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Abstract
Characterising people’s behaviour over the Internet is of paramount importance for
better understanding and enhancing their privacy. The availability and analysis of
data depicting user online behaviour can assist in achieving this goal. However, the
sensitive nature of the data makes its release difficult and in some cases illegal. In an
attempt to address the lack of email communication data, we implement a statistical
approach to generating statistically- and structurally-similar synthetic data of email
traffic over a network. We further identify the need for hiding the degree distribution of
the underlying communication network and implement a differentially private degree
distribution approximation algorithm [19]. A set of statistical measures is used to
evaluate the privacy-utility trade-off of approximating the original degree distribution.
Finally, we present the simulation results of the real and synthetic email transactions
over the anonymous communication system Loopix [35] and quantify the anonymity
level of each simulation.
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Chapter 1

Introduction

1.1 Motivation

Following technological advancements in data collection, processing and storage, more
data is being collected in a wide variety of fields. The availability of large datasets cre-
ates an opportunity for further leveraging the data for academic and social purposes. In
particular, progress in computer science and machine learning has been tightly linked to
the availability of public datasets. Moreover, in many areas of science, new discoveries
are the result of the research and analysis of relevant data [27]. A study of research
papers in biology has shown higher citation rates and data reuse of research papers
with publicly available data compared to similar studies without available data. The
study further concludes a correlation between the increase in dataset availability and
the increase in data analysis papers [36].

Research of user online behaviour is no different. The analysis and characterisation
of user behaviour over a network provides a basis for the understanding and better
protection of people’s privacy across the Internet. Large data collections depicting
users’ behaviour (emails, text messages, website visits and navigation) are needed to
achieve an accurate picture of people’s behavioural patterns online. This poses a privacy
paradox: privacy can be enhanced and better understood by first obtaining and studying
private user information.

While the availability of data is paramount for technological advancement, the re-
lease and use of data threatens the privacy of the individuals involved. Due to the
sensitive nature of the data, its publication and use becomes difficult and, in particular
cases, even illegal under regulations such as GDPR in the European Union [30] and
DPA in the United Kingdom [15].

A way to address the lack of data and circumvent the risks associated with its re-
lease is to use synthetic data which does not contain information related to any real
individual. This motivates the primary goal of this project as the development of a
synthetic data generation framework which models the email traffic within a network,
while hiding the underlying social network to prevent the identification of accounts
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Chapter 1. Introduction 2

based on the number of users they interact with.

1.2 Project Goals and Contributions

The initial proposal lays out the primary aim of the project as follows:

Create a synthetic data generation framework for emails.

The proposal further specifies the following completion criteria:

• identify minimal meta-data items that provide good closeness to the real data

• evaluate the resultant privacy leakage of the generated datasets as compared to
the real datasets

The project description does not provide a concrete definition of privacy, leaving it to us
to formalise this concept and evaluate the synthetic dataset with respect to the chosen
definition. The project explores privacy in terms of the protection of individual identity
in data generation and dataset release, as well as privacy in the context of anonymous
communication over a network.

In response to the project goals, this dissertation focuses on modelling email traf-
fic in a network. It implements a data generation framework which leverages a real
dataset through statistical methods to generate statistically-similar synthetic set of email
transactions, represented by a timestamp, origin and destination. Synthetic data is gener-
ated from a real email log dataset which captures the emails sent between a community
of users within an academic setting in the School of Informatics at the University of
Edinburgh.

To quantify privacy leakage, we simulate sending email messages over an anonymous
MixNet communication network and compare the anonymity level of the simulation for
the synthetic and original datasets.

The following key contributions have been made:

• Implementation of a Statistical Synthetic Email Data Generator for modelling
email transactions for a predefined time period.

• Implementation of a graph projection algorithm for node ε-differentially-private
degree distribution release.

• Transcript mode implementation of Loopix MixNet Simulator [35] to allow
predefined email transactions to be simulated.

• Statistical evaluation of the synthetic data and evaluation of the importance of the
graph structure for network communication privacy.
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1.3 Report Outline

We begin this report by presenting related work and preliminary concepts in Chapter
2. The same chapter gives a summary of the two datasets which were used for the
synthetic data generation. Chapter 3 summarises the mathematical definitions which
will be referenced throughout the report. Chapters 4 and 5 hold the implementation
details and main contributions of this project. Chapter 6 outlines the experiments and
empirical evaluation of the synthetic data, along with the obtained results. Finally, in
Chapter 7 we provide a final summary of the project. We critically assess both the
implementation and evaluation processes described in this report and identify room for
future work.



Chapter 2

Background

This chapter outlines preliminary concepts which form the starting point of this project.
We begin by presenting related work, common algorithms for private data publishing and
how they relate to the aims of this project. Section 2.1.3 presents the work of Babalola,
et al. [2] – a set of statistical methods for stochastic synthesis of email transactions and
main reference for the implementation of the Email Dataset Generator. Section 2.2 gives
an overview of the differentially private algorithm for degree distribution approximation
which has been implemented as part of the data generation process. A MixNet simulator
is used to evaluate the anonymity level of the synthetic data in comparison to the
original dataset. A summary of the anonymous MixNet communication system Loopix
is presented in Section 2.3. Finally, Section 2.4 provides an overview of the two datasets
which were used and the processing work carried out prior to data generation.

2.1 Data Release

Publishing sensitive personal data carries an inherent risk to people’s privacy. Examples
of failure to protect individual privacy in microdata release creates the societal need
for data sharing with quantifiable privacy guarantees on an individual level [25], [28].
Two main classes of approaches have been introduced in an attempt to overcome this
challenge.

2.1.1 Data Anonymisation and Sanitisation

The first class involves the application of algorithms which aim to remove identifying
information from the dataset (de-identification). Such sanitisation and anonymisation
approaches aim to produce a dataset which cannot be easily re-identified [38]. K-
anonymity [39] provides a formal privacy definition to ensure that each individual is a
member of a group of size at least k where all members share the same quasi-identifiers.
This makes it possible to determine the membership of an individual to a group of at
least k members and thus ensures the individual blends into the group.

While such formalisations exist, anonymisation algorithms often do not provide rig-
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Chapter 2. Background 5

orous privacy guarantees and can be insufficient to protect individual privacy [11],
[25], [28]. Methods have proven to be susceptible to linking and differencing attacks,
which can re-identify individual records. Emam, et al. [10] presents the risks of re-
identification of Canadian citizens based on demographic identifiers from a disclosed
sanitised dataset. The publication of taxi trip records by the New York City Taxi and
Limousine Commission (TLC) [40] has shown that the addresses and trip patterns of
drivers can be extracted by de-anonymising car plate records in the data [31]. These
examples prove that sanitisation does not provide sufficient protection of individual
identity and establish the need for sharing personal data while protecting individual
privacy.

2.1.2 Data Generation

The shortcoming of the first category of data privacy techniques motivates research
into the second class which is based on the synthesis of data from original datasets so
that released data does not contain any real information. Data generation methods aim
to mimic the original data as closely as possible to ensure minimum decrease in data
utility. Deep Learning models such as Generative Adversarial Networks (GANs) [14]
and Variational autoencoders (VAE) [21] generate high-quality tabular synthetic data.
Additionally, the statistical properties of data can be extracted and leveraged to generate
synthetic datasets which are statistically and structurally similar to the original data
[34]. Most data generation methods focus on modelling tabular data with single row
record entries such as medical records. However, they do not extend to communication
records of a social network and would fail to identify the characteristics of a social
network graph and email sending patterns.

2.1.3 Social Network Communications

The goal of this project is to model email transactions in a network. The specific nature
of the data requires the generation approach to be tailored to capturing the topology of
the social network and the timings of email message correspondence. To synthesise the
network communications over a network, the data can be characterised by answering
the following two questions:

1. Which accounts communicate with each other?

2. When and how often do accounts communicate with each other?

Answering the first question relates to characterising the communication network as a
graph structure and extrapolating its connectedness e.g. degree distribution, number
of cliques of variable sizes. The social graph of an organisation can say a lot about
its overall structure and hierarchy. This is true specifically for social networks which
often exhibit a scale-free structure based on the degree distribution of their nodes [29].
Intuitively, scale-free networks - networks with degree distribution which follows a
Power Law distribution, are characterised by a large number of nodes with a low degree
and very few, highly-connected nodes (hubs). The small number and high connectivity
of hub nodes makes them easily identifiable and poses a risk to the identity of the
account holder. In an attempt to mitigate this risk, we have identified the importance



Chapter 2. Background 6

of hiding the structure of the social graph. This can be achieved through the means
of differential privacy by adding calibrated random noise to the degree distribution of
the graph. Subsection 2.1.4 provides an introduction into differential privacy and how
it relates to the purposes of this project. Subsection 2.2 introduces the differentially
private graph projection algorithm which is used in the generation process to hide the
structure of the social network.

The second question relates to the temporal sending patterns of accounts within the
social network. Mimicking those patterns can be achieved by extrapolating the email
sending rates with respect to the time of the correspondence. Babalola, et al. [2] propose
a statistical approach for generating email transactions by first extracting the weekly
and hourly sending rate distributions and the individual activity of email accounts.
Those are used as parameters to a time-dependent Poisson Process which is sampled to
individually generate the email transactions of each node in the communication graph.
We use the work of Babalola, et al. as a main reference for the implementation of the
Email Dataset Generator.

2.1.4 Differential Privacy

On their own, generative methods do not ensure data privacy despite no actual ‘real’
data being released. Differential privacy (DP), a mathematical formalisation of privacy
introduced by Dwork [8] allows privacy loss to be quantified and provides some of
the strongest theoretical privacy guarantees. Rather than relating to the data itself,
differential privacy places guarantees on the output of algorithms which query the data
and release aggregate statistics. For an output of a differentially private algorithm on
some dataset, the definition of differential privacy introduces an upper bound on the
difference observed between the output of the algorithm when applied to that same
dataset with a single record having been removed (neighbouring datasets). Intuitively,
this means the two outputs would be indistinguishable relative to a privacy budget, thus
revealing little information about the removed record. In this way, differential privacy
provides protection against differencing attacks, which leverage aggregate statistics
in an attempt to reveal information about an individual record by removing the single
record and comparing the two outputs on the same query. The mathematical formali-
sation of these concepts has resulted in the development of differentially private data
generation algorithms [44], [27], [43].

Differential privacy has been extended to graph data, where the difference lies in
the definition of neighbouring datasets. An algorithm which satisfies graph DP guaran-
tees ensures the removal of a single edge (edge-neighbouring graphs) or a single node
along with all edges incident to it (node-neighbouring graphs) from the input graph does
not change significantly the output of the algorithm [17]. Edge privacy corresponds to
the guarantee that the properties of the relationship between two nodes (existence or
absence) remain private. In our setting, an edge-DP algorithm will prevent conclusions
about whether two accounts communicate. However, it would fail to protect the entire
information of an individual in the network. In contrast, node-DP protects a node along
with all of its adjacent edges. Data release under node-DP has more stringent privacy
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guarantees compared to edge-DP but is more difficult to achieve without significant
modification to the original data. We believe node-differential privacy is better suited
for the goal of hiding the structure of the social network in a way which protects all
relationships of an account. Therefore, we require an algorithm to privately release the
degree distribution of the graph under node-DP.

Differentially private algorithms offer protection to individuals by enforcing a weak
quantified correlation between the presence of a user (or node) in the data and the
algorithm’s output. In the context of the project, releasing the degree distribution and
utilising it for the synthesis of a new graph under differential privacy ensures little
correlation can be made between nodes from the original and the synthetic dataset based
on their connectedness within the network.

Differential privacy is often achieved by adding calibrated noise to the algorithm
output. Large amount of noise has to be added to the whole distribution, to hide nodes
with large degree, resulting in heavy distortion and a decrease in the output’s utility.
This challenge has given rise to a key technique for satisfying node-differential privacy
in graphs: graph projection - a category of transformation methods which project a
graph onto a new θ-degree-bound graph. Kasiviswanathan et al. [19] propose a graph
projection algorithm which transforms the graph by truncating nodes with large degree
and adding calibrated noise to the resultant distribution. We choose this algorithm
as it suites the privacy requirements outlined by the project’s goals and provides a
good trade-off between algorithm complexity and performance. Section 2.2 provides a
summary of the algorithm.

All preliminary concepts and formal definitions of graph differential privacy are pre-
sented in Chapter 3.

2.2 Differentially Private Degree Distribution Approxi-
mation

Kasiviswanathan et al. [19] propose a graph projection algorithm which projects a graph
into a new degree-bound graph. The algorithm truncates nodes with degree greater than
a given threshold θ (naive truncation) and adds calibrated noise sampled from a Cauchy
distribution to the truncated degree distribution.

The algorithm computes ST , the smooth upper bound of the sensitivity of the trun-
cation, i.e. the number of nodes whose degrees may change due to the removal of
large-degree nodes. Instead of using the given degree bound θ, the cutoff threshold
is randomised to obtain θ′ and thus keep ST low. The noise added to the truncated
θ′-degree-bound distribution is calibrated based on the observation that changing a
single node in a θ′-bounded graph can result in a change in up to 2θ′ nodes (when a
node of degree θ′ is rewired entirely by removing all its edges and creating the same
number of edges none of which were previously present in the graph). This determines
the scale parameter of the added Cauchy noise to be 2θ′

√
2

ε
ST .
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The maximum value of the randomised upper bound θ′ depends on the original value θ

and on the number of nodes in the graph. For graphs with a large number of nodes (as
is the case for the two datasets used in this project), this can result in an upper bound
significantly higher than the original value of θ. To avoid such variation and explore
the effect of truncating the graph at a predefined upper bound, we have decided not to
randomise the degree upper bound and directly apply the truncation at θ.

2.3 Loopix Mixnet Simulator

Loopix is an anonymity communication system from the mix network family [35].
While the theoretical details behind its implementation are beyond the scope of the
project, this section provides a summary of Loopix system and explains its relevance to
the project.

Mix networks prevent sender-receiver communication tracing by introducing a set
of proxy servers, also known as mixes or mix nodes, on the travel path of a message.
Those mixes shuffle the order of messages following a predefined mixing strategy
before sending them along (potentially to another mix node). Unlike classical mix
networks, Loopix mixes don’t wait until a fixed number of messages have been received
before mixing and sending them. Instead, Loopix implements a simplification of the
Stop-and-Go strategy which introduces a sending time window and a random delay
sampled from an exponential distribution at each mix node [20]. It further leverages
the Stop-and-Go strategy by introducing decoy cover traffic which follows a Poisson
Process (Poisson Mixing). This provides a trade-off between anonymity, guaranteed by
cover traffic and delays, and latency. The system is designed specifically for low-latency
communication applications such as instant messaging and high-latency communication
such as emails.

A Loopix simulator allows us to simulate the operation of the Loopix anonymity
system and conduct experiments. The simulator provides measures which quantify
message anonymity and end-to-end (E2E) unlinkability. It uses Shannon entropy [37]
to measure the anonymity level of messages. Entropy is a measure of the uncertainty of
a probabilistic event such as the identification of a sender from a set of potential senders
(anonymity set). The higher the entropy, the less certainty an attacker has about the
actual origin of the message (that is the attacker considers all of the potential senders
in the anonymity set as equally likely to have sent the message) [7]. This allows us to
obtain a measure of how distinguishable the sender is and thus determine the anonymity
of messages sent over the system.

Additionally, the simulator measures the end-to-end (E2E) unlinkability of the com-
munication as the expected difference in the likelihood that a message is sent from one
sender in comparison to another:

ε = |log(p0/p1)|
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where p0 and p1 are the probabilities that a message was sent by either one of two
distinct potential senders.

Those metrics will be used to compare the privacy leakage of the original and synthetic
datasets in the context of communication privacy. This will allow us to investigate the
impact of the network graph structure on communication security. In this setting the
goal of the comparison is not to achieve a high anonymity measure for the synthetic
dataset but rather to evaluate the similarity of the original and synthetic datasets on the
results of the simulation.

The current implementation of the simulator only supports sending messages from
one client to another at random times based on a predefined sending rate. To allow
sending messages at times specified by an email log, we have implemented a transcript
mode, which extracts the email messages of each account from a csv file and generates
delays to match the exact times a message is sent. The details of the implementation are
presented in Chapter 5.

It is important to note that communication privacy relates to secure communications
over a network, whereas differential privacy, as mentioned in the previous section,
relates to individual identity protection in the context of data release.

2.4 Datasets

This subsection provides a description of the two reference datasets used in the data
generation process and the data processing which was required prior to the data genera-
tion.

2.4.1 Enron Email Corpus

The Enron email corpus was made public by the Federal Energy Regulatory Commis-
sion in 2004 [4]. The database consists of 619,446 emails, grouped in folders, belonging
to 158 employees of the senior management circle of the company. The emails were
generated in the years 1999 to 2002 leading up to the company’s collapse in 2001. Due
to events surrounding the data release, research of the corpus has been primarily focused
on analysis of the semantic content for fraud detection [33], email classification [22]
[26] and network characterisation [5], [16].

It is important to emphasize that the Enron dataset was used as a reference when
making decisions concerning the implementation of the data generation algorithm. The
advantages and potential flaws of this approach have been discussed in Section 7.2.

2.4.1.1 Format

The database consists of email logs which contain the metadata and semantic content of
messages, presented as a single string sequence of key-value pairs. Below is a single
entry:
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Message-ID: <30965995.1075863688265.JavaMail.evans@thyme>
Date: Thu, 31 Aug 2000 04:17:00 -0700 (PDT)
From: phillip.allen@enron.com
To: greg.piper@enron.com
Subject: Re: Hello
Mime-Version: 1.0
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit
X-From: Phillip K Allen
X-To: Greg Piper
X-cc:
X-bcc:
X-Folder: \Phillip_Allen_Dec2000\Notes Folders\’sent mail
X-Origin: Allen-P
X-FileName: pallen.nsf

Greg,
How about either next Tuesday or Thursday?
Phillip

2.4.1.2 Processing

The database consists of information irrelevant for the purposes of the project: invalid
entries, missing fields and email duplicates. Considerable effort was put into cleaning
the dataset.

• Extraction
The project is not concerned with the textual content but rather with the origin,
destination and timestamp of the email transactions. Therefore, only the relevant
set of fields is extracted from each entry (‘Message-ID’; ‘Date’; From: [‘From’,
‘X-From’]; To: [‘To’, ‘X-To’, ‘X-cc’, ‘X-bcc’]).

• Duplicate removal
Most of the duplicate emails reside in folders such as ‘discussion threads’,
‘all documents’, ‘sent mail’, which seem to be computer-generated, and all of
their contents are already present in other user-created folders or in the main
mailbox of the user [45]. The dataset contained multiple entries with the same
Message-Id, usually due to a copy being stored by both the sender and recipient.

• Invalid Entries
Entries with invalid or missing addresser or addressee were discovered using
regular expressions. The majority of messages in the dataset were sent between
1999 and 2002 but some entries included a timestamp dating back to 1979 or on
the other end – stating dates in the future such as the year 2040.

• Sanitisation
The Enron database contains the original email addresses of the correspondents,
which had to be sanitised. A simple sanitisation technique was used to anonymise
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the data by generating a mapping for all email addresses to a randomly generated
unique id.

All duplicate and invalid messages described above were removed.

2.4.2 School of Informatics: Sendmail logs

The Sendmail logs were obtained from the School of Informatics at the University of
Edinburgh and include email communications of the IT Services at the university over
the course of 2 months between 31 Nov 2019 and 31 Jan 2020. The logs have been
sanitised prior to our receipt of the dataset.

2.4.2.1 Format

Each line in the system log consists of a timestamp, the name of the machine that
generated the log (host), the word sendmail:, Process-id (pid), Queue-id (qid) and a
message. Most messages are a sequence of name=value pairs [1]:

<date> <host> sendmail[pid]: <qid>: [<name>=<value>,]

Two log entries corresponding to the same email message are presented below with
some name=value pairs omitted.

2020-01-31T15:32:03.970293+00:00 crunchie sendmail[8691]:
00VFW3CK008691:
from=<ead680ca1f3344f2fa4b9dc297bcd7>,
size=26196,
class=-60,
nrcpts=1,
msgid=d4017bcdd7801840374de261a2e724f,

2020-01-31T15:32:04.536097+00:00 crunchie sendmail[8699]:
00VFW3CK008691:
to=<76e99001bc50dc6bbb7cd8312506d1>,
delay=00:00:01,
xdelay=00:00:01,
mailer=esmtp,
pri=164385,
dsn=2.0.0,
stat=Sent (00VFW4xK013490 Message accepted for delivery)

2.4.2.2 Processing

Each log of the database was parsed using regular expressions to extract the following
fields: <date>, <qid>, <from_value>, <to_value>, <msgid_value>, <stat_value>.
As in the example, the database contains multiple log entries for a single email message.
Logs corresponding to the same message share the same queue-id, which made it
easy to group the logs and extract the time, origin and destination of each message.
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Any messages with invalid status value (stat), such as User unknown, Deferred or
Data format error were dropped.

2.4.3 Summary

The processed datasets are stored as csv files, where every line corresponds to a message
record, characterised by a timestamp, the id of the originating node (sender) and a set
of destination ids (recipient list). Table 2.1 gives a summary of the underlying social
graph of both datasets and Table 2.2 presents the total and weekly average number of
messages for the entire datasets and the average and maximum number of messages
sent by a single account. The average hourly email sending rates over the course of a
week are shown on Figure 2.1.

|V | |E| davg dmax Clustering
Coefficient

Power Law
Exponent

Enron 6096 76271 9.023 908 0.314 2.436
Sendmail log 3848 7400 4.920 1351 0.288 2.230

Table 2.1: Dataset information: Graph summary, where V is the set of nodes (email
accounts), E is the edge set and d is a node’s degree

Start date End date |M| |M|weekly,avg |Mi|avg |Mi|max

Enron 01-01-2001 01-01-2002 156954 3018.4 25.74 4759
Sendmail log 30-11-2019 31-01-2001 87412 9712.4 29.08 9684

Table 2.2: Dataset information: Message summary, where M is the set of email
messages and Mi is the set of messages originating from account i

Figure 2.1: Average hourly email sending rates in a week



Chapter 3

Definitions

This chapter provides a formalisation of definitions and related concepts. The first
section defines differential privacy and its variations relating to graph privacy: node-
and edge-differential privacy. The second section is a mathematical formalisation of the
evaluation metrics used in the project. Those concepts will be referenced throughout
the report.

3.1 Differential Privacy

Definition 1 (ε-Differential Privacy [8]). A randomised algorithm A is ε-differentially
private if for all two neighbouring datasets D, D′ and any subset of outputs S in the
output space of A: S⊆ Range(A), the following holds:

Pr[A(D) ∈ S]≤ eε×Pr[A(D′) ∈ S]

where Pr is the probability over the randomness of A, ε is the privacy parameter, also
called privacy budget. Two datasets are neighbours if they differ by exactly one entry
(whether modified or removed).

Intuitively, for some query on some dataset, a differentially private algorithm produces
an output, regulated by the privacy parameter ε, that is statistically indistinguishable
within a factor of eε from the same query on the same dataset had any one individual’s
information been excluded or added. That is, the exclusion or addition of a single
sample of the dataset results in an insignificant change of the output of A, bounded by
the privacy parameter. Smaller ε values enforce stronger privacy and require more noise
to be added to ensure differential privacy, often at the expense of data accuracy and
utility.

This definition of differential privacy refers to tabular datasets where a single entry
represents the record of a single individual. In this case individual entries can be added,
removed or modified without affecting the rest of the dataset. However, this definition
has to be adapted when applied to a graphs. Hay et al. [17] propose two definitions:
node (node-DP) and edge differential privacy (edge-DP).

13
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Definition 2 (ε-Node (Edge) Differential Privacy [17]). A randomised algorithm A is
ε-node private (resp. edge-private) if for all two graphs G, G′ at node-distance 1 (resp.
edge-distance 1) and any subset of outputs S in the output space of A: S⊆ Range(A),
the following holds:

Pr[A(G) ∈ S]≤ eε×Pr[A(G′) ∈ S]

where the two datasets are neighbours if they differ by exactly one entry.

The difference between node-DP and edge-DP depends entirely on the definition of
neighbouring graphs. Neighbouring graphs in the context of edge-DP differ by a single
edge which has been removed from the dataset. The definition of Node Neighbouring
graphs is presented below.

Definition 3 (Node Distance). For two graphs G and G′, the node distance dnode(G,G′)
is defined as the minimum number of nodes which need to be modified in G to obtain
G′.

dnode(G,G′) = max(|VG|, |VG′|)− k

where k is the number of nodes in the largest induced subgraph of G which is equal to
the corresponding induced subgraph of G′. Node modification includes the insertion or
removal of the node and its set of edges, or a modification to the adjacency list of the
node.

Definition 4 (Node Neighbours). Two graphs G and G′ are node neighbours if
dnode(G,G′) = 1.

Differential privacy of a randomised algorithm f is achieved by adding random noise
where the amount of added noise is calibrated to the sensitivity of the algorithm [9].
Intuitively, the sensitivity of a function is the quantified difference which can be observed
in the output of f when applied to two neighbouring graphs G and G′.

Definition 5 (Local Sensitivity[9]). For a function f : Gn→ Rp and a graph G ∈ Gn
with n nodes, the local sensitivity of f at G is:

LS f (G) = maxG′ || f (G)− f G′||1
where the maximum is taken from all node neighbours of G.
The higher the sensitivity, the more noise has to be added to mask the difference in the
two outputs of the algorithm.

Edge-DP protects the relationship between any two nodes, whereas node-DP provides
privacy to the node, including its existence in the dataset and its relations to other
nodes [24]. The removal of a single node can subsequently lead to the removal of up to
|V | edges (where V is the set of nodes in the graph). Therefore, node-DP has higher
sensitivity, especially in well-connected graphs. As such it provides stronger privacy
guarantees but is harder to achieve [6].
Nodes with large degrees represent the main challenge in designing differentially private
graph algorithms because they result in high sensitivity and thus require large amounts
of noise to be added. To overcome this challenge, node-DP algorithms use graph
projection to transform the original graph into a graph where nodes with large degrees
are removed in an attempt to limit the sensitivity and consequently the amount of
calibrated noise. Naive truncation is one such graph projection algorithm [19].
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Definition 6 (Naive Truncation). For a graph G = (V,E) and an integer value θ, naive
truncation is a function Tθ : G → G defined as T (V,E) = (V ′,E ′) where V ′ = {v|v ∈
V ;dv ≤ θ} and E ′ = {(v1,v2)|(v1,v2) ∈ E;v1,v2 ∈V ′}.
Naive truncation is the operator which removes all nodes with degree greater than an
upper bound θ along with all edges adjacent to them.

Definition 7 (Smooth Bound on Local Sensitivity [19]). For β > 0, a function S :
Gn→ R is an β-smooth upper bound on the local sensitivity of f if the following is
satisfied:

∀G ∈ Gn : S(G)≥ LS f (G)

∀neighboursG,G′ ∈ Gn : S(G)≤ eβS(G′)

Theorem 1 (Smooth Bound on Composed Functions [19]). Let T : Gn→ Gn,θ. If
ST (G) is the β-smooth upper bound on the local sensitivity of T , then S f◦T (G) =
ST (G)×∆θ f is a β-smooth upper bound on the local sensitivity of f ◦T .

Theorem 2 (Calibrating Cauchy Noise to Local Sensitivity Smooth Bounds [19]).
For a function f : Gn → Rp, let S be its β−smooth bound on LS f . For β ≤ ε√

2p
an

algorithm:

A(G) = f (G)+Cauchy(

√
2

ε
×S(G))p

is ε-differentially private.

Definition 8 (Smooth Bound on Naive Truncation). The smooth upper bound on the
local sensitivity of naive truncation STθ

: G → G is defined as:

STθ
(G) = maxke−βk(1+ k+Nk(G))

where k ∈ [1, . . . ,θ] and Nk(K) is the number of nodes in G with degrees in the range
[θ−k,θ+k+1]. Then (1+k+Nk(G)) corresponds to the local sensitivity of truncation
for any two graphs G and G′ with node distance k.

Intuitively, the smooth upper bound on naive truncation is a bound on the number
of nodes in the graph which can experience a change in their degree as a result of
the truncation. Based on Theorem 1 and 2 and Definition 9, Kasiviswanathan et al.
[19] obtain a truncation algorithm which adds calibrated noise to the discrete degree
distribution of θ-degree-bound graph G:

Theorem 3 (ε-differentially Private Degree Distribution Approximation). Let p ∈
Rdmax+1 be the degree distribution of graph Gn with maximum node degree dmax and
pTθ
∈ Rθ+1 be the degree distribution of the graph after truncation. Then the degree

distribution pTθ,ε:

pTθ,ε = pTθ
+Cauchy(

√
2

ε
×2θ×STθ

(G))θ+1

is ε-differentially private.
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3.2 Evaluation Metrics

As most differentially private algorithms, the truncation algorithm relies on adding
noise to the degree distribution of the original graph, which can come at the cost of data
utility. This section presents the metrics used to quantify the utility loss of hiding the
social graph structure.

Definition 1 (PER: Preserved Edge Ratio). For an original graph G(V,E) and a
projected graph Gθ(V θ,Eθ), the preserved edge ratio is defined as the ratio of the
number of edges in the θ-bounded graph Gθ and the number of edges of the original
graph G.

PER =
|Eθ|
|E|

While PER does not give any insight into the way edges are distributed within the
graph, it provides a measure of the overall number of edges in the synthetic graph in
comparison to the original graph of the same size. An optimal value would be PER = 1.

Definition 2 (L1 Distance). The L1 norm of two distributions dG ∈ Rm and dG ′Rm′:

||dG −dG ′||1 =
n

∑
i=1
|dG ,i−dG ′,i|

where, in the context of the project, dG and dG ′ are the discrete degree distributions
of graphs G and G′, respectively. dG ,i is the number of edges with degree i in G . The
distribution with the lower dimension is padded with zeros for the comparison and
n = max(m,m′).

Definition 3 (Kolmogorov-Smirnov (KS) Distance). The KS distance of the cumu-
lative distribution functions of two distributions is used to measure how close the two
distributions are:

KS(d1,d2) = maxi|CDFd1(i)−CDFd2(i)|

Definition 4 (Graph Average Clustering Coefficient [42]). The Average clustering
coefficient of graph G = (V,E) is defined as the average of the local clustering coef-
ficients of all vertices in V . The local clustering coefficient is a measure of how well
connected the neighbours of a node are within each other.
Formally, the local clustering coefficient of node v is the number of edges between the
neighbours of v and the maximum number of edges that could exist between them:

C =
1
|V | ∑

vk∈V

2×|{ei, j|vi,v j ∈ Nk,ei, j ∈ E}|
|Nk|× (|Nk|−1)|

where Nk is the set of vertices directly adjacent to vertex vk.



Chapter 4

Implementation: Email Data Generator

This chapter presents the design choices and implementation of the Email Data Genera-
tor. The Email Data Generator provides an implementation of a statistic data generation
approach suited for email log datasets. It infers the structure of the communication
network (which nodes communicate with each other), and the temporal patterns of
these communications (when do nodes communicate with each other). Those data
characteristics are used to stochastically generate synthetic email traffic.

4.1 System Overview

The data extraction process consists of extracting statistical measures to characterise:

• the social graph constructed by email transactions between accounts;

• the activity level of each account determined by the number of emails they have
sent;

• the temporal patterns of email traffic.

Those are subsequently sampled to generate synthetic email messages.

17
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4.2 Network Graph

The network of the dataset is represented as an undirected graph where each email
account is a vertex and an email message from one user to another is an edge between
two nodes. The degree of each node is extracted from the network to form a degree
distribution which describes the connectedness of the graph.

4.2.1 Fitting the Original Degree Distribution

When plotting the degree distribution histogram (Figure 4.1), we see a large number of
nodes with low degree and a very small number of highly connected nodes (hubs). In
that sense the degree distribution resembles that of a scale-free network. A scale-free
network is one with a Power Law degree distribution, where the proportion of nodes
with degree d is directly proportional to d−α:

Prdeg(d) ∝ d−α

We used the powerlaw library in Python to obtain an optimal fit of the degree distribu-
tion. The result is an α parameter equal to 2.436.

Figure 4.1: Degree Distribution Histogram

Figure 4.2: Log-log Degree distribution
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4.2.2 Node-DP Degree Distribution Approximation

To hide the original structure of the graph, the Email Data Generator incorporates
a variation of the truncation algorithm proposed by Kasiviswanathan et al. [19] for
node-differentially private degree distribution approximation. The algorithm outputs a
private θ-bound degree distribution. It randomises the actual upper bound θ′ used in the
truncation by randomly selecting it from the range:

θ
′ ∽ {θ+(

√
2(θ+1)× ln|V |

ε
)+1, . . . ,2θ+(

√
2(θ+1)× ln|V |

ε
)}

The greater the initial value θ and the number of nodes in the graph |V |, the higher the
upper bound of the randomised value θ′ becomes. As a result, graphs with many nodes
will experience a degree upper bound θ′ which is significantly higher than the initial
value of θ. For that reason, we have decided not to randomise the upper bound and
directly perform truncation with upper bound θ. The pseudocode of the implementation
is presented as Algorithm 1.

Algorithm 1 ε-Node-DP Algorithm for Degree Distribution Approximation

Input: ε, θ, G = (V,E), p - frequency degree distribution of G
1: b← ε/

√
2(θ+1)

2: Smax← 0
3: for k = 1,2, . . . ,θ do
4: n← |{v|v ∈V,degv ∈ [θ− k, . . . ,θ+ k+1]}| ▷ Number of nodes with degree

in range
5: Smax← max(Smax,e−bk(1+ k+n)) ▷ Smooth upper bound of LS of Naive

Truncation
6: end for
7: c ∽Cauchy(

√
2

ε
×2θ×S(G))θ+1 ▷ Random noise

8: p′← pdeg≤θ + c
9: Output: p′

Steps 3-5 determine the smooth upper bound of the local sensitivity of the graph trunca-
tion and steps 7,8 generate the node-private degree distribution by adding random noise
sampled from Cauchy distribution to the θ-bound degree distribution.

Unlike the degree distribution of the original social graph, the node-DP degree distri-
bution cannot be modelled using a Power Law distribution due to the truncation of
large degrees. Instead, the random noise is added to the node frequency, which is then
normalised to obtain a discrete distribution. The private distribution is sampled when
generating the degrees of nodes in the synthetic graph.

4.2.3 Graph Generation from Prescribed Degree Sequence

The node degree distribution (whether discrete or Power law) is sampled to generate
the degrees of the nodes for the synthetic network graph. The connectivity graph
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is generated following the sequential algorithm for generating random graphs with
prescribed degrees, presented by Blitzstein and Diaconis [3]. The algorithm generates
the edges of a graph by iteratively populating a binary matrix. The pseudocode in
Algorithm 2 describes the algorithm:

Algorithm 2 Random Graph Generation with Prescribed Degrees

Input: Degree Sequence of size N: D = (d1,d2, . . . ,dN) in decreasing order
1: if D.sum is odd then
2: DN ← DN +1
3: end if
4: R← [] ▷ Residual Degrees
5: for i = 1,2, . . . ,N do
6: R← R+[i]∗Di
7: end for
8: A← N×N 0-matrix ▷ Adjacency Matrix
9: m← 100 ▷ Max Retry Constant

10: c← 0 ▷ Retry Count
11: while R not empty do
12: i← R1
13: f ← random from {2,3, . . . ,R.size}
14: j← R f
15: if i = j or Ai, j > 0 then
16: c← c+1
17: if c >= m then ▷ Max retry reached; Restart Algorithm
18: Return to Step 8
19: end if
20: Return to Step 14
21: end if
22: Ai, j,A j,i← 1
23: Del R1,R f
24: end while
25: Output: A

4.3 Individual User Activity

The generation method is based on the assumption that some individual users are more
active and send more emails compared to others. Applying k-means clustering on the
total number of emails sent by each individual user, allowed us to identify different
activity clusters. The elbow rule was used to determine the most appropriate number of
activity clusters in the dataset (Figure 4.3). This number is entirely dataset specific and
will differ for different original datasets.
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Figure 4.3: Number of activity clusters against distortion for Enron dataset

A discrete distribution is used to capture the allocation of nodes across the different
activity clusters, where each cluster can be thought of as a different activity level.
When implementing this for the Enron email dataset, most nodes end up in a cluster of
relatively inactive accounts with a small number of sent emails (appearing as the blue
cluster in Figure 4.4).

Figure 4.4: Account distribution in 4 Activity Clusters

A separate activity distribution is extracted for the nodes in each cluster. The distribu-
tions represent the total number of emails sent by each node.

The activity cluster distribution is sampled N times to generate the activity level of the N
synthetic nodes. Depending on the activity level of each node, the corresponding activity
distribution is sampled to determine the exact activity proportion of each node. The
final result is a δ ∈ RN normalised vector of activity proportions for the N individuals
in the synthetic network. This vector is used to normalise the total sending rate λ(t)
once emails are generated for each node individually.

4.4 Capturing Temporal Patterns of Email Traffic

The temporal patterns of sending emails across the social network are characterised
by the timestamp of the messages. Those patterns depend on the nature and origin
of the dataset. The Enron dataset contains email messages sent over the course of a
whole year, which plays a big role in determining how to extract email sending rates.
Given the Enron dataset holds email communications from a work environment, there
seem to be a large number of emails sent during working hours on business days and a
clear decrease in communications outside of working hours and during the weekend,
which motivates our choice of timestep to be one hour in a weekly model. A smaller
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timestep might be more appropriate if there are more fine-grained patterns in the data.
For the Enron dataset, the emails generated within an hour seem to follow a uniform
distribution so emails a equally likely to be generated at any minute within the course
of an hour. In addition, the average number of emails sent in an hour is 10.69, therefore,
the sending rates would become really small should a smaller timestep (e.g. minute) be
chosen.

As a result, the timestamps of all email messages are used to obtain a time-dependent
function λt of the sending rates of emails. The function outputs the expected number of
generated emails across all accounts given a specific hour of the week.

4.5 Email Message Generation

The generation of individual emails follows a time-dependent arrival function which
can be modelled using an Inhomogeneous Poisson Point process. The rates extracted
at the previous stage are now used as email-generation rates at time-specific intervals
aggregated across all accounts. The rate is then normalised using the individual activity
of each account to get the email generation rate for an account at a specific hour of the
week.

4.5.1 Time-dependent Poisson Process Simulation

We simulate a homogeneous Poisson Point Process in Python by setting a constant rate
r to draw N samples. However, email sending rates vary depending on the time of
generation. This is formally know as a Nonhomogeneous Poisson Process, when the
intensity of a Poisson Process is not a constant but a location-dependent function in the
underlying space on which the Poisson process is defined [12].

For the generation of a Nonhomogeneous Poisson Process, thinning has been applied,
also known as acceptance-rejection method. The intuition behind the thinning algorithm
is to find an upper-bound rate λmax which dominates the rate function λ(t). The rate
λmax is used to simulate a Poisson Process with a constant rate. Then an appropriate
fraction of the generated the events is rejected until the rate λ(t) is achieved. The details
and proof of correctness of the the method are presented by R.Pasupathy [32].
The rate parameter λ is a function of time, which can be interpreted as an hourly email
sending rate depending on the time of day and week. The function is deterministic
and has a finite input space limited by the weekly-hourly model, which simplifies the
simulation process. The following procedure illustrates the steps involved in simulating
the upper-bound Homogeneous Poisson Process and thinning tailored to the email
generation.
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Algorithm 3 Poisson Process Simulation

Input: Individual activity proportion δ, Time-dependent rate function λ, Time t, Upper-
bound rate λmax

1: Generate p ∽ Poisson(λmax×δ) ▷ Number of potential emails
2: r← 0 ▷ Number of realised emails
3: for i = 1,2, . . . , p do
4: Generate g ∽U(0,1) ▷ Draw from Normal distribution
5: if g < λ(t)/λmax then
6: r← r+1 ▷ Realised Email
7: end if
8: end for
9: Output: r

Steps 5-7 are equivalent to drawing a sample from a Bernoulli distribution with parame-
ter λ(t)/λmax, which either accepts or rejects the potential email.
The algorithm is run for every node in the synthetic graph and every time interval within
the generation period to determine the number of emails sent at each time interval.
Email generation rates seem to follow a uniform distribution within the chosen time
interval of 60 minutes. This means an email is equally likely to be generated at any
minute within an hour. Consequently, to generate the exact times of emails messages,
the time is chosen randomly within the one-hour time interval.

4.5.2 Recipient Selection

Each email account has a set of the exact times at which an email message is sent out.
We use the binary adjacency matrix of the synthetic graph to select a list of recipients
for each message. The recipients of a message are a randomly chosen subset of the
sender node’s neighbours.



Chapter 5

Implementation: Transcripted Loopix
MixNet Simulation

The Loopix MixNet Simulator is used for the empirical evaluation of the Loopix
communication system. It consists of a test mode which simulates the generation of
‘real’ messages at a predefined rate. For the purposes of this project we wish to evaluate
the synthetic dataset of email communications against the original dataset in the context
of network security. This required the implementation of a transcript mode which only
sends messages at specific times determined by a log file. The chapter begins with a
summary of the existing system and continues to outline the details of the transcript
mode implementation.

5.1 System Overview

The simulation is a multi-agent system, where each node in the network, whether a
mix or a client (sender or recipient), is implemented as an individual process. The
implementation is in Python using the SimPy package for discrete-event simulation. It
leverages OOP principles by introducing a parent Node class which is responsible for
packet handling. It implements the sending, mixing, forwarding and receipt of real and
cover traffic. The Client class represents the senders and recipients in the network, and
holds the main logic of the transcript mode. All clients and mixnodes are initialised as
part of a Network class instance which initialises the network layers and the mix nodes
in each layer. Communications between nodes are represented by Message instances
with randomly generated payload split into Packets, which are transported individually
over the network.

A configuration json file provides the simulation settings - network topology, number
of clients, sending rate and delays, message and packet size. The current design of the
system was taken into account to minimise the number of changes when implementing
the transcript mode.

24
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5.2 Delay Generation

The simulator creates a separate process and simulates messages individually for each
client. It uses delays to determine the amount of time in-between messages and sched-
ules timeouts before sending each new message.

The log file contains the time, origin and destination of each message ordered by
timestamp for all email accounts. That meant the log file had to be parsed by extracting
the messages of each client to allow each Client instance to individually schedule
messages, independent of the other clients. The simulator uses timeouts and delays
to set the wait-time between events. Consequently, rather than using the timestamps
for the exact time a message is sent, the time period before a client schedules a new
message is determined relative to the last message sent. Delays are generated as the
time difference between every two consecutive messages.

5.3 Message Scheduling

When the client schedules a message, the message is added to the client’s buffer. An-
other client process sends out messages with delays sampled from an exponential
distribution with a predefined rate. The process either sends out a real message by
extracting it from the buffer (in case a real message has been scheduled and the buffer is
not empty), or by sending out a dummy message. This type of decoy traffic is referred
to as loop traffic [35]. Either way, a message is sent at the predefined rate, be it real or a
dummy.

At the start of the simulation, each client is given the messages they will schedule
throughout the whole course of the simulation. The messages are stored in an array
containing tuples of the already generated Message instance and the time to wait af-
ter the last message was sent before scheduling the new one. Each client schedules
messages by looping through the message array, scheduling a timeout to wait a certain
amount of time specified by the delay of the message before scheduling the message
and proceeding to the next one.

Special care needs to be taken for the first message a client schedules to ensure it
is not sent out immediately after the start of the simulation. The wait-time of the first
message for each client is determined as the difference of the timestamp of the client’s
first message and the very first message in the entire message log.

5.4 Termination Condition

The simulation runs until a termination condition has been satisfied. The termination
condition is satisfied after all real packets had been sent. Once all these real packets
are received, the termination event is triggered, which completes the simulation. The
test mode only supports the simulation of real packets by a single sender which is
allocated control over the termination of the entire simulation. This would not fit the
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transcript mode as it does not extend to multiple senders and a varying number of
packets depending on the message log file. Instead, an additional flag was added to the
Message class, which is set to true if that message is the last one in the log file. When
the final message is sent, the termination condition is satisfied, which signifies that no
more real packets will be transported over the network. Only once all real messages are
received, the termination event is triggered and the simulation is completed.

5.5 Anonymity and Unlinkability Measurement

The test mode of the simulator generates ‘real’ messages split into packets. The system
simulates a fixed number of real packets, specified by the simulation configuration file
and calculates their entropy.

For transcript mode, the number of real packets depends on the message payload
size and the number of messages as stored in the log file. When generating packets,
each packet is given a unique id which allowed tracking the packet and recording its
entropy upon arrival at the last mix node before it is forwarded to the recipient. The
total entropy is calculated by averaging out the entropy of all real packets. This allowed
determining the entropy on the entire set of real network traffic.

The E2E unlinkability is calculated by randomly selecting two clients (senders) at
the start of the simulation and recording the probability of each received packet origi-
nating from the first sender, the second or neither.



Chapter 6

Evaluation

This chapter reports the experimental results of the evaluation of the Email Data
Generator both with and without applying the private degree distribution approximation
algorithm. The chapter analyses the privacy-utility trade-off of using the differentially
private degree distribution when generating the synthetic social graph. We further report
results on how perturbing the shape of the network affects communication security and
conclude that communication anonymity does not depend on the topology of the social
graph but on the temporal patterns of the correspondence of accounts. The chapter
begins by presenting the settings of the evaluation.

6.1 Datasets and Experimental Settings

This section provides the settings details under which we conducted our experiments.
The section can be used as a reference for the potential replication of the experiments,
the results of which are presented in the Sections 6.2 to 6.4.

6.1.1 Datasets

As previously mentioned, the implementation of the Email Data Generator is based
on the Enron Email dataset and as such we recognise it might not extend to other
email communication datasets with different social-graph characteristics and temporal
sending patterns. Therefore, we have chosen to evaluate the data generation process on
the Sendmail Log dataset.

The preprocessed Sendmail Log dataset contains email transactions over the course of
two months for a total of 3848 accounts. Such large timespan and graph size make it
infeasible to run the Loopix simulator on the whole dataset. The simulator generates a
separate process for each account, which makes the simulation computationally heavy
should the network consist of a large number of accounts. We chose to limit the time
frame of the simulation by extracting the email communications within a single week.
We believe the timespan of a week is small enough to be simulated but large enough
to capture the hourly email sending patterns when synthetic data is being generated.

27
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This allowed scaling down the dataset to email transactions of 124 accounts over the
course of a single week. The same reduced dataset was used to generate synthetic data
with and without applying the differentially private degree approximation. The reduced
real dataset and the synthetic ones generated from it were only used for the Loopix sim-
ulation. The rest of the evaluation is based on the entire processed Sendmail Log dataset.

Where no θ and ε values are explicitly stated and the data is simply referred to as
‘synthetic’, the original degree distribution has been used for the graph generation.

6.1.2 Choosing ε and θ

Privacy has been rigorously formalised through the introduction of the privacy budget ε.
The value of the privacy parameter ε quantifies how much importance we attribute to
minimising the privacy loss when producing a private social graph degree distribution.
However, there is no rigorous method for choosing the exact value of ε [18]. Stringent
privacy needs ask for the value of ε to be less than 1. However, by relaxing privacy
requirements, ε could take values of up to 10.
Small values of ε provide higher guarantees, however, require more random noise to be
added to the degree distribution of the social graph, thus distorting the original distribu-
tion of the graph and potentially resulting in a completely new graph topology. High ε

values have smaller impact on the original degree distribution by reducing the amount
of distortion to the degree distribution but would fail to hide the social graph. To cover
both of these extremes and observe the impact of the privacy budget on the utility of
the private social graph release, we have chosen ε∈ [0.1,0.25,0.5,1,1.5,2,3,5,7.5,10].

The degree distribution projection algorithm bounds the largest degree in the graph to
predefined value θ to reduce the amount of noise which has to be added to the resultant
θ-bound degree distribution. The optimal choice of θ depends on the degree distribution
of the original graph and the choice of ε. Larger θ will allow higher degrees to be
present in the private degree distribution but will add more noise, thus heavily distorting
the distribution. In the case of both datasets that we have been working with, the social
network is scale-free, which means that a big proportion of the nodes are of small
degree. In this situation, a small value θ will still be able to preserve a lot of the nodes’
original degree because of the low number of high-degree nodes, while maintaining a
low noise level.
The social graph of the processed Sendmail Log dataset has 3848 nodes, with mean
degree 4.92 and standard deviation 32.34. Table 6.1 presents the proportion of nodes
with degree smaller or equal to some upper bound. There are very few nodes with large

θ 4 8 16 25 50 75 100
|V d≤θ|
|V | 0.8613 0.9208 0.9578 0.9741 0.9890 0.9930 0.9947

Table 6.1: Sendmail Log Graph: Partial Cumulative Distribution

degree. The proportion of nodes with degree smaller than the mean is 0.86. Therefore,
setting the upper bound θ = 4 would preserve a large proportion of the original degrees
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of the graph while adding a small amount of noise to the truncated degree distribution.
With regards to the degree distribution of the graph, we explore a wide range of upper
bounds without setting the upper bound too high: θ ∈ [4,8,16,25,50,100].

As mentioned in the previous section, the reduced dataset contains a significantly
smaller account set consisting of 124 accounts. The average degree is 7.96 and the
maximum is 45. Therefore, we define a separate set of upper bounds for the reduced
dataset which was used for the Loopix simulation: θ ∈ [4,8,16,25].

6.1.3 Loopix Simulator Setup

We ran the Loopix Simulator with fixed mixing delay µ = 1ms. The delays of all
messages at each mix node are sampled from an exponential distribution with parameter
µ. Each client has a sending rate of 10ms (that is the rate at which the buffer is checked
for scheduled messages or a dummy message is sent out). The network has 9 mix nodes
in a stratified topology with 3 layers and 3 mix nodes in each layer, as described in [35].
Every email message is contained in a single Sphinx packet. Cover traffic has been
disabled (this does not include loop traffic).
A total of 42 simulations were run on a 2.80 GHz, 16GB RAM Windows machine. Each
simulation took an average of 9.5 hours. Each simulation setting was run a single time
due to limited time constraints.

6.2 Statistical Evaluation of Synthetic Data

This section presents the statistical evaluation of the synthetic data in comparison to
the real data. We use the clustering coefficient as a measure of the degree to which the
nodes in the graph are clustered together. A clique is a subset of vertices V ′ of graph G
such that the subgraph induced by V ′ is complete (there is an edge between any two
distinct vertices in V ′). The clique number of a graph is the largest number of vertices
in the original graph which form a clique. The clique number and clustering coefficient
are used to compare the synthetic graph to the original.

The graph generation algorithm constructs edges by randomly selecting two vertices
which have not reached their prescribed degree. It does not preserve the clustering prop-
erties of the original graph as seen by the low clustering coefficient for the synthetically
generated graph.

dmax dmean dstd Clustering
Coefficient

Clique
Number

Power Law
Exponent

real 1351 4.92 32.33 0.2879 12 2.23
synthetic 933 5.21 35.08 0.1003 5 2.45

Table 6.2: Real and Synthetic Social Graph Comparison

By fitting the original degree distribution, we are able generate a scale-free synthetic



Chapter 6. Evaluation 30

graph. Both graphs follow a Power Law distribution at their tails with close Power Law
exponent values.

Table 6.3 outlines the message characteristics of the original and synthetic datasets. A
message is a single email generated by one account to one or potentially more recipients.
For the generation of timestamps, we extract the hourly sending rates over the course of
a week of the real data. To explore how well those rates are preserved for the synthetic
email dataset, we construct the normalised cumulative distribution of hourly sending
rates for both synthetic and real email messages. The maximum cumulative KS-distance
is calculated to determine how closely the synthetic rates follow those of the original
data.

The synthetic data preserves the email sending rates of the original data, which is
indicated by the small KS-distance. Additionally, the preserved sending rates result in
a total number of generated messages within ±0.05 range of the size of the original
message set. However, the maximum number of email messages generated by a single
account is considerably lower compared to the most active account in the real data. This
can be attributed to the rarity of highly active accounts.

|M| |M|weekly,avg |Mi|avg |Mi|max Weekly-Hourly sending
rate KS-distance

real 87412 9712.4 29.08 9684 0.0
synthetic 85245 9471.7 23.58 5936 0.05

Table 6.3: Real and Synthetic Social Message Comparison

6.3 Synthetic Private Social Graph

6.3.1 Random Cauchy Noise

Table 6.4 shows the scale parameter of Cauchy noise for different upper bound θ and
privacy parameter ε values. As described in Section 4.2.2, randomly generated noise
is added to the degree frequency for all degrees d ∈ [1, . . . ,θ]. The noise decreases as
the privacy guarantees are relaxed by increasing the privacy budget. Conversely, as θ

increases, more noise must be added to ‘blend’ the large-degree nodes in the degree
distribution, resulting in a large scale parameter.

ε

0.1 0.25 0.5 1.0 1.5 2.0 3.0 5.0 7.5 10.0

θ

4 99.99 37.53 16.87 6.82 3.68 2.233 0.97 0.25 0.08 0.06
8 205.68 75.76 33.01 12.53 6.34 3.61 1.39 0.27 0.05 0.03

16 420.36 153.12 65.50 23.97 11.70 6.42 2.29 0.39 0.06 0.03
25 660.66 239.61 101.77 36.71 17.66 9.55 3.31 0.54 0.07 0.04
50 1336.27 482.72 203.66 72.50 34.41 18.37 6.21 0.95 0.11 0.03

100 2720.67 980.81 412.38 145.80 68.73 36.452 12.15 1.82 0.21 0.07

Table 6.4: Random Cauchy Noise Scale with respect to θ and ε
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6.3.2 Evaluation

As a result of the private degree distribution approximation, the social graph is no longer
scale-free. While this is to be expected due to the removal of nodes with large degrees,
it results in a significant change in the structure of the graph.

Taking into consideration the nature of the original graph, smaller θ would preserve a
large proportion of the node’s original degrees, while keeping the amount of random
noise low. However, a small maximum degree limits the number of edges which can be
generated within the graph. This is evident from the low Preserved Edge Ratio (PER)
measure for projected graphs with θ equal to 4 and 8.
Strong privacy guarantees, where the privacy budget is below 1, and a large upper bound
result in significant perturbation of the original graph’s degree distribution. Adding large
amounts of noise creates an arbitrary degree distribution, with a considerably higher
average degree in comparison with the original graph (Table 6.5 and 6.6). Consequently,
extreme PER values are observed for θ≥ 50 and a tight privacy budget ε≤ 1.

We have compared the node-DP graph for various ε values. The degree distribution
of the original graph and projected graphs are converted to a θ-Cumulative Histogram.
KS-distance is used to determine the closeness of the node-DP histogram to the original
one. As expected, relaxing the privacy bound leads to very little noise being added to
the truncated original degree distribution. The result is low KS-distance smaller than
0.1 and a θ-bound degree distribution which is almost identical to the real θ-bound
distribution.
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θ ε dmax dmean dstd Clustering
Coefficient

Clique
Number

4

0.1 4 2.00 0.09 0.0007 3
0.25 3 1.42 0.68 0.0009 3
0.5 4 1.54 0.85 0.0003 3
1.0 4 1.50 0.82 0.0002 3
1.5 4 1.50 0.82 0.0002 3
2.0 4 1.48 0.79 0.0007 3
3.0 4 1.44 0.75 0.0004 3
5.0 4 1.53 0.87 0.0002 3
7.5 4 1.49 0.82 0.0006 3

10.0 4 1.48 0.79 0.0004 3

8

0.1 8 5.08 2.35 0.0028 3
0.25 8 1.83 1.75 0.0012 3
0.5 8 2.04 1.75 0.0013 3
1.0 8 1.77 1.53 0.0012 3
1.5 8 2.10 1.82 0.0011 3
2.0 8 1.72 1.27 0.0004 3
3.0 8 1.80 1.42 0.0007 3
5.0 8 1.81 1.40 0.0004 3
7.5 8 1.79 1.43 0.0002 3

10.0 8 1.78 1.39 0.0003 3

16

0.1 16 5.81 4.18 0.0038 3
0.25 16 5.54 3.84 0.0034 3
0.5 16 3.66 4.05 0.0028 3
1.0 16 2.62 2.97 0.0019 3
1.5 16 2.79 3.22 0.0023 3
2.0 15 3.46 4.46 0.0030 3
3.0 16 3.99 4.57 0.0033 3
5.0 16 2.24 2.52 0.0019 3
7.5 16 2.16 2.48 0.0009 3

10.0 16 2.19 2.42 0.0019 3

Table 6.5: Private Graph Characteristics for θ = [4,8,16]

The random generation of edges while constructing the synthetic graph, means the
edges are arbitrarily generated without the preservation of clusters. This explains the
low clustering coefficient and clique number of the synthetic graphs. However, this
is inflicted by the graph generation algorithm and is not the result of the differentially
private graph projection.

Ultimately, if we wish to hide the structure of the original graph by using a private
degree distribution approximation, we have to tolerate a considerable change in the
original graph’s degree distribution.
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θ ε dmax dmean dstd Clustering
Coefficient

Clique
Number

25

0.1 24 7.74 5.77 0.0049 3
0.25 25 11.60 9.53 0.0080 4
0.5 25 12.26 10.31 0.0088 4
1.0 22 2.49 3.47 0.0022 3
1.5 21 3.61 4.74 0.0034 3
2.0 25 3.87 5.15 0.0039 3
3.0 25 2.57 3.59 0.0025 3
5.0 24 2.42 3.14 0.0023 3
7.5 25 2.55 3.45 0.0017 3

10.0 25 2.39 3.25 0.0019 3

50

0.1 50 43.28 13.68 0.0232 4
0.25 50 26.62 16.55 0.0165 4
0.5 49 21.55 12.42 0.0128 4
1.0 50 27.59 16.64 0.0170 4
1.5 48 11.25 14.08 0.0119 4
2.0 49 6.49 11.30 0.0085 3
3.0 49 5.91 10.44 0.0096 3
5.0 50 4.72 9.89 0.0091 3
7.5 50 2.86 5.40 0.0045 3

10.0 47 2.97 5.08 0.0040 3

100

0.1 100 54.87 24.72 0.0311 5
0.25 98 53.01 27.98 0.0313 5
0.5 97 59.36 30.34 0.0346 5
1.0 100 54.54 32.91 0.0334 5
1.5 100 34.63 31.01 0.0263 5
2.0 100 37.25 24.19 0.0236 4
3.0 100 15.56 25.78 0.0234 4
5.0 100 6.21 14.96 0.0161 3
7.5 98 3.59 8.25 0.0074 3

10.0 98 3.46 8.27 0.0055 3

Table 6.6: Private Graph Characteristics for θ = [25,50,100]
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Figure 6.1: L1 Distance, PER and KS-Distance for private graphs θ =
[4,8,16,25,50,100] and ε = [0.1,0.25,0.5,1,1.5,2,3,5,7.5,10]
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6.4 Simulation

Here we present the results of the simulation experiment conducted for the real and
synthetic datasets. The role of these experiments is two-fold: it allows us to compare
the anonymity level of the synthetic datasets in comparison to the real dataset, as well
as evaluate the impact of generating a social graph from a private degree distribution on
the communication anonymity of the simulation.

There is very little fluctuation in the recorded entropy for the synthetic datasets in
comparison with the original dataset (Tables 6.7 and 6.8). The entropy of each packet is
computed incrementally at each mix node on its path from the sender to the recipient.
Its value depends on the state of the mix node’s pool and on the entropy at the previous
pool. Therefore, the entropy is highly dependent on the rate at which messages arrive at
the mix node’s pool and the preconfigured mixing delay. The higher the rate, the more
messages are mixed in the pool at the same time, thus increasing anonymity. Similarly,
configuring a higher mixing delay means more messages are accumulated at the mix
node’s pool, leading to a larger anonymity set and increased entropy.

Both the original and synthetic datasets follow the same sending rates, which is the main
determinant of the system’s anonymity level. Therefore, the structure of the underlying
communication graph, does not influence the security of the actual transactions between
nodes. The little variation of the entropy of each simulation confirms this. In this sense,
the entropy measure provides an insight of how well the email generation and sending
rates of the original dataset are reflected in the synthetic data.

The E2E unlinkability - the expected difference in the likelihood that a message orig-
inated from one sender in comparison to another, varies significantly for different
simulation settings. However, no consistent pattern can be seen for different θ and ε

values and more simulation experiments need to be conducted to make any conclusive
statement, time permitting.

entropy E2E unlinkability
real 6.152 11.86

synthetic 6.149 10.17

Table 6.7: Loopix Simulation Results for Real and Synthetic data
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θ ε entropy E2E unlinkability

4

0.1 6.140 8.36
0.25 6.149 11.05
0.5 6.141 10.41

1 6.144 9.24
1.5 6.141 8.99

2 6.144 9.75
3 6.139 10.32
5 6.140 11.11

7.5 6.138 8.29
10 6.158 7.31

8

0.1 6.151 8.60
0.25 6.145 8.83
0.5 6.151 10.78

1 6.150 12.03
1.5 6.146 9.04

2 6.138 12.08
3 6.141 10.75
5 6.136 13.19

7.5 6.150 11.22
10 6.144 8.85

16

0.1 6.144 8.82
0.25 6.138 9.68
0.5 6.153 9.89

1 6.149 10.63
1.5 6.146 9.94

2 6.145 8.94
3 6.152 10.53
5 6.141 9.34

7.5 6.144 9.30
10 6.155 11.38

25

0.1 6.135 11.17
0.25 6.145 10.01
0.5 6.146 10.58

1 6.153 10.32
1.5 6.139 7.10

2 6.140 10.38
3 6.155 10.49
5 6.135 8.57

7.5 6.144 9.42
10 6.145 13.00

Table 6.8: Loopix Simulation Results
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6.5 Results

Our statistical evaluation concludes that the generation workflow successfully preserves
the email generation rates and the scale-free nature of the network graph (when no
private degree approximation is applied). However, we identify an inadequacy in the
graph generation algorithm which only maintains the degree distribution of the real
graph and fails to preserve its structure in terms of clustering. This shortcoming of the
implementation will be discussed further in Section 7.2.

The evaluation of the node-DP graph concludes that strong privacy guarantees over the
degree distribution of a graph can only be achieved if we allow a substantial shift from
the original distribution.

The simulation results indicate that the synthetic data performs similarly to the real data
in terms of entropy as a measure of the system’s anonymity level. This allows us to
conclude that the network’s topology does not play a role in determining how secure the
email transactions over the MixNet network are. We instead explain the similar entropy
measure by the sending rates for the synthetic datasets which had been preserved from
the original data.
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Conclusion

This chapter provides a summary of the conducted work regarding the implementation
and evaluation of the Email Dataset Generator. It outlines limitations and opportunities
for future work with respect to those.

7.1 Summary

This report presented the Email Dataset Generator, a framework which infers the statisti-
cal characteristics of an email log and generates synthetic email traffic within a network.
The project further implements a node differentially private degree distribution approxi-
mation, which allows hiding the original degree distribution by removing large-degree
nodes and perturbing the resultant distribution. We implement a transcript mode of
the Loopix MixNet simulator which allowed us to evaluate the privacy leakage of the
original and synthetic datasets through email traffic simulation. We further provide
a quantified evaluation of the effects of hiding the graph’s degree distribution on the
generation of the synthetic graph and email transactions.

Based on the results of our evaluation we conclude that we cannot provide strict
privacy guarantees over the degree distribution of a communication network without
significant perturbation to the distribution and therefore to the overall structure of the
original scale-free network. The results of our simulation demonstrate that the synthetic
data performs similarly to the real data in terms of the anonymity level of the email
transactions. We attribute this to the email generation rates which are preserved from
the real dataset to the synthetic ones.

The transcripted simulation of Loopix was only implemented to assist the experiments
and evaluation process of this project. However, we believe it constitutes a significant
contribution to the open-source simulator by enabling a wide range of experiments to
be conducted.

38
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7.2 Limitations

A major weakness of the generation process lies within the graph construction algorithm.
The graph generation algorithm presented in Section 4.2.3 constructs a synthetic graph
from a degree distribution alone. While this allows for a differentially private graph
to be generated by simply perturbing the degree distribution, it fails to capture the
structure of the graph in terms of cliques and clusters. In the specific case of the two
datasets we worked with, clusters often correspond to teams and groups within a greater
organisation or community. As such, they are an important part of a social graph and
should be reflected in an accurate synthetic representation. However, any metric used
for the generation of a synthetic graph (such as number and size of cliques or shortest
path between nodes) would have to be released under a differentially private algorithm
if differentially private guarantees were to be enforced.

Here, we choose to discuss the decision to use the Enron dataset as a reference when
designing the statistical generation process. While the dataset provides a valuable
reference to determine which properties of the data to be statistically inferred, it in-
evitably led to making general assumptions which might not apply to other datasets.
This reasoning is exactly what motivated the decision to evaluate the Generator and
conduct simulations on the Sendmail Log dataset, allowing us to determine how well
the generation extended to other datasets.

The generation process makes a number of assumptions inherent to the Enron dataset.
This makes the generation well suited for email traffic within an organisation or pro-
fessional institution, where weekly email sending patterns can be observed, correlated
to business working hours. Both datasets have a relatively low hourly email sending
rate and no obvious patterns of email generation within a single hour, which motivated
the decision to model the temporal email sending patterns using hourly sending rates
within a single week. However, more fine-grained modelling will be needed for high
traffic rates or a small dataset with traffic contained within a short period of time.

Additionally, the quality of the generated data is highly dependent on the evalua-
tion criteria it is made subject to. Therefore, pitfalls and limitations of the evaluation
process can either overestimate or underestimate the significance of the obtained results.
The evaluation fails to examine if any correlation exists between the degree of nodes
and their activity level (whether accounts which send emails to a lot of other accounts
also actively communicate by sending a large number of emails) and whether such
correlation is preserved in the synthetic dataset.

7.3 Future work

The limitations presented in the previous section create room for future work. Main
focus of improvement would be the graph generation algorithm. Parametric models
such as Forest Fire [23] and Nearest Neighbours [41] iteratively construct a synthetic
graph by considering both the node degrees and the shortest path length between pairs
of nodes. They aim to minimise the distance between the real and the synthetic graphs.
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The 2.5K-graph model [13] approximates the joint degree distribution and the clustering
coefficient of the real graph when generating a synthetic one. Those models would
be more successful at reflecting the original topology onto the synthetic graph and
constitute key modifications that could have been applied, time permitting.
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