Unsupervised Phonetic Speech Segmentation
with Neural Networks

Zixin (Yasmin) Yang

4th Year Project Report
Artificial Intelligence and Computer Science
School of Informatics
University of Edinburgh

2022

Abstract

Phonemes are the basic units of speech, and speech processing tasks, either recognition
or synthesis, are made possible under the idea that speech can be decomposed into
phonetic segments. The development of systems which we use to automatically segment
speech into phonetic units is thus crucial for improving the performances of speech
technology. In this project, we look into the workings of the first representation learning
based convolutional neural network model on the task of unsupervised phonetic speech
segmentation, and carry out in-depth analysis on the distribution of segmentation errors
over each generic phonetic class. The effectiveness of different aspects of the model
architecture is examined through designed experimentation, from which the mechanisms
behind this best-performing approach on this particular task are explored and justified,
with suggestions on the future design choices for improving representation learning
based unsupervised phonetic speech segmentation model.

Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Zixin (Yasmin) Yang)

Acknowledgements

I would like to thank my project supervisor, Dr. Peter Bell, for introducing this topic to
me, and for his invaluable advice and motivation, which has helped me in successfully
completing this project.

I would also like to thank Zeyu Zhao, a tutor in automatic speech recognition, for his
time and efforts on helping me solve technical problems encountered at the experimen-
tation stage of the project.

Thank you to all who had supported and encouraged me for my work on this project.

Table of Contents

1 Introduction

I.1 Motivations e e e
1.2 Goal and Research Question

1.2.1 Minor Objectives and Rationales
1.3 Contributions

Background

2.1 Technical Background
2.1.1 Phonetic Speech Segmentation
2.1.2 Deep Learning with Neural Networks

22 RelatedWork
2.2.1 Previous Approaches
2.2.2 Origin and Rationale for Current Approach

Methodology

3.1 Neural Networks
3.1.1 Convolutional Neural Network
3.1.2 Recurrent Neural Network
3.1.3 ReLUActivation
3.1.4 Batch Normalization
3.1.5 Fully Connected Layer

3.2 Contrastive Loss
3.3 Peak Detection Algorithm
34 Data e e e

341 TIMIT e

342 LibriSpeech
343 Forced Alignment,
344 WSJT . oo
3.5 Adaptation of Code and DifficultiesMet

Experiments

4.1 Baseline Experiments
4.1.1 Error Analysis

4.2 Analysis of intermediate representations

4.3 Addition of Gated Recurrent Unit

4.4 Combination with Manual Feature Engineering

iv

W NN —

— O O 3 L L

13
13
14
16
16
17
17
18
18
18
19
20
20
20

4.5 Performance on differentdatasets
4.5.1 Additional Training DatawithLS(a)

4.5.2 Training on other Datasets, Evaluation on TIMIT (b)

4.5.3 Model Performanceon WSJ(¢)
4.5.4 Baseline Model Evaluatedon WSJ(d)

5 Conclusion and Future Work
Bibliography

A TIMIT phone set

39

41

45

Chapter 1

Introduction

1.1 Motivations

Speech is the single most important means of communication, that is the most natural
and effective for humans to express opinions, deliver information, and convey emotions
[9]. Speech processing has been an active field of research for centuries [19]. The idea
that spoken speech can be decomposed, or segmented, into smaller units is crucial for
both speech recognition and speech synthesis, which are the two fundamental areas
in speech processing — the former is the task of transcribing speech signals into the
textual form of word sequences, and the latter task is the reverse of this procedure [20].
As these tasks are made feasible on the fact that speech can be segmented into word,
syllabic, or phonetic units, the development of speech segmentation systems is essential
to improving the technology used for speech recognition and synthesis.

The main focus of this project is on the segmentation of speech at the phonetic level.
Although there are in general more works on segmenting speech at the word level as
word sequences are end results of most automatic speech recognition (ASR) systems,
phonetic segments are as significant as their word counterparts given their various appli-
cations. Examples include the generation of segment libraries used in speech synthesis
[38], the computation of speech rate, the production of annotations for phonetic analysis
[25], and the masking strategy based on phone units in ASR systems [21].

For decades, phonetic segmentation has been studied as an automated task for various
reasons. Firstly, manual annotation is tedious and expensive, particularly given the
increasing sizes of corpora nowadays; however, the annotation process requires sub-
stantial work by skilled experts. Secondly, reliable automated systems may prevent
human mistakes and the potential differences in annotation due to subjectivity [24],
and allow reproduction of results when necessary, while it takes only a fraction of the
original time [38]. Therefore, improving the performance of an automated phonetic
segmentation model is extremely desirable.

This task is further automated through the application of unsupervised methods, also
known as “Blind” segmentation, which is the location of boundaries of discrete speech
units when no transcription is available in advance [32]. With recent advances in

Chapter 1. Introduction 2

computing and machine learning, models for phonetic speech segmentation have also
started to employ neural networks [25, 40, 22], which are trained on large amounts
of data to achieve adequate performance. Unlike supervised learning that requires
transcribed data, unsupervised learning allows the network model to be trained on data
without any labeling. The fact that unsupervised methods do not need manual tran-
scriptions on speech is especially useful for under-resourced, or endangered, languages,
and languages without consistent orthographies (English, for example, has conflicting
rules for pronunciation that don’t apply in general) [25]. Besides, the amount of data
significantly increases for training deeper neural networks, which are starting to become
more commonly used today in most prediction and classification tasks. These are what
make unsupervised learning more important, in addition to reasons mentioned prior.

Yet, previous work on the unsupervised neural network approach to blind segmentation
is very limited. Recent success in machine learning methods on speech representation
learning [33, 3, 4] has demonstrated the power of learned representations on various
downstream tasks, such as phoneme recognition (PR), ASR and speaker diarization
(SD) [42]. The work by Kreuk et al. on phonetic segmentation in 2020 ([22]) was
the first that proposed a convolutional neural network (CNN) model on the basis of
self-supervised representation learning, and has outperformed all previous unsupervised
methods on blind segmentation, and is still the cornerstone of the current state-of-the-art
model in 2021 [5]. Due to the remarkable improvement in performance brought by this
model [22], it is meaningful to investigate its strengths and weaknesses, and to explore
the effectiveness of different components of its architecture, which is the main goal of
this project.

1.2 Goal and Research Question

The goal of this project is to investigate aspects of the model architecture in Kreuk’s
work ([22]) and their effectiveness on the phonetic speech segmentation task. The
model’s application of a CNN trained via Contrastive Predictive Coding is a novel
approach to this task compared to the various methods proposed previously. Though it
is significantly different from previous unsupervised models, it has outperformed all
of them on this task, which makes it meaningful and important to examine closely the
particular architecture used in this model. Therefore, the primary research question is:

Why does the particular representation learning approach using a Convolu-
tional Neural Network work best among unsupervised methods for the task
of automatic phonetic speech segmentation?

We would further break this down into minor objectives in order to explore the different
aspects and design decisions of this model.

1.2.1 Minor Objectives and Rationales
* Reproduce results and analyse the predicted segments of the original model;

To make meaningful investigations on the model later on, it’s important
to gain better understanding on the strengths and weaknesses of the

Chapter 1. Introduction 3

baseline model in terms of segmentation performance on different
phonetic classes.

* Investigate intermediate representations by visualising feature maps from each
layer of the CNN;

It is hard to understand the workings in the hidden layers of a CNN,
and visualization is a straightforward way to show which features are
learned at each convolution block; and by also evaluating segmentation
performance on these intermediate representations, how effectively the
neural network learns can be illustrated.

* Investigate whether longer contextual information is beneficial to the segmenta-
tion results or not, by adding a Gated Recurrent Unit layer to the network;

The transitional behaviors at phonetic boundaries may be affected by a
longer context than the window of adjacent phones. By analysing the
change in the distribution of errors compared to the baseline when more
contextual information is incorporated into the learned representations,
we may gain insights into the specific effects of context on the phonetic
segmentation task in order to propose meaningful improvements.

* Investigate the impacts on performance when Mel-spectrogram feature engineer-
ing is combined with neural-network based representation learning;

Conventionally, raw waveforms are used as inputs to speech repre-
sentation learning networks, and no work were found to have applied
engineered feature to speech representation learning. Yet, spectrogram-
based engineered features contain valuable information on phonetic
variations. Thus we would like to investigate the potential impact of
the combined usage of both learned and engineered features on the
segmentation performance, by replacing a convolutional block with
Mel-spectrogram feature extraction.

e Compare model performances when trained and/or tested on different datasets;

Automatic phonetic speech segmentation models are mostly trained
and evaluated on TIMIT (a read speech corpus designed for phonetic
analysis), and sometimes with Buckeye (a conversational speech cor-
pus), which are the only two commonly used English corpora that
provide transcriptions at the phone level. Yet, thorough evaluation of a
model should consider performance variations due to differences in
the dataset.

1.3 Contributions

1. The first speech representation learning based CNN model on the unsupervised
phonetic speech segmentation task, proposed by Kreuk et al. [22], was closely
investigated:

Chapter 1. Introduction 4

(a) Model performances on different generic phonetic classes were analyzed in
detail, which offered implications on future improvements;

(b) The learning mechanisms of the CNN was better understood via the vi-
sualization of hidden feature maps, and were shown to be effective with
segmentation performance evaluated on intermediate representations given
by each hidden layer.

2. The effects of incorporating global contextual information into the learned repre-
sentations were investigated via the addition of a GRU layer into the model:

(a) Considering a longer context at each output frame was shown to slightly
reduce phonetic segmentation performance, unlike in ASR;

(b) A longer context can effectively reduce over segmentation rate on all pho-
netic classes, and the overall reduction in performance with longer context
per frame was attributed to the decrease in the total number of predicted
boundaries.

3. The power of CNN to capture underlying speech features was validated in com-
parison to conventional feature engineering:

(a) The conventional combination of raw waveform inputs with CNN was
testified to yield the best performance;

(b) When the learning of speech representations through the CNN was based on
Mel-spectrogram feature inputs, segmentation performance slightly reduced,
though still better than previous unsupervised segmentation methods;

(c) The significance of good representations in ML tasks was illustrated by the
large gap in performances between direct segmentation on Mel-spectrogram
features and segmentation on CNN-learned representations.

4. Different combination of training, validation, and testing datasets were evaluated:

(a) The quality of additional training data (LS clean and other) contributes
positively to the model’s performance on TIMIT;

(b) The model was shown to generalize well across datasets, giving (1) similar
performances on TIMIT when training was done on LS or WSJ, and (2)
adequate performance when model trained on TIMIT was tested on WSJ;

(c) The model was trained and tested completely on WSJ with forced-aligned
transcriptions for validation and testing, which gave lower performance
compared to TIMIT;

In this report, Chapter 2 introduces the essential background of the task and the context
of related works. Major methodologies are explained in Chapter 3. In Chapter
4, experimental results are presented and discussed to fulfill the above mentioned
objectives, and we reach final conclusions in Chapter S with suggestions on next steps
to be taken in the future.

Chapter 2

Background

2.1 Technical Background

2.1.1 Phonetic Speech Segmentation

Automatic phonetic speech segmentation is the task to partition speech into its con-
stituent phoneme units [32]. These phoneme units are discrete and non-overlapping,
each defined by two boundaries, one on each side of the phoneme. To conduct phonetic
segmentation on a given speech utterance, the segmentation model outputs the positions
in the utterance where it predicts such boundaries would occur.

2.1.1.1 Phoneme

In phonology, phonemes are the basic units of analysis; they are abstract categories
of phonemic contrasts, or of sounds that belong together in the mind of the speaker
[20]. These phonemes can be distinguished by humans and speech recognition systems
because a single sound change in a “minimal pair” of words is represented by two
different phonemes in the language. For example, English words pirate and pilot is a
minimal pair with only one difference in pronunciation, where the two different sounds
represent two phonemes /r/ and /1/. This definition of phonemes by the differences in
sounds lay the bedrock for the task of determining boundaries between them — acoustic
change is a typically good measure to segment speech, such that significant change
signifies a change in phonemes [32]. Meanwhile, to automatically determine phonetic
boundaries, it is common and useful to assume that each phonetic segment is spectrally
stable [38], meaning that the acoustic change within the phoneme is assumed to be less
significant relative to that at the boundaries.

2.1.1.2 Waveform

Raw waveforms are used as inputs to the neural network model we are investigating in
this project [22]. Waveforms are the digital representations of the speech sound that
we hear. When speech is recorded to be stored in a computer, the signal is quantized
into discrete samples at a specific sampling frequency — a fixed time interval at which

Chapter 2. Background 6

points of amplitude are taken. The resulting sequence of amplitude samples in the time
domain is the waveform of the input speech signal. A sampling frequency of 16kHz is
commonly used for ASR corpora [11, 26, 27]. The number of frames (samples) of a
waveform can be computed as the product of its duration in seconds and its sampling
frequency in hertz.

2.1.1.3 Engineered Acoustic Features

Because of the common usage of engineered acoustic features in previous work on this
task, understanding the extraction procedure of these features is important to better
understand the effects of features under the context of related works. Here we give
a typical workflow for extracting the most frequently used feature — Mel-frequency
Cepstral Coefficients (MFCCs) — as inputs to previous phonetic segmentation algorithms.
Firstly, we apply tapered windows with a fixed length and stride (such as a 25ms Hann
window with a 10ms stride) to a given waveform, and conduct fast Fourier Transform on
each window (frame) to obtain the magnitude spectrum in the frequency domain, which
is where undesired phase information is removed. Then, we apply filter banks and
warp the logged output energies of these filters onto a Mel scale. On the resulting log
magnitude spectrum on a Mel frequency scale, we further conduct Cepstral analysis (i.e.
Discrete Cosine Transformation), so that correlations between adjacent filter outputs
are removed. The outcome is the MFCC feature vector for each frame, which contains
uncorrelated information about the shape of the spectrum.

2.1.1.4 Supervision

The various approaches on the task of phonetic speech segmentation can be classified
into supervised or unsupervised methods. In supervised approaches, we are given in
advance the transcriptions of the audio data, which are the corresponding phonetic
or word labels of the utterances. Most supervised approaches are based on forced
alignment [32], where a speech signal is optimally time-aligned with the corresponding
transcribed phonetic sequence. However, in the unsupervised case, we do not have any
knowledge on the phoneme set of the target language or any phonetic transcriptions
for the original speech signals. In this sense, phonetic transitions are typically inferred
by the amount of acoustic or spectral changes [38]. Thus, two things are implied with
unsupervised segmentation: the number of phonetic segments in the signal, and the
position of each boundary which marks the transition from one phoneme to another
[34]. The unsupervised setting is the focus of this project.

2.1.1.5 Challenges

Phonetic speech segmentation is a challenging task due to the high variability of speech.
The analysis conducted by [32] shows the major errors found in the segmentation
results that suggest three main categories of the fundamental problems in phoneme
segmentation. First, phonemes vary significantly in duration (for example, a vowel is
typically much longer than a plosive), so if an inflexible window of frames is considered,
then a segment that’s much longer or shorter than the window is likely to result in the
prediction of additional or missed boundaries. Second, adjacent phonemes can be very

Chapter 2. Background 7

similar in pronunciation (for instance, consecutive fricatives that are similar in terms of
the manner of articulation), so the boundaries between these phonemes are less likely
to be detected due to less significant acoustic change. Third, there are phonemes that
are inherently dynamic, which involve transitions during pronunciation (for example,
the transition from one vowel to another in diphthongs such as /0i/ in “boy”, or from
closure to burst in stops such as /t/) in “test”, and therefore, they are prone to being
overly segmented with extra boundaries. These fundamental problems give an overview
of the challenges that may hinder the performance of automatic phonetic segmentation
models.

2.1.1.6 Evaluation Metrics

Using meaningful and universal evaluation metrics are important to analyse segmenta-
tion results and compare with different models. In a comprehensive analysis on phonetic
segmentation results conducted by [32], two metrics combined are claimed to be the
most important quantities for evaluating hypothesized phoneme boundaries: correct
detection rate (CDR) and over-segmentation (OS) rate. The former is the percentage
of correctly predicted boundaries among the total number of boundaries in the ground
truth (for example, manually labeled boundaries); and the latter is the total number of
predicted boundaries over the true number, minus one, indicating the amount of over or
under segmentation. OS is essential to show flaws of the model because a high CDR
can come from a large amount of predicted boundaries, and that a high Recall with low
Precision can still lead to an adequate F1-score. For this reason, the commonly reported
F1-score in previous works on this task should also be amended. [29] proposed a single
metric combining CDR and OS, called the R-value, which is used by almost all models
afterwards. Equations below present formulae for the above mentioned metrics.

TP
Recall(R) = ———— (=CDR)
TP+FN
.. TP
Precision(P) = ———
TP+FP
PxR
F1=2x
P+R @2.1)
0S=R/P—1
1 |
R—valuezl—%—kv|
_ —O0S+R-1

— 2 2
r=\/(1-R2+08%, r2 7
where TP, TN, FP, FN represent true positives, true negatives, false positives, and false
negatives, respectively. In this project, we evaluate model performance primarily based
on the R-value metric, reported together with precision, recall, and the F1-score. Larger
R-values are desired, indicating improvement in CDR (or recall) without increasing OS.

2.1.2 Deep Learning with Neural Networks

In this project, we are interested in the unsupervised neural network approach to segment
speech. The application of machine learning (ML) methods has become much more

Chapter 2. Background 8

common in the past decade, where people no longer use hard-coded knowledge, but
instead ustilise data to train ML algorithms to solve problems. These ML models (such
as classifiers using naive Bayes or logistic regressions) are capable to learn patterns
from the data and carry out tasks that involve seemingly subjective decisions [12].

Deep learning is a specific field under ML that employs artificial neural networks with
multiple layers to learn a hierarchy of features from large amounts of data, that can then
be applied to make intelligent outputs or predictions. Deep learning networks (such
as Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN)) are
good at tasks that are originally simple for humans but hard for machines, for instance,
speech recognition [12].

2.1.2.1 Representation Learning

The particular network model under investigation for this project in [22] is an example of
representation learning. Past experience demonstrated the importance of representations,
or input features, on the performance of ML systems, which led to the development of
representation learning [12]. In terms of neural network models, it is the learning of
not only features that map representations to model outputs, but also the learning of the
representation itself to be used for the particular task.

Specifically, in the case of phonetic speech segmentation, we consider representations
to be the features used at the time of the actual segmentation (i.e. outputs from the
convolutional network in [22]). Apparently, segmenting the waveforms from recorded
speech directly would yield poor results, because waveforms contain unwanted variabil-
ity such as phase information that hinders generic pattern recognition. Hence, we want
more informative descriptions of speech that have any unnecessary variability removed,
while retaining all important information for distinguishing segments of phonemes.

Before Kreuk’s work [22], past phonetic segmentation algorithms tend to use manually
engineered spectrogram-based features as inputs, such as MFCCs or band-energies from
mel-scaled filter banks [7, 36, 25, 15]. Yet, hand-designed representations in general
tend to perform worse than representations learned automatically through deep learning
models [12]. Besides, most learned representations are also capable of adapting to new
tasks with least manual effort. Particular to this project, [22] has proven that the learned
representation through a 5-layered CNN is more powerful than engineered features, by
achieving a better performance on the unsupervised phonetic segmentation task.

2.1.2.2 Self-supervised Learning

Self-supervised learning (SSL) is a type of unsupervised learning. In terms of labeling
information provided with the data, they are the same that no label or transcription
is available for training at all. However, SSL is characterized by the provision of
pseudo-labels (such as the definition of positive and negative samples in Contrastive
Predictive Coding (CPC), as described later this chapter), from which the network can
learn to do tasks that are commonly more suitable for supervised learning, such as
image classification and speech recognition. SSL has been especially successful in
speech representation learning in recent years ([33, 3, 4, 42]) with CPC [37].

Chapter 2. Background 9

In this project, the term unsupervised refers to the task of phonetic speech segmentation,
which is the general research area known as blind segmentation, with or without the
application of neural networks. Under this area, self-supervision specifically refers to
the learning framework of the investigated neural network model that is applied to solve
unsupervised segmentation.

2.2 Related Work

2.2.1 Previous Approaches

The task of automatic phonetic speech segmentation can be categorized into supervised
and unsupervised approaches. In general, the state-of-the-art model in the supervised
setting performs better than that in the unsupervised setting. This gap between per-
formances was approximately 10% in the R-value in 2020, given by the unsupervised
model in [40] and the supervised model in [23], which both utilised recurrent neural
network. After the proposal of the investigated CNN model ([22]) in the unsupervised
setting, this performance gap has decreased significantly to 5% in the R-value.

Forced alignment is the most commonly used method in the supervised case [23].
However, compared to unsupervised approaches, it has several limitations: the alignment
requires the phoneme transcriptions not only for training, but also at inference time,
and the trained model is dependent on the particular phoneme set, which would limit
the capability of the model to transfer well to different datasets or languages [23].
Another kind of supervision to mention involves using phoneme transcriptions to aid the
segmentation algorithm indirectly for performance improvements [38, 23]. Still, these
supervised methods rely heavily on the transcriptions for good performance. These
limitations of supervised approaches on phonetic speech segmentation correspond to
the various motivations behind unsupervised methods as mentioned in the introduction,
and illustrate the need for unsupervised models.

Under the unsupervised category, techniques vary significantly, and we explain repre-
sentative previous works in the following paragraphs.

The first work to mention belongs to the conventional methods that aim to detect
significant points of acoustic change by operating directly on extracted MFCC features.
The method in [7] employs a maximum margin clustering (MMC) algorithm that splits
frames in each sliding window of 18 MFCC vectors into two clusters, and boundaries
are placed based on the combination of two metrics computed for all windows over
the signal: the Euclidean distance between each two clusters, and whether the shift of
the 18 cluster labels over consecutive windows results in a diagonal structure. Thus,
peaks of Euclidean distances and middle vectors of the diagonal structures are signals
for notable acoustic change where boundaries should be placed. This method proposed
in 2007 achieved an R-value of 80% on TIMIT (reported by [36]). It was analysed
thoroughly by [32], which illustrated the problem of over-segmentation due to the high
sensitivity of MMC to very subtle changes within a phoneme segment, and showed that
a fixed window length of 90ms would likely result in under-segmentation as only one
boundary can be found in a window using two clusters. Improvements on the MMC

Chapter 2. Background 10

algorithm were clearly desired.

[36] achieved the same R-value as the above method in [7], but with a novel approach
where the spectrogram is processed into both image-based and acoustic-based features.
The combination of the color variations in the processed spectrogram and the magnitude
variations in the Mel-cepstral coefficients together indicates the spectral, or acoustic
change for segmenting speech. It reports performance separately that an R-value of
only 48% is achieved when only acoustic features are used, but image-based features
alone achieves 74%. This implies that Mel-cepstral coefficients may lack information
significant to distinguishing phoneme segments, and more robust and informative
acoustic features are required for better performance.

A third variation of the segmentation method, achieving an R-value of 81%, is the one
proposed in [15] based on Legendre polynomial approximation. It uses the normalised
band-energies from 8 Mel-scaled triangular filter banks, which are obtained by applying
the filters to the spectrogram. The energy of each band is modelled with Legendre
polynomial coefficients to a maximum degree of 3, and the variations of which are
indicators of spectral change, for locating phoneme boundaries. This is a highly
mathematical based algorithm, which is again, much different from the previous two
methods, while achieving a similar performance.

After the proposal of the above conventional methods that work with algorithms which
directly detect significant acoustic change based on the engineered features, unsuper-
vised models that use a Recurrent Neural Network (RNN) approach were introduced.

The work by Michel et al. tries to identify phonetic boundaries at places where the error
returned by a sequence prediction RNN model is maximal, taking MFCC features as
inputs [25]. However, the R-value evaluated on TIMIT given by this method is lowered
to 78.8%. It can be said that the much longer contextual information given by outputs of
the RNN might be adding distracting information that are less helpful for determining
transitions at the phonetic level. Meanwhile, because predictions given by the RNN are
based on preceding timesteps, the starting 70ms of the error outputs are claimed to be
meaningless and set to 0, which should be considered as a weakness of such recurrent
models.

On the other hand, Wang et al. proposed a novel RNN-based approach that enhanced
performance to an R-value of 83.16%, when Gated Activation Signals (GAS) within
each Gated RNN unit are utilised in combination with error outputs from the recurrent
predictor model [40]. It is interesting to observe the correlation that exists between the
GAS over time and the phoneme boundaries, where a sudden change in GAS is shown
to imply changes in the acoustic signal.

Both of these RNN-based models also follow the same principle as conventional meth-
ods, that significant acoustic change implies a change in phonemes. Yet, though RNNs
are powerful for many tasks performed on sequential data [1, 33, 12], its robustness and
suitability for the unsupervised phonetic segmentation task should be further examined
due to the limited amount of previous work and varied results on this specific topic.

We can see that performances of the above methods overall showed an improvement of
only approximately 3% in the R-value over a decade from 2007 to 2017, despite attempts

Chapter 2. Background 11

on using various different segmentation algorithms or engineered features. Hence, there
is significant room for improvement for the unsupervised setting of phonetic speech
segmentation, and, we may consider the model investigated in this project and its use of
representation learning as a “milestone” for this particular research topic.

2.2.2 Origin and Rationale for Current Approach

We mainly focus on the model proposed in Kreuk et al., which is a novel approach
under this topic that achieved the state-of-the-art result at the time of publication with
an R-value of 86% [22], which increased performance on unsupervised phonetic speech
segmentation by the same amount of increase (3%) that other previous works took a
decade to achieve.

There are several techniques involved in understanding the effectiveness of this model
([22]), and the following paragraphs would explain the rationale behind each of these
techniques, in the order of their approximate development timeline.

The work on Contrastive Predictive Coding (CPC) [5] would be one of the major
breakthroughs that led to the widespread of self-supervised representation learning.
CPC is especially good at learning more robust representations with neural networks,
through the minimization of a contrastive loss based on the Noise Contrastive Estimation
principle ([14]) during training. There are many variants of the formulation of this
loss for different networks, and the key idea is: given a frame of output o;, a positive
sample p is defined and forms a positive pair with the current output frame, and ‘noise’
is constructed by forming negative pairs with (randomly) selected samples n from other
output frames, and thus the ‘contrast’ of the positive pair against the ‘noise’ can be
maximized via minimizing a negative log loss. Equation 2.2 shows a general formula
typically used, for the loss of outputs from one piece of data input; where sim is a
similarity function such as cosine similarity, and exp is the exponential function.

B exp(sim(o;, p))
L=~- zl" log exp(sim(o;, p)) + L, exp(sim(o;,n)) 2

For example, in [22], the positive sample is the output frame from the CNN that’s
adjacent to the current frame, while distractors are K randomly chosen non-adjacent
frames (details will be presented in Chapter 3). Through the concept of maximizating
‘contrast’ in CPC, network outputs are then capable of removing distractive information,
while retaining important information that has positive contributions to the task. The
design of learned representations using the principle of CPC in [22] exploits and
reinforces the characteristic of phoneme segments that is of particular importance to our
goal of detecting phonetic boundaries — the resulting representations tend to remain
stable within the phoneme and change when transitioning, and hence they are considered
robust acoustic features for the task [25].

Unsupervised speech representation learning, with techniques including CPC, has
become widely popular and has achieved much success only within the past three
years [37, 33, 3, 22, 2]. These works have demonstrated that learning robust and
generic representations of speech can significantly improve the performance of different

Chapter 2. Background 12

downstream tasks [42], and can be effectively and easily transferred well across different
languages [30], therefore also increasing the efficiency of resource utilization.

Among the many neural network architectures for speech representation learning, the
Convolutional Neural Network (CNN) is an essential component of recent state-of-the-
art models [42]. We discuss the commonly studied wav2vec models as examples in this
case [33, 3, 4], which have offered inspirations for the design of Kreuk’s model [22].

wav2vec, VQ-wav2vec, and wav2vec 2.0 are a series of models originally developed
by Facebook for the ASR task. They all take raw waveforms as inputs, encode them
with a CNN, pass the encoded features through a context network that further extracts
information from a wider context, and output speech representations; they are trained
via optimizing a contrastive loss. The fact that they are highly successful on various
downstream tasks [2, 42] validates the effectiveness of using CNN as a feature extractor.
Kreuk et al. exploits this idea and applies CNN directly on raw waveforms to learn rep-
resentations, also through a contrastive loss, that are optimal for phonetic segmentation
[22]. This combination of raw waveform inputs and CNN may be justified as CNNs
learn more robust features that are temporally invariant due to parameter sharing [18].

Both VQ-wav2vec and wav2vec 2.0 applied a quantization module to discretize features
extracted from the CNN network. Evaluation on similar self-supervised pre-training
models by Baevski ef al. has shown that the quantization of latent representations into
discrete units can improve the recognition accuracy for ASR. However, on the phonetic
segmentation task, the additional quantization of representations in [21] on the same
model architecture as in Kreuk et al., lowered segmentation performance instead. We
may reason that differently from the recognition task, we need to capture subtle changes
at the frame level in order to better discriminate between adjacent phonemes, whereas
quantization potentially gets rid of many of these subtle differences.

On the other hand, the context network in wav2vec models has been experimentally
proven to be unhelpful for our task either in [22]. Since each phoneme is affected by a
much smaller span of adjacent time frames compared to words, it would be less ideal to
extract utterance-level contextual features which we normally do for ASR.

The application of CNN on raw waveforms and the technique of CPC together form
the central architecture of the current model by Kreuk et al., and contribute to the rise
in performance on the unsupervised phonetic segmentation task compared to previous
conventional models. Nevertheless, the segmentation algorithm performed on the
output representations from the network at inference time is rather simple: the negative
cosine similarities for each pair of adjacent frames are computed, and boundaries
are predicted at the peaks of these scores, which are where the dissimilarity exceeds
a certain threshold. Similarly to conventional methods, acoustic change is still the
indicator for inferring phoneme boundaries, and are implied by the dissimilarity scores
here computed by the peak detection algorithm. The simplicity of this algorithm
suggests that the improvement in segmentation performance may be attributed to the
learned representations, that they are better for phoneme boundary detection than the
previously used spectrogram-based engineered features. We will focus on this idea and
investigate from different aspects the potential reasons behind the effectiveness of the
learned representations on phonetic speech segmentation.

Chapter 3

Methodology

3.1 Neural Networks

3.1.1 Convolutional Neural Network

A Convolutional Neural Network, or CNN, is a special type of deep learning neural
networks for processing data with a grid-like topology [12]. It is characterized by the
use of a Convolution operation in a convolutional layer, which is a linear operation on
two functions: x that gives the input matrix based on the receptive field, and w that
gives the weight matrix, also known as the kernel. The convolution output at point
t in the discrete case is given by: (xxw)(t) = Y x(a)w(t — a), where x denotes the
convolution operation, and a implies the correspondence between values in x and w
[12]. In practice, deep learning libraries such as PyTorch use cross-correlation (denoted
by %) for more efficient implementation, with which kernel weights are simply reflected
horizontally and vertically. Also, an optional bias term b can be added so that outputs
of the convolutional layer are allowed to be shifted. The formula we actually use for a
convolutional layer now becomes:

(x*xw)(t) :Zx(a)w(t+a)+b 3.1

In a convolutional layer, a kernel takes regular strides through layer inputs and performs
the convolution operation, and the output is passed through an activation function (as
explained later), to produce a feature map. Each layer can have multiple input and
output channels, which means multiple kernels are applied so that different feature
maps can be generated. The stacking of kernels of all the channels forms the filter of
that convolutional layer. Visualisation of feature maps and filters may provide insights
into the internal learning mechanisms of CNNs and has been shown to be helpful for
understanding the feature extraction process for CNNs that process images [43].

The dimensionality of feature maps and filters depends on the size of the kernel (K), the
stride (), size of optional padding on inputs (P), and the number of output channels
(Cour)- The general equation for computing the output length of convolution in a certain

13

Chapter 3. Methodology 14

dimension is given by:
(L+2xP—K)
S

where L is the input length in that dimension. In practice, the floor function is applied
to ensure we have integer output dimension.

+1 (3.2)

Speech in the form of either waveforms or spectrogram-based features is time-series
data that’s suitable for 1D convolution, where the kernel takes strides at regular intervals
in the time domain. For example, given a raw waveform of one channel with length L,
passing the waveform through a 1D convolutional layer with output channels C,,; = 256,
a kernel size K = 10, and a stride S = 5 indicate a filter of dimension (256, 1, 10) and

would yield 256 feature maps each of length (L_S—IO) + 1.

3.1.1.1 Parameter Sharing

In the operation of a convolution layer, parameters, or weights of a kernel, are shared
by applying the same kernel over the entire length of the input, so that weights are no
longer specific to each input unit as in tranditional neural networks like Multi-layer
Perceptrons [18]. This concept enables CNNs to be equivariant to translations, meaning
that output feature maps vary in the same way the inputs vary [12]. This property
also grants CNN the power to operate well on raw inputs like waveforms without any
pre-processing.

3.1.2 Recurrent Neural Network

A Recurrent Neural Network (RNN) has the power to represent information over time,
which is most suitable with sequential data input. In understanding speech, which is
naturally a sequence of phonemes or words, contextual information is often important.
In RNN, input vectors are processed one by one in sequential order, with hidden states
h representing the ‘memory’ of information at each time step. Hence, information in
the past is passed on and combined with the current input in each cell of an RNN layer,
which then further contributes to the learning of weights at future time steps. Weights
are then updated via back-propagation through time. Figure 3.1 shows a simplified flow
of information in an RNN, where x) and /(") represents the input and hidden state at
time ¢, respectively.

-~ s~
/ b / Y
\ / \ /
—_— ~-7 f f f f ~=7
f Unfold

Figure 3.1: Simplified architecture of an Recurrent Neural Network [13].

Chapter 3. Methodology 15

However, due to the multiplication of gradients in the backpropagation through time, an
RNN is prone to the vanishing/exploding gradient problem. Therefore, gated RNNs,
such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), are
proposed as common variations of RNN to solve this problem. Particularly, GRU is
used as a modification to the model in this project.

3.1.2.1 Gated Recurrent Unit

A Gated Recurrent Unit (GRU) network is a type of RNN that is similar but simpler
than an LSTM network. It differs from RNN only in the internal architecture of the
recurrent cells, so it also has the power to represent information over time just like RNN.
The key to GRUES is the use of gates within each cell, which regulates the interpolation
of previous hidden state and the current input to produce the new hidden state [6]. Thus,
gates are trained to keep the most relevant information in the ‘memory’ of a hidden
state. Each GRU cell contains 2 gates — the reset gate and the update gate. Figure 3.2
illustrates the architecture within one hidden GRU cell.

The Reset Gate r; of the 7" hidden unit controls the amount of information to forget
from the previous hidden state (hft ~1>)_ 1t outputs a value between 0 and 1 with the
logistic sigmoid function:

ri =o([Wxl]; + [Ua~"1>])) (3.3)

where W, and U, are weights to be learned, and x is the corresponding input to the ;"
unit. Thus, the closer r; is to 0, the more it forgets from the past.

The Update Gate z; then controls the interpolation of new input and past information,
enabling the network to have long-term memory:

zj = 6([Walj +[UA<"17])) (34)

where W and U, are also weights to be learned. The hidden state h;'~ is then:
W' =zjoh ™+ (1—z) @ k5" (3.5)
B> = O([Walj+ [U(r; 0 i<~ 7)) (3.6)

where ¢ represents the ranh activation, and © represents the Hadamard (element-wise)
product. The actual realisation of the GRU layer is implemented with the PyTorch
torch.nn.GRU class, with which bias may be added as a learned parameter.

—
-

Z

(h—"—1h

Figure 3.2: The Reset and Update gates in a hidden unit (cell) of a GRU network [6].

A

X

Chapter 3. Methodology 16

3.1.3 RelLU Activation

Activation functions are essential for deep learning networks. They introduce non-
linearity to the network, which is important because operations including convolution
and affine transformations through weight matrices are linear; so if we want the network
to learn more complex patterns (with non-linear decision boundaries for instance),
non-linearity must be added onto outputs of hidden units via activation functions.

There are many different activation functions available; sigmoid, tanh, and Rectified
Linear Unit (ReLU) are the most common ones. Among these, ReLU is shown to have
achieved better empirical results than sigmoid or tanh [12].

In CNN, each convolution layer is followed by activation. Leaky ReLU, a variant of
ReLU, is applied in each activation layer, in the CNN used in this project. Leaky ReLU
solves the saturation problem found in sigmoid and tanh. Compared to ReL U, it gives
non-zero outputs on negative inputs, so that the “dying ReLU” problem due to the
zero gradient on negative inputs in ReLU activation is corrected, which allows strong
learning signals to be given also on negative values. Equation 3.7 specifies the Leaky
ReLU function and its gradients, where o is a pre-defined small number that defaults to
0.01 in the PyTorch torch.nn.LeakyReLU layer.

LeakyReLU(x) = 4 & ifx<0 d kyReLU (x) = 4 & fes0 50
CHVREET I =0 ifx>0 dpe CEREEYTN L dfxso0 '

3.1.4 Batch Normalization

Normalization techniques bring better performance and significant decrease in the
training time for a neural network model [35]. Batch Normalization (BN) is a type
of normalization applied as layers throughout the neural network, normalizing each
training mini-batch with learnable parameters. Deep learning networks are prone to
internal covariance shift and the exploding/vanishing gradient problem, which both
make training extremely slow. The prior is the varied distribution of activations when
weights are updated during training due to inputs from previous layers that are not
standardized to a certain scale [17]. The latter is caused by multiplying weights
during back-propagation that might result in extremely large/small numbers. BN may
effectively alleviate these issues by first normalizing outputs of the respective layer
based on the mean u and standard deviation ¢ across a mini-batch, and then shift and
scale the normalized outputs with learned parameters 3 and ¥ [17]. The formulae below
illustrate the workings of a BN layer, where u; is the input from previous the hidden
layer on the i feature dimension.

batchNorm(u;) = ¥; il; + B (3.8)

where 1, = A 3.9

\/O?+¢

In our experiments, outputs from each convolution layer is first passed through a batch
normalization layer before applying the Leaky RelLU activation.

Chapter 3. Methodology 17

3.1.5 Fully Connected Layer

A Fully Connected (FC) layer in a deep neural network is a linear transformation that
connects all units of the input layer to all units of the output layer. It learns a mapping
that would assemble the extracted features, given by a CNN for example, at the end
of the neural network to give the final output, such that the network is now trained
end-to-end. FC layer also allows the dimensionality of features to be altered to the
desired output dimension (such as the number of classes in a classification task).

3.2 Contrastive Loss

Contrastive loss refers to the loss used in the technique of CPC, where this loss is
optimized with self-supervised learning to update network weights. We define the con-
trastive loss specific to the particular model under consideration [22]. Given a waveform
input x of an utterance to be segmented, we obtain its corresponding representation z by
passing it through the neural network, and depending on the length of the input sequence,
z has a total of L frames. Each z; (the " frame in z) is a 64-dimension vector that has a
receptive field of 30ms, and z has a frame rate of 10ms of the original waveform input.
The loss L; is then computed on each output frame z; over each sequence of output
representation z, for i = 1...L — 1. It can be given as an adapted version of Equation 2.2:

exp(sim(zi, ziv1))
Yejefain} Uk (z) xP(sim(zi, 2j))

Li(zi, Dk(zi)) = —log (3.10)

where sim represents the cosine similarity function over the two vectors, and exp is the
exponential function. Given a batch size of M, we denote the m" output in the batch by
z™. With reference to [22], the positive sample is defined as the adjacent frame z; | of
zi, and Dk (z;) denotes the negative ‘distractor’ samples, which are K randomly selected
non-adjacent frames in the same output sequence z”, such that Dg(z;) C D(z;) with
D(z;) being the set of all non-adjacent frames to z; in 2"

D(z)={zj:|i—j|>1,z;€2"} (3.11)
The value of K is set to 1! (authors of [22] experimented different values for K but
concluded that there were no significant change in performance).
Therefore, the overall loss L across a batch of inputs is:
M
L=Y Y Lz Dk(z)) (3.12)
m=1z; €z

The minimization of the above contrastive loss implies that the representations have
been trained to contain information that optimally discriminate between non-adjacent
frames and adjacent frames. Thus, at inference time, when two adjacent frames z;

IDifferent values for K were tried when reproducing results, but increasing K up to 10 brought
improvements of less than 1% on R-value, so the given value found in the code repository was used to
report baseline results.

Chapter 3. Methodology 18

and z; | give a low cosine similarity value, the model would consider them as ‘non-
adjacent’, meaning that they are more likely to belong to different phoneme segments
and a boundary is more probable between them. This is the reason why the peak
detection algorithm described in section 3.3 places boundaries where the dissimilarity
score (—sim(z;, zi+1)) across the output sequence z exceeds a threshold.

3.3 Peak Detection Algorithm

A peak detection algorithm is applied at inference time on the representations (Z)
learned from the neural network, to determine locations of phonetic boundaries [22].
The peak detection algorithm first scores the dissimilarity between each pair of adjacent
frames z; and z;41, for i = 1...L — 1, as the negative cosine similarity (sim) between
them (Equation 3.13).

score(z;) = —sim(z;,zi+1)[22] (3.13)

The sequence of these scores signifies places where adjacent frames are significantly
dissimilar in terms of their representations (i.e. where the score peaks and its relative
differences to scores of nearby frames exceed a certain threshold), which have been
optimized during training for capturing acoustic change and recognizing phonetic
transitions.

Next, the peaks of these scores are located using the function scipy.signal.find_peaks,
which we call on the sequence of score(Z) with the prominence, width, and distance
parameters, to obtain the indices i of detected peaks. The prominence is defined as the
minimal height difference required between the height at current frame and its lowest
contour line to consider it as ‘peak’ [39]. Similarly, minimal width of the peak and
minimal distance between adjacent peaks required are set by the width and distance
parameters. A range of prominence values in [0, 0.15] with a step size of 0.01 are tried

at validation time to find the best prominence value. For either width or distance, only
two values, None and 1, are tried for validation.

During testing, we apply a tolerance window of 20ms, which means a predicted bound-
ary within 2 frames in the representation space to a ground truth labeled boundary is
considered as correct. This tolerance has been validated and commonly used in previous
works, that 20ms is in general the span which manual segmentations agree with each
other [41].

3.4 Data

This section introduces the datasets used in our experiments.

3.4.1 TIMIT

Previous works on phonetic speech segmentation almost all evaluated their systems
on the TIMIT dataset, which has been a standard dataset for comparing performances
on phone-based speech processing tasks such as phone classification and recognition.

Chapter 3. Methodology 19

TIMIT is a corpus of read speech for acoustic-phonetic studies [10]. It contains sen-
tences read by 630 speakers of eight dialect regions of American English, with a 7:3
male:female gender split overall. Each speaker contributed to the recordings of 10
sentences. There are three types of sentences in TIMIT: (1) dialect sentences, (2)
phonetically-compact sentences, and (3) phonetically-diverse sentences. (1) are read by
all speakers to exemplify the dialects, and are conventionally excluded from training
and testing. (2) are designed specifically for better coverage of phonetic contexts, and
(3) are selected from existing text corpora to add diversity. Overall, there are 3696
utterances (i.e. sentences) in the training set (approximately 3.14 hours), and 1344
utterances in the testing set (around 0.81 hour). Of all utterances in the training set, we
used a 90% training and 10% validation split.

The utterances are recorded with a sample rate of 16kHz with 1 audio channel, saved in
SPHERE format. TIMIT offers the manually labeled phonetic, word, and orthographic
transcriptions aside from each waveform file. We use the phonetic transcription (.phn)
files as the ground truth segmentation boundaries when evaluating the model on TIMIT.
The phonetic transcriptions use a revised set of the ARPAbet phonetic transcription
codes, containing 20 vowels, 38 consonants (with each of the 6 stops split into the
release and the closure parts), and 3 labels for silence [10]. In total, these 61 phones
form the original complete TIMIT phone set. Although in many phonetic recognition
tasks, phone set reduction is applied to reduce confusability, the actual phone labels
were irrelevant for the segmentation task in this project and the complete set was not
reduced. Mappings of TIMIT phone labels to IPA symbols are given in Appendix A.

3.4.2 LibriSpeech

LibriSpeech (LS) is also a corpus of read English speech, but it is more often used for
the speech recognition task and has achieved great performances compared to other
ASR corpora [26]. LS contains speech read from audio books (from the part of the
LibriVox project). Data in the corpus is gender-balanced, and speakers are divided
into two groups — ‘clean’ and ‘other’, based on their respective WER (word error rate)
evaluated using an acoustic model trained on a subset of the WSJ corpus. Speakers
with lower WER are assigned to the ‘clean’ set, while those with higher WER are
assigned to the ‘other’ set. In general, the ‘clean’ set of speakers are those that gives a
higher recording quality and with dialects similar to standard American English. There
are in total 960 hours of training audio data, which is split into the train-clean-100,
train-clean-360, and train-other-500 subsets. Besides, there are two development sets
(dev-clean and dev-other, each read by 40 speakers) and two testing sets (test-clean and
test-other, each read by 33 speakers), each containing around 5 hours of speech [26].

LS uses the same 16kHz sample rate for recordings, and provides transcriptions at the
word level. In our experiments, we take only the (.flac format) audio files in LS to use
as unlabeled data for training the neural network model, but not for validation or testing.

Chapter 3. Methodology 20

3.4.3 Forced Alighment

There are few English speech corpora with transcriptions at the phonetic level. Past
works on automatic phonetic segmentation in English are almost all evaluated on the
TIMIT corpus, and only sometimes on Buckeye (a phonetically labelled conversational
speech corpus). More commonly, popular ASR corpora such as LibriSpeech and WSJ
offer transcriptions at the word level. Although they can be used for training blind
segmentation models, there must be some “ground truth” labels of phonetic segments
in order to conduct evaluation on these corpora. These phonetic transcriptions may be
generated with forced alignment, where word-level transcriptions are used to align and
label the audio data at the phonetic level.

Kaldi, an open-source speech recognition toolkit, was used to generate forced-aligned
phonetic transcriptions for both TIMIT and WSJ [28].

344 WSJ

We also train and test the performance of the segmentation model on the Wall Street
Journal (WSJ) corpus. The spoken portion of WSJ, first released in 1992, was the first
general-purpose, large-vocabulary English speech corpus, and continues to provide
various performance benchmarks on the ASR task [27]. We use the standard SI-284
set for training, and the dev93 and eval92 datasets as the validation and testing sets,
respectively; all of which have a vocabulary size of 20K. The recordings are stored in
SPHERE format, recorded also at a 16kHz sample rate [27]. We use the first channel of
audio files (.wv1), and convert them to WAV format before inputting into the model (with
the sph2pipe tool in Kaldi). The S/-284 training set implies speaker-independent data
from 284 speakers; it contains around 80 hours of speech with 37318 utterances, which
are used without any transcriptions. The dev93 and eval92 sets contain approximately
1.1 and 0.7 hours of speech, and 503 and 333 utterances, respectively [16]. These sets
were used with transcriptions for validation and testing purposes. Since WSJ provides
only transcriptions at the word level, phonetic transcriptions for waveforms in dev93
and eval92 were obtained by doing forced alignment on an acoustic model trained on
SI-284 using Kaldi.

3.5 Adaptation of Code and Difficulties Met

To reproduce the model results in [22], the open source code published with the paper
on GitHub? was used. This training code uses the PyTorch Lightning framework, which
has the same capabilities as the traditional PyTorch framework, only with a much
higher-level API. However, due to the use of relatively outdated versions of packages in
the original code, the training environment could not be built initially with the original
package versions on either the Linux cluster or the local environment. Afterwards, I had
built the environment with newer packages, and adapted the code to remove deprecated
functions, but an error with the memory usage that occurred after a dozen of training
epochs was not resolved. I had decided to rewrite the code with PyTorch, because the

Zhttps://github.com/felixkreuk/UnsupSeg

Chapter 3. Methodology 21

high-level encapsulation of functions in PyTorch Lightning was harder to understand
due to my lack of experience with PyTorch. Yet, while debugging the rewritten code,
which took a quite long period of time, the environment was finally built successfully
on the cluster with the help of a tutor, by changing only the version of PyTorch to allow
compatibility with the NVIDIA CUDA drivers. Hence, later modifications to the code
were done with PyTorch Lightning version 0.7.6, with the help of an older manual since
the documentation of this version is no longer available on the official site after major
changes were made [8].

Chapter 4

Experiments

Each section in this chapter aims to achieve each objective defined in Chapter 1.

4.1 Baseline Experiments

We refer to the self-supervised CNN model proposed in Kreuk ef al. ([22]) as the
“baseline model” that we have based our experiments and analysis upon. First of all,
results from [22] are reproduced on the TIMIT dataset, in order to investigate this
baseline model closely. In this section, we explain the model architecture in detail, and
then describe the steps used and challenges met for reproducing results; afterwards,
we show baseline model performance and conduct error analysis on the segmentation
outcomes.

We first describe specifications of this model according to the work in [22]. The overall
architecture of the model is demonstrated in 4.1.

£
5 = (IS «) <« ©] £
2 x| 0 —~ <Y ~ AR ~ <9 ~ %9 s 2 5
== 8|%1elo|3 8|n|eglo| B 8|0|ela| B HCINENE oD o |7F 273 9 S
£ 3 nlc|E[2| € DlglE[2| E oal<s|E|2] E o< E|T| E o< 8 o - <
£ E 0252 0ol 5a o5 o |5) Y £ e E
S s|u|2|2|g S s|d22 |3 AR A= L8 - 2 5
e-—>E X528 2 alE|l2 8 EalE e IElalE |8 g | |3 TIEE s (B
S| (2|38l (B(3|8|8|2| [B[:|E|8le| |B|z|E|%l2| |B|E|El=l 8= |E| |B
== B = z|§ IS 2|5 e 2l 5 12 2|5 < Q< S a
G| 9 =~ S = S = S = Q > o
& 8|S 38|° 3|° S|° G |© 5]
= &

N
N
N
N
N
4|

Figure 4.1: Architecture of the neural network model proposed in [22]; values in brackets
indicate output dimensions of the layer.

The main body of the neural network is a 5-layered CNN, which is followed by a
fully connected layer to output learned speech representations on a given waveform
input. Specifically, each of the five convolution blocks that together constitute the CNN
contains three layers — a 1D convolution layer, a batch normalization layer, and an
activation layer. The convolution layers operate with the parameters (kernel size, stride
size) of: (10, 5), (8, 4), (4,2), 4, 2), (4, 2), (4, 2), respectively in order. The number

22

Chapter 4. Experiments 23

of output channels is 256, the same for each convolution layer. Each output channel is
then normalized over the input batch by a Batch Normalization layer. In the activation
layer, the Leaky ReL.U function is applied on batch normalized convolution outputs to
add non-linearity.

At the input layer, audio files were directly loaded with torchaudio in raw waveform
format; they have a sampling rate of 16kHz (i.e. one second of audio corresponds to
16,000 frames of input) and 1 audio channel (i.e. the input sequence is a 1-dimensional
real vector of T frames, where T is different for utterances that have different lengths).
We denote each input sequence of frames by x = [x;] for i = 1...T. A batch size of 8!
was used, so that input waveforms from 8 audio files are processed together for a single
update of network weights; and the input waveforms in a particular batch are padded to
the same length — the maximum length among inputs of the current batch (7,,,,,), using
a zero-padding strategy.

We use the same notation for the learned representations as in [22], and denote outputs
of the network by Z. Output z corresponding to each input x has a length of L frames,
such that z = [z;;] fori = 1...L and j = 1...64, so each frame z; of the representation z is
a 64 dimensional vector. The 256 dimensional output from the CNN blocks is mapped
to 64 dimensions to obtain Z via a Fully Connected layer.

The actual length L for each z (ignoring padded units) can be computed from the actual
length T of the matching input, using Equation 3.2 with kernel and stride sizes of the
convolution layers. In our case, one second of input waveform, which is equivalent
to T = 16,000 frames, would give an output length of L = 98, which means that the
new frequency as in the representation space (frequency f =]f sf;rci’)%i) is now reduced
to 98Hz. This means that the frame of z is approximately 10ms (jlf = % =0.0102s) of
the audio in the input space. We can also determine the receptive field of each frame
of the representation via the inverse computation of Equation 3.2 backwards through
the convolution layers. In this case one frame of z is processed from 465 frames of x,

which represents approximately a receptive field of 30ms (5 gl??lz = 0.029s).

The technique of CPC is employed here such that a contrastive loss, as explained in
Chapter 3, is used to optimize network weights in a self-supervised fashion. The loss L;
on each output frame z;, for the m'* output z” in the batch of size M = 8 is computed
via Equation 3.10, and the loss across a input batch is summed over all frames in all
utterances in the batch.

At training time, weights of the network are updated on each batch of inputs via back-
propagation with the objective to minimize the contrastive loss. The TIMIT dataset is
used to train, validate, and evaluate the baseline model (with the ‘SA’ dialect sentences
removed). The model was trained for 50 epochs, and as TIMIT is a quite small corpus,
our experiments showed that the model converged fast. The Adam optimizer was used
with a learning rate of le—4, and a StepLR scheduler’ was used without applying

IDifferent batch sizes were tested, though slightly larger batch size improved performance, the
improvement (within 1% in R-value) can be neglected and the original batch size of 8 as in the paper was
used.

ZFor experimentation, a better scheduler ReduceLROnPlateau was tested, but the improvement was
trivial from the original setup

Chapter 4. Experiments 24

Model Data | prominence | Precision Recall Fl1 OS R-val
Kreuk et al. | TIMIT 0.05 83.34 83.60 83.47 0.31 85.89

Table 4.1: Performance of the baseline model on TIMIT.

learning rate decay.

The TIMIT phonetic transcriptions were used for both validation and testing, while the
former is for saving the model with the maximum validation R-value, and the latter is
for reporting evaluation metrics by comparing predicted boundaries to the ground truth.
Validation was performed after every training epoch, and testing was conducted only
once after training has finished.

The reproduced results on the TIMIT test set are reported in Table 4.1. There was only
a 0.13% difference in the R-value to the reported result in the paper (86.02%), so that
the reproduction of results had been successful. As mention in research motivations,
these results outperformed all previous methods. Particularly, it gives similar precision
and recall, which suggests that the high rate of correct detection of boundaries did
not come from over-segmentation, such that the model had indeed learned effectively
the information to distinguish the subtle variations within a phone and the transitions
between phones.

We also illustrate the workings of the baseline model with an example utterance from
TIMIT, shown in Figure 4.2.

a) Spectrogram

I ETE R R '
——~- predicted boundaries
true boundaries

b) Dissimilarity Score

c) Representations Z

Figure 4.2: Visualisation of model outputs on the utterance “The courtyard is magnifi-
cently decorated”, with a) its original spectrogram; b) dissimilarity scores on adjacent
output frames with true and predicted boundaries labeled; c) its output representations.

ZIXIN

Chapter 4. Experiments 25

Firstly, by comparing the original sepectrogram in (a) of Figure 4.2 to the learned repre-
sentations in (c), we can see much more salient displacements of the horizontal stripes
in (c) at the times where phonetic transitions occur (according to the orange vertical
lines that represent true boundaries in (b)). This indicates the learned representations
are capable to better capture the acoustic change that signifies phonetic transitions.

The predicted (red) and true (orange) boundaries were also plotted in the plot of
dissimilarity scores (b). The red dashed lines corresponds to the prominent peaks of the
dissimilarities between each pair of adjacent frames, demonstrating how the location
of boundaries were determined by the model. We may observe that there is a high
correspondence between locations of the red and orange vertical lines, contributing to
the high R-value on segmentation. However, there were also instances where the model
failed to detect a boundary, such as the one spotted with a dot in Figure 4.2, which
was missed by the model due to an insignificant dissimilarity value at this point. The
actual transition here is from /a/ to /r/ in the word courtyard, which seems unclear as
if they were a single phone to human listeners as well. Hence, to further investigate
the strengths and weaknesses of the model, we conducted error analysis on model
performance with respect to different phones.

4.1.1 Error Analysis

Boundaries predicted by the model on all utterances in the TIMIT test set are compared
to their true locations in the phonetic transcriptions, and statistics are summarized
separately on each phoneme in the 61-phone set to give: (1) percentage occurrence
of the phoneme (N); (2) its over-segmentation rate (0OS); (3) under-segmentation rate
(US); (3) exact-segmentation rate (ES). A phonetic segment (as in the ground truth) is
overly segmented if more than two boundaries are predicted within the duration of the
segment with tolerance considered; it’s under segmented if less than two boundaries
are predicted; and it is considered to be exactly segmented when there are only two
boundaries predicted for that segment, while both are correct (one marks the left
boundary of the phone, the other marks the right boundary).

To make the analysis clearer and more meaningful, we used generic categories of the
phonemes based on the work in [31], which divided phonemes by their distribution in a
confusability matrix. These classes are presented in Table 4.2

Group Name TIMIT Phone Labels IPA Labels
Vowels iy ih eh ae aa ah ao uh uw ux ax ax-h ix ite@aadovuuo9i
Diphthongs ey aw ay oy ow €1 av a1 J1 IV
Semi-vowels lelrwy eraxr llrwjso
Stops bdgptkjhch bdgptkdztf
Fricatives s sh z zh f th v dh hh hv sfzzfOvohh
Nasals m em n nx ng eng en mmnfgygn
Silence dx bel del gel pel tel kel h# pauepiq | cb'd g p't'k’ n/an/an/a?

Table 4.2: Categorization of the TIMIT 61-phone set into generic classes based on [31].

Phones under each class were grouped together, occurrences of phones in one class

Chapter 4. Experiments 26

were summed, and the percentage OS, US, and ES for each class were averaged over
the number of distinct phones under that class. The resulting statistics are visualized in
Figure 4.3, from which we make several observations on the distribution of segmentation

CITOor1S.
20-
. I) .
0-

\,o‘Ne “\0095 \.o“e\ 5{095 a{\\le 05 \\e(\ce \,oWe ‘\,\0(\95 u(,\N(%\Z;o&)s a‘\\les s \\ence

40-
20-
10-
5-
0- 0-

\.o“e “‘“Oﬂg‘s We\ ‘09‘*’ ‘\\le 53\5 \\er\Ce u(,\Ne “mor\ﬂf" qo‘Ne\ ‘095 ‘Ne5 sa\ \\ence

25 -

(a) % Occurrences (N)
(b) % Over Segmented (0OS)
w
O

0-

= N N w w
o ° u ° o

(c) % Under Segmented (US)
S

(d) % Exactly Segmented (ES)
w
S

Figure 4.3: Statistics of model performance on each phone class, with (a) % occurrences
in test set; (b) average % over segmentation of each phone in a particular class; (c)
average % under segmentation; (d) average % exact segmentation.

In general, the TIMIT test set is not balanced across the phonetic classes, nor are the
utterances in natural language that might be spoken in daily life. The variations in the
distribution of phonetic classes here (plot a) might have played an important role when
computing a single performance score overall. If most errors lie in a phonetic class
that occurred least frequently in the data which the model is evaluated on, the errors
are unlikely to impact the performance significantly. For instance, the diphthongs class
occupied only 4.71% of the total phone count, which was the least frequent among the
classes, so even though it had the highest OS error rate (as shown in b), its proportionate
contribution to the total amount of erroneous boundaries predicted by the model would
be relatively less significant compared to error rates of highly frequent phones (such as
vowels).

The high occurrence frequency of silence here can be mainly attributed to the fact that

Chapter 4. Experiments 27

the closure portions of stops were also categorized as ‘silence’. There were actually
only three labels in the TIMIT transcriptions that marked true silences (h#, pau, and epi)
which were not part of any phonetic pronunciations, which together took only 6.54%
out of the 22.84% frequency of all phones categorized as silence.

Balancing the amounts of OS and US has been a challenging task for automatic phonetic
speech segmentation systems, which requires the segmentation model to be not too
sensitive to subtle acoustic change, while also being able to discover inherent transitions
that are not salient from acoustic or spectral features. From plot (b) in Figure 4.3, we may
observe that diphthongs have the highest OS rate of 55.97%, which means more than
half of the diphthongs in test utterances are overly segmented. This would be expected
since diphthongs are inherently dynamic in nature, such that their pronunciation starts
with one vowel sound and slides towards another vowel sound, but are labeled with a
single phonetic symbol. Hence, it implies that the representations learned via the CNN
are not particularly good at recognizing diphthongs when two consecutive vowel sounds
can be either represented by two vowels or one diphthong. 1t’s hard for the segmentation
algorithm to decide when to consider two consecutive vowel sounds as a whole, and
perhaps more contextual information from nearby phones would be helpful.

On the contrary, nasals was the least overly segmented class, which might mean that
nasal phones are more stationary during the period of articulation. It was also the class
that reported the highest rate of exact segmentation (56.19%). This might indicate that
nasal phone segments stand out more from their adjacent phones compared to other
classes, and that nasal sounds would be harder to be confused with other sounds of
different manners and places of articulation.

On the other hand, the highest rate of US goes to semi-vowels (38.09%), possibly
because semi-vowels tend to be non-syllabic, which is when the phone is not the
nucleus of a syllable. For example, the /1/ in “felt” is non-syllabic. These phones are
then less salient compared to adjacent phones, which can be a reason why they were
often under-segmented compared to other phonetic classes. This might be an issue
for a global peak detection algorithm, where a single prominence is applied over all
frames of dissimilarity scores, such that in some cases like the beginning of a semi-
vowel, an insignificant ‘peak’ may also indicate a phonetic transition. The example
missed boundary we described earlier as shown in Figure 4.2 would be a case where
the start of the semi-vowel /r/ is not recognized by the model as the curvature of the
dissimilarity score plot at this point is relatively ‘flat’. However, though a peak detection
algorithm with dynamically varying prominence might seem a solution to this problem,
it is extremely hard as we have no knowledge of the phonetic class nor other phonetic
information that could guide the change in prominence in the unsupervised setting,
which can be a challenging task to explore further in the future.

Comparing (b) and (c) in Figure 4.3, we can notice that there are some correlation
between rates of OS and US. The top three classes that gave the highest OS rates
correspond to the three classes that gave the lowest US rates, which is also true vice versa.
This phenomenon suggests that the model’s segmentation behavior across phonetic
classes is quite consistent, where phones that are likely to be overly segmented are also
less likely to be under segmented, as implied by the features of each phonetic class.

Chapter 4. Experiments 28

Thus, the boundaries are determined non-randomly and according to the characteristics
of the phonetic transitions. It also indicates that the learned representations produced
by the model contain meaningful information that leads to consistent and explainable
segmentation.

The exact segmentation (ES) rate removes any potential increase in the recall of bound-
aries due to high OS rate, so the plot in (d) illustrates the phonetic classes that the model
is the best/worst at segmenting given that no OS/US occurred. The top three classes
that gave the highest ES rates are nasals, fricatives, and stops. A high ES rate means
correct identification of the beginning and end of the particular phone where phonetic
transitions occur. Apart from the nasals class discussed prior, the fricatives and stops
are classes of phones that involve the creation of turbulent airflow due to constriction in
the vocal folds during articulation, which may be characterized by stochastic patterns
in the waveform or noise at the upper frequency range in the spectrogram. Though
normally in phonology, stops have both the closure and the burst portions, they are
labeled separately in the TIMIT phone set, where phones in the stops class here only
represent the burst portion, while the closure portions are classified as silence (labels
ending in ‘cl’). This separation has made segmentation easier for these phones, since
transitions from closure to burst present strong contrast in the spectral features (can be
observed in the spectrogram in Figure 4.2 that voicing is mostly absent in closures).
Therefore, fricatives and stops gave reasonably high ES rates, given strong acoustic
contrast at transitions provided by the above mentioned characteristics. The learned
representations are good at finding these characteristics, so that the higher ES rate
implies greater confidence of the model to determine boundaries of phone segments.
Meanwhile, it’s reasonable to say that the model yields better performance on phones
that offer more salient transition signals accompanied by less confusion with adjacent
phones.

Overall, ES rates potentially reflect the capability of the model on the particular phone
class in terms of the extent to which the learned representations understand the internal
acoustic features that signify transitions for phones in that class. Therefore, we may
conclude that the characteristics at transitions for diphthongs and semi-vowels are less
significant to the model, while those for nasals, fricatives, and stops are more easily
identified as the segment boundaries. These observations also infer a resemblance
between the model’s segmentation behavior and how easily we can obtain information
from only the spectrogram visualization of the utterances, and in this sense the model
is quite “intelligent”. Besides, the segmentation pattern and performance on different
phone classes are consistent and explainable. Yet, it’s hard to design improvements
based on errors from each phonetic class without knowing which phonetic class is
currently under consideration during segmentation. Nevertheless, we might make
improvements from the approach of learning better speech representations by altering
the current network model, which could possibly induce overall improvements when
learned representations capture acoustic information that’s more suited to this particular
task; and with these distributions of errors in hand, design changes based on the current
model would become more informative.

Chapter 4. Experiments 29

4.2 Analysis of intermediate representations

It is hard to understand the internal workings of deep neural networks since the feature
extraction process is hidden during training through the hidden layers. The reason
why the application of CNN on the unsupervised phonetic speech segmentation task
has improved performance significantly from conventional approaches could be fur-
ther explored. Visualizing the learning procedure could be a straightforward way for
understanding how the final speech representations are learned. Figure 4.4 shows the
visualized feature maps from each of the five convolutional blocks, on the previously
presented example utterance.’

Figure 4.4: Visualisation of the feature maps from the 5 convolutional blocks in order, on
the example utterance "The courtyard is magnificently decorated”.

We can observe “vertical stripes” from these feature maps that appear due to significant

3The plots were stretched to the same length for comparison, while the length of the utterance in the
representation space is being reduced at each convolution layer. So, the 5 plot may seem more chaotic
because it gives the highest resolution.

ZIXIN

Chapter 4. Experiments 30

differences in colors of adjacent vectors, which indicate the positions of significant
spectral variations. The figure demonstrates that as a raw waveform is passed through
the network, the contrast in color at these vertical stripes is emphasized. Initially in
the outputs of the first convolutional block, these stripes appear to be very vague, and
we can notice that some areas of less ‘opaque’ shadings are removed in the outputs
from the second block. Thus, in the first three CNN blocks, the model seems to be
trying to ‘clean’ the extracted features to keep only those that are salient enough, which
are further enhanced. From the outputs of the fourth and fifth blocks, we notice that
the feature maps show a gain in the details within all potential segments, such that the
number of vertical stripes increases again. As an example, such decrease and increase
of detail can be illustrated by the variations inside the boxed area.

CNN block | Precision Recall Fl1 R-val
1 0.41 0.04 0.07 29.25
2 37.71 8.78 14.24 35.28
3 44.77 20.51 28.13 42.95
4 52.02 44.01 47.68 56.62

Table 4.3: Performance of evaluated on intermediate representations from each CNN
block (prominence = 0.05 and tolerance = 20ms).

To demonstrate how effective the neural network is learning, we may also evaluate
segmentation performance on these feature maps directly. Table 4.3 gives performance
scores when segmentation is done directly on the intermediate representations from
each of the 4 hidden CNN blocks. We can clearly observe that values for all the metrics
were increasing as the depth convolution increased. Starting from very low precision
and recall of the boundaries on outputs from the first block, layers in the network had
effectively and gradually learned to achieve better segmentation performance, and the
fourth layer offered the greatest increase in R-value to a score of 56.62%.

Unlike image processing, it is hard to visually understand the patterns given by each of
the 256 convolution channels, but we can still compare the learning of representations
via the CNN to the original spectrogram. As illustrated by Figure 4.2 (b) and (c) earlier,
these vertical stripes correspond to the model’s predictions of phonetic boundaries, and
to a large extent also to the ground truth boundaries. Looking back at the spectrogram in
Figure 4.2 (a), although it also shows the pattern of “vertical stripes” due to the voicing
of phones, they only indicate a portion of the boundaries and do not align as clearly
or accurately to the ground truth boundaries as the learned representations. Yet, they
contain information in a different form from the feature maps given by CNN. Thus, as
an experiment later in Section 4.4, we attempt to explore the effect of the participation
of spectrogram-based feature engineering in the learning of representations using CNN.

4.3 Addition of Gated Recurrent Unit

On the basis of our error analysis, we have designed this experiment to investigate the
effect of longer contextual information at each representation frame on the segmentation
performance. Currently, the receptive field of the CNN is restricted to 30ms, which

Chapter 4. Experiments 31

is relatively small. According to [32], the average duration of each phone segment is
80.8ms in TIMIT, which is twice as long as the current receptive field for a pair of
adjacent frames of the learned representation that were considered for calculating the
dissimilarity score. The amount of context considered with this receptive field size
might be less than optimal for phonetic segmentation, since the transitions could also
depend on pronunciations of nearby phones. Specifically in previous analysis, we found
cases where context that considers a window longer than adjacent phones could be
helpful for reducing OS/US. In the discussion on the diphthong class, we mentioned
that whether to place a boundary in consecutive vowel sounds might depend on phones
before or after the vowels. For instance, vowels in words such as queuing are not
diphthongs and should be segmented in-between into two vowel segments, and knowing
the context of ‘ing’ could have helped in this case, to make it less probable to consider
‘i’ as part of the diphthong. Experiments to incorporate a longer context into the learned
speech representations were implemented considering two varied settings: the position
of the recurrent layer (before/after the CNN blocks), and the direction in which context
was taken (uni-directional/bi-directional). Four experiments were conducted by the
combinations of these two settings. In each case, the hidden dimension of the network
was kept the same, so that there were still 256 feature dimensions. The torch.nn.GRU
module was used, and bias was set to True by default; and in the bi-directional case, the
bidirectional argument was set to true, meaning that outputs were from two directions
concatenated.

We had hypothesized that a GRU layer for capturing longer context in the time domain
could have helped in this case, because hidden states in the recurrent units could learn
to retain information that is important from a longer time span. However, results in
Table 4.4 showed a decrease in general segmentation performance from the baseline
model after GRU was applied.

Model prominence | Precision Recall F1 R-val
bi-directional GRU after CNN 0.02 79.57 78.15 78.86 81.95
bi-directional GRU before CNN 0.02 82.02 80.07 81.03 83.76
uni-directional GRU after CNN 0.01 79.00 81.43 80.20 82.94
uni-directional GRU before CNN 0.02 80.95 83.57 82.24 84.67

Table 4.4: Performance of the model with the addition of a GRU layer on TIMIT.

In general, adding a GRU layer before the CNN blocks brought better performance
than that after the CNN; and also using uni-directional GRU gave slightly better results
than bi-directional GRU layer at respectively the same place in the network. These
further disproved our hypothesis that contextual information is helpful for determining
phonetic boundaries. The reason being that in theory, a bi-directional GRU would
incorporate more context (both left and right context) into the learned representations,
while placing the GRU layer after the CNN would have a more direct impact on the
final outputs without being adjusted by the CNN. The decrease in performance due to
extra context might have been caused by the collection of information from a longer
time span for the current frame, which was shown to be beneficial for tasks such like
phoneme recognition [42], such that undesirable distractive contextual information
beyond the scope of segmentation was provided.

Chapter 4. Experiments 32

Thus, we might say that additional context globally added to all frames would not help
with the overall segmentation performance. Still, we might investigate its effect on OS
and US, since we first intended to solve the OS problem with diphthongs. We investigate
this by summarizing statistics on the model (”bi-directional GRU after CNN”’) that
contained most contextual information in outputs representations.

\,owe “‘“0095 uoﬂ“e\ sxo"c" x\\le 53\5 \\ef‘ce uO\Ne \,\‘\f\o(\gs uo\Ne\ 5\095 ot i Sa\s \\e““e
50 -

40 -

40 -
| I I I
I l I 0- I

\S 405 \s e \S 005 s e
\uo“e px\“‘o“g \lO‘Ne ‘09 K\\‘e ag,a \\e“C uo\Ne p\f\i“"“q one ‘0") K\“e (252" a\en®

25-

w B
° °

(a) % Occurrences (N)
N
O

(b) % Over Segmented (0OS)

=
°

0-

w
°

N
S

c) % Under Segmented (US)
N
O

d) % Exactly Segmented (ES)

(
s
(

s

Figure 4.5: Statistics of model performance on the model "bi-directional GRU after CNN”.

Comparing the statistics in Figure 4.5 to those for the baseline model in Figure 4.3, the
OS rates for the current model with GRU were generally lower on all phonetic classes.
It has indeed shown significant improvement in terms of reduced OS as expected.
However, the US rates generally increased as well, which counteracted reductions in OS
rates and led to lower performance overall. This implies that a wider context considered
by each frame of the speech representation might be ‘blurring’ the boundaries where
spectral changes get more flattened out.

Potentially, in order for the overall performance of the model to increase (i.e. achieving
lower OS rate while not increasing US rate), instead of adding context globally to all
frames before segmentation, we might try to designate the model to first segment phones
with the shorter receptive field as in the baseline, with a relatively lower prominence so
that OS might be high. Then, as a tuning procedure, we can apply a learned contextual
model to look at each boundary and remove those that indicate a high resemblance to
special classes of transitions which are prone to OS, such as diphthongs. Nevertheless,

Chapter 4. Experiments 33

the design of the context model would require further exploration as we are not given
any information to exemplify these ‘special’ transition classes in the unsupervised
setting.

Overall, our experiments imply that the actual transitions between phones depend
mostly only on the adjacent phonetic sounds, and extra contextual information that
captures features from phones outside the “adjacent pair” at the particular transition
might be distracting for the phonetic segmentation task. On the other hand, such context
could be helpful in terms of the recognition of phones, which depends not only on the
spectral change at the transitions, but also on left and right phonetic context.

4.4 Combination with Manual Feature Engineering

In previous works on speech feature encoding with CNN, raw waveform inputs were
used as a convention that had proven to be successful [33, 3, 4]. The engineered
features that are traditionally used in speech processing just have the same purpose as
CNN encoded speech representations — both are to be used as features in downstream
tasks. However, few had experimented with both techniques combined together to
produce speech features. It is known that with the FFT to transform waveforms into
spectrograms, and with other feature engineering techniques such as further steps to
extract MFCC vectors, we have control and understanding of the extraction of the
information desired. Also, the previous visualization of the spectrogram on an utterance
example showed salient features (such as the presence of voicing) that are helpful for
humans to determine and recognize phonetic segments.

In this section, we investigate whether a combination of feature extraction techniques,
with and without the neural network, would be helpful or not on the blind segmentation
task. To achieve this goal, we based the learning of speech representations on extracted
Mel-spectrogram features. The first convolutional block was replaced with the extraction
of Mel-spectrogram features, on top of which representations were then learned through
the remaining 4 layers of CNN.

In order to maintain meaningful receptive field size and the duration of audio repre-
sented by each output frame in the final representations, the window and hop lengths
for obtaining the Mel-spectrogram were carefully crafted. By inversely computing
frame frequency and receptive field sizes backwards down to the input layer, we chose
a hop_length=>5, and two window lengths were experimented: win_length=400 and
win_length=800, with the number of FFT bins equal to window length (n_fft=win_length).
A total of 128 Mel bands were applied and produced a 128-dimensional vector at each
time step. The actual implementation was done with the 1ibrosa.feature.melspectrogram
function, such that Mel-spectrograms were obtained from the input waveforms and
were then passed as inputs to the second convolutional block in the baseline model
(the input channel dimension for the filter of this convolution block was set to the
number of Mel bands). When win_length=400 (25ms), the output representations Z had
a receptive field of 53.4ms and a frequency of 95Hz (each frame representing 10.53ms
of audio); when win_length=800 (50ms), the receptive filed and frequency of Z were
78ms and 93Hz (10.75ms audio per frame), respectively. These two different settings

Chapter 4. Experiments 34

aimed to explore the effects of different lengths of context per frame on segmentation
performance — 53.4ms was relatively closer to that of the baseline model, and 78ms
was slightly less than the average duration of TIMIT phone segments reported (80.8ms).
Other settings of the neural network were left unchanged.

An extracted Mel-spectrogram with win_length=800 is visualized in Figure 4.6 on
the previously used example utterance, from which we can observe the patterns of
“vertical stripes” that might have the same implications as those observed in intermediate
representations given by hidden CNN layers.

128

Number of Mel bins

Mel-spectrogram

Figure 4.6: Mel-spectrogram on the example utterance "The courtyard is magnificently
decorated”, with n_fft=800 FFT bins and a stride of hop_length=5, producing n_mels=128
Mel bands.

To better isolate the effect of CNN, segmentation performance was first evaluated
directly on the extracted Mel-spectrograms, with the same peak detection algorithm.
Results of experiments are reported in Table 4.5.

Method win_length | prom. | Precision Recall FI R-val
Mel-spectrogram only 400 0.03 44.29 47.05 45.63 52.42
Mel-spectrogram only 800 0.02 38.40 3890 38.65 47.38

Mel-spectrogram with CNN 400 0.03 80.20 82.28 81.23 83.86
Mel-spectrogram with CNN 800 0.03 78.27 80.41 79.33 82.22

Table 4.5: Performance evaluated on TIMIT when Mel-spectrogram features participated
in the production of speech representations; Mel-spectrograms were extracted with
hop_length=5 and n_fft=win_length, with n_mels=128 Mel bands.

With either window length, the final R-value (83.86% or 82.22%) for combining Mel-
spectrogram with CNN was lower than the baseline (85.89%). Yet, the reduction in
R-value was not very significant, and still the better result (83.86%) outperformed
previous models that didn’t employ representation-learning with CNN.

In general, a window length of 400 produced better performance sores, which is the
most commonly used window size (25ms) in speech processing. This implies that a
smaller receptive field is more helpful on this particular task, which is similar to the
discoveries in our experiments with GRUs, where longer learned contextual information
did not help with the overall segmentation results.

Chapter 4. Experiments 35

To look at the effects of Mel-spectrogram and CNN separately, we first observed that
direct segmentation on Mel-spectrogram led to significantly lower R-values compared
to other models, which means extra algorithms needed to be applied to use Mel-
spectrograms to conduct phonetic segmentation. As [12] stated, good representations
are important to achieving great performances in any ML tasks, and in this case, Mel-
spectrogram should not be considered as ‘good’ to use directly for this task.

On the other hand, direct segmentation on Mel-spectrogram produced significantly
better results (52.42% and 47.38% R-value) than the intermediate representations
from the first CNN block (29.25%), but still, the final segmentation performance after
replacing that CNN block with Mel-spectrogram was lower than the CNN-only baseline
model. This suggests that while each individual convolution layer may not capture
enough important features in speech for recognizing phonetic transitions, the stacking of
CNN layers would be much more powerful to capture those underlying features, which
agrees with the rationales of deep learning. We may also reasonably claim that the
extraction of Mel-spectrogram features had hidden away some details in the waveform
that can be captured by the multi-layered CNN and can contribute to the determination
of phonetic segment boundaries.

4.5 Performance on different datasets

In this section, the model was evaluated on different datasets. This experiment was
designed because of the general lack of variation in evaluation datasets for the automatic
phonetic speech segmentation task. Previously, segmentation methods for the English
language were evaluated most commonly on TIMIT, or sometimes with Buckeye, which
are the only two popular English corpora that provide manual phonetic transcriptions.
However, due to the variations in speech data (speaker dialects, transcription quality,
conditions of recording, etc.), the same model might achieve quite different results on
different corpora. Besides, given the capability of self-supervised learning, training
with unlabeled data should be taken advantage of. Therefore, the goal here was to
investigate the impacts of changing the training/testing data on the model’s segmentation
performance, and to prove/disprove the robustness of the model on the different datasets
evaluated.

Four different sets of experiments were performed, as listed in Table 4.6 to analyse
performance from different aspects: (a) experiments with additional training data; (b)
experiments of training on different datasets and testing on TIMIT; (c) experiments to
evaluate model performance when trained and tested on WSJ; (d) evaluations of the
baseline model (trained on TIMIT) tested on WSJ. The original model architecture was
used for training and/or testing in all sets of experiments.

4.5.1 Additional Training Data with LS (a)

In the work by Kreuk et al. [22], expanded training data was also experimented on the
original model, which reported an increase of 0.38% in the R-value evaluated on TIMIT,
when training was done with additional LS train-clean-100 dataset alongside TIMIT.

Chapter 4. Experiments 36

Training Data \ Validation \ Testing \ prom. \ p R F1 R-val

TIMIT (baseline) | TIMIT | TIMIT | 0.05 |83.34 83.60 8347 85.89
experiment (a)

TIMIT + LS dev-other | TIMIT TIMIT 0.06 | 84.20 84.83 84.52 86.78

TIMIT + LS dev-clean | TIMIT TIMIT 0.05 | 84.71 84.84 84.77 87.00
experiment (b)

LS train-clean-100 TIMIT TIMIT 0.06 | 84.08 84.61 84.34 86.64

WSJ S1-284 TIMIT TIMIT 0.07 | 80.46 81.24 79.69 83.29
experiment (c)

TIMIT TIMIT-FA | TIMIT-FA | 0.06 | 75.73 74.81 75.26 78.91

WSJ S1-284 dev93 eval92 0.05 | 6997 71.66 70.81 7491
experiment (d)

TIMIT TIMIT | TIMIT-FA | 0.05 | 74.72 71.64 73.15 77.10

TIMIT TIMIT dev93 0.05 | 71.27 62.49 66.59 71.35

TIMIT TIMIT eval92 0.05 | 71.15 70.24 70.70 75.04

Table 4.6: Performances of the model trained and/or tested on different datasets (% is
omitted, and FA means the forced aligned transcriptions were used for TIMIT).

This experiment setting aims to explore further the idea that training on additional data
would improve model performance, in terms of the quality of the added data. Since
LS has provided subsets of data in the ‘clean’ and ‘other’ categories separately based
on the quality of speech and the simplicity of recognizing the utterances as in ASR,
training on data in these two categories might reveal the extent to which each could
help with segmentation on the clean read speech in TIMIT.

Due to limited computing power, we added the smaller development sets (dev-other
and dev-clean) instead of the large LS train sets for training. From results in section
(a) of Table 4.6, we see that the R-value has increased by approximately 1% for both
experiments with dev-other or dev-clean. In particular, the performance when dev-clean
was added to training is slightly better than adding dev-other, with a difference of 0.22%
R-value. This gap was expected since we were testing on TIMIT, which is a very
clean dataset, so training also on relatively cleaner data would likely yield better testing
results. In general, our results also proved the effectiveness of the addition of training
data, which might suggest a positive relationship between the amount of training data
and the model’s segmentation performance.

4.5.2 Training on other Datasets, Evaluation on TIMIT (b)

In this experiment, we try to analyse the generalization ability of the model by training
on LS train-clean-100 and WSJ SI-284, respectively, and then testing on TIMIT. We also
use TIMIT as the validation set, because validation (i.e. for saving the best checkpoint
and finding the best prominence value) requires labels of phonetic boundaries, but LS
and WSJ did not have manual labels at the phone level.

Training with unlabeled LS and WSJ training sets showed adequate performances on

Chapter 4. Experiments 37

TIMIT, achieving 86.64% and 83.28% R-value, respectively (Section (b) of Table 4.6).
Using LS train-clean-100 for training even offered a performance gain (0.75%) on
TIMIT, in the case where training and testing were done on different corpus, compared
to the baseline model where training and testing were both done on TIMIT only. On the
other hand, though the result on TIMIT when training with WSJ did not outperform
the baseline, there was only a 2.6% gap, and still an R-value of 83.29% outperformed
all previous models on the task from this one. Thus, the model can generalize well on
testing data that was not used for training.

The results give meaningful implications on the usage of the model in practice, where
model’s generalization ability is important, such that large amounts of readily available
unlabeled data can be used directly to train the model, while adequate segmentation
performance can still be achieved on other data that doesn’t have enough audio to form
a stand-alone training set.

4.5.3 Model Performance on WSJ (c)

In the previous experiments, the model was still validated and tested on TIMIT, due
to the lack of phonetic transcriptions for the LS and WSJ corpora. Therefore, we now
attempt to assess the model completely on the WSJ corpus by obtaining transcriptions at
the phone level via forced alignment. An LDA-MLLT-SAT triphone acoustic model was
trained on the WSJ SI-284 training set using Kaldi, and phonetic transcriptions on dev93
and eval92 were attained by aligning the respective data to corresponding orthographic
transcriptions based on this model. In addition, in order to make a fair comparison,
the baseline model was trained again on the similarly forced-aligned TIMIT data for
validation and testing (‘TIMIT-FA’). Results are presented in section (c) of Table 4.6.

The segmentation performance was significantly reduced to 74.91% R-value when
WSJ was also used as the validation and testing set. On one hand, forced-aligned
phonetic boundaries — based on a trained model that achieved around 11% WER on
dev93 — may not be as accurate as manually labeled boundaries. This phenomenon
was validated by the drop in R-value by 6.98% from the baseline result when we use
transcriptions from forced-alignment instead of the manual labels for TIMIT. On the
other hand, the WSJ corpus was shown to be generically harder than TIMIT, so a
reasonable amount of performance decrease was expected. Nevertheless, acceptable
segmentation performance on WSJ suggests that the current model architecture can
be effectively applied and produce relatively consistent segmentation behavior across
different datasets.

4.5.4 Baseline Model Evaluated on WSJ (d)

In addition, we also report the performance of the baseline model when not tested
on TIMIT, to show that if without any additional training, the baseline model can be
directly taken to segment other speech data. Firstly, looking at the test R-value when
TIMIT test transcriptions were obtained via forced-alignment, we notice that it has
significantly dropped to 77.1%. Hence, we may say that the actual performances on
the WSJ datasets are likely to be higher than the reported values due to extra errors

Chapter 4. Experiments 38

from force-alignment. Secondly, when tested on the dev93 and eval92 datasets of WSJ,
we obtained similar R-values compared to that on the forced-aligned TIMIT test set
(respectively a difference of -5.75% and -2.06% in the R-value). Overall, we can reach
the conclusion that the training of the baseline model with TIMIT was effective, and it
can also perform adequately well on the WSJ corpus.

Besides, since the model trained on TIMIT led to generally lower test performances
on WSJ, we may again say that WSJ is a more challenging dataset on the phonetic
segmentation task compared to TIMIT.

In practice, when we want to apply the model to segment large amounts of unlabeled
speech (with or without training the model with this data), we could sample a very
small portion of the target data to create reliable transcriptions and evaluate it on the
TIMIT-trained baseline model; so that by comparing performance scores to the baseline
result on TIMIT, we would get a general expectation on how well the target data could
be segmented.

Furthermore, because of the self-supervised mechanism of the neural network model,
adding unlabeled data to training is almost effortless. It means whenever we have good
quality audios, we may add them to training the model, and the resulting performance
on a clean test set would likely be improved.

In the future, we could obtain more accurate phonetic transcriptions for datasets that
possess different traits, especially those that are noisier than TIMIT, to evaluate the
usage of the model in real-life speech conditions, and hence, to better fulfill the purposes
of phonetic segmentation in the unsupervised setting.

Chapter 5

Conclusion and Future Work

The aim of this project was to investigate closely the first CNN-based self-supervised
representation learning model ([22]) for the task of unsupervised phonetic speech
segmentation, for answering the primary research question as to “why’” such an approach
works best on this particular task. For fulfilling this aim, experiments were conducted
based on various aspects of this CNN model, and in-depth analysis were carried out
with respect to the mechanisms of and the challenges on phonetic speech segmentation.

We verified and demonstrated the effectiveness of the original model by visualizing
the final output representations and intermediate feature maps, from which significant
displacements, or visually the vertical stripes, were observed that corresponded with
locations of predicted phone boundaries. Intermediate representations produced by
hidden convolutional blocks deeper into the network yielded better segmentation perfor-
mance, demonstrating the build-up of useful information on phonetic transitions at each
convolution layer.

The efficacy of speech feature extraction through CNN layers was further investigated by
designing and experimenting with a network that combined manual feature engineering
with CNN representation learning. Segmentation results showed that the replacement of
one CNN layer with the extraction of Mel-spectrogram features reduced performance
by approximately 2% in R-value, but the achieved 83.86% R-value still outperformed
previous blind segmentation models. It suggested that the convolution operation with
learned kernel weights was more effective than manual feature engineering operations,
for discovering acoustic change information at the phone level. On the other hand,
it confirmed that the given CNN was more effective when applied directly on raw
waveform inputs.

The impacts of context on determining phonetic boundaries were investigated by adding
a GRU layer to the original network. The overall lowered performances on models
with GRU indicated that longer contextual information was not helpful in general for
segmentation at the phone level, and that the local receptive field of 30ms given by the
convolution mechanism was proved to be more suitable for this task. We also discovered
that adding context to each output unit globally with GRU had significantly decreased
OS rate, but at the same time increased US rate.

39

Chapter 5. Conclusion and Future Work 40

This model was also able to generalize well across different datasets by achieving
adequate performances when the training and testing sets were different, which reflected
that filters learned by the CNN were independent of the characteristics of the partic-
ular training data. The model worked best with clean corpora, with generally better
performances on TIMIT, and a maximum of 87% R-value were achieved when the high
quality dev-clean dataset from LS were added to the training of the model alongside
TIMIT data.

Even though this model was trained with unsupervised data, validation and testing were
still done with the help of phonetic transcriptions. Critically, no phonetic transcription
were provided at the first place in the definition of blind segmentation. Therefore,
we may also try in the future to make the training stage truly unsupervised with
unsupervised validation, potentially by re-formulating the loss so that it has a stronger
correlation with the R-value metric.

The importance of this project lie in its implications on the future developments of
unsupervised phonetic speech segmentation systems. The shift from using conventional
engineered speech features to learned speech representations via neural networks had
induced significant performance gain. Such learned representations are desired, as
they have been experimentally proved to be more powerful and intellectual. As for
numerous other intellectual tasks, the application of deep learning would likely become
the future focus on the development of phonetic speech segmentation models as well,
and the model investigated in this project laid the foundations for the shift towards such
approaches at the very starting stage.

Indeed, the new state-of-the-art model proposed in 2021 on this task was an extension
based on this model, with the addition of a segment level encoder, and achieved around
1% improvement in the R-value [S]. Moreover, another model with the addition of
quantization to the speech representations based upon the architecture of this model was
developed also last year, though it achieved a lower performance [21]. These attempts
further illustrated the significance of understanding the strengths and weaknesses of this
model, for introducing meaningful improvements.

We had revealed the model’s performance on each generic phonetic class, and analyzed
the phonetic classes that the model generally performed well and those that required
improvements to reduce OS or US rates, such as on diphthongs and semi-vowels,
respectively. We had seen the effects of longer contextual information on OS and US
in our experiments, from which we propose that perhaps a separate tuning algorithm
on top of the ordinary segmentation outputs to further adjust the number of predicted
boundaries based on local features could be helpful and can be implemented in the
future. Likewise, other critical design decisions can be made more informatively in
the future given the current weaknesses, and our next step would be to exploit these
weaknesses and seek for improvements by modifying the current model architecture.

Meanwhile, [22] also showed that the model trained with TIMIT with additional 100
hours of clean data from LS achieved good performances on Hebrew and German.
As a next step, we may further investigate the model’s ability to transfer well across
other non-Semitic or non-Germanic languages to better develop the model for use on
under-resourced languages.

Bibliography

[1] Yossi Adi, Joseph Keshet, Emily Cibelli, and Matthew Goldrick. Sequence
segmentation using joint rnn and structured prediction models. In 2017 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 2422-2426. IEEE, 2017.

[2] Alexei Baevski, Michael Auli, and Abdelrahman Mohamed. Effectiveness of self-
supervised pre-training for speech recognition. arXiv preprint arXiv:1911.03912,
2019.

[3] Alexei Baevski, Steffen Schneider, and Michael Auli. vqg-wav2vec: Self-
supervised learning of discrete speech representations. arXiv preprint
arXiv:1910.05453, 2019.

[4] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec
2.0: A framework for self-supervised learning of speech representations. Advances
in Neural Information Processing Systems, 33:12449—-12460, 2020.

[5] Saurabhchand Bhati, Jesuds Villalba, Piotr Zelasko, Laureano Moro-Velazquez,
and Najim Dehak. Segmental contrastive predictive coding for unsupervised word
segmentation. arXiv preprint arXiv:2106.02170, 2021.

[6] Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using rnn encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078, 2014.

[7] Yago Pereiro Estevan, Vincent Wan, and Odette Scharenborg. Finding maximum
margin segments in speech. In 2007 IEEE International Conference on Acoustics,
Speech and Signal Processing-ICASSP’07, volume 4, pages IV-937. IEEE, 2007.

[8] William Falcon et al. Pytorch-Lightning Documentation, Release 0.7.6.

[9] Sadaoki Furui. Digital speech processing, synthesis, and recognition. CRC Press,
2018.

[10] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, and N. L.
Dahlgren. Darpa timit acoustic phonetic continuous speech corpus cdrom, 1993.

[11] John S Garofolo, Lori F Lamel, William M Fisher, Jonathan G Fiscus, and David S
Pallett. Darpa timit acoustic-phonetic continous speech corpus cd-rom. nist speech
disc 1-1.1. NASA STI/Recon technical report n, 93:27403, 1993.

41

Bibliography 42

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[13] Ian Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua
Bengio. Maxout networks. In International conference on machine learning,
pages 1319-1327. PMLR, 2013.

[14] Michael Gutmann and Aapo Hyvérinen. Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models. In Proceedings of the

thirteenth international conference on artificial intelligence and statistics, pages
297-304. JIMLR Workshop and Conference Proceedings, 2010.

[15] Dac-Thang Hoang and Hsiao-Chuan Wang. Blind phone segmentation based on
spectral change detection using legendre polynomial approximation. The Journal
of the Acoustical Society of America, 137(2):797-805, 2015.

[16] Takaaki Hori, Jaejin Cho, and Shinji Watanabe. End-to-end speech recognition
with word-based rnn language models. 2018 IEEE Spoken Language Technology
Workshop (SLT), pages 389-396, 2018.

[17] Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International conference
on machine learning, pages 448-456. PMLR, 2015.

[18] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,
and Pierre-Alain Muller. Deep learning for time series classification: a review.
Data mining and knowledge discovery, 33(4):917-963, 2019.

[19] Biing H Juang and Tsuhan Chen. The past, present, and future of speech process-
ing. IEEFE signal processing magazine, 15(3):24-48, 1998.

[20] Daniel Jurafsky and James H. Martin. Speech and Language Processing (2nd
Edition). Prentice-Hall, Inc., USA, 2009.

[21] Herman Kamper and Benjamin van Niekerk. Towards unsupervised phone and
word segmentation using self-supervised vector-quantized neural networks. arXiv
preprint arXiv:2012.07551, 2020.

[22] Felix Kreuk, Joseph Keshet, and Yossi Adi. Self-supervised contrastive learning
for unsupervised phoneme segmentation. arXiv preprint arXiv:2007.13465, 2020.

[23] Felix Kreuk, Yaniv Sheena, Joseph Keshet, and Yossi Adi. Phoneme boundary
detection using learnable segmental features. In ICASSP 2020-2020 IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
8089-8093. IEEE, 2020.

[24] Victor Kuperman, Mark Pluymaekers, Mirjam Ernestus, and Harald Baayen. Mor-
phological predictability and acoustic duration of interfixes in dutch compounds.
The Journal of the Acoustical Society of America, 121(4):2261-2271, 2007.

[25] Paul Michel, Okko Risdnen, Roland Thiolliere, and Emmanuel Dupoux.
Blind phoneme segmentation with temporal prediction errors. arXiv preprint
arXiv:1608.00508, 2016.

Bibliography 43

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[34]

[35]

[36]

[37]

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Lib-
rispeech: an asr corpus based on public domain audio books. In 2015 IEEE
international conference on acoustics, speech and signal processing (ICASSP),
pages 5206-5210. IEEE, 2015.

Douglas B Paul and Janet Baker. The design for the wall street journal-based csr
corpus. In Speech and Natural Language: Proceedings of a Workshop Held at
Harriman, New York, February 23-26, 1992, 1992.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek,
Nagendra Goel, Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz,
Jan Silovsky, Georg Stemmer, and Karel Vesely. The kaldi speech recognition
toolkit. In IEEE 2011 Workshop on Automatic Speech Recognition and Under-
standing. IEEE Signal Processing Society, December 2011. IEEE Catalog No.:
CFP11SRW-USB.

Okko Johannes Riséinen, Unto Kalervo Laine, and Toomas Altosaar. An improved
speech segmentation quality measure: the r-value. In Tenth Annual Conference of
the International Speech Communication Association. Citeseer, 2009.

Morgane Riviere, Armand Joulin, Pierre-Emmanuel Mazaré, and Emmanuel
Dupoux. Unsupervised pretraining transfers well across languages. In ICASSP
2020-2020 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 7414-7418. IEEE, 2020.

Patricia Scanlon, Daniel PW Ellis, and Richard B Reilly. Using broad phonetic
group experts for improved speech recognition. IEEE transactions on audio,
speech, and language processing, 15(3):803-812, 2007.

Odette Scharenborg, Vincent Wan, and Mirjam Ernestus. Unsupervised speech
segmentation: An analysis of the hypothesized phone boundaries. The Journal of
the Acoustical Society of America, 127(2):1084-1095, 2010.

Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli.
wav2vec: Unsupervised pre-training for speech recognition. arXiv preprint
arXiv:1904.05862, 2019.

Manish Sharma and Richard Mammone. ” blind” speech segmentation: automatic
segmentation of speech without linguistic knowledge. In Proceeding of Fourth
International Conference on Spoken Language Processing. ICSLP’96, volume 2,
pages 1237-1240. IEEE, 1996.

Jorge Sola and Joaquin Sevilla. Importance of input data normalization for the
application of neural networks to complex industrial problems. IEEE Transactions
on nuclear science, 44(3):1464-1468, 1997.

Adriana Stan, Cassia Valentini-Botinhao, Bogdan Orza, and Mircea Giurgiu. Blind
speech segmentation using spectrogram image-based features and mel cepstral
coefficients. In 2016 IEEE Spoken Language Technology Workshop (SLT), pages
597-602. 1IEEE, 2016.

Aaron Van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with

Bibliography 44

[38]

[39]

[40]

[41]

[43]

contrastive predictive coding. arXiv e-prints, pages arXiv—1807, 2018.

Jan P van Hemert. Automatic segmentation of speech. IEEE Transactions on
Signal Processing, 39(4):1008-1012, 1991.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,
David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman,
Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson,
C J Carey, [lhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antonio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt,
and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261-272, 2020.

Yu-Hsuan Wang, Cheng-Tao Chung, and Hung-yi Lee. Gate activation signal
analysis for gated recurrent neural networks and its correlation with phoneme
boundaries. arXiv preprint arXiv:1703.07588, 2017.

M-B Wesenick and Andreas Kipp. Estimating the quality of phonetic transcriptions
and segmentations of speech signals. In Proceeding of Fourth International
Conference on Spoken Language Processing. ICSLP’96, volume 1, pages 129—
132. IEEE, 1996.

Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-I Jeff Lai, Kushal Lakho-
tia, Yist Y Lin, Andy T Liu, Jiatong Shi, Xuankai Chang, Guan-Ting Lin, et al.
Superb: Speech processing universal performance benchmark. arXiv preprint
arXiv:2105.01051, 2021.

Wei Yu, Kuiyuan Yang, Yalong Bai, Hongxun Yao, and Yong Rui. Visualizing and
comparing convolutional neural networks. arXiv preprint arXiv:1412.6631, 2014.

Appendix A

TIMIT phone set

TIMIT label | IPA label || TIMIT label | IPA label
iy i ih 1
eh € ey e1
ae & aa a
aw au ay a1
ah A ao o)
oy a1 ow U
uh U uw u
ux it} er 3
ax 9 ix i
axr G ax-h 9
jh d3 ch tf

b b d d
g g9 p p
t t k k
dx r q ?
S S sh |
z zZ zh 3
f f th 0
v v dh 0
m m n n
ng 1 cm m
nx r en n
eng | 1 1
r r w w
y j hh h
hv fi el 1
bel b’ del d
gel g pcl P’
tel t kel Kk

Table A.1: Mapping of TIMIT phone labels to IPA symbols, excluding silence labels (h#,
pau, epi).

45

