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Abstract
Bipolar disorder, a mental illness characterised by periods of extremely elevated and
depressed mood, is one of the leading causes of disability in young people. However,
the disorder’s cause remains unknown. A rather young area of science, computational
psychiatry, aims to introduce computational modelling techniques into the field of psy-
chiatry, which could aid in the understanding of bipolar disorder. Several computational
models that aim to represent the aforementioned mood fluctuations mathematically have
been presented over the last two decades and are summarised in this report. The most
recent approach, which is based on reinforcement learning, is reviewed as well as tested
in greater depth, and subsequently extended.
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Chapter 1

Introduction

1.1 An overview of bipolar disorder

1.1.1 Introduction

Bipolar Disorder (formerly known as manic depression) is a recurrent and chronic
mental health condition which affects between 1.5% and 4.8% of the world’s population
[Angst, 2008]. It is characterised by periods of mania or hypomania (extremely elevated
mood) and periods of depression (extremely low mood) [Grande et al., 2016]. The
typical age of onset is 18-25 years [Kawa et al., 2005].

Approximately 10–20% of people diagnosed with bipolar disorder take
their own life, and around 30% of patients attempt suicide at least once
[Müller-Oerlinghausen et al., 2002], [Novick et al., 2010]. Psychiatric as well
as non-psychiatric comorbidities are common and include illnesses such as
cardiovascular disease, anxiety, or substance misuse disorder [Grande et al., 2016].

Typical symptoms during a period of depression include feelings of hopelessness
and worthlessness, a lack of energy and concentration, the loss of interest in ev-
eryday activities, sleep problems, a change in appetite, as well as suicidal thoughts
[National Health Service, 2019a]. These symptoms are the sames ones that characterise
Major Depressive Disorder (MDD).

Symptoms of manic phases include feeling happy and full of energy, having numerous
new ideas and plans, being delusional, having hallucinations, not wanting to eat or
sleep, and making potentially risky decisions, such as spending vast amounts of money.
Patients often do not realise that they are experiencing a manic phase while it is
happening, and may be shocked at their behaviour in hindsight. The symptoms for
manic episodes of bipolar disorder significantly overlap with those of psychosis as well
as schizophrenia [National Health Service, 2019b], [National Health Service, 2019c].

An episode of hypomania can be described as an elevation of mood, with the symptoms
being similar to those typical for mania (excluding severe symptoms such as halluci-
nations or delusions). The main difference to a manic episode is that patients do not
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Chapter 1. Introduction 2

experience social or occupational dysfunction and, by definition, do not have to be
admitted to hospital [Phillips and Kupfer, 2013].

Mixed episodes are periods during which patients experience both manic and depressive
symptoms [Grande et al., 2016].

Most patients with bipolar disorder go through phases of ’normal’ functioning and
mood changes, which are called Euthymia [Mason et al., 2017].

1.1.2 Types of bipolar disorder

According to the Diagnostic and Statistical Manual for Mental Disorders (DSM-V)
[American Psychiatric Association, 2013], there are six subtypes of bipolar disorder:
Bipolar I, Bipolar II, Cyclothymia, Substance-induced and medication-induced bipolar
disorder, as well as Other specified and unspecified bipolar and related disorders. The
different types of the disorder vary in cause and intensity of the depressive and manic
(or hypomanic) episodes [American Psychiatric Association, 2002].

Bipolar I is characterised by at least one episode of full-blown mania or a mixed
episode. Usually, patients have experienced one episode of major depression as well
[Phillips and Kupfer, 2013].

The diagnosis of Bipolar II is given to patients who have experienced at least one
episode of major depression and hypomania.

Patients with cyclothymia have experienced at least two years of hypomanic as well
as depressive episodes. The periods of mood changes which they go through do not,
however, fulfill the criteria for episodes of hypomania, mania, or major depression.

Substance-induced and medication-induced bipolar disorder is characterised by the
same symptoms as the previously mentioned types of bipolar disorder. It is, however,
caused by a substance (i.e., a drug, such as cocaine, or medication) or another medical
condition and the symptoms are not present when the causal element is removed
[Vieta et al., 2018].

In order to be diagnosed with Other specified bipolar or unspecified bipolar and
related disorders, patients must at least exhibit manic symptoms, but not meet the
criteria for one of the other subtypes of bipolar disorder. The difference between
other specified and other unspecified bipolar disorder is that for other specified bipo-
lar disorder, ”the clinician chooses to communicate the specific reason that the pre-
sentation does not meet the criteria for any specific bipolar and related disorder”
[American Psychiatric Association, 2013].

1.1.3 Causes of bipolar disorder

Bipolar disorder is considered to be genetically complex and extremely heritable, with
heritability estimated to be up to 85% [Vieta et al., 2018]. Twin studies have shown that
the risk of having bipolar disorder given that an identical twin has it, is around 63%
[Goodwin and Jamison, 2007].
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Biological causes, such as mitochondrial dysfunction [Kato, 2007], the ”disruption of
the molecular and cellular network [which regulates] energy production and expendi-
ture” [Mansur et al., 2020], or dopamine dysregulation [Berk et al., 2007] have been
hypothesised to contribute to the development of the disorder.

Impairments in the perception of reward and its interaction with mood have also been
mentioned as possible cause [Mason et al., 2017].

Furthermore, there are several environmental and medical factors that increase the risk
of developing bipolar disorder. These include, but are not limited to, (childhood) trauma,
caesarean section delivery, maternal smoking during pregnancy, or substance abuse
[Vieta et al., 2018].

Overall, it can be said that the causes of bipolar disorder (as well as the causes of
many other mental disorders) remain poorly understood and constitute an active area of
research.

1.1.4 Treatment of bipolar disorder

In general, there are three main approaches to the treatment of bipolar disorder: the
pharmacological approach, the psychological approach, and the lifestyle approach
[Grande et al., 2016].

Different types of therapy, such as Cognitive Behavioural Therapy (CBT), Interper-
sonal and Social Rhythm Therapy (ISRT), or Family-Focussed Therapy (FFT), as well
as lifestyle changes (e.g., regular sleeping patterns, exercise, and limitation of the
consumption of substances such as caffeine and alcohol) have been shown to be effec-
tive in managing and preventing the occurrence of the symptoms of bipolar disorder
[Grande et al., 2016].

Furthermore, there is a range of pharmaceutical drugs that can be used to treat the
symptoms of bipolar disorder. The most commonly used drugs for acute treatment
are antipsychotics, antidepressants, as well as mood stabilisers, with Lithium being
a popular choice [Grande et al., 2016]. Antidepressants can, however, induce hypo-
manic or manic episodes and are thus an unsuitable treatment option for some patients
[Pacchiarotti et al., 2013]. This is especially critical when bipolar disorder gets misdi-
agnosed as unipolar depression (which, due to the length and severity that depressive
episodes can have, it often does) [Vieta et al., 2018].

1.2 Computational psychiatry and its relevance

Computational Psychiatry is a rather young, but nevertheless fast-growing, field
of science. It uses models of brain function to specify the mechanisms of psy-
chopathology, which are typically described in computational or mathematical ways
[Friston et al., 2014]. Hence, the main aim of computational psychiatry is to apply
computational modelling techniques as well as theoretical approaches to psychiatric
questions [Seriès, 2020].
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Since computational psychiatry makes use of generative models (i.e., probabilistic
descriptions of how high-level causes generate low-level data), it is mechanistic. This
means that these computational models describe the underlying processes that take
place and can therefore make predictions about events taking place in the real world
[Adams et al., 2015].

One can only understand mental illnesses by linking several interacting levels - cells,
circuits, cognition, behaviour, as well as the patient’s social and physical environment
[Huys et al., 2016]. This is also linked to the core assumption of the Research Domain
Criteria (RDoC) project, which is a framework that aims to explain mental illnesses
through the use of different constructs (e.g., cells, neural circuits, physiology, and be-
haviour) rather than the symptomatology alone and was thus proposed as an alternative
to the DSM by the US National Institute of Mental Health [Cuthbert, 2022]. Due to the
complexity of the field of psychiatry, computational approaches can help researchers
examine possible relationships between different factors, lead to new insights, and guide
experiments. Computational psychiatry can therefore be a valuable resource that helps
scientists in their research of the psychopathology of mental disorders, including bipolar
disorder [Seriès, 2020].

1.3 An overview of reinforcement learning

Reinforcement, i.e., reward, has been studied by animal psychologists for more than
60 years [Russell and Norvig, 2010]. Reinforcement Learning is a branch of Artificial
Intelligence - one of the three basic paradigms of Machine Learning, to be exact
(the other two being supervised and unsupervised learning) [Dunjko et al., 2016]. It
addresses how agents (which can be artificial or natural) learn to maximise reward and
minimise punishment in environments that involve different states as well as transitions
between states [Montague et al., 2012].

Reinforcement learning models can be used to describe how learning processes work
for agents such as humans or other animals [Niv, 2009]. The task of reinforcement
learning is to utilise observed rewards in order to learn an (almost) optimal policy for
the environment that the agent is in. In other words, the agent tries to maximise the
cumulative sum of the rewards of its decisions. Reinforcement learning algorithms use
a process of trial and error to estimate state-action values and make decisions - i.e., pick
optimal sequences of actions [Russell and Norvig, 2010].

There are several studies which investigate the neural processes associated
with reinforcement learning in the context of bipolar disorder [Niv, 2009],
[O’Doherty et al., 2015]. They hypothesise (and provide supporting data for the fact)
that reward hypersensitivity [Whitton et al., 2015] and white matter hyperintensity
[McDonald et al., 1999], amongst other factors, could be potential causes for bipolar
disorder.
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1.4 An overview of mood modelling

Mood describes a person’s long-term feelings which do not change quickly and are
not directed towards a specific object or person [Collenette et al., 2017]. Emotions
are caused by an external stimulus or event and are thus short-term, directed feelings
[Deligianni et al., 2019].

Mood modelling is predominantly being used to study the influence of people’s moods
on decision making tasks, as well as to predict people’s mood changes over time
[Collenette et al., 2017]. It has been used to study several mental illnesses, such as
major depressive disorder [Sharp et al., 2020] or schizophrenia [Yasui-Furukori, 2012].

Chapter 2 of this report describes and compares several different computational models
of bipolar disorder that aim to model a patient’s mood over time. The aim of chapters
3 and 4 is to simulate a range of dynamics that Mason et al.’s (2017) model of mood
fluctuations in bipolar disorder is able to account for and extend it.

1.5 Relevance of this honours project

Bipolar disorder is one of the leading causes of disability among young people
[Grande et al., 2016]. Hence, it is crucial to improve doctors’ as well as people’s
understanding of it in order to make accurate predictions about patients’ mood changes,
intervene when danger occurs, and ameliorate the lives of patients.

Computational Psychiatry is a promising field of research that can provide tools for
the modelling and prediction of mood fluctuations in bipolar disorder. Therefore, the
comparison and critical evaluation of several computational models of bipolar disorder,
as well as the reimplementation and extension of [Mason et al., 2017]’s model are a
step into the direction of improvement of understanding and therefore preventing the
occurrence of extreme symptoms of bipolar disorder.



Chapter 2

Literature review – Models of mood
fluctuations in bipolar disorder

2.1 Introduction

This chapter aims to give a comprehensive overview of the existing models designed
to display and/or explain mood fluctuations in bipolar disorder. Bipolar disorder has a
rather complicated pathology, with several factors (e.g., genetic factors, cellular pro-
cesses, and cognition) having been proposed as factors contributing to the development
of it. Therefore, it is not possible (yet) to model one specific biological system and
research has largely been focussed on mood modelling, the directly observable and
defining feature of bipolar disorder [Cochran et al., 2018].

Daugherty et al. were the first researchers who attempted to represent mood fluctuations
in bipolar disorder with the help of mathematical equations. They published their
first paper in 2003 and completed their in work in 2009. Nana (2009) also built upon
Daugherty et al.’s (2003) work (without referencing it [Wirkus and Porter, 2009]) and
therefore was the first researcher to propose a model of mood fluctuations in patients
with bipolar disorder. Both models are described in the section below.

There are two fundamentally different approaches to modelling mood changes in bipolar
disorder (as well as other biological rhythms). Firstly, one can use collected mood data
from patients over a certain course of time and fit mathematical functions to the data.
Secondly, one can try to find potential regulatory mechanisms which are able to produce
oscillations between the two poles of bipolar disorder and later assess clinical accuracy.
The models described below lay their focus on the latter approach, as the data available
is rather limited in terms of amount of patients. Additionally, the current approach is to
use self-assessment and report of mood, rather than more clinically accurate approaches
[Goldbeter, 2013].
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2.2 Nana (2009) & Daugherty et al. (2009): Limit cycle
oscillators

Nana (2009) notes that even though bipolar disorder episodes can be rather erratic,
there exist patters of recurrence to the mood fluctuations. These can be simplified
with a function modelling them as periodic oscillations between manic and depressive
episodes. He attempts to model the mood fluctuation of a single patient suffering from
bipolar II disorder using a negatively damped harmonic oscillator. A damped harmonic
oscillator portrays a vibrating system whose amplitude of vibrations decreases as time
increases and can be used to model several biological and physical effects, one simple
example being the vibration of a guitar string after it has been hit.

The author assumes small damping, causing the function’s oscillations to remain ap-
proximately periodic and not decreasing continuously (as higher damping would).

The system is made up of two coupled equations which describe the amplitude and
phase of solutions. The equations’ fixed points resemble limit cycles for the system,
indicating the maximum mood levels in either direction.

Furthermore, Nana (2009) attempts to model the aggregated effect of treatment (psy-
chotherapy as well as different kinds of medication) by making use of a parametric
forcing function (i.e., an external force which is only dependent on time, and not on any
of the other parameters). He notes that the equations are lacking a time-delay function
which should be used to model the delayed effectiveness of treatment.

His model is represented graphically in figure 2.1.

Figure 2.1: Limit cycle oscillator model of mood fluctuations in bipolar disorder
(including treatment), as proposed by Nana (2009)

As one can see, the system modelled above describes the emotional state variations
in one patient suffering from bipolar II disorder over the course of several years, with
treatment causing the mood fluctuations to go from a larger to a smaller limit cycle and
the patient’s mood therefore not reaching the extreme values it did without treatment.

Daugherty et al. (2009) also make use of limit cycle oscillators to model bipolar II
disorder as their work is largely based on their research published in 2003, which
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Nana (2009) uses in his paper as well. In addition to modelling the dynamics of an
individual bipolar II disorder patient, Daugherty et al. (2009) also examine two models
that describe the interaction between a pair of patients suffering from bipolar II disorder,
e.g., siblings.

Figure 2.2: Limit cycle oscillator model of mood fluctuations in bipolar disorder
(including treatment, with a delayed onset), as proposed by Daugherty et al. (2009)

The shape of the function in figure 2.2 is clearly similar to Nana’s (2009). However,
the parameters in this model were adjusted in order to include the delayed onset of the
effect of treatment. The patient starts to receive treatment between the years 5 and 10
in both models, so it can be clearly seen that the smaller stable limit cycle is reached
significantly later in Daugherty et al.’s (2009) model.

The authors note that bipolar disorder is often diagnosed at later stages in a person’s
life, however, the onset of it can be in early childhood. It can be said that this model
is purely theoretical and does not assume any differences in a patient’s mood swings
that are related to their age, i.e., the mood fluctuations are just dependent on the time
that has passed since an arbitrary point in time (i.e., the onset of the disease, which
corresponds to year 0 in the model), which can be at any point in a person’s life.

Daugherty et al.’s (2009) modelling of the interaction between two treated patients with
bipolar II disorder yielded the following results: Assuming that the individuals generally
have similar ranges of mood and mood cycling rates, they tend to remain in-phase, i.e.,
they start entering hypomanic as well as depressive episodes approximately at the same
point in time. Additionally, when they are currently experiencing a euthymic period,
they are both likely to stay in it. However, since there was little clinical data available at
the time, the accuracy of the models attempting to model these interactions could not
be analysed. Nevertheless, the results provide predictions about those interactions and
can thus be used further in future research.

Both of the models described above solely focus on modelling the mood swings in
one/two interacting bipolar disorder patients. They do not examine the underlying
causes for the disorder and also assume regular oscillations of mood – which is not
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necessarily realistic, as patients frequently experience euthymic periods as well as
irregular fluctuations of mood.

Nevertheless, the models provide a basic framework for mood modelling in bipolar
disorder, and therefore lead the way to the development of more sophisticated models.

2.3 Bonsall et al. (2011): An autoregressive model

Bonsall et al. (2011) note that apart from the manic and depressive episodes, some
bipolar disorder patients also suffer from chronic week-to-week mood instability (as
shown in figure 2.3). This characteristic of the disorder is usually not the main focus of
research, but is important for the development of treatment approaches and methods as
well.

Figure 2.3: High-level diagram showing what typical mood fluctuations that a bipolar
disorder patient experiences might look like – i.e., manic and depressive episodes as
well as inter-episodic mood instability

Bonsall et al. (2011) propose a time-series approach in order to represent mood
fluctuations in bipolar disorder patients. They make use of self-rated mood data from 23
patients over the course of 220 weeks and use that data to show that the mood variability
is best described by non-linear time series processes. These processes are different
depending on whether the patient is prone to inter-episodic mood fluctuations. The
authors fit several autoregressive (AR) models (i.e., models that represent time-varying
processes whose output variable depends linearly on the previous values as well as a
stochastic term – in simpler terms, models that make use of past behaviour in order to
predict future behaviour [Chan, 1993]) to the data.

In an AR(0) model, there is no dependence between terms. In an AR(1) model, the
value of the current term depends on the previous term (and noise); in an AR(2) model
it depends on the previous two terms and noise, and so forth. Bonsall et al. (2011)
conclude that in the group consisting of patients with rather stable week-to-week mood,
patients’ mood changes are best predicted with AR(1), so only the previous week’s
mood score is needed to predict the current week’s mood score. For patients who exhibit
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more unstable mood, an AR(2) model is used for predictions, meaning that the mood
scores of the previous two weeks are necessary for predicting the current week’s mood
score. This is the first study which makes use of a statistical time-series framework in
order to interpret the longitudinal patters of clinical data from bipolar disorder patients.

2.4 Bonsall et al. (2015): A relaxation oscillator frame-
work

Bonsall et al.’s (2015) aim is to find out to what extent the dynamics of self-reported
mood in bipolar disorder patients can be described and understood by using a relaxation
oscillator framework. Relaxation oscillators have been applied to a range of processes
within biology, and can therefore be useful in terms of explaining bipolar disorder
through the use of the ’biological hierarchy’, i.e., levels such as molecular processes,
the circadian rhythm, and mood fluctuations. The use of this hierarchy - which is based
on the assumption that psychological processes can be explained by making use of
the same methods that are used for explaining mechanical as well as physiological
processes - is also known as the mechanistic approach to cognition, or ”mechacognitive
approach”.

In order to validate this approach, Bonsall et al. (2015) test their model against mood
data from several individuals with diagnosed bipolar disorder. They show that the
mood fluctuations can be driven by the combination of effects from dynamics described
by relaxation oscillators and noise (i.e., stochastic variability). The authors note that
relaxation oscillators have one major advantage in comparison to limit cycle oscillators:
They are nonlinear periodic dynamic systems which are characterised on different
timescales. This results in the model being able to capture one important character-
istic of bipolar disorder – the existence of larger changes in state (corresponding to
(hypo)manic and depressive episodes), as well as time intervals with small changes in
state (corresponding to inter-episode mood variability). However, they mainly lay their
focus on depressive episodes, as this is the dominant state that bipolar disorder patients
are in (see figure 2.4).

Figure 2.4: Depressive symptomatology from one patient over time (depicted by the
QIDS score), predicted relaxation oscillator dynamics, and final predicted mood dy-
namics by making use of each score shown in diagram 1 in order to predict the next
mood score

Bonsall et al. (2015) conclude that several coupled relaxation oscillators can describe
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and thus aid in the understanding of the biological, psychological, as well as social
rhythms of bipolar disorder. Therefore, this approach is another method of understand-
ing mood fluctuations in bipolar disorder and can aid in the development of a more
in-depth understanding of how the impacted processes on different biological levels are
linked.

2.5 Goldbeter (2011) & Goldbeter (2013): Mutual inhibi-
tion of mania and depression

Goldbeter (2011 & 2013) bases his work on the assumption that mania and depression –
the two poles in bipolar disorder – are mutually exclusive and inhibit each other. This
is an effect that can be observed in various areas of biology, some as simple as two
different animal populations competing for the same resources [Volterra, 1931].

His phenomenological model predicts bistability if mutual inhibition is strong enough,
i.e., the system is in either the manic or the depressive state and can suddenly switch
between the two stable states. The author proposes two mechanisms that – when used in
conjunction with mutual inhibition – add oscillations to the system. These oscillations
can have several different shapes (unlike in Nana’s (2009) and Daugherty et al.’s (2009)
models), such as periodic oscillations with either similar or different durations of the
manic or depressive episodes, as well as less intense oscillations around a certain state
before a periodic change of higher amplitude to the other state. Hence, the self-sustained
oscillations in the system are able to model the rather sudden switches between manic
and depressive episodes.

Goldbeter notes that both mania and depression are complex, and therefore multidimen-
sional traits. However, for simplification purposes, they are represented by continuous
variables in this model and the system can thus be represented by two ordinary differ-
ential equations. These equations are coupled through terms which represent mutual
inhibition. Additionally, the coupling of the two equations is mediated by intermediate
factors in Goldbeter’s model.

As mentioned above, there are two proposed mechanisms which can cause the transition
from bistable to oscillatory behaviour of the system. Mutual inhibition combined
with cross-activation of mania and depression (represented by the aforementioned
intermediate factors) is one way of introducing this behaviour. This means that mania
(M) and depression (D) directly inhibit each other as well as indirectly activate each
other after a certain time delay. In other words, M and D activate each other through the
intermediate factors FM and FD and inhibit each other directly. Hence, the shape of the
oscillations is determined by the relative time course of the intermediate factors that
have the activating effect (see figure 2.5).
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Figure 2.5: Fluctuations in Mania (M) and Depression (D) in Goldbeter’s (2011) model:
Mutual inhibition in combination with cross-activation

Secondly, mutual inhibition can be paired with auto-inhibition of mania and depression
in order to produce oscillatory behaviour from former bistability. In this case, the
intermediate factors FM and FD inhibit the growth of the variables M and D, respectively
(see figure 2.6).

Figure 2.6: Fluctuations in Mania (M) and Depression (D) in Goldbeter’s (2011) model:
Mutual inhibition in combination with negative auto-regulation through intermediate
parameters (FM and FD)

As one can see, this rather simple exploratory model is able to represent dynamical
behaviour that represents clinical observations, e.g., sudden switches between mania
and depression, or the fact that mania can be induced by antidepressants. This effect,
however, is modelled by instant mood changes here, which is not realistic as the onset
of the effects of antidepressants is generally delayed.

Since this is a model that is not based on specific clinical data, Goldbeter (2013) notes
that the main current challenge is to find regulatory mechanisms on a neurocellular level
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which have been or might be linked to mood disorders and therefore correspond to the
proposed mathematical mechanisms.

2.6 Steinacher & Wright (2013): Modelling behavioural
activation levels

Steinacher and Wright (2013) propose a minimal mathematical model of behavioural
activation levels, which have been shown to correlate with (hypo-)manic as well as
depressive episodes in bipolar disorder patients. They predict that when the non-linearity
dimension of the model is increased, multistability as well as sudden (i.e., “switch-like”)
transitions between activation levels in a patient occur. In other words, the model is
capable of reproducing core features of bipolar disorder, including the fluctuations
between (hypo-)manic and depressive episodes, as well as other features such as slower
recovery time after negative or positive events in bipolar disorder patients than in healthy
individuals.

The model includes a variable which represents the level of behavioural activation,
i.e., the tendency of a patient to interact with their environment. This parameter is
regulated by two feedback mechanisms – a self-activation (positive) as well as an
auto-regulatory (negative) feedback mechanism, representing the tendency to keep
the behavioural activation parameter at a normal level (see figure 2.7). This way
of formalising mechanisms is commonly used in approaches explaining regulatory
networks on a cellular or molecular level.

Steinacher and Wright (2013) predict that the level of nonlinearity in the behavioural
activation system corresponds to the stage of the disorder a patient is in. In other words,
the higher the degree of nonlinearity, the higher the tendency for developing bipolar
disorder, as well as the number of previous (hypo-)manic/depressive episodes is.

This model does not make use of memory of previous states.

Figure 2.7: Diagrams showing fluctuation in behavioural activation (E) when perform-
ing stochastic simulations for different values for parameter n (which represents level
of nonlinearity). Dotted lines display activating and inhibiting events over the course of
2 years.
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As it can be inferred from the diagrams provided above, the proposed model goes beyond
simple oscillatory dynamics and is able to provide a description of inter-episodic as
well the general rather irregular (but still cyclic) mood fluctuations.

2.7 Cochran et al. (2018): Two-dimensional stochastic
processes

Cochran et al. (2018) review several mathematical modelling frameworks used to model
mood fluctuations in bipolar disorder, including the ones described above. Additionally,
they introduce two new models, which model mood with two variables (in contrast
to the models described above (with the exception of Goldbeter’s (2011 & 2013)).
They note that modelling mood with two variables instead of a single one provides
the opportunity to capture known features of bipolar disorder, including the existence
of mixed states (i.e., states where a patient experiences manic as well as depressive
symptoms) as well as direct transitions between the depressive and the manic state,
without a period of euthymia in between.

Their models use a manic variable as well as a depressive variable in order to model
mood. In the first model, each variable satisfies a stochastic differential equation called
“double-well” model, which is a physical model that has been used to describe the
behaviour of particles that randomly move between two energy wells. If noise is absent,
multistability occurs in this model.

The second model that Cochran et al. (2018) describe is two-dimensional as well;
however, multistability cannot be achieved. In this model, mood is modelled by the
aforementioned variables as well, but with a two-dimensional Ornstein-Uhlenbeck
process. This process is a modified version of the random walk model, with the particle
having a greater attraction towards a central location, the further away from the centre it
is. An example of the fluctuations of depression and mania in a bipolar disorder patient
can be seen in figure 2.8.

Figure 2.8: Modelled mood fluctuations (described by the depressive variable D and
the manic variable M) in the two models proposed by Cochran et al. (2018)
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2.8 Radulescu & Niv (2019): Mood fluctuations as a
cause of reward prediction errors

Radulescu and Niv are two researchers belonging to a group of researchers who have
been investigating how reinforcement learning models can be applied to bipolar dis-
order. Other significant papers suggesting this approach are [Eldar and Niv, 2015],
[Eldar et al., 2016], [Mason et al., 2017], as well as [Chang and Chou, 2018] (who base
their research on the aforementioned authors’ findings). Chapter 3 of this report contains
a detailed description of the approach. In summary - as stated in chapter 1.3 - reinforce-
ment learning models are based on an agent maintaining a model of the external world,
with rewards and punishments attached to different actions. The model gets updated
after every action that is taken and the agent tries to maximise cumulative reward.

Radulescu and Niv (2019) state that mood can be defined as one of the features of the
brain’s valuation system, or rather, the running average of recently encountered reward
prediction errors (RPEs). They find that bipolar disorder patients are – on average –
more likely to take on effort when pursuing reward. This is consistent with the finding
that bipolar disorder patients believe reward to be more abundant than it actually is in
their environment and thus encounter larger reward prediction errors which can explain
more intense mood fluctuations.

Hence, bipolar disorder patients might have a skewed internal state representation
resulting in optimistic expectations about future reward, which then lead to greater
mispredictions and surprises that cause mood to fluctuate.

2.9 Chang & Chou (2018): Mood fluctuations as a cause
of mood sensitivity

Chang and Chou (2018) also focus on the interactions between expectations and
mood and describe a variant of the model described in chapter 3 [Mason et al., 2017],
[Eldar et al., 2016], [Eldar and Niv, 2015] in their paper.

In their model, mood behaves in an oscillatory way when the mood sensitivity parameter
exceeds a particular threshold value. They also include the effects of different amplitudes
of changes in mood following positive or negative events, also known as ”asymmetric
mood sensitivity”.

Chang and Chou’s (2018) model slightly differs from the one proposed by Eldar et al.
(2016). Eldar et al. (2016) assume that the mood recovery rate (following an extremely
positive or negative event) is the same as the mood learning rate. Chang and Chou
(2018), however, use a different parameter for the two rates, allowing them to vary
independently and therefore providing more flexibility. In general, it can be said that
their model is slightly simpler mathematically, but is still able to capture the main
features of bipolar disorder which are captured by the model proposed by Eldar et al.
(2016) as well.

As stated above, Chang and Chou’s (2018) model transitions to limit cycle behaviour
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after surpassing a threshold value, which signals the transition to a bipolar state (see
figure 2.9). Furthermore, their model predicts that asymmetric mood sensitivity can
induce either depression or mania (which is an observation that has been clinically
found as well) and hence be the cause for bipolar disorder.

Figure 2.9: When mood sensitivity lies above a certain threshold value, the model is
able to represent mood being much more oscillatory (green line) in bipolar disorder
patients than in normal individuals (blue line)

As stated previously, antidepressants can induce manic episodes in bipolar disorder
patients. When this effect is interpreted as an increase in mood sensitivity towards
positive events, Chang and Chou’s (2018) model predicts that the following manic
episode happens earlier and is more intense than it would be without medication.
Furthermore, assuming that the treatment is not changed, the frequency of manic
episodes increases as well. This is represented graphically in figure 2.10.

Figure 2.10: The effect of antidepressant dosage on the intensity and frequency of
subsequent manic episodes (blue line: no medication, green line: light dosage, red line:
medium dosage, black line: high dosage)

2.10 Balasubramani & Chakravarthy (2019): The role of
the basal ganglia network

Balasubramani and Chakravarthy (2019) use a decision making framework in order
to investigate how the basal ganglia network could potentially be involved in causing
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mood oscillations in bipolar disorder. This network is a group of subcortical nuclei
that are involved in variety of processes, including motor control, emotions, and –
more specifically – reward prediction measures. This study therefore tries to explain
the underlying pathological neural dynamics in bipolar disorder, and goes beyond a
simple display of mood oscillations. Since impaired decision making may be linked to
pathological mood states, the different mood states in bipolar disorder can be approached
via a decision making framework.

Balasubramani and Chakravarthy (2019) state that the main factor which contributes
to the development of bipolar disorder is the dysfunction of the serotonergic and
dopaminergic system which is influential for the perception of reward and well as
decision making and is controlled by the basal ganglia network.

They propose three models that make use of the notion of utility – a combination of the
concepts of value and risk.

The task framework that the authors chose for their investigation is a two-armed bandit
task. Bandit tasks are an approach which is extensively used within probability theory
as well as machine learning. The name’s origin are one-armed bandits, which are a type
of slot machine. The gambler’s aim is to maximise the cumulative reward earned by
several lever pulls, each yielding a reward from a specific probability distribution which
is unknown to the gambler. By doing so, they face a trade-off between ‘exploiting’ the
machine with the highest expected reward and ‘exploring’ other machines in order to
learn more about their associated rewards [Berry and Fristedt, 1985].

As stated above, Balasubramani and Chakravarthy (2019) make use of a two-armed
bandit problem, with probabilistic positive and negative outcomes attached to each
of the arms (i.e., states). In other words, one arm is linked to a positive (rewarding)
outcome, and the other one to a negative (punitive) outcome, both outcomes having the
probability 0.5. They then apply the task to three action selection models (or rather, one
model but three different levels of abstraction) of the basal ganglia network, and thus
try to identify the parameters which contribute to the occurrence of mood fluctuations
in bipolar disorder. The first variant is a rather simplistic reinforcement learning model
which uses a softmax model in order to make choices. The second variant is an extension
of the first model, and is a neural network model of the basal ganglia network which
can be related to neurobiological processes (dopamine and serotonin neuromodulation
in the decision making process). Variant three consists of a reduced model system with
two equations, which is capable of describing the main dynamics of the first two models
and includes also specific cellular level models, making it more biologically realistic
and understandable.

Under healthy conditions, the model chooses actions associated with positive out-
comes and avoids actions associated with negative outcomes. Under bipolar conditions,
however, it displays (slow) oscillations in its choices.

After mathematically analysing the dynamical system, Balasubramani and Chakravarthy
(2019) find that decreased risk sensitivity levels and significantly increased reward sensi-
tivity are the main factors that are responsible for the occurrence of bipolar oscillations
between manic and depressive episodes.
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2.11 Other research regarding mood modelling and pre-
diction in bipolar disorder

There have been numerous other studies in the field of mood assessment, modelling,
and forecasting in the context of bipolar disorder.

Hadeghi et al. (2013) propose that a forced Duffing oscillator (which is a non-linear
second order differential equation) could be used to model mood fluctuations in bipolar
disorder, due to its ability to capture typical patterns of mood fluctuations.

In order to produce more biologically realistic models, a connection between phe-
nomenological models and biochemical mechanistic approaches which make use of
specific cellular processes should be established. Frank (2013) suggests that one plau-
sible biochemical approach for this connection is the interaction of the pathways of
protein kinases A and C, which have been shown to affect an individual’s mood.

Bayani et al. (2017) suggest that there exists a link between circadian activity rhythms
and transitions in episodes in bipolar disorder. Their computational model could
therefore be used to determine early warning signs that predict severe mood fluctuations
in bipolar disorder patients.

Busk et al. (2020) make use of self-assessed mood data in order to predict future mood
values. They use a hierarchical Bayesian model for the forecasting of mood values, as
their data shows a correlation between mood values observed over a short period of
time (4-7 days).

2.12 Conclusion & Discussion

This chapter’s aim was to give the reader a comprehensive overview of the existing
models of mood fluctuations in bipolar disorder. These models usually make one
of two assumptions: bistability or biological rhythm [Cochran et al., 2018]. Models
assuming bistability are based on the assumption that there are two stable states that
represent the different phenotypes of mania and depression. The mood fluctuations are
induced by random external shifts caused by life events [Steinacher and Wright, 2013],
[Cochran et al., 2018]. Biological rhythm models are rooted in the assumption
that there exist intrinsic oscillations in a patient’s brain and the mood fluctua-
tions occur without the existence of external perturbations [Daugherty et al., 2009],
[Goldbeter, 2011], [Bonsall et al., 2015], [Eldar and Niv, 2015], [Mason et al., 2017],
[Radulescu and Niv, 2019].

Overall, it can be said that the models mentioned above constitute interesting approaches
to modelling the dynamics of mood in bipolar disorder. However, there are some
significant shortcomings – some of which are mentioned in the papers themselves – that
are summarised below.

Firstly, the majority of models does not include a link between the parameters
mentioned in the models and a possible biological counterpart. This clearly lim-
its the explanatory power of the models; however, it provides pointers for future
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research [Steinacher and Wright, 2013], [Balasubramani and Chakravarthy, 2019]. In
other words, it might be possible to find direct biological links for the variables, which
therefore constitutes a concrete goal for future research in the field.

Secondly, the different types of bipolar disorder as well as the different mood states that
a patient can be in are not explored equally. For instance, Bonsall et al. (2011) only
focus on bipolar II disorder, Bonsall et al. (2015) lay their focus on depressive episodes,
and in general, research tends to focus on full-blown manic and depressive episodes.
Inter-episode mood instability is being explored and modelled less often (e.g., it is not
mentioned at all in early models [Nana, 2009], [Daugherty et al., 2009]).

Furthermore, as stated in the introductory section, there is a lack of precise quantitative
mood data. This is due to a lack of a precise measurable biological factor which causes
the mood fluctuations in bipolar disorder [Goldbeter, 2013], as well as the absence of
a way of studying long-term mood fluctuations in a lab setting (i.e., with controlled
environmental conditions).

In summary, it can be said that the field of mood modelling, especially in the context
of bipolar disorder, is still in its infancy; however, some promising findings have been
presented. Once the existing computational models have been refined and expanded,
they could be used as a powerful tool in clinical settings [Cochran et al., 2018]. Accu-
rate predictions of future mood episodes might be especially impactful, as this would
make early intervention possible, increasing patients’ (and their relatives’) quality of
life significantly.



Chapter 3

Mood fluctuations caused by RPEs - A
reinforcement learning model

3.1 Introduction

The concepts of reinforcement learning and reward prediction errors (RPEs) have been
used to study animal and human learning for several decades. The first, and perhaps the
most influential model of reinforcement learning is the Rescorla-Wagner model, which
was published in 1972 [Rescorla and Wagner, 1972]. The model attempts to describe
(Pavlovian) conditioning (i.e., the association between a signal and a following stimulus)
by formalising the amount of learning that occurs at each iteration of conditioning.

The main aspect of reinforcement learning models is that they work on the basis of
iterative value updates; i.e., the difference between the predicted and observed reward
is used to learn to make better reward predictions.

Since 1972, the field has developed further and more reinforcement learning models
have been published. However, the first reinforcement learning model used to model
bipolar disorder was not published until 2017. This section aims to introduce this model,
as it lays the foundations for further research in this area.

3.2 The theoretical and experimental basis of Mason et
al.’s (2017) model

As stated above, Mason, Eldar, and Rutledge’s (2017) model of bipolar disorder is the
first model which tries to explain the disorder by making use of reinforcement learning
as well as learning impairments that are caused by high mood bias.

Their work is largely based on a paper by Eldar and Niv and well as a paper by Eldar
et al. which were published in 2015 and 2016, respectively [Eldar and Niv, 2015],
[Eldar et al., 2016]. These papers describe the experimental foundations as well as the
mathematical details of Mason et al.’s (2017) model.

20
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Eldar and Niv (2015) were interested in testing whether mood manipulations could
modulate reward sensitivity. They conducted an experiment with 56 human participants
in order to investigate the effect of unexpected outcomes on the mood of the participants
and the valuation of following outcomes. In order to achieve this, they compared the
valuation of small rewards ($0.25) given by a slot machine before and after a wheel of
fortune draw that had larger rewards ($7) attached to it. They hypothesised that if an
unexpected outcome (winning/losing $7) has an impact on the mood of the participants
and influences the perception of subsequent events, winning $7 in the wheel of fortune
draw should increase the participants’ mood and make them value rewards received
from the slot machine played afterwards higher than rewards received from the slot
machine played before and vice versa.

In order to study the correlation between patients suffering from unstable mood/bipolar
disorder and the perception of rewards, all participants completed the International
Personality Pool – a version of the Hypomanic Personality Scale – which is a self-report
measure that correlates with frequency of mood fluctuations and the risk of developing
bipolar disorder [Meyer, 2002].

Eldar and Niv’s (2015) results show that participants’ mood and the valuation of rewards
received from the slot machine played after the wheel of fortune draw were in fact
valued higher than rewards received from the slot machine played before in participants
who reported a tendency to mood instability (i.e., for participants with a high HPS
score). Participants with low HPS scores were not significantly influenced by the result
of the wheel of fortune draw. Furthermore, when asked to choose between the slot
machine encountered before and after the wheel of fortune draw, participants with high
HPS scores favoured the slot machines they encountered after the draw if they had
won $7 or the one from before if they had lost $7. There was no significant trend in
participants with low HPS scores.

If those biased choices actually stem from a biased perception of reward, there should
be a bias in neural responses to rewards in the striatum as well. The striatum is a
brain area where blood-oxygen-level dependent (BOLD) signals corresponding to RPE
signals that influence learning as well future choices have been identified. Eldar and
Niv (2015) found that there was a correlation between higher HPS scores and stronger
BOLD responses to small rewards in participants who won the wheel of fortune draw,
as well as weaker responses to small rewards for the participants who lost the draw.

Thus, it can be concluded that participants with a more unstable mood tend to be
affected more by an unexpected outcome and their reward perception is more biased
than participants’ with a low HPS score.

Mood bias is not inherently detrimental to a person’s life. Moderate mood bias helps
people adjust to their changing environment and enables them to make realistic pre-
dictions about the world. Mason et. al (2017) claim that in individuals suffering from
bipolar disorder, however, their mood influences reward perception strongly, which then
leads to mispredictions about the world. This shows in recursive cycles which cause
expectations, mood, as well as behaviour to escalate to extremes.

In general, it can be said that the higher the mood bias parameter, the higher a patient’s



Chapter 3. Mood fluctuations caused by RPEs - A reinforcement learning model 22

(hyper-)sensitivity to reward (when their mood is high) is. Conversely, the lower the
patient’s mood, the larger their hyposensitivity to reward is.

Eldar and Niv (2015) formalise the relation between emotional state and reward percep-
tion with a reinforcement learning model. The core mechanism of this model is that
positive surprises (i.e., prediction errors) improve mood and negative surprises lower
mood.

They define mood as the running average of recent outcomes, which is based on
other research that aims to find a formal way of expressing mood mathematically,
despite the lack of a definition that makes it easy to do so [Katsimerou et al., 2014],
[Marinier et al., 2009]. This formalisation enables mood to change gradually (due to
the aggregated effect of multiple values) or more drastically as a response to a single
extreme value, corresponding (for example) to a traumatic event.

The model suggests that the bidirectional interaction between perceived outcomes
and emotional state can generate mood instability and is therefore relevant for mood
modelling in bipolar disorder.

This can be illustrated by the following diagram (figure 3.1) that is included in Mason
et al.’s (2017) paper.

Figure 3.1: Diagram providing a high-level description of the feedback cycles causing
mood instability to occur in bipolar disorder patients

Eldar et al. (2016) show that the coupling between mood and reward (expec-
tations) can not only cause the aforementioned positive feedback dynamics, but
also that its degree correlates with patients’ self-reported hypomanic tendencies
[Radulescu and Niv, 2019].

3.3 Formulas defining the reinforcement learning model

In general, updates of the expected value of a certain stimulus are made via the reward
prediction error (denoted by δ). The reward prediction error is the difference between
actual reward (r) and the expected reward (v), so δ = r−v. Eldar and Niv (2015) modify
this formula slightly in order for the model to be able to capture prediction errors based
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on perceived reward instead of actual reward. The reward prediction error can thus be
calculated as shown in equation 3.1.

δ = rperceived − v (3.1)

The perceived reward (rperceived) in this formula is calculated by multiplying actual
reward (r) with a mood bias parameter ( f m) that is able to capture good, bad, and neutral
mood (see equation 3.2).

rperceived = r · f m (3.2)

The parameter m denotes bad (-1<m<0) or good (0<m<1) mood. f is a positive
constant that represents the direction (positive or negative mood bias) as well as the
intensity of the mood bias. If f =1, mood does not influence the reward perception. If
0< f<1, rewards are perceived smaller when the patient is in a good mood and larger
when the patient is in a bad mood (which is also called negative feedback). Hence, if
f>1, rewards are perceived larger when the patient is in a good mood and smaller when
the patient is in a bad mood (which is also called positive feedback).

Updates of the expected reward (v) are made via iterative value updates using the
standard reinforcement learning equation (see equation 3.3). Apart from the expected
reward, the formula includes the reward prediction error (δ) as well as the learning
rate (ηv), which denotes the step size of the value updates, i.e., how quickly the model
updates the values.

v = v+ηv ·δ (3.3)

As mentioned previously, Eldar and Niv (2015) make the assumption that mood fluctua-
tions are a direct result of recent reward prediction errors. They formalise this by using
the parameter h, which denotes the recent prediction error history. The update of this
value is tracked using the learning rate (i.e., step size) ηh (see equation 3.4).

h = h+ηh · (δ−h) (3.4)

In order to constrain the values of m within -1 and 1, Eldar and Niv (2015) use the
sigmoid function tanh (see equation 3.5).

m = tanh(h) (3.5)

This reinforcement learning model is the most recent approach to modelling bipolar
disorder as well as understanding the potential causes of it.
Reinforcement learning is a well-researched concept that has been used to suc-
cessfully explain a range of different behaviours seen in animal experiments
[Russell and Norvig, 2010]. Furthermore, numerous studies have established links be-
tween different mental illnesses and impairments in reinforcement learning. Examples
for this are depression [Brown et al., 2021] and schizophrenia [Deserno et al., 2013],
whose symptomatology - as stated in section 1.1.1 - overlap with the symptoms of
bipolar disorder. Hence, it is worthwhile to explore this approach further by reimple-
menting Eldar and Niv’s (2015) reinforcement learning model and investigating which
specific dynamics that can be observed in the different subtypes of bipolar disorder
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it can and cannot account for. Additionally, discovering how the individual model
parameters influence the modelled mood can give pointers for future research regarding
the biological processes influencing a patient’s mood.

The implementation of the model which was done for this honours project uses Python
3 (and its standard libraries) and is based on the code written by Kacki (2021) .

3.4 Simulations

The first part of the simulations (sections 3.4.1-3.4.5) does not include noise and
therefore displays the basic mood trends that a bipolar disorder patient might experience.
In other words, the mood fluctuations that are described by the basic version of the
model are oscillations (of different frequency and intensity) around the mean mood of
0 (i.e., neutral mood). In the following diagrams, the x-axis is labelled with the word
“Iterations”, with one iteration being one update of all the parameters. In real life, this
can correspond to any unit of time, with one iteration corresponding to one day being a
sensible choice.

Eldar and Niv (2015) use 300 iterations in their simulations. In the simulations done
for this report (figure 3.3 onwards), the number of iterations was set to 1000 in order
to capture the behaviour of the functions for a higher amount of iterations (i.e., for a
longer period of time).

3.4.1 The role of the mood bias parameter f : Investigating Eldar
and Niv’s (2015) findings

The authors state that when using a mood bias parameter ( f ) of 1 and a reward value
(r) of 10, the expected reward value converges to the actual reward value quickly and
consequently, mood does not fluctuate. When setting f =1.2 and using the same actual
reward value (r=10), however, the authors state that expected reward value as well
as mood oscillate and hence do not converge, as it can be seen in figure 3.2. This
is consistent with their claim that mood fluctuations in bipolar disorder arise due to
heightened mood bias.

Figure 3.2: Simulations of the interaction between learning and mood, using the
reinforcement learning model described above [Eldar and Niv, 2015]



Chapter 3. Mood fluctuations caused by RPEs - A reinforcement learning model 25

Eldar and Niv (2015) do not mention which values they use for the learning rates ηv
and ηh. The above result for f =1 can be reproduced for any learning rate, one example
(for ηv=0.1 and ηh=0.1) is shown in figure 3.3.

Figure 3.3: The interactions between learning and mood for f =1 when the number of
iterations n=1000

For f =1.2, however, the behaviour of the mood function depends of the learning rates.
When ηv=0.1 and ηh=0.1 (which looks similar to the second function in figure 3.2), the
function clearly converges, which can be observed due to the scaling of the x-axis (see
figure 3.4).

Figure 3.4: The interactions between learning and mood for f=1.2 when the number of
iterations n=1000

However, when increasing ηh (in the first diagram in figure 3.5, ηh=0.2 was used)
or when decreasing ηv (in the second diagram in figure 3.5, ηv=0.05 was used), the
oscillatory behaviour of the function continues until infinity (and hence, it does not
converge).

Figure 3.5: The interactions between learning and mood for f=1.2 when varying the
learning rates ηv and ηh, for n=1000
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When the mood bias parameter is sufficiently large, however, the oscillations’ intensity
increases and the function does not converge for any sensible value of the learning rates.
One example of this is f =2; the corresponding graph is shown in figure 3.6.

Figure 3.6: The interactions between learning and mood for f=2 when the number of
iterations n=1000

As stated above, if f =1 (which means that mood does not influence learning), the mood
function converges quickly. For slightly higher values of f (for r=10, e.g., f =1.2), the
learning rates ηv and ηh determine whether the function oscillates. If f is sufficiently
large, the function continuously oscillates regardless of the other parameter values.
Mason et al. (2017) claim that different values of the mood bias parameter are able to
produce different frequencies and intensities of oscillations and can therefore model
different subtypes of bipolar disorder (see figure 3.7).

Figure 3.7: According to Mason et al. (2017), increasing the mood bias parameter
produces functions modelling three subtypes of bipolar disorder

For visualisation purposes, the reward value r=3 was chosen for the simulations below.
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Figure 3.8: The interactions between learning and mood for increasing values of f when
the number of iterations n=1000

As it can be seen in figure 3.8, increasing the mood bias parameter while keeping the
other parameters constant predominately increases the intensity (i.e., the magnitude)
of the mood fluctuations. One can observe that the number of manic and depressive
episodes decreases slightly as the mood bias parameter increases; however, in order
for this to have a significant effect, the mood bias parameter would have to increase
drastically, which would result in the reward prediction errors rising to a level that
results in the mood staying “at” (i.e., infinitely close to) its boundary values (-1 and 1)
for several iterations at a time. This behaviour is not represented in figure 3.7 and thus,
it can be said that the mood bias parameter cannot explain the mood variations observed
in the different subtypes of bipolar disorder (as described by Mason et al. (2017)) by
itself.

Furthermore, Mason et al.’s (2017) graphs (figure 3.7) show that the mood function
reaches different maximum values (corresponding to hypomanic episodes in bipolar
II disorder and manic episodes in bipolar I disorder) but the same levels of depression.
This asymmetric behaviour of the function modelling bipolar II disorder can only be
introduced by learning rate asymmetries (which are described in section 3.4.3), and not
by solely varying the mood bias parameter. Mason et al. (2017) mention this fact in
their paper, however, it is not mentioned in figure 3.7, making it potentially misleading.

It can be concluded that the mood bias parameter plays a crucial role in determining
the shape of the function describing learning and mood, but the other parameters in the
system can introduce oscillatory and other behaviour (e.g., asymmetric mood fluctua-
tions) as well. However, when the mood bias parameter is sufficiently large, learning
the correct reward value is impossible for the agent (regardless of the learning rates)
and the mood function oscillates without converging. The sections below investigate
the roles of the learning rates ηh, ηv, as well as the reward r further.
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3.4.2 The role of the learning rate ηh

The learning rate ηh describes how quickly the reward prediction error history is updated
following the most recent reward prediction error. Since mood is directly based on
recent reward prediction errors in this model, the learning rate ηh is able to influence
mood directly. As it can be seen in figure 3.9, varying ηh can thus either support the
convergence of the function or introduce infinitely oscillatory behaviour. Hence, the
model predicts that not only mood bias can lead to mood fluctuations, but the extent
to which a patient (i.e., their overall reward prediction error and hence their mood) is
influenced following an observed misprediction of reward has this ability as well.

Figure 3.9: The interactions between learning and mood for different values of ηh when
the number of iterations n=1000

3.4.3 The role of the learning rate ηv

As stated above, Mason et al. (2017) mention that asymmetries of the learning rate
ηv are able to model the differences in the dynamics that are characteristic for bipolar
I (manic, and usually some depressive episodes) and bipolar II (hypomanic (but not
manic) and depressive episodes) disorder.

When an agent observes that they have mispredicted a reward (i.e., they have made a
reward prediction error), they adjust their prediction for the next reward with the help of
the learning rate ηv, which is a scalar that influences how drastically they change their
reward prediction. When the learning rate for positive reward prediction errors (ηv+)
is higher than the one for negative reward prediction errors (ηv−), the agent quickly
adjusts their reward prediction upwards when positive surprises are encountered but only
slowly adjusts it downwards when negative surprises are encountered. Thus, when the
agent experiences a positive surprise, they increase their reward prediction significantly
and the chance that a negative surprise in the next iteration is encountered is higher.
Since the learning rate for negative surprises is lower, the agent continues to encounter
negative surprises, which results in depressed mood.

The updates of the expected reward can thus be split up according the learning rates ηv+

and ηv− as follows (equation 3.6).

v =
{

v+ηv+ ·δ, if δ ≥ 0
v+ηv− ·δ, if δ < 0 (3.6)

As it can be clearly seen in the simulations below (figure 3.10), mood is predominately
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in the depressive range and only reaches hypomanic levels when the learning rate
for positive reward prediction errors is higher than for negative reward prediction
errors. Conversely, when the learning rate is lower for positive reward prediction errors,
mood is predominantly in the manic range and does not reach extremely low values.
Hence, the model predicts that when a person is more influenceable by a positive
than a negative surprise, they tend to predominantly experience negative surprises and
therefore depressed mood. As mentioned above, choosing values for ηv+ and ηv−
such that ηv+>ηv− can aid in modelling the hypomanic episodes observed in bipolar II
disorder.

Figure 3.10: The interactions between learning and mood, with asymmetric learning
rates ηv+ and ηv− when number of iterations n=1000

3.4.4 The role of the reward r

The higher the reward, the harder it is for an agent with moderate mood bias to learn
the correct reward value (see figure 3.11).

Figure 3.11: The interactions between learning and mood, with different amounts of
actual reward when number of iterations n=1000

Due to the mathematical relationship of reward and mood bias in this model (see
equation 3.2), increasing the reward results in lower values of the mood bias to be
needed in order for oscillatory behaviour of the mood function to occur. This would
mean that if the reward in an environment is high, one is more likely to experience
mood fluctuations, i.e., if the reward is sufficiently high, even people with only slightly
heightened mood bias parameters would experience bipolar mood fluctuations - a
finding that has not been investigated to date.
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3.4.5 Defining the functions piecewise accounts for additional dy-
namics

Johnson (2005) notes that a positive life event can cause a manic episode to occur in
bipolar disorder patients and due to the linked positive feedback cycles in this framework,
oscillatory behaviour of mood as well. By defining the parameters piecewise (i.e.,
increasing the reward at a certain point), Mason et al.’s (2017) model is able to capture
this dynamic (see figure 3.12).

Figure 3.12: The interactions between learning and mood when the reward value is
increased from r=10 to r=15 at n=500

It has to be noted that negative life events are able to trigger depressive episodes and
thus oscillatory behaviour of mood as well. The model can account for the initial
depressive episode, however, is unable to account for the subsequent mood oscillations
(see figure 3.13).

Figure 3.13: The interactions between learning and mood when the reward value is
decreased from r=10 to r=5 at n=500

Assuming that Mason et al.’s (2017) claim is true and bipolar disorder is caused by an
abnormally heightened mood bias parameter, substance and medication induced bipolar
disorder could be understood as a sudden change in the mood bias parameter in the
presence or absence of the causal element. As established in section 3.4.1, setting the
mood bias parameter f to a sufficiently high value results in oscillatory behaviour of
the mood function. Hence, by using the mood bias parameters f =1, f =1.5, and f =1
(where f =1.5 corresponds to the presence of the causal element and f =1 corresponds to
its absence), the model is able to display the dynamics observed in patients suffering
from this subtype of bipolar disorder (see figure 3.14).
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Figure 3.14: The interactions between learning and mood when the mood bias parame-
ter f is changed from f=1 to f=1.5 to f=1 when n=1000

3.4.6 Adding noise to the system: ’Realistically’ modelling different
subtypes of bipolar disorder

In order to make the modelled mood fluctuations more realistic, noise can be introduced
into the system. In this case, this was done by sampling the reward on each iteration
from a Gaussian distribution with the mean value that was given as input to the function
and a variance of 1. Figure 15 shows that the model is able to produce dynamics that are
characteristic for the different subtypes of bipolar disorder. Generally, the boundaries
for the different mood states were roughly defined as follows: m > 0.5 corresponds to
manic episodes, 0.25 ≤ m ≤ 0.5 to hypomanic episodes, -0.25 ≤ m ≤ 0.25 to normal
mood, and m < 0.25 to depressive episodes.

Figure 3.15: Mood fluctuations that are characteristic for normal mood fluctuations
(top left), cyclothymia (top right), bipolar II disorder (middle left), bipolar I disorder
(middle right), and substance & medication induced bipolar disorder (bottom left)

As it can be seen above, normal mood fluctuations were produced with a mood bias
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parameter f =1, cyclothymia with f =1.6, bipolar II disorder with f =1.8, and bipolar
I disorder with f =1.9. These values were chosen in order for the simulations to be
consistent with Mason et al.’s (2017) claim that increasing the mood bias parameter in
the order mentioned above causes the different mood dynamics. However, the mood
bias parameter alone is unable to account for the different dynamics, which is why the
other model parameters were also varied if deemed necessary for the visualisation of
the different mood dynamics.

The higher the number of parameters that have to be varied in order for the model to
produce realistic mood variations over time, the harder finding links between specific
biological factors and the model parameters is. In other words, if the mood bias
parameter was the only factor that could account for all the different dynamics, the
probability of future research being able to find one measurable biological factor
corresponding to the mood bias parameter in this theoretical model is rather high. Since
the mood bias parameter is not able to account for all the dynamics and other parameters
have to be varied as well, the process of finding biological links is significantly more
complicated.

3.5 Evaluation & Conclusion

Mason et al.’s (2017) model of mood fluctuations in bipolar disorder is based on the
approach that bipolar disorder patients’ mood bias is too strong, which leads to positive
feedback cycles that cause significant reward prediction errors and therefore manic and
depressive episodes.

The model is mathematically rather simple, yet versatile. By modifying the different
parameters and introducing noise to the system, one can generate a range of realistic
mood dynamics that could be observed in patients suffering from one of the different
subtypes of bipolar disorder. Furthermore, the model can also generate ”normal”, i.e.,
healthy, mood fluctuations (which are experienced by bipolar disorder patients during
euthymic periods as well). Since the model parameters can be defined piecewise (i.e.,
the model parameters can be changed for a certain range of x-values, in this case
iterations), all dynamics that can be generated individually can theoretically be used to
define one mood function that has all of those (or a combination of several different)
characteristics.

However, Mason et al.’s (2017) model has several shortcomings.

Firstly, mood is modelled one-dimensionally, meaning that it cannot be in the
(hypo)manic or depressive range at the same time. Hence, Mason et al.’s (2017)
model (unlike Goldbeter’s (2011 & 2013) model) is not able to account for mixed
episodes, during which a patient experiences both manic and depressive symptoms.

Secondly, the mood fluctuations generated by the model are periodic and any behaviour
shown in the graphs above that seems to not be periodic is solely caused by the added
noise (unless the function is defined piecewise). Patients can experience extended
periods of “normal” mood fluctuations (euthymia), as well as an unequal number of
(hypo-)manic and depressive episodes over a certain period of time, which the model is
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unable to account for if not defined piecewise.

Furthermore, as stated in section 2.12, Mason et al.’s (2017) model is a generative
model. This means that it does not describe observed biological data but rather gen-
erates dynamics that could potentially be observed during experiments. However, no
measurable biological factor that is responsible for the mood fluctuations in bipolar
disorder is currently known [Goldbeter, 2013]. Hence, it cannot be assessed whether the
parameter settings that cause different mood dynamics to occur in the model correspond
to specific biological factors and are thus realistic. Several parameters in the model
are able to produce mood oscillations when varied and which one/which combination
of them is the cause of the mood fluctuations in bipolar disorder remains unknown.
Mason et al. (2017) note that investigating which of the parameters provides the best
explanation of the oscillatory behaviour of mood in bipolar disorder patients is crucial
as the different parameters correspond to different biological mechanisms and therefore
have to be targeted in different ways when treating bipolar disorder.
The fact that there is no formal definition of mood that can easily be formalised math-
ematically adds to this problem as well [Katsimerou et al., 2014]. However, as stated
previously, these core issues constitute specific pointers for future research and can
potentially aid in the understanding of mood as a concept as well as the causes of mood
fluctuations in bipolar disorder patients.

Lastly, Mason et al.’s (2017) model only accounts for the basic characteristic dynamics
of several different subtypes of bipolar disorder. It does not include the effects of
potential treatment (therapy, medication, as well as lifestyle changes – as described in
section 1.1.4), or the fact that the condition tends to worsen over the course of time if it
is not treated [IsHak et al., 2012].

In conclusion, the reinforcement learning model of mood fluctuations in bipolar disorder
that was introduced by Eldar and Niv (2015), Eldar et al. (2016), and Mason et al.
(2017) is flexible enough to account for a range of different mood dynamics experienced
by bipolar disorder patients. However, it is impossible to model mixed episodes and
the different dynamics that can be modelled can only be accounted for when varying
several model parameters (and not just the mood bias parameter, as Mason et al. (2017)
claim). This complicates the search for specific links to biological factors that are
impaired in bipolar disorder patients. The effects of treatment as well as the fact that
the condition tends to worsen over time if it is not treated, which are two major aspects
of bipolar disorder patients’ lives, are also not accounted for by Mason et al.’s (2017)
model. Chapter 4 of this report therefore aims to expand the range of dynamics the
model can account for by incorporating some of the aforementioned aspects.



Chapter 4

Extension of Mason et al.’s (2017)
model

4.1 Modelling the effects of treatment

As stated in chapter 1.1.4, there are three main approaches to the treatment of bipolar
disorder. All of them aim to reduce the intensity and ultimately prevent the occurrence
of manic and depressive episodes. Since the effects of different types of medication are
defined best (i.e., the most similar for patients overall), the following sections aim to
model the effects of different types of medication (and a combination thereof).

In order to account for the changed mood dynamics as a result of medication, additional
parameters, each influencing one of parameters in the set of equations, can be introduced.
The updates at each iteration are made after in- or decreasing the parameters by the
value that these parameters are set to (c f for the mood bias parameter f (equation 4.1),
cηv+

for the learning rate ηv+ (equation 4.2), cηv− for the learning rate ηv− (equation
4.3), and cηh for the learning rate ηh (equation 4.4)). Hence, before equations 3.1, 3.2,
and 3.4-3.6 are used, the following individual parameter updates (equations 4.1-4.6)
are made. In other words, at each iteration, the mood bias parameter f , as well as the
learning rates ηv+ , ηv− , and ηh can be in- or decreased individually, given that the new
value is not below a specified threshold value ( f =1 for the mood bias parameter, as this
represents no influence of mood on learning; and 0.05 for the learning rates, since it is
not realistic to assume that the learning rates can be completely 0 (one always updates
their beliefs and expectations about the environment they are in following events that
happen, even if just by a small amount)).

f =
{

f − c f , if f − c f ≥ 1
f otherwise (4.1)

ηv+ =

{
ηv+ − cηv+

, if ηv+ − cηv+
≥ 0.05

ηv+ otherwise
(4.2)

ηv− =

{
ηv− − cηv− , if ηv− − cηv− ≥ 0.05
ηv− otherwise

(4.3)
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ηh =

{
ηh − cηh , if ηh − cηh ≥ 0.05
ηh otherwise (4.4)

In order to make the simulations comparable and potentially more easily linkable to
biological factors, solely the additional parameters introduced in equations 4.1-4.4
were varied. The other parameters were set to the following values: f =2, ηv+=0.1,
ηv−=0.1, and ηh=0.1. The reward value for each iteration was sampled from a Gaussian
distribution with a mean of 3 and a variance of 1.

4.1.1 The effects of mood stabilisers

Mood stabilisers are drugs that have the ability to reduce mania. They can, but do
not necessarily, cause depressive symptoms to decrease [Simonetti et al., 2020]. This
change in the mood dynamics can be achieved by setting the change in the learning rate
from positive surprises to 0, while choosing a non-zero value (in this case 0.00007) for
the change in the learning rate from negative surprises. Selecting these parameter values
means that the learning rate from negative surprises is gradually reduced, resulting in
the agent getting worse at learning from negative surprises (until the threshold value of
ηv−=0.05 is reached). In other words, with every iteration, the amount by which they
update their reward prediction in case of a negative surprise decreases. If they encounter
a negative surprise, they are thus increasingly likely to encounter subsequent negative
surprises, resulting in depressed mood. Since the mood bias parameter f as well as the
learning rate ηh are gradually reduced as well, the oscillatory behaviour of the system is
diminished and thus, extreme manic episodes are prevented over time. Hence, mood is
stabilised but depressive episodes do not disappear completely. The modelled dynamics
are represented graphically in figure 4.1.

Figure 4.1: The effect of mood stabilisers - modelled with the following parameters:
c f =0.00005, cηv+

=0, cηv−=0.00007, cηh=0.0001

Whether mood stabilisers affect a bipolar disorder patient’s learning rate in reality has
not been determined yet. However, links between learning and the effect of mood
stabilisers have been proposed. For instance, protein kinase C, an enzyme that has
been linked to the pathophysiology of bipolar disorder and that is inhibited by mood
stabilisers [Saxena et al., 2017], has been shown to be activated in classical conditioning
experiments where animals were exposed to a harmful stimulus [Noguès, 1997].
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4.1.2 The effects of antidepressants

Antidepressants generally reduce the depressive symptoms a patient experiences. How-
ever, as stated above, they cause (hypo-)manic episodes in a significant number of
patients, which is modelled by the function in figure 4.2. The parameters c f and cηh

were set to the same values as above (c f =0.00005 and cηh=0.0001) for this simulation.
Since mood stabilisers and antidepressants can be interpreted as roughly having ’oppo-
site’ effects, or rather, since they work on opposite ends of the mood scale (i.e., mood
stabilisers decrease mania but do not necessarily decrease depressive symptoms, and
antidepressants decrease depression but can induce mania), the values for cηv+

and cηv−
were reversed. Hence, cηv+

was set to 0.00007 and cηv− was set to 0.

Figure 4.2: The effect of antidepressants - modelled with the following parameters:
c f =0.00005, cηv+

=0.00007, cηv−=0, cηh=0.0001

4.1.3 The effects of mood stabilisers and antidepressants com-
bined

When both mood stabilisers and antidepressants are used to treat bipolar disorder,
a gradual reduction in severity of mood fluctuations can be observed over time
[Goldberg and Ghaemi, 2005] (see figure 4.3). In order to model this, the parame-
ters c f and cηh were set to 0.00005 and 0.0001, respectively. The learning rate change
parameters cηv+

and cηv− were set to cηv+
=cηv−=0.00001. The onset of the effect of

psychotropic drugs is usually delayed by 2-4 weeks [Thompson, 2002], which is in-
cluded in the model by reducing the values of f , ηv+ , ηv+ , and ηh (i.e., applying the
formulas defined equations 4.1-4.4) from iteration 21 (corresponding to three weeks, if
the assumption that one iteration represents one day is made) onwards. For all previous
iterations, the given values for f , ηv+ , ηv+ , and ηh were used.
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Figure 4.3: The effect of mood stabilisers and antidepressants - modelled with the
following parameters: c f =0.00005, cηv+

=0.00001, cηv−=0.00001, cηh=0.0001

4.2 Modelling untreated bipolar disorder

If bipolar disorder is not treated, it tends to worsen over time [IsHak et al., 2012]. In
order to model this effect, the parameters c f , cηv+

, cηv− , and cηh were set to negative
values (c f =-0.00005, cηv+

=-0.000007, cηv−=-0.000007, and cηh=-0.0001), meaning that
a gradual increase the parameters f , ηv+ , ηv− , and ηh can be achieved. In order for the
mood fluctuations to get visually worse over time, the mood bias parameter was initially
set to f =1.2.

Figure 4.4: Mood fluctuations in untreated bipolar over time - modelled with the
following parameters: c f =-0.00005, cηv+

=-0.000007, cηv−=-0.000007, cηh=-0.0001

4.3 Conclusion

In summary, the range of mood fluctuations in bipolar disorder that Mason et al.’s (2017)
model can account for can be extended by the introduction of additional variables that
modify the mood bias parameter f , as well as the learning rates ηv+ , ηv− , and ηh. A
reduction in f , ηh, and ηv− models the effect of mood stabilisers over time, while
a reduction in f , ηh, and ηv+ models the effect of antidepressants over time. This
suggests that mood stabilisers reduce the learning rate from negative surprises over time,
resulting in depressed mood (as described in section 3.4.3), and antidepressants reduce
the learning rate from positive surprises, resulting in elevated mood. Assuming that
mood bias is (at least partly) responsible for the mood fluctuations in bipolar disorder,
the reduction in the mood bias parameter f leads to less oscillatory behaviour over time.
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The decrease in ηh, which displays how much recent reward prediction errors influence
the reward prediction error history (and thus, mood) has the same effect.

The modelling that was done in this chapter is based on Kacki’s (2021) general approach
that introduces a gradual reduction in the model’s parameter values. The formulas cho-
sen here (equation 4.1-4.4), however, result in a linear reduction of the model parameters
(opposed to exponential decay), which - importantly - have lower thresholds. This
results in the simulations done here remaining realistic for higher values of iterations
than n=1000 as well. In other words, the learning rates cannot be reduced to zero (or
infinitely close to zero).

Furthermore, Kacki’s (2021) simulations predict approximately eight depressive and
manic episodes in one year for an unmedicated patient, which is theoretically possible,
however, most patients experience four or less episodes per year [Bauer et al., 2008].
Additionally, the author’s simulations predict that the full effect of combined treatment
with a mood stabiliser and an antidepressant is reached after approximately 3500
iterations, which - when making the assumption that one iteration corresponds to one
day - corresponds to roughly 9-10 years. However, research shows that a patient usually
becomes stable within several months and only years in rare cases [Lippard et al., 2020].
Hence, the parameters for the simulations presented in this report were adjusted in order
to account for these facts.

Additionally, Kacki (2021) includes a scalar which is able to manipulate the mood value
in equation 3.2. Since mood cannot be influenced directly, as it is dependent on the
recent reward prediction error history, this was not included here. The author does not
include a way to manipulate the mood bias parameter f , which - assuming that it is
(partly) responsible for the mood fluctuations in bipolar disorder and the fact that the
disorder is treatable - should be adjusted when modelling the effects of treatment (or the
course of the disorder when it is not treated) and thus, the parameter c f was included
here.

In general, research tends to solely focus on the subtypes bipolar I and bipolar II disorder
(when untreated) and the course of the disorder for an untreated patient is only modelled
in Nana (2009) and Daugherty et al. (2009), with mood fluctuations gradually getting
more extreme, until a large stable limit cycle is reached.

Chang and Chou (2018) propose another variant of Mason et al.’s (2017) model, which
includes two separate parameters for mood learning and mood recovery (which is a
parameter that drives mood towards the neutral level of zero). As shown in figure 2.10,
they model the effect of antidepressants on a patient’s mood for a short time period
(30 weeks), and also do not mention the option of treatment with mood stabilisers (and
therefore, combined treatment either).

The extensions of Mason et al.’s (2017) model that were done for this honours project
thus aim to go into greater depth and be more realistic than the aforementioned ones.
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Conclusion

The aim of this honours project was to review existing frameworks which attempt to
model mood fluctuations in bipolar disorder, as well as to provide an explanation and
simulations of a recent framework ([Mason et al., 2017]) in greater depth.

Chapter 1 contains an overview of bipolar disorder (subtypes, causes, treatment options),
as well as an introduction to the areas of computational psychiatry, reinforcement
learning, and mood modelling.

The aim of chapter 2 was to give the reader a comprehensive overview of existing
mood modelling frameworks for bipolar disorder. These are based on several different
approaches, such as mood being modelled one-dimensionally by an autoregressive
model [Bonsall et al., 2011], two-dimensionally by the mutual inhibition of two vari-
ables corresponding to mania and depression [Goldbeter, 2011], [Goldbeter, 2013], or
mood fluctuations arising due to reward prediction errors (e.g., [Mason et al., 2017]).

The latter framework (which is the most recent approach to modelling the mood fluctua-
tions in bipolar disorder) views the recent reward prediction errors as the cause of the
mood fluctuations, i.e., the patient is unable to make realistic predictions about future
rewards based on observed rewards and thus gets stuck in cycles that cause their mood
to rise or decrease to extremes, also known as manic and depressive episodes. The
resulting reinforcement learning model that was developed by Eldar and Niv (2015),
Eldar et al. (2016), as well as Mason et al. (2017) was reimplemented and used for
various simulations of certain characteristic mood dynamics that can be observed in
bipolar disorder patients in chapter 3.

Using the concept of reinforcement learning in order to explain the mood fluctuations
in bipolar disorder is a promising approach, as it has been successfully used to explain
numerous processes observed in animal experiments and several links between impair-
ments in reinforcement learning and mental illnesses have been identified. At its core,
Mason et al.’s (2017) model is an oscillator, which several other models described in
chapter 2 are as well. However, the framework is a promising approach to explain-
ing mood fluctuations in bipolar disorder since it uses the well-researched and thus
established concept of reinforcement learning and attempts to explain, and not only
display, the mood fluctuations in bipolar disorder. Moreover, it provides a precise way
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of modelling as well as explaining the different dynamics observed in bipolar I and
bipolar II disorder (namely, manic vs. hypomanic episodes caused by learning rate
asymmetries).

Chapter 4 contains an extension to Mason et al.’s (2017) model. It incorporates the effect
of antidepressant treatment, mood stabiliser treatment, as well as combined treatment
by introducing variables that have the ability to in- or decrease the mood bias parameter
and the different learning rates. These variables can be used to model the course of the
disorder if it is untreated as well, which is also shown in chapter 4. Thus, the extensions
to the model (as described by equations 4.1-4.4) are able to expand the range of mood
dynamics that Mason et al.’s (2017) reinforcement learning model of mood fluctuations
in bipolar disorder is able to account for.

In summary, the models described in this report aim to represent different mood dy-
namics that can be observed in bipolar disorder patients, such as (hypo-)manic and de-
pressive episodes, medication-induced (hypo-)manic episodes, as well as inter-episodic
mood instability in some cases. While a wide range of dynamics can be accounted
for, there is a lack of a strong link between the models and measurable biological
factors, meaning that the models’ validities cannot be determined. Some biologi-
cal factors, such as the abnormalities in the serotonergic and dopaminergic system
[Balasubramani and Chakravarthy, 2019] or the interaction of the pathways of protein
kinases A and C [Frank, 2013], have been proposed as the mechanisms that could be
responsible for the mood fluctuations in bipolar disorder; however, their validity still
has to be determined with the help of large-scale studies. These further investigations
would allow for the individual model parameters to be linked to specific biological
factors and therefore unveil which model has the best potential to describe and predict
mood fluctuations in bipolar disorder.

Computational psychiatry is a powerful tool that can be aid in the explanation and
prediction of mood fluctuations in bipolar disorder (as well as other mental illnesses).
Over the course of the last two decades, numerous computational models that provide
promising mechanistic approaches to explaining mood fluctuations in bipolar disorder
have been proposed. These models thus provide a number of specific pointers for future
research in the field of bipolar disorder.

This is exceptionally important, as a better understanding of mental illnesses makes
early intervention and treatment possible, which can help in the prevention of suicide
and improve patients’ (and their relatives’) quality of life massively.
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