0KVxcdGltZXMgXFxpbnReWSAoR1gpWVxcdGltZXMgSChKSVYsWSlaIl0sWzIsOCwiXFxsZWZ0KFBXXFx0aW1lcyAoRlcpWFxccmlnaHQpXFx0aW1lc1xcaW50XlkoR1gpWVxcdGltZXMgSChKSVYsWSlaIl0sWzQsMywiUFdcXHRpbWVzXFxsZWZ0KFxcbGVmdCgoRldYXFx0aW1lcyAoR1gpWVxccmlnaHQpXFx0aW1lcyBIKEpJVixZKVpcXHJpZ2h0KSJdLFs2LDEsIlBXXFx0aW1lcyBcXGludF5ZXFxsZWZ0KFxcaW50XlgoRlcpWFxcdGltZXMgKEdYKVlcXHJpZ2h0KVxcdGltZXMgSChKSVYsWSlaIl0sWzUsMiwiUFdcXHRpbWVzIFxcbGVmdChcXGxlZnQoXFxpbnReWChGVylYXFx0aW1lcyAoR1gpWVxccmlnaHQpXFx0aW1lcyBIKEpJVixZKVpcXHJpZ2h0KSJdLFszLDMsIlBXXFx0aW1lc1xcbGVmdCgoRlcpWFxcdGltZXNcXGxlZnQoKEdYKVlcXHRpbWVzIEgoSklWLFkpWlxccmlnaHQpXFxyaWdodCkiXSxbNiw5LCJcXGxlZnQoXFxpbnReWFxcbGVmdChcXGludF5XIFBXXFx0aW1lcyhGVylYXFxyaWdodClcXHRpbWVzIChHWClZXFxyaWdodClcXHRpbWVzIEgoSklWLFkpWiJdLFs1LDgsIlxcbGVmdChcXGxlZnQoXFxpbnReVyBQV1xcdGltZXMoRlcpWFxccmlnaHQpXFx0aW1lcyAoR1gpWVxccmlnaHQpXFx0aW1lcyBIKEpJVixZKVoiXSxbNCw3LCJcXGxlZnQoXFxsZWZ0KFBXXFx0aW1lcyhGVylYXFxyaWdodClcXHRpbWVzIChHWClZXFxyaWdodClcXHRpbWVzIEgoSklWLFkpWiJdLFs2LDUsIlxcbGVmdChcXGludF5XIFBXXFx0aW1lc1xcbGVmdChcXGludF5YKEZXKVhcXHRpbWVzIChHWClZXFxyaWdodClcXHJpZ2h0KVxcdGltZXMgSChKSVYsWSlaIl0sWzUsNSwiXFxsZWZ0KFBXXFx0aW1lc1xcbGVmdChcXGludF5YKEZXKVhcXHRpbWVzIChHWClZXFxyaWdodClcXHJpZ2h0KVxcdGltZXMgSChKSVYsWSlaIl0sWzQsNSwiXFxsZWZ0KFBXXFx0aW1lc1xcbGVmdCgoRlcpWFxcdGltZXMgKEdYKVlcXHJpZ2h0KVxccmlnaHQpXFx0aW1lcyBIKEpJVixZKVoiXSxbMyw3LCIoUFdcXHRpbWVzIChGVylYKVxcdGltZXMoKEdYKVlcXHRpbWVzIEgoSklWLFkpWikiXSxbMCwxLCJcXGludF5XIFBXXFx0aW1lc1xcbWF0aGJmIGMiLDFdLFsxLDIsIlxcbWF0aGJmIGMiLDFdLFsyLDMsIlxcaW50XllcXG1hdGhiZiBjXFx0aW1lcyBIKEpJVixZKVoiLDFdLFs0LDAsInEiXSxbNSw0LCJQV1xcdGltZXMgcSJdLFs2LDMsIlxcaW50XllcXG1hdGhiZiBjXFx0aW1lcyBIKEpJVixZKVoiLDFdLFswLDYsIlxcbWF0aGJmIGMiLDFdLFs3LDYsInEiXSxbOCw3LCJxIl0sWzUsOCwiXFxjb25nIiwxXSxbMTAsMSwicSIsMV0sWzExLDEwLCJQV1xcdGltZXMgcSIsMV0sWzksMTEsIlBXXFx0aW1lcyAocVxcdGltZXMgSChKSVYsWSlaKSIsMV0sWzQsMTAsIlBXXFx0aW1lc1xcbWF0aGJmIGMiLDFdLFsxMiw1LCJQV1xcdGltZXMoKEZXKVhcXHRpbWVzIHEpIiwxXSxbMTIsOSwiXFxjb25nIiwxLHsiY3VydmUiOi0yfV0sWzE1LDE0LCIocVxcdGltZXMoR1gpWSlcXHRpbWVzIEgoSklWLFkpWiIsMV0sWzE0LDEzLCJxXFx0aW1lcyBIKEpJVixZKVoiLDFdLFsxMywzLCJxIiwxXSxbMTgsMTcsIihQV1xcdGltZXMgcSlcXHRpbWVzIEgoSklWLFkpWiIsMSx7ImN1cnZlIjotM31dLFsxNywxNiwicVxcdGltZXMgSChKSVYsWSlaIiwxLHsiY3VydmUiOi0zfV0sWzE2LDIsInEiLDFdLFsxOCwxNSwiXFxjb25nIiwxXSxbMTYsMTMsIlxcbWF0aGJmIGMiLDFdLFsxMSwxNywiXFxjb25nIiwxXSxbMTksOCwiKFBXXFx0aW1lcyAoRlcpWClcXHRpbWVzIHEiLDFdLFsxOSwxNSwiXFxjb25nIiwxLHsiY3VydmUiOi0yfV0sWzEyLDE5LCJcXGNvbmciLDFdLFs5LDE4LCJcXGNvbmciLDFdLFs3LDEzLCJcXG1hdGhiZiBjIiwxXV0=
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Only a little more work is required to make sure that a prestrong J-pseudomonad does
indeed correspond to a relative pseudomonad over J.

Theorem 4.8. Let T be a strong J-pseudomonad. Then the relative pseudomonad
structure induced by T is a relative pseudomonad in the sense of [4, Definition 3.1].

Proof. We have the obvious correspondence between the structure in [4] and 4.4:
(−)∗X ,Y is identical, iX is ηX , µg, f is m f ,g, η f is e f , θX is tX . We now verify the axioms:

• naturality of e is just naturality of r;

• naturality of m is just naturality of c;

• [4, (3.2)] holds by postcomposing (4.16) with λ−1 as in the diagram

f ∗ ( f ∗η)∗

( f λ)† (( f λ)†(1×η))†

( f λ)† ( f λ)†(1× (ηλ)†)

f ∗ f ∗η∗

(e f )
∗

m

f ∗t

−◦λ−1

−◦λ −◦λ

−◦λ

c

r

( f λ)†(1×l)

• [4, (3.1)] holds by postcomposing (4.17) with λ−1 just like above.

Thus we may conclude that the definitions that we have stated so far fit in with already
established work.

4.4 Induced pseudofunctor

Before we move on to the strong structure of a J-pseudomonad, we take some time to
appreciate what we have developed so far. Relative monads induce functors [1]. It is
therefore desirable that relative pseudomonads induce pseudofunctors. This was not
explicitly proven in [4]. We will show how to obtain the pseudofunctor induced by a
prestrong J-pseudomonad.

Fix a prestrong J-pseudomonad T . Analogous to 3.8, we define the following:

Definition 4.9. The pseudofunctor structure induced by T consists of

1. for all X ∈ J, the object T X ∈ C;
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2. for all X ,Y ∈ J, the functor TX ,Y is the composite

Hom[X ,Y ] Hom[T X ,TY ]

Hom[JX ,JY ] Hom[JX ,TY ]

(−)T λ

η◦−

JX ,Y

TX ,Y

(4.18)

3. for all X ∈ J, the 2-cell iX = lX−1
λ−1;

4. for all f : X → Y and g : Y → Z in J, the 2-cell

d f ,g = mηJ f ,ηJg • (eηJgJ f )T λ

as in the diagram

T X TY

T Z T Z

(ηJ f )∗

(ηJg)∗((ηJg)∗ηJ f )∗(ηJgJ f )∗

T f

T gT (g f )
m

(eJ f )∗
(4.19)

Example 4.10. The prestrong presheaf construction induces a pseudofunctor structure
−̂ : 2Cat → 2CAT as described in 3.10.

Similar to the induced relative pseudomonad structure, we can prove a general statement
and no additional work is required to show that the presheaf construction induces a
pseudofunctor:

Proposition 4.11. The pseudofunctor structure induced by T is a pseudofunctor.

Proof. We verify the axioms:
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1. We have the commuting diagram

T (hg f ) (T hηJ(g f ))∗ T hT (g f )

(T (hg)ηJ f )T λ ((T hηJg)∗ηJ f )∗

T (hg)T f

((ηJh)∗(ηJg)∗ηJ f )∗

(T hηJg)∗T f

T hT gT f T h((ηJg)∗ηJ f )∗

(eJg)∗T f

mT f

(eJ f )∗

m

(eJ(g f ))∗ m

T h(eJ f )∗

(ηJh)∗m

((ηJh)∗eJ f )∗

m

m

((eJg)∗ηJ f )∗

(mηJ f )∗

(eJ f )∗

(4.17)

e-nat

n-nat

m-nat

(4.20)
where the remaining face follows from [4, Lemma 3.2 (i)]. We have shown 3.5.

2. The conditions 3.6 are just [4, (3.1)].

4.5 Strong structure

We are now ready for our final step towards the definition of a strong relative pseu-
domonad. As we are not be able to prove all the results that we would have liked, we
provide some additional insight into how one might come up with the definition of a
strong J-pseudomonad structure.

Firstly, we notice that the prestrong structure already gives rise to a 1-cell X ×TY →
T (X ×Y ) by extending the unit ηX×Y . We will therefore think of η† as the strength.
Secondly, we observe that of the four structural 2-cells in [14, Definitions 8 and 9]
only one involves repeated applications of the object map. The others are thus easily
translated. To avoid the repeated applications in the problematic case, we take inspiration
from the definition of a strong relative monad in [17]. The result is the rather unintuitive
family of invertible 2-cells q which will allow us to construct the usual pentagon in the
case where J is the identity.

Definition 4.12. A strong J-pseudomonad structure consists of

1. a prestrong J-pseudomonad T ;
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2. for all X ,Y,Z ∈ J, an invertible 2-cell

(JX × JY )×T Z T ((X ×Y )×Z)

JX × (JY ×T Z) JX ×T (Y ×Z) T (X × (Y ×Z))
η† η†

α

η†

T αpX ,Y,Z (4.21)

3. for all invertible 2-cells

JW × JX JW ×TY

T (W ×Y )
η†

JW× f

g
u

an invertible 2-cell

JW ×T X T (W ×X)

JW ×TY T (W ×Y )

η†

η†

g∗JW× f ∗ qu (4.22)

4. for all f : JW × JX → TY in C, an invertible 2-cell

JW ×T X T (W ×X)

TY

η†

f ∗f †

s f (4.23)

Let us now verify that it is indeed possible to obtain such a structure for the presheaf
construction. Of particular interest to us is the structural 2-cells qu because they are
different to all the others that we have seen so far.

Example 4.13. We extend the prestrong presheaf construction as follows:

1. for all X ∈ X, Y ∈ Y, and P ∈ Ẑ,
(
pX,Y,Z

)
X ,Y,P is the isomorphism of coends

∫ X ′,Y ′,Z′(∫ Z
PZ ×Hom(((X ′,Y ′),Z′),((X ,Y ),Z))

)
×Hom(−,(X ′,(Y ′,Z′)))

∼=
∫ Y ′,Z′(∫ Z

PZ ×Hom((Y ′,Z′),(Y,Z))
)
×Hom(−,(X ,(Y ′,Z′)))

which may be obtained by composition of l and c;4

4Construction of p in quiver

https://q.uiver.app/?q=
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2. for all natural isomorphisms with components

uW,X : G(W,X)∼=
∫ Y

(FX)Y ×Hom(−,(W,Y ))

we have the natural isomorphism qu whose components are themselves natural
isomorphisms∫ Y

(∫ X
PX × (FX)Y

)
×Hom(−,(W,Y ))

∼=
∫ W ′,X ′(∫ X

PX ×Hom((W ′,X ′),(W,X))

)
×G(W ′,X ′)(−)

which are obtained by composing c, l, and u;5

3. for all F : W×X → Ŷ, the natural isomorphism sF has as components further
natural isomorphisms∫ X

PX ×F(W,X)(−)

∼=
∫ X

PX ×
∫ W ′,X ′

F(W ′,X ′)(−)×Hom((W ′,X ′),(W,X))

∼=
∫ X

PX ×
∫ W ′,X ′

Hom((W ′,X ′),(W,X))×F(W ′,X ′)(−)

∼=
∫ W ′,X ′(∫ X

PX ×Hom((W ′,X ′),(W,X))

)
×F(W ′,X ′)(−).

4.6 Towards an induced strong pseudomonad

The structure 4.12 requires some further axioms to be useful. Ideally, we would like
for the structural 2-cells to be coherent. However, proving such a result may be very
difficult. A more attainable goal is to show that, in the case where the inclusion is the
identity, we obtain a strong pseudomonad.

We are not able to state any further axioms or prove any of the results above. Instead
we are going to outline how one can obtain the structure of a strong pseudomonad. We
begin by constructing the strength and proceed by adding the structural 2-cells that
promote it to a strength of the induced pseudofunctor and subsequently the induced
pseudomonad.

Fix a strong J-pseudomonad structure T .

We have already discussed how to obtain the 1-cells JW × T X → T (W × X) that
resemble the components of a pseudonatural transformation. We are now able to extend
this structure to include the naturality 2-cell. Combining these, we obtain the structure
of a pseudonatural transformation.

Definition 4.14. The strength induced by T consists of
5Construction of q in quiver.

 https://q.uiver.app/?q=
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1. for all W,X ∈ J, the 1-cell

σW,X = (ηW×X)
† : JW ×T X → T (W ×X) (4.24)

2. for all f : W →W ′ and g : X → X ′ in J, the naturality 2-cell

n f ,g = c• (rJ( f ×g))† • s−1

as in the diagram

JW ×T X T (W ×X)

JW ×T X

T (W ′×X ′)

JW ′×T X ′ T (W ′×X ′)

T ( f×g)

J f×T g

η†

η†

(η(J f×Jg))†

(η†(J f×ηJg))†

(r(J f×Jg))†

c

s−1

(4.25)

With the axioms we have included so far, we are not able to prove that this is indeed a
pseudonatural transformation. Further, we have not been able to identify any intuitive
or obvious axioms that would achieve this goal.6.

Example 4.15. For the strong presheaf construction, the strength is given by

1. the functor σ : W× X̂ → Ŵ×X acting on objects by

σ(W,P) =
∫ X

PX ×Hom(−,(W,X));

2. the natural transformation nF,G : JF × Ĝ → F̂ ×G which has as components
natural isomorphisms∫ X ′,Y ′(∫ Y

PY ×Hom((X ′,Y ′),(X ,Y ))
)
×Hom(−,(FX ′,GY ′))

∼=
∫ Y ′(∫ Y

PY ×Hom(Y ′,GY )
)
×Hom(−,(FX ,Y ′)).

In order for a strong J-pseudomonad to induce a strong pseudomonad in the sense
of [14], we require J to be the identity. We describe how one obtains the appropriate
structure:

6For future reference, the diagram that we require to commute

https://q.uiver.app/?q=


Chapter 4. Strong inclusion pseudomonads 36

Definition 4.16. Let J : C → C be the identity and T a strong J-pseudomonad structure.
The strong pseudomonad structure induced by T consists of

1. the strength 4.14;

2. for all X ∈ C, the invertible 2-cell xX = sηλ • lX ;

3. for all X ,Y,Z ∈ C, the invertible 2-cell yX ,Y,Z = pX ,Y,Z;

4. for all X ,Y ∈ C, the invertible 2-cell wX ,Y given by

W ×T 2X W ×T X

T (W ×T X) T (W ×X)

T 2(W ×X) T (W ×X)

X×id∗

η†η†

id∗

(λ†(1×ηη†))†λ−1(ηη†)∗

(η†)∗

(r−1(1×η†))†λ−1

c−1

q−1

(4.26)

5. for all X ,Y ∈ C, the invertible 2-cell zX ,Y = r−1
η .

Beyond the previously mentioned pseudonaturality, it is straightforward to postulate
axioms that ensure the coherence axioms for strong pseudofunctors are satisfied. This
is because none of these coherence axioms contain repeated applications of the pseudo-
functor. Thus the notion generalises from endofunctors to arbitrary pseudofunctors.
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Evaluation

It is now time to reflect on what we have and have not achieved. We begin by highlight-
ing two alternative approaches that we could have taken to solve the problem. We then
assess the quality of our results. Finally, we focus on the presentation of these results
and the compromises involved.

5.1 Small presheaves instead of relative pseudomonads

We worked towards extending synthetic measure theory to admit the presheaf construc-
tion as a model by generalising to relative pseudomonads. This has made it very difficult
to develop the required theory but almost trivial to establish the model.

While we believe that this path can lead to success, it may not be the simplest. In the
early stages of this project we were aiming to restrict 2CAT to a suitable cartesian
closed 2-category on which the presheaf construction is a pseudomonad. We tried to
work with small presheaves on locally presentable categories but this failed. After
spending a significant amount of time with this approach, we decided to follow the
potentially longer route of relative pseudomonads as it would allow us to make some
progress rightaway.

This does not mean, however, that it is impossible to restrict the presheaf construction
and the underlying category appropriately so that generalising synthetic measure theory
to pseudomonads is sufficient. In a sense, these considerations are likely to lead to an
entirely new set of problems: formulating the theory would become signficantly easier,
but constructing a non-trivial model would be difficult.

5.2 Strength as a natural transformation

The next thing that has to be criticised is our choice of changing the extension operator
to incorporate strength, rather than adding the strength to a relative pseudomonad as a
suitable pseudonatural transformation. Whether this approach is fruitful remains to be
seen. However, there are several notable disadvantages.
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Firstly, it requires a certain amount of reinventing the wheel. Rather than sticking with
the already established theory of relative pseudomonads, we had to rewrite the definition
entirely. While the result is similar, a lot of time and effort went into making everything
consistent. Given that we have not been able to reap the benefits of the new structure, it
is unclear whether this detour will eventually pay off.

Secondly, the new structure is in many ways less elegant than usual relative pseudomon-
ads. For example, have a look a the 2-cell families c and m in the case of the presheaf
construction. The former involves additional parts that are not required for the latter.
This makes it more difficult to distinguish important details from the overall noise.

5.3 Quality of the definitions

Inspecting where the complexity is inspires confidence. This is because the largest
diagrams arise whenever coends are involved. This is deceptive, however. Showing
coend-related results has, for the most part, been a straightforward mechanical task. The
vast majority of work went into the three core definitions 4.1, 4.6, and 4.12. The fact
that all the developments related to our theory, in particular the proofs and the induced
structures, are short and succinct suggests that we have indeed developed a suitable
language to reason about strong relative pseudomonads.

5.4 Presentation

The complexity of the expressions has repeatedly led to diagrams whose width was
several times what could fit the page. We have therefore not been able to include as
much detail as we would have liked. This means that some proofs may be harder to
follow than is appropriate. In any case, we do not expect anyone to be able to reconstruct
every step of our developments without some pen and paper.

This problem is not new to category theorists. There have been several approaches to
deal with large diagrams that usually require even more notational shortcuts. See [13]
and [14] for some related examples. While this would have allowed us to condense
more information onto the page, it would have also meant hiding a signficiant amount of
complexity and thus required long explanations as to what is going on. We are doubtful
whether this would have been possible within the scope of this report.

To aid the reader we have decided to include quiver links to some particularly large
diagrams. There are several reasons why this is not a solution that can be relied upon,
though. Firstly, there is the technical problem that the content of those links is not
strictly part of the report. Secondly, the quiver server will, eventually, go offline. If
we were to rely on the service, then a significant part of the content would be lost. Of
course, the latter problem may be solved by installing quiver locally.

Machine verified proofs may be another way to maintain rigour while improving the
presentation. This way we would be able to hide some technical details in the comforting
knowledge that everything has been made to work as intended. Those who are interested
would be welcome to read the corresponding source code. While this is in a sense
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the optimal solution it is also idealistic: formalising our work like this would vastly
increase our time investment. This would be a particularly risky bet given that we have
not been able to show that things are going to work out in the end.

5.5 Target audience

This report is supposed to be targeted towards undergraduate students. Meeting this
requirement has been difficult. While there are a few courses that define categories,
functors, and natural transformations, category theory is not taught at the university
in its own right. This has led us to take some major shortcuts. For example, we
would have liked to investigate our attempt at restricting our model as described in 5.1.
Unfortunately, this would have required us to define locally presentable categories from
the ground up which is impossible with the space that we are given.

While this report may not provide a comprehensive introduction to category theory, it
still offers valuable insights and contributions that can be understood by readers with
varying degrees of knowledge in the subject. To fully comprehend the technical details
of the report, only a basic understanding of category theory is required. As a result,
undergraduate students with some familiarity with natural transformations should be
able to understand almost all the technical details of our work. The only exceptions
are more technical arguments such as the existence of coends in Set, which have to be
taken for granted. However, our explanations make it possible for readers without prior
knowledge to follow the main ideas and results presented.
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Future work

Given that we have not been able to establish the presheaf construction as a model of a
generalised synthetic measure theory, a lot of future work remains.

The first step should be to make sure that the induced strength is a pseudonatural transfor-
mation. It is hard to say how difficult a problem this would be, but more axioms related
to the interplay of the strong structural 2-cells u and s with their prestrong counterparts
are required. Such axioms will certainly prove useful for later developments.

Secondly, there is the problem of postulating axioms so that the induced strong pseu-
domonad satisfies the coherence conditions of a strong pseudomonad in the sense of
[14]. This has the potential to be a lot of work: there are five axioms for which there
are no obvious counterparts. The unusual 2-cell q in 4.12 is a good example of the
ingenuity that might be required to make this work. It is safe to say that the notion of
strength does not lend itself to being generalised to relative monads.

Thirdly, once strong relative pseudomonads have been defined it is time for the most
interesting part. Generalising synthetic measure theory. Studying the measure theory
arising from the presheaf construction should be satisfying in its own right. After all,
this is the motivation for this whole project. How difficult of a task this will end up
being depends on the quality of the definitions obtained in the previous steps.

Finally, formalising our theory in a theorem proving language seems like a logical
extension. The axioms required to make a complete definition of a strong relative
pseudomonad are bound to be complex and the addition of synthetic measure theory
will not improve the situation. This means that it will become even harder to verify the
correctness of the statements involved.
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