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Abstract
Gaining insight into the complex neural mechanisms which underpin cognitive pro-
cesses is vital to our understanding of the brain in health and disease. Activity in the
brain can be detected by extracellular neural recording devices. These probes record
the weak electrical signal between neurons as information in the brain is transferred.
Exciting developments in neural recording devices have lead to modern extracellular
probes which can capture precise activity of thousands of neurons in the brain simulta-
neously. The data produced by these recordings must be de-mixed using spike sorting
algorithms in order to establish the relationship between recorded signals and neurons
in the brain. These algorithms, spike sorters, identify units which are putative neu-
rons detected in the recording. The units identified by spike sorters form the basis for
research into the workings of the brain.

As spike sorting algorithms cannot perfectly identify neurons from recordings, cura-
tion is necessary in order to eliminate false positives before analysing neural activity.
For simple recording devices manual curation is sometimes used. However, this pro-
cess is subject to operator bias and is unmanageable for more modern devices which
produce very large quantities of data. Despite the increasing demand for more auto-
mated curation methods, few exist [24, 8]. Of the potential available methods, there is
little guidance on appropriate implementation in practice [13]. While quality metrics
pose one potential solution there are no formal validated guidelines for their use in
curation. Agreement or consensus is an exciting emerging proxy to ground truth [5].
However, this method is limited in the number of true positives identified and lacks
formal specifications for implementation in neuroscience research.

By drawing on the relative strengths of quality metrics and unit agreement, this project
investigates the novel possibility of a fully automated curation method. By examining
one extracellular dataset from a recent neuroscience study, this project identifies and
addresses several challenges to automated curation [9]. Several practical neuroscience
use cases are considered in the development of this method. This project demonstrates
that it is possible to achieve interpretable, automated curation using quality metrics. In
doing so, this project lays the foundation for progress in enhancing the reliability of
neuroscience research which makes use of extracellular neural recording devices.
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Chapter 1

Introduction

Neurons communicate via short firing events that last for around 1ms, known as spikes.
These weak electrical signals can be detected by placing a microelectrode in the space
between firing neurons. As one electrode may detect signals from several neurons,
a process of “spike sorting” is required to determine the relationship between signals
detected and actual neurons firing. In modern recordings, multiple electrodes are used
to record simultaneously. Algorithms which attempt to automate the process of spike
sorting are referred to as “spike sorters” or “spike sorting algorithms”. Given recorded
signals, these algorithms attempt to identify “units” which are purported neurons ac-
tive during the recording. Many such algorithms now exist (eg: MountainSort4 [2],
Ironclust [20], Kilosort2 [2], WaveClus [6], and Klusta [29]). However, recent stud-
ies have demonstrated that different spike sorters draw different conclusions about the
neurons present [5, 19].

Since neuroscience research relies on the accuracy of this spike sorting step, it is vital
that true positive units and false positive units can be separated reliably. This pro-
cess of validating spike sorted results involves “curation” - removal of false positives.
Occasionally, “ground truth” data is available for validation of some neurons. How-
ever, collection of this data is expensive and difficult to perform at scale. The curation
step may be completed manually (“manual curation”) for simpler recording devices.
However, as recording technologies improve, the quantity of data produced by single
recordings grows, leading to a demand for more automated methods [13]. One ap-
proach to identify poor quality units is to use quality metrics [16]. Many such metrics
exist, and there is little consensus regarding their use in curation [24]. A promising al-
ternative to use of metrics is to consider unit agreement; this involves running multiple
spike sorting algorithms and considering units which are found by multiple sorters to
be reliable [5].

This project builds on the findings of Buccino et al., [5] as well as the work conducted
in Part 1 of this project, in order to interrogate existing curation methods and provide
novel suggestions for curation standards in the future.
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Chapter 1. Introduction 2

1.1 Previous work carried out

Part 1 of this project focused on examining common quality metrics alongside agree-
ment between sorters. Five common sorting algorithms were examined: Mountain-
Sort4 [8], Ironclust [20], Waveclus [6], Kilosort2 [2] and Klusta [29].

In Part 1, the following contributions were made:

• Using the SpikeInterface framework, an existing experimental pipeline was
adapted to incorporate multiple sorting algorithms and a further pipeline was
developed to calculate and store quality metrics and unit agreement values [3, 9].

• Results found by Buccino et al. regarding the general behaviour of spike sorters
and the consensus method were corroborated [5].

• MountainSort4, Ironclust and Kilosort2 were identified as the strongest choices
for spike sorting the dataset used.

• Quality metrics were investigated to establish relationships between matched
and unmatched units, using a range of statistical tests.

• A baseline classifier model which predicted agreement of a unit based on ISI
violations and L-ratio was produced.

1.2 Main achievements

Part 2 of this project uses the results found in Part 1 to build on the model used for
curation of units.

The main contributions made this year were:

• Provide a qualitative analysis of common quality metrics to identify similarities
and differences.

• Based on the analysis performed in the first part of the project, investigate the
three best sorters with regards to matched units.

• Investigate the relationship between sorter used and quality metric distribution.

• Investigate the importance of different metrics to predicting unit quality.

• Investigate mechanisms for pre-processing quality metrics to improve classifier
performance.

• Using the Gaussian Bayes model (developed in the previous part of the project)
as a baseline, develop an automated unit curation model with improved perfor-
mance.

• Consider the implication of different assumptions and uses of the model on its
design, and suggest future work in this domain.
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Background

2.1 Extracellular neural recordings

Neurons mainly communicate with each other via “spikes” - all or nothing firing events
which each last around 1ms [13]. By recording the resultant changes in extracellular
potential, microelectrode devices are designed to detect these firing events when placed
nearby to firing cells.

Extracellular neural recordings are used widely in neuroscience due to their uniquely
high spatiotemporal resolution [19]. Additionally, this technique can be used to record
from awake animals (“in vivo”) without interfering with neural function. Therefore
this method can be used to gain insight into the workings of intact neural circuits in
awake animals [14]. These advantages, when combined, provide a powerful basis for
understanding the brain mechanisms underlying animal behaviour. Such recordings
are used across many different levels of analysis; from identifying behaviours of a
single neuron, to considering the interactions between populations of neurons.

This kind of recording can be performed using a single electrode. However, these de-
vices record the activity of very few neurons and do not have the capacity to record
from multiple locations in the brain. Subsequently, recordings of this kind are unable
to support claims about the interaction between networks of neurons [11, 21]. Because
neurons work as a system, accurate simultaneous recordings of many neurons are nec-
essary in order to examine the neuron interactions which underpin cognitive processes
[11, 35, 16, 13].

More recent recording devices have been developed with the aim of accurately record-
ing larger populations of neurons simultaneously. In particular, the development of the
tetrode (a four-electrode recording device) satiated the need to record from many neu-
rons, detected from multiple locations at once. This device remains popular and has
undergone significant validation, often by use of “paired recordings” (procedures in
which intracellular and extracellular recordings are taken simultaneously) [11, 35, 15].
Overall, the accuracy and explanatory power of tetrode recordings motivates the need
for methods which can reliably process the data produced.

Further developments in recording technology have since emerged and continue to de-
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Chapter 2. Background 4

velop at a greater pace than the associated analysis techniques can keep up with. Of
particular interest is the high density micro-electrode array (HDMEA), which is capa-
ble of recording approximately 1000 sites at once (one such probe is the NeuroPixel
probe) [20]. Because HDMEAs provide a substantial amount of data it is essential that
automated methods are capable of processing this data reliably and at scale. Without
trusted methods for extracting information from these recordings, it is impossible to
use these devices to their full potential.

2.2 Spike sorting

In electrode recording devices, one recording site (“channel”) may detect signals from
multiple neurons. Additionally, signals from one neuron may be picked up by many
channels. Therefore, “spike sorting” is required to de-mix signals in order to infer the
activity of neurons which are firing [13].

One way to conceptualise the problem of spike sorting is the analogy of a cocktail
party: given the conversations occurring at the party, the task is to isolate each of the
speakers [14]. The analogy can be extended for tetrode data, with several microphones
detecting the sound at a much larger party. Similarly, for HDMEAs, the analogy of
many microphones situated around a football stadium of speakers is appropriate.

In computational terms, spike sorting amounts to a clustering problem. Given a set of
signals from a set of electrodes, a spike sorting algorithm must group signals in order
to infer the behaviour of neurons being recorded. Different spike sorting algorithms
utilise different machine learning techniques in order to infer which signals are related
to each other and to further infer which neuron is producing each set of signals (“spike
train”). Spike sorting algorithms output a set of “units”. This terminology is common
in the literature (cf: [28, 16]) and is retained throughout this report to differentiate
between the underlying neuron being recorded (“neuron”) and the model of that neuron
(“unit”) produced by a spike sorter.

Many different spike sorting algorithms have been developed, yielding a wide vari-
ety of approaches to the task of identifying units from recorded signals. In general,
the process involves first extracting spike waveforms from recordings, then clustering
waveforms into units [16]. This process can be further broken down into the following
steps:

• Filtering: High frequency signals are usually attributed to noise, whilst very low
frequency signals are attributed to local field potentials (LFPs) [13]. To eliminate
both, a bandpass filter is often applied, usually excluding signals outwith the
range 300Hz-30000Hz [28]. Remaining signals are assumed to represent neuron
firing activity.

• Spike detection: An amplitude threshold is set (often dynamically in relation to
signal-to-noise ratio), and signals which exceed this threshold are considered to
be spikes [28]. Choice of amplitude threshold is a trade off between the number
of false positives produced and the number of false negatives (legitimate firing
activity which is erroneously discarded at this stage) [16]. Spike sorters approach
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this step differently, which is one source of variation in sorter outputs. The result
of this step is a set of “spike trains” - temporal series which indicate the points
in time at which spiking is thought to occur.

• Feature extraction and clustering: Spike trains are analysed to group similar
spike trains together and then assign each cluster of signals to a single unit.
Approaches to this step vary substantially between individual sorting algorithms.
However, there are two broad methods which are in common use: density based
and template matching approaches. In density-based approaches, dimensionality
reduction is used alongside clustering techniques to first estimate the source of
the signal and then cluster the signals together. By contrast, template matching
approaches rely on the fact that neuron firing events have a “signature” - certain
features (for example, amplitude and shape) specific to the neuron that produces
them. Template spike shapes are either extracted or learned based on the spatio-
temporal footprints of individual events [28, 14].

To put spike sorting into a neuroscience context, an experiment which makes use of
extracellular recordings will produce data consisting of signals recorded at each site.
A spike sorting algorithm can then be used to produce a set of units each of which is
associated with some firing pattern. Further analysis can then be conducted, treating
the units as real neurons to draw conclusions about the brain. Because sorting algo-
rithms approach the task of spike sorting differently, use of a different algorithm can
lead to a different set of units being used in analysis. Since the units produced by spike
sorters are treated as neurons for the purposes of neuroscience research, the measure of
success for spike sorting algorithms is whether each unit identified by a sorter actually
corresponds to a neuron firing in the brain.

Based on the sorter comparison presented in the previous part of this project, three
sorters were selected for analysis this year: MountainSort4 (density-based) [8], Kilo-
sort2 (template matching) [2] and Ironclust (density-based) [20]. MountainSort4 was
identified as being particularly useful in finding many true positives with a low ratio
of false positives (11.27% of 71 identified units were matched). Similarly, Ironclust
identified a large number of true positives relative to the total number of units identi-
fied (11.36% of 44 identified units). Kilosort2 identified many true positives, but had
the highest ratio of false positives across all sorters tested in the first part of this project
(2.63% of 266 identified units were matched). Kilosort2 was included in this anal-
ysis because it is commonly used, and because its high false positive rate motivates
development of effective curation methods.

2.3 Validation of spike sorter results

Spike sorting as a process is imperfect, and sorting algorithms are known to generate
errors about which neurons are present in a recording [13]. Given this, spike sorter
outputs need to be curated by validating units identified and eliminating poor quality
units. Specifically, units which do not reflect actual neuron activity should be removed
from further analysis. Curating spike sorter results properly is vital. Studies rely on
the data from extracellular recordings in order to make claims about the brain. Failure
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to remove poor quality units from such data could lead to erroneous conclusions being
drawn [13].

Validation and curation can be considered with regards to two stages: Firstly, the val-
idation of the spike sorting algorithm itself and secondly, the curation of results for
specific experiments using extracellular neural recordings.

Spike sorters themselves can be validated using ground truth data, which takes the
form of “paired recordings”, and serves as the gold standard for spike sorter validation.
Paired recordings involve taking both intracellular and extracellular recordings simul-
taneously. These recordings can then be compared to validate any firing behaviour
detected [35]. Ground truth data is rarely available as it is expensive, difficult to col-
lect successfully, and very limited in the number of neurons which can be confirmed
[28]. Other methods for sorter validation include use of simulated or hybrid datasets
[13]. Validation of spike sorting algorithms is not the focus of this project, however
extensive discussion of this topic is available in the literature (see Harris et al. [11] and
Wehr et al. [35]).

By contrast, curation of spike sorted results for a single experiment is a form of quality
control. This curation involves eliminating false positives from spike sorted data, and
should be performed prior to any neuroscience analysis. There are three common
approaches to curation, namely: manual curation, metrics and the consensus method.

Manual curation relies on experts evaluating units to determine whether they reflect
real neurons. Older spike sorting algorithms often assume manual curation will be
performed. Such algorithms often intentionally allow for a higher false positive rate
[2] By contrast, “fully automated” spike sorting algorithms attempt to eliminate the
requirement for further manual curation [29, 13]. Fully automated spike sorters are
strongly preferred for use with more modern recordings, where the quantity of data
produced makes manual curation very difficult [13]. Additionally, manual curation
poses a threat to reproducibility, since this kind of curation is subject to inherent oper-
ator bias [5, 36, 29, 13].

Quality metrics provide some attempt to formalise the properties that experts may
look for when performing manual curation. Specifically, metrics are intended to give
some quantification of the likelihood that a given unit corresponds to a real neuron in
the brain. Many metrics have been developed and are often used as part of the curation
process in neuroscience research. Nonetheless, there is little consensus on their use for
curation, meaning there is no standard method for curation based on these metrics 1

[16, 8, 5, 13, 24].

Many neuroscience studies apply some quality metrics in order to exclude data, how-
ever the specific choice of metrics and thresholds for inclusion are rarely justified in
these papers (eg: [9]) [24]. In fact, new metrics are often designed by those creating
the spike sorting algorithms. For example NN-hit rate and NN-miss rate are metrics

1In Harris et al.’s review of quality control in neuron population recordings, an informal method is
proposed for establishing an isolation quality threshold [13]. Their recommendation is essentially to
consider the relationship between the quantity being measured and isolation quality.
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which were presented by Chung et al. in the same paper as the MountainSort4 algo-
rithm [8]. This observation raises the question of whether metrics can be used as part
of an automated method for standardised curation pipelines. Demand for this work is
alluded to by Chung et al., and others (for example Luo et al. in their 2018 review of
neural analysis techniques [24]) [8]. This question forms the foundation for the work
conducted for this thesis.

The consensus method is a relatively recent approach to curation. This method,
outlined by Buccino et al. (2019), uses both ground truth data and manually curated
results to show that units which were found by multiple sorters (agreement or matched
units) were generally true positives, and that units which were found by only one sorter
(unmatched units) were likely false positives [5]. This result is significant, as it demon-
strates that unit agreement is a promising proxy to ground truth.

Theoretically, the consensus method alone provides a complete method for curation of
spike sorted results. In practice however, many labs use only one sorting algorithm for
their experiments [5, 19]. It is both computationally expensive and time consuming to
run multiple spike sorting algorithms on a large number of recordings. A preferable
alternative would be curation without the need to run multiple sorting algorithms on
many recordings. Additionally, without clear standards on which sorting algorithms
should be used for agreement-based curation, it is difficult for researchers to identify
a specific method by which to curate results using this approach. Furthermore, the
consensus method does not give an interpretable quantification of the confidence we
may have in each unit’s validity. That is, under the assumption that there are true
positive units which are not detected by the agreement method, there is currently no
way to identify which of these units are likely to be true positives. To put this in simpler
terms, curation methods which use agreement as a proxy to ground truth should also
provide some indication of confidence in units which are not detected by multiple
sorters.

Streamlined curation This project investigates the possibility of a streamlined unit
curation method which relies on quality metrics as an indicator of unit validity and
unit agreement as a proxy to ground truth. Such a method should not rely on extensive
use of multiple sorting algorithms and should be able to provide some indication of
confidence in the validity of a unit. Importantly, this curation method should be usable
within neuroscience research. To achieve this, the model should be interpretable so
that researchers can clearly and reliably justify why a unit should be included or ex-
cluded from analysis. Further, the model should not require computational resources
far exceeding those expected in current research (use of one sorting algorithm and cal-
culation of a handful of metrics). The aim of this is to develop a reliable approach for
automated curation of spike sorted results which can be used in neuroscience research.

2.4 Metrics

This section outlines the main qualitative differences between quality metrics used in
curation. Individual metrics are then considered, highlighting the approach, expecta-
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tion and intended use of each.

Different metrics are used to identify different types of problems with a spike sorted
unit. These errors fall into three categories:

• Type I (contamination): Contamination occurs when spikes from multiple neu-
rons have been erroneously assigned to one unit [17].

• Type II (incompleteness): Incompleteness occurs when spikes are erroneously
excluded from a unit’s activity. This can occur if a spike is poorly detected during
recording, or if spiking behaviour from one neuron is mistakenly split into two
units during clustering [17].

• Drift: Drift metrics identify changes in waveforms which occur when sorters
fail to successfully track neurons in the case of electrode drift. Metrics relating
to drift are not addressed here as drift is primarily a problem for dense recording
devices such as HDMEAs.

The rest of this section details each of the quality metrics addressed in this analysis.

2.4.1 Firing rate

Calculation. Firing rate is simply the average number of spikes within the recording
per second. Given Ns spikes in the unit across a full recording with a duration of Tr
seconds, firing rate is:

firing rate =
Ns

Tr
(2.1)

Expectation. Both very high and very low values of firing rate can indicate errors.

Use. Highly contaminated units (type I error) may have high firing rates as a result
of inclusion of other neurons’ spikes. Low firing rate units are likely to be incomplete
(type II error), although this is not always the case (some neurons have highly selective
firing patterns) [1].

2.4.2 Presence ratio

Calculation. The duration of the recording is split into bins 2. Presence ratio is then
the proportion of bins in which at least one spike occurred. Let Bs denote the number
of bins in which spikes occurred, and Bn denote the number of bins in which no spikes
occurred. Presence ratio is then:

presence ratio =
Bs

Bs +Bn
(2.2)

2By default, 101 equally sized bins are used in SpikeInterface, which was here used to calculate
metrics [3]
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Expectation. Complete units are expected to have a high presence ratio (close to 1).

Use. A low presence ratio (close to 0) can be used to identify incomplete units (type
II error). As with firing rate, a low presence ratio could also simply indicate a highly
selective firing pattern.

2.4.3 Amplitude cutoff

Calculation. A histogram of spike amplitudes is created and deviations from the
expected distribution are identified. This yields an estimate of the number of spikes
missing from the unit (false negative rate) [16].

Expectation. Complete units are expected to have a low amplitude cutoff (close to
0).

Use. A high amplitude cutoff can be used as an indication of incompleteness (type
II error).

2.4.4 Inter-spike-interval (ISI) violations

Calculation. Neurons have a refractory period after a spiking event during which
they cannot fire again. Inter-spike-interval (ISI) violations refers to the rate of refrac-
tory period violations [16].

The threshold for ISI violations is the biological ISI threshold, ISIt , minus the min-
imum ISI threshold, ISImin enforced by the data recording system used. The array
of inter-spike-intervals observed in the unit’s spike train, ISIs, is used to identify the
count (#) of observed ISI’s below this threshold. For a recording with a duration of Tr
seconds, and a unit with Ns spikes, the rate of ISI violations is:

ISI violations =
#(ISIs < ISIt)Tr

2N2
s (ISIt− ISImin)

(2.3)

Expectation. Units with low contamination should have low ISI violations values
(close to 0).

Use. Highly contaminated units (type I error) are indicated by high ISI violations
values (close to 1).

2.4.5 Signal-to-noise ratio (SNR)

Calculation. The mean spike waveform for the unit is determined, and the maximum
amplitude of this waveform, Aµs, is found. The noise is here σb, which is the standard
deviation of the background noise on one channel. SNR is then:
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SNR =
Aµs

σb
(2.4)

Expectation. A high SNR unit has a signal which is greater in amplitude than the
background noise and is likely to correspond to a neuron [17, 23].

Use. A low SNR value (close to 0) suggests that the unit is highly contaminated by
noise (type I error).

2.4.6 Silhouette score

Calculation. Silhouette score was introduced by Rousseeuw, and gives the ratio be-
tween the cohesiveness of a cluster and its separation from other clusters [30]. Values
for silhouette score range from -1 to 1.

Expectation. A good clustering with well separated and compact clusters will have
a silhouette score close to 1.

Use. A low silhouette score (close to -1) indicates a poorly isolated cluster (both type
I and type II error) [30].

2.4.7 Isolation distance

Calculation. The unit of interest is denoted as cluster C. The number of spikes within
cluster C is denoted Ns and the number of spikes outwith the cluster is denoted Nn. The
minimum of these two values is Nmin =min(Ns,Nn). Each spike within C is represented
by a vector of principal components (PCs). The mean vector for spikes in C is µC, and
the covariance matrix of spikes in cluster C is ΣC. For every spike i (represented by
vector xi) outwith cluster C, the Mahalanobis distance between µc and xi is calculated
as [17]:

D2
i,C = (xi−µC)

T
Σ
−1
C (xi−µC) (2.5)

These distances are ordered from smallest to largest. The Nmin’th entry in this list is
the isolation distance.

Geometrically, the isolation distance for unit C is the radius of the circle which contains
Nmin spikes from unit C and Nmin spikes from outwith unit C. Isolation distance can be
interpreted as a measure of distance from the unit to the nearest cluster [12].

Expectation. Well separated clusters will have a high isolation distance.

Use. Jackson et al. noted that this measure is correlated with both type I and type II
errors, but is particularly good at picking up type II errors [17].
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2.4.8 L-ratio

Calculation. L-ratio uses 4 principal components (PCs) for each tetrode channel (the
first being energy, the square root of the sum of squares of each sample in the wave-
form, followed by the first 3 PCs of the energy normalised waveform) [31]. This yields
spikes which are each represented as a point in 16 dimensional space.

Define, for each cluster C, D2
i,C, the squared Mahalanobis distance from the centre of

cluster C for every spike i in the dataset (similarly to the calculation for isolation dis-
tance above). Assume that spikes in the cluster distribute normally in each dimension,
so that D2 for spikes in a cluster will distribute as χ2 with 16 degrees of freedom. This
yields CDF

χ2
df

, the cumulative distribution function of the χ2 distribution.

Define for each cluster C, the value L(C), representing the amount of contamination of
the cluster C:

L(C) = ∑
i/∈C

1−CDF
χ2

df
(D2

i,C) (2.6)

L is then the sum of probabilities that each spike which is not a cluster member of C
should be included in the cluster. Therefore the inverse of this cumulative distribution
yields the probability of cluster membership for each spike i.

L is then normalised by the number of spikes Ns in C to allow larger clusters to tolerate
more contamination [31]. This yields L-ratio, which can be expressed as:

L− ratio(C) =
L(C)

Ns
(2.7)

Expectation. A well separated unit should have a low L-ratio [31].

Use. Since this metric identifies unit separation, a high value indicates a highly con-
taminated unit (type I error) [31]. Jackson et al. suggests that this measure is also
correlated with type II errors (although more strongly with type I errors) [17].

2.4.9 D-prime

Calculation. Introduced by Hill et al., D-prime uses linear discriminant analysis
(LDA) to estimate the classification accuracy between two units [16, 5].

P(v|C) probability distributions are assumed to be Gaussian (where v is a waveform
and C is a class). LDA is then fit to the spikes in cluster C, as well as to the spikes
which are not in cluster C (the set of spikes which are not in C is here denoted D). The
mean and standard deviation of the LDA for cluster C is denoted µ(LDA)

C and σ
(LDA)
C .

Similarly, the mean and standard deviation of the LDA for D is denoted µ(LDA)
D and

σ
(LDA)
D . D-prime is then calculated as follows:
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Dprime(C) =
(µ(LDA)

C −µ(LDA)
D )√

0.5((σ(LDA)
C )2 +(σ

(LDA)
D )2)

(2.8)

Expectation. The magnitude of D-prime will be higher in well separated clusters.

Use. As a measure of cluster separation, D-prime identifies both type I and type II
errors [16].

2.4.10 NN-hit rate and NN-miss rate

Calculation. Introduced by Chung et al., these non-parametric measures use nearest
neighbours (NN) to estimate hit rate and miss rate [8].

The membership function, ρ is defined such that for any spike gi in some cluster G,
ρ(gi) = G. Additionally, the nearest neighbour function nk(gi) is defined such that the
output of the function is the set of k spikes which are closest to gi.

For a unit of interest with cluster C, a subset of spikes are randomly drawn to form the
cluster A. A subset of spikes which are not in C are drawn to form the cluster B. The
NN-hit rate for C is then:

NNhit(C) =
1
k

k

∑
i=1

|{x ∈ A : ρ(ni(x)) = A}|
|A|

(2.9)

Similarly, the NN-miss rate for C is:

NNmiss(C) =
1
k

k

∑
i=1

|{x ∈ B : ρ(ni(x)) = A}|
|B|

(2.10)

Expectation. A unit with low contamination should have a high NN-hit rate. A more
complete unit should have a low NN-miss rate.

Use. NN-hit rate is intended to identify unit contamination (type I errors). NN-miss
rate is intended to identify unit incompleteness (type II errors).
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2.5 Qualitative differences in metrics

Metrics which aim to identify the same type of error are expected to behave similarly.
This would be reflected in the correlation between these metrics for the same dataset.
The type of error that each quality metric aims to identify is summarised in Table 2.1.

Type I (contamination) Mixed/ambiguous Type II (incompleteness)
ISI violations L-ratio Presence ratio
SNR Isolation distance Amplitude cutoff
NN-hit rate Silhouette score NN-miss rate

D-prime
Firing rate

Table 2.1: Table summarising the error types addressed by different quality metrics.

In addition to categorising by error type, one may consider whether the metric deter-
mines cluster isolation. Silhouette score, isolation distance, L-ratio, D-prime, NN-hit
rate and NN-miss rate are all concerned with determining cluster isolation and cohe-
siveness. Whilst these metrics differ in their exact approach to identifying unit isola-
tion, they share an approach to conceptualising unit validity [8]. Another qualitative
difference between metrics is whether they consider specific biological factors. ISI
violations is unique in that it concerns the biological plausibility of the unit identified
based on knowledge from neuroscience about the way neurons behave.

In summary, a wide variety of metrics have been developed over a long period of time,
with the earliest metrics emerging around 1984 [23]. Whilst there is some discussion
in the literature comparing these metrics (eg: [17]) there is a distinct lack of up to date,
unifying accounts of the relationship between metrics and the validity of units [13].

2.6 Agreement

Unit agreement was expressed as a binary variable with “1” indicating that the unit was
matched by at least one other sorter, and “0” indicating that the unit was not identified
by any other sorters.

SpikeInterface was used to identify matches according to the following definition [5].

For two unit spike trains with n1 and n2 spikes respectively, the number of spikes which
occur within 0.4ms of each other, nm, is identified. The agreement score s between the
spike trains is then:

s =
nm

n1 +n2−nm
(2.11)

Scores above 0.5 are considered “agreement units” or “matched units”.

Whilst further validation work could refine the thresholds used in the above definition,
this project follows the definition provided by Buccino et al., as this was validated
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as a good proxy to ground truth [5]. Therefore deviations from this definition may
damage the reliability of the analysis presented here. Additionally, for the purpose of
this project, the binary variable is sufficient to provide a proof of concept model for a
curation method of the form described here. That is, this project aims to demonstrate
that a curation method using metrics and agreement is possible, noting that refining
such a model requires a substantial amount of progress in the study of the agreement
method.
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Methods

3.1 Data

As per last year’s report, the data used in this analysis is drawn from the experiments
performed by Gerlei et al. for their 2020 study, “Grid cells are modulated by local
head direction” [9]. In these experiments, tetrode devices were used to record from
the medial entorhinal cortices (MEC) of mice as they roamed freely around a 1m2

enclosure. Gerlei et al.’s original analysis pipeline was adapted using SpikeInterface to
allow for the use of multiple sorting algorithms as well as calculation of quality metrics
and unit agreement [3, 5].

In this project, the adapted pipeline was used to extend the analysis from 4 to 26
recordings using three sorting algorithms (MountainSort4, Kilosort2 and Ironclust).
The result was a pandas DataFrame ([25]) in which each row corresponds to a unit and
the columns correspond to quality metric values, the recording and sorter used, and a
binary “matched” variable.

3.2 Pre-processing metrics data for classification

Whilst several pre-processing approaches were explored throughout this project, three
are considered within this report, each of which is consistently referred to as the: “Stan-
dard” dataset, “Dummies” dataset and “Log” dataset.

Standard A copy of the original full DataFrame was created and the metrics columns
and matched column were retained. A standard scalar was applied to each metric to
normalise the mean and standard deviation using scikit learn’s
preprocessing.StandardScaler() function [26]. Finally, the metrics columns were
separated from the matched column.

Dummies A copy of the full DataFrame was created. The “sorter” column was con-
verted into numeric dummy variables, yielding one binary variable for each sorter
(with “1” or “0” indicating whether that sorter was used to identify the unit). Whilst

15
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there are three sorters, two dummy variables are sufficient to represent all three. The
excluded sorter variable (in this case Kilosort2) is represented by a “0” in both of the
remaining dummy columns. A standard scalar transform was again applied to each
metric column. Finally, the metric and sorter dummy columns were separated from the
matched column.

Log Some quality metrics have heavy-tailed distributions. These metrics were iden-
tified by visual inspection of histograms and reference to the analysis conducted in
the previous part of this project. To produce more plausibly Gaussian distributions for
these metrics, a natural logarithm was applied by using the NumPy log() function.
Again, the full DataFrame was copied, retaining only metrics and matched columns.
The following metrics were log-transformed: firing rate, presence ratio, ISI violations,
SNR, isolation distance, L-ratio, NN-hit rate, NN-miss rate and the absolute values of
D-prime. Note that the magnitude of D-prime is used to indicate unit quality, therefore
use of the absolute value of this metric is appropriate here. A standard scalar transform
was then applied, and the matched column was separated from the metrics columns.

3.3 Modelling problem

The aim of this project was to develop a useful curation method in the form of a predic-
tive model. This model uses unit metrics to identify units which correspond to neurons
in the brain (true positives). The potential features for the model are the metrics dis-
cussed in Section 2.4, with the possible inclusion of the sorter used to acquire the
unit. The target variable for the model is whether a unit corresponds to a neuron in the
brain, and agreement is used as a proxy to this information. Therefore, the modelling
problem addressed by this report is a classification problem with a binary outcome.

To summarise, a successful model will be a binary classifier which uses unit quality
metrics as features and returns an indication of whether the unit is likely to be a true
positive unit.

Two modelling paradigms are considered in this project: Gaussian Bayes and logistic
regression. The rest of this section details each of these paradigms with reference to
their respective assumptions and limitations.

3.3.1 Gaussian Naı̈ve Bayes (GNB)

In a Gaussian Naı̈ve Bayes model, Gaussian distributions are fit to each class (matched
or unmatched) in the training data. Since features are assumed to be approximately
Gaussian, pre-processing of features must be carefully considered. To classify an un-
seen unit, the probability of the unit’s membership for each class is calculated and the
class with higher probability is selected. GNB models were fit using the scikit-learn
function naive_bayes.GaussianNB() [26].

GNB additionally assumes that, for each class, all features are independent [18]. The
validity of this assumption should be considered, as improvements in model perfor-
mance may be achieved through accounting for the relationships between features.
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It is possible to extend this naı̈ve model to account for covariance between features.
However, this limits the number of features which can be included in the model be-
cause the non-naı̈ve Gaussian Bayes model suffers the curse of dimensionality [18].
This motivates a change in paradigm to logistic regression which can better handle
large feature spaces.

Another limitation of GNB is that modelling sorters separately would require 6 differ-
ent distributions to be fit to the training data (matched and unmatched distributions for
each of the three sorters). Given the very limited number of matched units associated
with each sorter, distributions fitted to individual sorters’ matched unit populations are
likely to be strongly influenced by outliers [18].

3.3.2 Logistic Regression

Logistic regression uses a Logistic function to model the probability that a datapoint
belongs to a each of two binary classes. In a fitted model, each predictor variable is
associated with a coefficient. Binary logistic regression is an appealing modelling
paradigm because individual classifications are easy to interpret with reference to
the coefficients of the model [18]. Additionally, coefficients can be used to estab-
lish feature importance, which aids variable reduction. This is helpful in this mod-
elling problem because an interpretable model will not use a large number of predic-
tor variables. Logistic regression models were trained using the scikit-learn function
linear_model.LogisticRegression() [26].

A general guideline for logistic regression is that there should be at least 10 cases with
the least frequent outcome (here matched units) for every independent variable [27].
This limit should be taken into account when choosing features for a model.

Overfitting the model to the training data is a risk of logistic regression, especially in
small datasets [18]. To reduce the likelihood of overfitting, regularisation was consid-
ered. This protects the model from overfitting by penalising large coefficient values.
The degree to which coefficient magnitudes are penalised is controlled by the regular-
isation constant, λ ≥ 0. With little or no regularisation (λ ≈ 0) the model may overfit
the training data and therefore perform poorly on unseen data. L1 (LASSO) regulari-
sation was used in this case, as this method has the additional benefit of aiding variable
elimination by setting coefficients to exactly 0 at sufficiently high regularisation con-
stant values [10]. In scikit-learn’s LogisticRegression() function, the parameter
c is used to control the regularisation constant λ, where c = 1/λ is the inverse of the
regularisation constant. Larger values of λ, and correspondingly smaller values of c,
yield stronger regularisation.

Logistic regression requires that there is little multicollinearity between independent
variables [18]. As a general rule of thumb, a Pearson’s correlation coefficient above
0.8 is considered problematic [33]. However, whilst high correlation between two
variables indicates multicollinearity, a lack of correlation cannot be assumed to imply
lack of multicollinearity. This is because correlation is a special case of collinearity.
Collinearity can also occur in the case of a linear relationship between one variable and
a combination of the others [4, 18]. The presence of multicollinearity among features
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causes logistic regression to become unstable when features are added or removed, and
should be avoided. This instability causes inflated coefficients, so regularisation can
help minimise the impact of colinearity by reducing the magnitude of coefficients [4].
Whilst this does not solve the assumption violation, regularisation stabilises the model
and may therefore be sufficient for the purpose of modelling.

To properly diagnose multicollinearity among features, Variance Inflation Factor (VIF)
was used [4, 18]. In the calculation of VIF, each feature is regressed against all other
features. The VIF score for a feature i can be expressed as a function of the coefficient
of multiple determination in linear regression, R2

i , which is a goodness of fit measure
[18, 4]:

V IFi =
1

1−R2
i

(3.1)

VIF was calculated using the statsmodels function
stats.outliers_influence.variance_inflation_factor()with default param-
eters. Values above 10 are usually taken to indicate multicollinearity [4, 18], however
some sources use a stricter threshold of 5 [18].

Logistic regression does assume that observations are independent from each other
[18]. This assumption is potentially violated in this modelling task; as different sorters
are applied to the same recordings, they may identify similar units.

One limitation of the logistic regression paradigm is that it does not provide meaningful
estimates of the confidence associated with classifications [18]. This is in conflict with
a goal of the curation model. Namely, that the model should provide some indication
of confidence that a unit is matched or unmatched.

3.4 Model evaluation

This section discusses the model evaluation metrics and procedures which were used
to assess model performance in this project. A true positive (TP) result refers to a
unit which is matched, and is classified as such. Similarly, a true negative (TP) is an
unmatched unit which is classified as such. A false positive (FP) is a unit which is
unmatched but is classified as matched, and a false negative (FN) is an unmatched unit
that has been classified as matched.

Accuracy Whilst accuracy is a common performance metric for classification mod-
els, it is not applicable in this case owing to the imbalance between matched units
and the majority class of unmatched units. This is because a model can achieve high
accuracy by simply classifying all samples as unmatched (the majority class).

Precision The primary goal of the model is to remove incorrect (unmatched) units,
thereby reducing the likelihood of drawing conclusions about the data based on in-
accurate assertions about neuron activity. In modelling terms, this is reflected by the
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precision on the target set:

precision =
T P

T P+FP
(3.2)

Recall Another implicit goal of curation is to retain as many matched units as possi-
ble. This can be expressed as recall on the target set:

recall =
T P

T P+FN
(3.3)

To put these considerations into a neuroscience context, one can consider the nature of
extracellular neural research. For a study which seeks to examine the behaviour of an
individual neuron, inclusion of false positives may have detrimental implications on
the reliability of the conclusions drawn about neuron behaviour. This is because each
identified neuron is important to the conclusions drawn. Such a study must prioritise
precision over recall. By comparison, a study which examines the interaction between
large populations of neurons may prioritise recall over precision. In this case, a loss of
units may severely hinder the study, while inclusion of some false positives is tolerated.
These examples highlight the importance of good curation, and put into perspective the
way that priorities may change based on the needs of the study in question [13]. Given
this, an ideal model should grant the researchers control of the degree to which they
allow false positives in their analysis.

F-measure An F-β measure can be useful in expressing the relative priority of recall
and precision [18]. It is possible to tune β to express relative prioritisation of recall and
precision (β > 1 will favour recall). However, as explained above, these priorities are
highly specific to the use case of the model. Therefore for the purposes of this report,
the F1 measure will be used as a general indicator of performance with reference to
precision and recall values. F1 score is defined as:

F1 =
2× precision× recall

precision+ recall
(3.4)

Train, validation and test set As is standard in machine learning, a small portion of
the data was held out for validation (tuning) and testing. Usually, a random subset of
the data is held out for this purpose. However, the nature of the agreement data compli-
cates this procedure. A matched unit will, by construction, be represented by multiple
sorters (ergo multiple data points). These separate representations of the matched unit
are likely to have very similar, if not identical, quality metric values, as they represent
the behaviour of the same neuron. In a random datasplit, one representation may fall in
the training set while another falls in the test set. In this way, the model will be tested
on the training data, leading to inflated test performance. Since this essentially consti-
tutes data leakage, a random train/validation/test split would cause a validity issue for
the results presented here. Therefore, this report will hold out recordings rather than
an arbitrary split of the units. This prevents the data leakage concern, since data from
different recordings cannot represent the same unit.
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Python’s random.choices() function was used to select two test and three validation
recordings. Once determined, data from these recordings was consistently held out
from the training data, which consists of the remaining 21 recordings. The test set was
not used at any point during training, and was only used for the final model evaluation
in Section 4.6.

Cross-validation A simple validation set approach to tuning would involve tuning all
parameters based on performance on the validation set. Given that this project involves
substantial tuning of one model to one dataset, such an approach would potentially lead
to overfitting the model to the validation set. This effect would be reflected in poor per-
formance on test data. To avoid this, K-fold cross-validation is preferred over a simple
validation set approach [18]. Usually, K-fold cross-validation involves randomly split-
ting the training data into K groups. For each iteration (“fold”) of the cross-validation,
one of these groups is held out and treated as a validation set from which performance
can be reported. Given the issue described above, this project holds out recordings as
opposed to random groups. Therefore, this project will essentially perform “hold one
recording out” cross-validation (simply referred to as “cross-validation” in this report).

3.5 Addressing data imbalance

Since matched units are rare, there is a class imbalance in the dataset, with the target
set of matched units being the minority class. This can cause problems for modelling
performance, specifically low recall on the minority class.

There are two approaches to address this problem: adjusting the model itself (for ex-
ample, by adjusting class priors to favour the minority class) and adjusting the data
directly prior to modelling [7, 34]. Adjustment of the data usually involves either over-
sampling the minority class or undersampling the majority class. Extracellular datasets
are generally quite small, therefore oversampling was used in order to make use of the
data available without further limiting the sample sizes by undersampling.

In this project, the Synthetic Minority Over-sampling Techique (SMOTE) oversam-
pling technique was used to oversample the minority class [7]. The Python imblearn
package was used to perform SMOTE oversampling using the
over_sampling.SMOTE() function [22]. An “oversampling ratio” is provided as a pa-
rameter to this function. This ratio is the amount of resampled data which represents
the (previously minority) class. For example, an oversampling ratio of 0.4 indicates
that after resampling the training data, 40% of rows in the training set were matched
units.
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Results and analysis

4.1 Dataset overview

In total, 2566 units were identified across all three sorters and all 26 recordings. Each
electrode is expected to detect the activity from up to 4 units, so 16 units per tetrode
recording is a plausible maximum. Given that there are 26 recordings, no more than
416 units are expected across all recordings, for each sorter.

Figure 4.1: Bar charts showing the balance of matched (red) and unmatched (blue)
units identified by each sorting algorithm. Left: Matched units as a percentage of overall
unit output of each sorter. Right: Number of matched and unmatched units identified
by each sorter.

Kilosort2 found 1698 units in total, of which 66 (3.89%) were matched. 1698 is 4.08
times the expected number of true units in the data. This result is in agreement with
those found in the first part of this project, as well as results from the literature. Specifi-
cally, Kilosort2 reports implausibly high numbers of units, and therefore contains many
false positive units [5]. Both MountainSort4 and Ironclust produce more reasonable
numbers of units overall, which is in line with previous results. MountainSort4 found

21
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565 units in total, of which 76 were matched (13.45%). Ironclust found 303 units in
total, of which 39 units were matched (12.87%). Figure 4.1 (left) shows the proportion
units identified by each sorter which were matched. Again, these results echo those
presented in the previous year’s report in that both MountainSort4 and Ironclust pro-
duce a high ratio of matched units relative to Kilosort2. As can be seen in Figure 4.1
(right), MountainSort4 and Ironclust both contribute similarly to the total collection of
matched units in the data.

Across all recordings and sorters, 181 units were matched (7.05% of total units). The
proportion of matched units overall was slightly lower in the first part of the project
(average 4.27% over 4 recordings using 5 sorters). As mentioned in Section 2.2, sorters
in this analysis were chosen for their high rates of matched units. Therefore it is un-
surprising that a higher ratio of matched units was found in the three sorter dataset.
Note that, despite this increase, these results are still consistent with previous literature
demonstrating low agreement among sorters [5].

Summary These results highlight two issues for the modelling problem described in
Section 3.3. Firstly, the results confirm that there is a class imbalance for the data used
here. Secondly, the likelihood of a unit being in the target set is related to the sorter
used. This suggests that the sorter used may be an important factor in determining the
quality of a unit.

4.2 Quality metric distributions

Investigating the distributions of features used in modelling is important for two rea-
sons. Firstly, some models make assumptions about the underlying distributions of
features. For example, Gaussian Bayes assumes features are approximately Gaussian
distributed. By visualising distributions, violations of these assumptions can be iden-
tified. Secondly, visualising distributions in a larger dataset may reveal mistakes or
biases in the previous year’s analysis, which were not visible at a smaller sample size.

Kernel Density Estimation (KDE) was used to attain estimated probability density
functions for sample populations. This was done by use of pandas’
DataFrame.plot.kde() function, using default parameters. Whilst histograms give
a slightly more realistic picture of the dataset, KDE is here used to yield clear vi-
sualisations. For visualisation clarity, Figures 4.2 and 4.3 use the Log dataset. For
completeness, visualisation of the raw data can also be found in Appendix A.

Since quality metrics will be used here to classify matched and unmatched units, some
evidence of a relationship between distribution and class is a positive indication that
a particular metric will be useful in identifying matched units. To investigate this, the
Log dataset was split between matched and unmatched units and the KDE for each
metric was visualised. Figure 4.2 shows the kernel density estimation distribution of
each metric for matched and unmatched units, across all sorters.
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Figure 4.2: Kernel density estimation distribution plots for each metric in the Log
dataset. Matched (blue) and unmatched (red) populations are represented separately.

For many metrics, there are clear differences in the distributions for the matched and
unmatched populations. One example of this effect is amplitude cutoff, in which
matched units tend to take on a more limited range of values, which are lower. An-
other example is presence ratio, in which matched units tend to take on the same value
whist unmatched units take on a wider range of values, as can be seen by the flatter
distribution here. An extensive discussion on this topic can be found in the previous
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part of this project. For the purposes of this part of the project, note that most metrics
show some differences in the distribution of matched versus unmatched units. This is
a promising indication that these metrics can be used as features in a classifier model.

Since sorters will ideally be modelled together in a classifier, there is an implicit mod-
elling assumption that data for each metric is sampled from the same distribution.
Therefore, units from different sorters should be similarly distributed for each metric.
To investigate this, the full Log dataset was split by sorter to produce three datasets.
Figure 4.3 shows the kernel density estimation distributions for each metric based on
sorter.

Whilst no formal conclusions are drawn here, it appears that some quality metrics show
similar distributions for different sorters (for example presence ratio, amplitude cutoff
and isolation distance). By comparison, other metrics show distributions which are
not similar across sorters. One example of this is firing rate, for which Kilosort2 units
tend to take on lower values. Kilosort2 does have a higher ratio of unmatched units
in comparison to MountainSort4 and Ironclust, so this difference in distribution may
simply be reflective of lower quality units associated with this sorter.
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Figure 4.3: Kernel density estimation distribution plots for each metric in the Log
dataset. Individual sorter populations are represented separately: Ironclust (green),
Kilosort2 (red) and MountainSort4 (blue).

Summary Across the whole dataset, some metrics show highly similar distributions
for matched versus unmatched units. These metrics may prove difficult to use in a
classifier model because they do not separate classes well.

Quality metrics from different sorters are not necessarily similarly distributed. This
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makes it difficult to combine data from sorters when modelling. One potential solution
to this is to separate metric information based on the sorter used. From a user per-
spective this is reasonable, since the sorter used is known to the user and can therefore
be an input to the model. However, separating by sorter yields smaller datasets from
which to train a classifier. Additionally, an ideal model should generalise to any choice
of sorting algorithm. By accepting that a model requires experiment and sorter specific
information in order to perform well, the assumption that this curation technique can
be used in general for any collection of sorters is sacrificed. An alternative option is
to fit a single model and include dummy variables indicating the sorter used (as in the
Dummies dataset).

4.3 Feature correlation

As discussed in Section 2.5, metrics can be grouped by the type of error they aim
to identify. This raises the question of whether these metrics with similar goals have
strong relationships. That is, supposing that two different metrics both aim to de-
scribe unit isolation, one could expect that these metrics are highly correlated, with
well isolated metrics scoring higher than poorly isolated metrics. If metrics are highly
correlated, this presents an opportunity to reduce the feature space of the model. This
is because using both metrics separately would essentially add redundant information
which is already provided by another feature. Therefore, if two highly correlated met-
rics are present, one of these could be selected, discarding the other. A secondary
reason for performing this correlation analysis is to check the direction of relation-
ships between metrics. As described in Section 2.4, high quality units are indicated by
high values of some quality metrics, and low values of others. That is, given metric
A which takes on a lower value for good units, and metric B which takes on a higher
value for good units, the correlation should have a negative sign.

To investigate correlation, Spearman’s rank correlation coefficient was used to deter-
mine the covariation between pairs of metrics. Values for Spearman’s correlation rank
range from ρ = −1 (perfect monotonically decreasing relationship) to ρ = 1 (perfect
monotonically increasing relationship). Spearman’s rank coefficient is here preferable
to alternatives which make stronger assumptions about the relationship between vari-
ables. For example, Pearson’s correlation coefficient assumes that variables are linearly
related [32]. Spearman’s rank does assume that there is a monotonic relationship be-
tween quantities. Since D-prime is assessed based on magnitude (see Section 3.2), the
Log dataset was used to ensure a monotonic relationship in this case. Figure 4.4 shows
the correlation coefficients between metrics as a heatmap.
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Figure 4.4: Heatmap showing the Spearman’s correlation coefficient value between all
quality metrics in the Log dataset.

The direction of the relationships are generally as expected. That is, for metrics where
a low value indicates a good quality unit, a negative correlation is seen with metrics
for which a positive value indicates a good unit. The exception to this is NN-miss
rate, which should be lower in matched units, but shows positive correlation with some
metrics which should be higher in matched units (eg: amplitude cutoff, presence ratio
and isolation distance). This is surprising given that the overall relationship between
matched and unmatched units for this metric (as outlined in Section 4.2) was as ex-
pected. One potential explanation for this is that NN-miss rate is related to other
variables by functions which are not easily captured by Spearman’s rank correlation
coefficient [32].

Contamination metrics (type I error) As discussed in Section 2.5, the metrics which
are strongly associated with identifying type I errors are: ISI violations, SNR, L-ratio
and NN-hit rate. The relationship between these metrics is shown in Figure 4.5.
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ISI violations SNR

NN-hit rateL-ratio

0.72 0.37

−0.25

−0.31 −0.25

−0.67

Figure 4.5: Connected graph showing the Spearman’s correlation coefficient value be-
tween type I metrics. Positive correlations are indicated in red whilst negative correla-
tions are indicated in blue.

Incompleteness (Type II) metrics As described in Section 2.5, metrics which are
most strongly associated with type II errors are: presence ratio, amplitude cutoff, NN-
miss rate and isolation distance. The relationship between these metrics is visualised
in Figure 4.6.

Presence ratio Amplitude cutoff

NN-miss rateIsolation distance

0.45

0.52

0.27

−0.48

−0.15

−0.48

Figure 4.6: Connected graph showing the Spearman’s correlation coefficient value be-
tween type II metrics. Positive correlations are indicated in red whilst negative correla-
tions are indicated in blue.

Summary Whilst some evidence of correlation between metrics with the same error
type is observed, these correlations are not very strong, certainly not strong enough
to assert redundancy of some metrics. Some evidence of correlation between metrics
is observed, however the correlations observed between conceptually related metrics
are not substantially stronger than those of non-conceptually related metrics. This
suggests that model features should not be reduced by simply considering the error
type addressed by the metric.

4.4 Baseline model

The Gaussian naı̈ve Bayes (GNB) model presented in Part 1 of this project was trained
on the full dataset. Log-ISI violations and log-L-ratio were used as the features for this
model by using the Log dataset.
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Two GaussianNB models were then fit separately on the training data. The first model
was exactly equivalent to the model presented in Part 1 of the project. This model
assumed equal class priors to address class imbalance, P(matched = 0) = 0.5 and
P(matched = 1) = 0.5.

Using this equal priors model, the F1 score on the validation set was 0.476. On the
matched set, precision was only 0.316, but recall was very high at 0.962. These results
are reflective of those seen in Part 1 (recall: 0.910, precision: 0.140), which used a
smaller dataset. The improvements seen using the larger dataset are attributable to the
improved balance of data in this years dataset as discussed in Section 4.1. As can be
seen in Figure 4.7, the model which uses equal priors produced good rates of recall for
both classes, and very few true positive units are classified as negatives. This model
retains matched units well, but incorrectly classifies many unmatched units as matched.

The second model used priors according to class prevalence in the data. Approximately
7% of units were matched in the training set, and priors were set accordingly using the
default parameters of scikit-learn’s GaussianNB() function which automatically sets
priors according to class prevalence. Unlike the equal priors model, this model does
not make the assumption that a matched unit is equally as likely as an unmatched unit.
In this way, the model is more accurate to the assumptions that should naturally be
made about the data. On the validation set, the unequal priors model had a slightly
higher F1 score of 0.585, with precision of 0.800 on the target set, and substantially
lower recall of 0.462.

These results demonstrate that adjusting the priors to improve recall causes a decrease
in precision, whilst adjusting priors to improve precision causes a decrease in recall.
This trade off effect is visualised in Figure 4.7.

Figure 4.7: Confusion matrices showing performance of Gaussian Naı̈ve Bayes models
on the validation set. Values shown are adjusted to show the ratio of labels predicted
correctly in each category. Left: Equal priors model. Right: Model using priors adjusted
to class prevalence.

In the equal priors model, the model was adjusted as an attempt to address the effects
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of class imbalance. As discussed in Section 3.5, oversampling the training data is an
alternative method to address the effects of imbalance. SMOTE oversampling was
applied to the training data using an oversampling ratio of 0.5. This yielded 3536
training samples, of which 1768 (50%) were matched. In this case, priors in the GNB
model were automatically tuned to 0.5 for each class, reflective of the prevalence of
each class in the rebalanced training data. Testing on the validation set as before,
results are very similar to that of the equal priors model above (F1: 0.472, precision:
0.313, recall: 0.962). In the case of this model, oversampling the minority set yields
similar results to adjusting priors.

Summary GNB models produce reasonable results, and the trade off between re-
call and precision can be adjusted either through adjusting priors or oversampling the
training data. However, prioritising either recall or precision severely impacts the per-
formance of the other. An ideal model will retain good performance on both recall and
precision, regardless of which is prioritised. The equal priors GNB model presented
here serves as a baseline from which to compare the models developed throughout the
rest of this chapter.

4.5 Logistic Regression

As discussed in Section 4.1, there are 181 matched units across the full dataset of
2566 units (7.01%). A single recording is therefore expected to have 98.69 units, of
which 6.92 are matched. The smallest training set used to train the model here is a
single cross-validation fold, consisting of 20 recordings (138 matched units expected).
Given the assumption that there should be at least 10 observation per feature used (see
Section 3.3.2), this limits the number of features to 13. This is a high limit, and even
use of all metrics and sorter dummy variables only just reaches this limit of 13. For an
interpretable model, a smaller limit is preferred, certainly less than 10, and ideally less
than 5 or 6.

To address the assumption that there is no multicollinearity among features, the VIF
score was calculated for the two scenarios: “metrics only” in which metrics are the
predicting features, and “metrics and sorter” in which both metrics and sorter dummy
variables are used as predicting features. None of the VIF scores exceed the threshold
of 10, nor the stricter threshold of 5. Therefore, the multicollinearity assumption made
by logistic regression is not violated in either case. A full table showing all VIF scores
is available in Appendix B. This result further supports the conclusions drawn in Sec-
tion 4.3, namely that assuming redundancy of features is ill founded. For this reason,
the modelling approach here treats each quality metric as a feature, without attempting
to combine features prior to modelling.

4.5.1 Pre-processing for logistic regression

This section considers the impact of data pre-processing on model outcome. The three
datasets outlined in Section 3.2 were considered for the logistic regression model.
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Logistic regression was used to acquire an estimate of feature importance under each of
the three pre-processing conditions. To achieve this, cross-validation was performed.
For each fold, a logistic regression model was trained, using default regularisation
c = 1, to establish feature importance. Figure 4.8 shows the coefficient magnitude (av-
eraged across folds) for each quality metric under differing pre-processing conditions.
From this figure, it is clear that choice of pre-processing has an effect on the relative
importance of features in the model. This result is important because variable elimi-
nation is applied in reverse order of coefficient magnitude, meaning that the reduced
collection of variables used in a final model may differ depending on the pre-processing
applied.

Figure 4.8: Bar chart showing the absolute values of quality metric coefficients pro-
duced by a logistic regression model under different pre-processing conditions. Each
model uses the full feature set for each dataset, with regularisation c = 1. Coefficient
values represent the average across cross-validation folds.

In comparison to the Standard dataset, inclusion of a dummy variable for sorter (Dum-
mies dataset) has little impact on the importance of most metrics. Additionally, the
sorter dummy variables are of fairly low importance, meaning they would be elimi-
nated in a model with few variables. By comparison, use of the Log dataset yields sub-
stantial differences in metric coefficient size. Interestingly, ISI violations and isolation
distance, which are both log-transformed in the Log dataset, are not ranked as impor-
tant under the standard scalar pre-processing (Standard and Dummies datasets), but
are very important in the Log dataset case. This highlights both the benefit and risk of
re-parameterising variables. On one hand, transforming these variables has produced
features which can better differentiate between matched and unmatched data, which is
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ideal for modelling. On the other hand, the model is clearly sensitive to pre-processing
choices, therefore careful consideration is required.

Another observation is that the sign of the coefficients are usually as expected: metrics
where high values are good have positive coefficients and vice versa. The exception
to this is SNR, for which both Standard and Dummies datasets yield small negative
correlation coefficients. The Log dataset does not have this problem, and SNR is asso-
ciated with a positive coefficient. The same effect is also seen in D-prime; in the log
transformed model, D-prime is reduced to 0 by L1 regularisation. In models which use
the Log dataset, the signs of coefficients are consistently in line with expectations for
each metric.

Based on the coefficients found above, an ordered list of metrics was created for each
dataset. This list was used as an order for feature selection, with the first metric rep-
resenting the most important feature. Feature selection was performed by training
models on the training data (regularisation c = 1) using increasingly large numbers of
variables, starting with the most important. For each dataset, the maximum F1 score
was identified, as well as the number of variables used to attain this score.

Using the Standard dataset, the optimal F1 score of 0.756 was achieved using 4 vari-
ables: presence ratio, NN-hit rate, amplitude cutoff and NN-miss rate. Recall was
0.654 and precision was 0.895. Using the Dummies dataset, 9 variables (all but ISI vi-
olations and isolation distance) were required to achieve an optimal F1 score of 0.744
(recall: 0.615, precision: 0.941). Using the Log dataset, only 4 variables (ISI viola-
tions, presence ratio, SNR and isolation distance) were needed to achieve an optimal
F1 score of 0.756 (recall: 0.654, precision: 0.895).

Performance for all pre-processing choices was similar, however far more variables
were required to achieve this performance in the Dummies dataset. Ideally the final
model should not use many variables, therefore the Dummies dataset was excluded
from analysis at this point. It is surprising that the sorter variables are not required to
achieve good modelling performance. This suggests that the differences in metric dis-
tributions between sorters (as in Section 4.2) do not detrimentally affect performance
of the model.

In Part 1 of this project, ISI violations was identified as having a uniquely consistent
relationship with unit agreement across all recordings and all sorters tested. This sug-
gests that ISI violations is a useful predictor in the curation model. However, this
metric is given a very small coefficient in the model which uses the Standard dataset.
In the Log dataset models, ISI violations is given the largest coefficient. Given this, the
Log dataset produces models which are more in line with expectations. Additionally,
since the sign of coefficients is more consistently in line with expectations in the Log
dataset, the rest of this analysis uses this pre-processing configuration.

4.5.2 Tuning regularisation

Having identified the Log dataset as appropriate for modelling, and identifying 4 vari-
ables as the optimal number in this model, the next step for tuning the model is to
consider regularisation.
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To identify an appropriate value for the inverse regularisation constant c, a hyperpa-
rameter search was conducted using cross-validation. The features used to train the
model were the four features identified as optimal in the previous section: ISI viola-
tions, presence ratio, SNR and isolation distance. For each fold, logistic regression
models were fit using c values ranging from 0.01 to 2 at intervals of 0.01. For each
fold, the model which generated the maximum F1 score was identified to yield an opti-
mal c value for that fold. Averaging over all folds, the mean optimal c value was 0.196
(min: 0.010, max: 0.710). Inspection of the individual fold results showed that the op-
timal F1 score was always achieved for values of c above the identified optimum. That
is, the identified optimal c value represents a minimum within the tested range of 0.01
to 2. For c values below the suggested optimum value performance quickly dropped,
suggesting underfitting. Given this, the highest observed c value represents a sensible
minimum c value for the model. These results suggest that regularisation should be no
stronger than c = 0.71

The same procedure was repeated with a higher range of c values (2 to 200 at integer
intervals) to detect an upper threshold for c. Again looking at individual folds, the
lowest c value for which performance dropped was 25. This suggests that overfitting
may occur for c values above 25. These results suggest that some regularisation (c <
25) is useful to prevent overfitting.

This report assumes that an interpretable model will not include more than 6 vari-
ables as predictors. To account for potential increases in the number of variables used,
the same tuning procedure was performed using a 5 and 6 variable model. Similar
thresholds for c were found. Given this, values for c between 1 and 25 are assumed to
produce reasonable results for a model which uses 4-6 variables.

4.5.3 Variable selection

To establish the initial 4 variable model, variable elimination was performed against the
validation set. Whilst this may be optimal for the full validation set, cross-validation
may reveal variations in performance for a model with a given number of variables.
Given this, cross-validation was used to assess the optimal number of variables to be
used in the model. The same ordering of variables was used as in Section 4.5.1.

For each of the 21 cross-validation folds, variable elimination was performed in line
with the procedure used on the validation set in Section 4.5.1. A regularisation param-
eter of c = 1 was used throughout, in line with results from Section 4.5.2. For each
fold, the model which produced the highest F1 value was identified and the number of
variables used was recorded.

Here, 2 is considered to be a reasonable lower limit for the number of features used
in the curation model, with 6 as the upper limit as above. 10 of the folds produced
optimal F1 values using 2-6 variables. 7 folds produced optimal F1 scores with just
1-2 variables. These folds generally had lower F1 scores (< 0.6) than those suggest-
ing higher numbers of variables. This suggests that the held out recordings in these
folds are difficult to classify using a logistic regression model based on any number of
metrics. 4 folds suggested numbers of variables above 6. These folds were inspected
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visually, looking at the F1 score as variables are reduced.

In two of the folds, reducing the number of variables down from the suggested value
to just 4 yielded minimal decreases in performance. Specifically, F1 score dropped
from 0.667 to 0.636 in one case, and in the second case, F1 score was the same (0.500)
to three significant figures after the reduction. Another fold suggested 9 variables,
with an optimal F1 score of 0.857. When reduced to 4 variables, this score dropped
marginally to 0.800. For this fold, the decrease in complexity by removing 5 variables
is substantial in comparison to the reduction in performance, which is small. The
largest performance drop was seen in a fold which suggested 9 variables, with F1
score of 0.609. Use of 4 variables decreases this score to 0.476, which was the only
performance loss greater than 0.1. Even if 6 variables are used, this fold only achieves
an F1 score of 0.552. This suggests that the units in the held out recording for this
fold were difficult to classify, and required information from many different variables
in order to be predicted correctly. Overall, these results show that in almost all cases,
use of 4-6 variables produces either optimal or near-optimal performance based on F1
score.

To inspect model performance over all folds for a given number of variables, cross
validation was performed. Mean and variance for F1 scores across folds are here re-
ported using the notation (µ, σ2). The best F1 score was seen when using 6 variables
(µ = 0.508, σ2 = 0.084). Mean recall in this case was 0.476 (σ2 = 0.107) and mean
precision was 0.638 (σ2 = 0.144). Use of 5 variables does not cause a steep drop in
performance; the mean F1 score for this model is 0.490 (σ2 = 0.084), with mean recall
of 0.458 (σ2 = 0.104) and mean precision 0.629 (σ2 = 0.137). Considering the results
using only 4 variables, the mean F1 score is close to that of the 6 variable model (µ =
0.490, σ2 = 0.084) with mean recall 0.462 (σ2 = 0.104) and mean precision 0.629 (σ2 =
0.134). Use of 4, 5, or 6 variables produce similar rates of recall and precision. Below
4 variables, recall declines quickly. These results suggest that a model of 4-6 variables
produces reasonable results in comparison to a lower number of features. Use of 6
variables does produce some modest improvements in all performance metrics. The
next section investigates whether this performance can be improved by addressing the
class imbalance using SMOTE.

4.5.4 Oversampling to balance recall and agreement

Using a regularisation parameter of c= 1 and 6 variables (ISI violations, presence ratio,
SNR, isolation distance, silhouette score, NN-hit rate), SMOTE was used to adjust the
proportion of the training data which was matched. Scores on the validation set for
each of these proportions ranging from 0.1 to 0.9 are shown in Figure 4.9.
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Figure 4.9: Graph showing the validation set performance of the oversampled logistic
regression model (c = 1) across different oversampling ratios. The Log dataset was
used. Features for the model are: ISI violations, presence ratio, SNR, isolation distance,
silhouette score, NN-hit rate.

The optimal F1 score of 0.824 is reached at an oversampling ratio of 0.3 (recall: 0.808,
precision: 0.840). This is a very exciting result, as this far exceeds the baseline per-
formance mentioned in Section 4.4 (F1: 0.476, recall: 0.962, precision: 0.316). Of
course, here a sacrifice has been made with regards to recall. However, as shown in
Figure 4.9, recall can be improved by using a higher oversampling ratio of, for exam-
ple, 0.4 to achieve 0.846 recall (F1: 0.80, precision: 0.759). This achieves close recall
to that of the baseline, without the heavy sacrifice incurred on precision in the baseline
model. On the other hand, if the user of the model wishes to prioritise precision and
accept a decline in small recall, a lower oversampling ratio can be used (eg: 0.2) to
achieve 0.870 precision (F1: 0.816, recall: 0.769).

4.5.5 Modelling sorters separately

As described in Section 4.2, different sorters’ metrics are not necessarily similarly dis-
tributed, and cannot be assumed to be drawn from the same distribution. Ignoring this
by modelling all sorters together may provide more data from which to train, but fails
to capture information which is important to classification. This section investigates
whether modelling sorters individually yields substantial performance gains over the
pooled model.

Scikit learn’s LogisticRegression() function was used to perform the regression fit
using c = 1. Cross-validation was used to attain an average coefficient across folds for
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each sorter. The coefficient values for each metric and each sorter are shown in Figure
4.10. For most metrics, importance does not differ substantially between sorters. For
a handful of metrics importance is very low for one sorter but moderately important
to others. For example, both firing rate and isolation distance have very low coeffi-
cients in the Ironclust model, but coefficients are moderate for both MountainSort4
and Kilosort2.

Figure 4.10: Bar chart showing the absolute values of quality metric coefficients pro-
duced by a logistic regression model using split-sorter Log datasets. Each model uses
the full feature set for each dataset, with regularisation c = 1. Coefficient values repre-
sent the average across cross-validation folds.

Considering the metrics which are used in the pooled model: ISI violations and SNR
are both highly important to all sorter models, presence ratio and isolation distance are
both moderately important to all but Ironclust, silhouette score is moderately important
to all but MountainSort4, and NN-hit rate is moderately important to all but Kilosort2.
The pooled model features therefore reflect a well balanced set of features which are
important to each sorter individually.

A similar procedure to that used on the full dataset was used to tune a model to the
individual sorter data, again using cross-validation. In every case, c = 1 was found to
be an acceptable regularisation constant.

Ironclust All but one fold produced optimal F1 scores using 5 or fewer variables.
Oversampling did improve performance, with one peak using an oversampling ratio of
0.4 (F1: 0.553, recall: 0.619, precision: 0.552) and another at an oversampling ratio of
0.9 (F1: 0.604, recall: 0.710, precision: 0.558).
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Kilosort2 All but one fold suggested a number of variables at or below 5, so again
this value was chosen. The peak F1 score was seen at an oversampling ratio of 0.2 (F1:
0.331 recall: 0.419, precision: 0.366). Recall does improve with oversampling, with
peak recall of 0.710 seen at an oversampling ratio of 0.9, but this causes substantial
decreases in precision (0.279).

MountainSort4 All but two folds suggested 6 or fewer variables, therefore 6 were
used. F1 score was fairly stable across different oversampling ratios, with a steady in-
crease from 0.553 (oversampling ratio: 0.2) to 0.595 (oversampling ratio: 0.9). Recall
improves with oversampling, with a maximum value of 0.726 using an oversampling
ratio of 0.9 (F1: 0.595, precision: 0.556). MountainSort4 showed a less extreme de-
crease in precision at higher oversampling ratios, when compared with Kilosort2.

Summary As explained in Section 4.2, modelling sorters separately is not ideal. The
results presented in this section demonstrate that modelling sorters separately does not
even yield improvements in performance when comparing to the pooled model. One
possible reason for this poor performance is that less data is used to train individual
models. That is, the effect of a larger dataset in the pooled model is more influential
over performance than the effect of differing metric distributions in each sorter. The
fact that improved performance can be achieved by a pooled model is very encouraging
for future work, as this demonstrates that treating sorters separately is not essential to
achieve good model performance.

4.6 Evaluation

Given the intended use of the model, it is somewhat arbitrary to assert that a single
oversampling ratio produces the “optimal” model. Therefore, results on the test set
are given for three models, representing three potential modelling scenarios. A lower
oversampling ratio (here 0.2) represents a slight priority of precision, in which few
false positives are tolerated. By comparison, a higher oversampling ratio (here 0.4)
represents a slight priority of recall, in which a higher number of false positives are
tolerated. An oversampling ratio of 0.3 represents the balanced case, in which recall
and precision are considered to be of equal importance.

Table 4.1 shows the test set performance of the equal priors Gaussian Bayes baseline
model (Section 4.4) and the final logistic regression classifier (Section 4.5.4).

Model used Oversampling ratio F1 score Recall Precision
Baseline model 0.303 1.0 0.179

Final model
0.2 0.762 0.800 0.727
0.3 0.727 0.800 0.667
0.4 0.696 0.800 0.615

Table 4.1: Table showing F1 score, recall and precision for the test set using the base-
line equal priors Gaussian Bayes model, and three settings for oversampling ratio (0.2,
0.3, 0.4) using the final logistic regression model presented in Section 4.5.4.
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The baseline model has achieved perfect recall of the target set, but at the cost of
precision, which is very low. In the Gaussian Bayes modelling paradigm, the gains in
recall are achieved at a heavy cost to precision. By comparison, the rebalanced logistic
regression model achieves good recall without this heavy cost to precision. This effect
in particular is an achievement of the logistic regression model. Whilst there is still an
unavoidable trade off between recall and precision, this effect is far less extreme than
that seen in the Gaussian Bayes baseline model.

4.7 Discussion

Interpretation Whilst the specific oversampling ratio chosen for the model can be
tuned based on the priorities of the user, this section addresses interpretation of the
model trained with an oversampling ratio of 0.3, as an example. The coefficients as-
sociated with each of the 6 model features can be used to yield an interpretation of
the factors which influence a particular unit’s inclusion in further analysis. The co-
efficient with the largest magnitude was presence ratio, with a positive coefficient of
5.918. Following this, SNR had a coefficient of 2.438, ISI violations had a coefficient
of -2.27 and isolation distance had a coefficient of 2.223. Finally, silhouette score had
a coefficient of 1.645, and NN-hit rate had a coefficient of 0.352. The sign of each of
these coefficients was in line with the expectations laid out in Section 2.4.

Features Reflecting on the intended use of each metric (see Section 2.5), the 6 vari-
able model presented here consists of a balanced combination of different metric types.
Type I errors are addressed by SNR, ISI violations and NN-hit rate. Type II errors are
addressed by presence ratio (the largest coefficient). Isolation distance attempts to ad-
dress both type I and type II errors, with a primary focus on type II errors. Silhouette
score addresses both type I and type II errors. Additionally, there are three metrics in
the model which address unit isolation (namely silhouette score, isolation distance and
NN-hit rate) and three which identify other qualities.

Unlike the model presented in year 1, the features for the model presented here were
selected based on the data alone, without directly attempting to select variables which
capture a broad range of qualitative features. Given this, it is encouraging that the
features selected for the final model represent a broad range of unit qualities. It is ex-
pected that an acceptable unit has several desirable qualities. For example, a good unit
should be both uncontaminated and complete. If the model used only metrics which
identified contamination, for example, incomplete units could erroneously be classed
as positive. As noted in Section 4.5.5, the features used in the full model also represent
a balanced set of the features which are most important to each individual sorter. This
balanced combination of metrics in the tuned model is a pleasant reassurance that both
the assumptions made when modelling, as well as the model itself, are coherent with
our ideas on what a good curation model should capture.

Limits and extensions One limitation to the logistic regression modelling paradigm
is that it is difficult to evaluate confidence in an individual classification. The final
model can be used to gain some insight into the confidence of a unit, by checking



Chapter 4. Results and analysis 39

the minimum oversampling ratio at which the unit is classed as positive. That is, if a
unit is classified as matched, even at very low oversampling ratios, it seems likely that
this unit is a true positive. However, this is not a formal gauge of confident, which
would require some notion of class probabilities in the modelling paradigm used. To
overcome this problem, a probabilistic model such as Bayesian logistic regression is
suggested as future work.

A broader limitation to the approach taken here is that the model design is based on
data from one experiment. Different datasets, especially those gathered using different
recording devices, may require a completely different model in order to classify. This
is suggested as future work in the domain of automated curation methods. Having said
this, the goal of this project was to demonstrate that metrics can be used as predictors
of agreement for the purposes of curation. Therefore the model presented here, and
the accompanying analysis, form the foundation for future development to this novel
curation approach.



Chapter 5

Conclusions

This report has examined the novel possibility of a fully automated curation method for
spike sorter results. This analysis first corroborated results from Part 1 of this project
regarding class imbalance and prevalence of agreement units. Use of MountainSort4,
Kilosort2 and Ironclust produced a higher ratio of matched units across the full dataset,
when compared with the five sorter analysis performed in Part 1 of this project. This
suggests that choice of sorting algorithm should be a consideration in future curation
attempts of this kind.

The relationship between different metrics was investigated. This revealed that metrics
which share qualitative aims do not show high correlation, suggesting that different
metrics should not be considered to provide equivalent information about unit quality.
Investigation of the relative importance of different metrics supplemented this analysis,
by demonstrating that a small subset of 4-6 metrics is sufficient to achieve performance
close to that of a full 11 feature model. This suggests that a fully automated curation
model does not need to sacrifice explainability in order to achieve good performance.

Methods for addressing class imbalance when modelling were examined. Adjusting
class prior probabilities was found to be useful in raising recall in the Gaussian Bayes
modelling paradigm, but at the cost of precision. Oversampling using SMOTE was
found to be an effective method by which to raise recall without incurring heavy losses
in precision. Additionally, oversampling presents an opportunity to express priorities
of recall or precision.

The influence of sorting algorithm on unit agreement was addressed by examining the
differences in metric distributions for different sorters, modelling sorters as dummy
variables in a logistic regression model, and finally modelling sorters separately. Promis-
ing classification results were found without relying on sorter-specific features. This
suggests that a general purpose curation model which performs well for many different
sorting algorithms is possible.
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György Buzsáki. Accuracy of tetrode spike separation as determined by simulta-
neous intracellular and extracellular measurements. Journal of Neurophysiology,
84(1):401–414, 2000.

41

https://allensdk.readthedocs.io/en/latest/_static/examples/nb/ecephys_quality_metrics.html
https://allensdk.readthedocs.io/en/latest/_static/examples/nb/ecephys_quality_metrics.html
https://allensdk.readthedocs.io/en/latest/_static/examples/nb/ecephys_quality_metrics.html
https://github.com/MouseLand/Kilosort2
https://github.com/SpikeInterface


Bibliography 42

[12] Kenneth D Harris, Hajime Hirase, Xavier Leinekugel, Darrell A Henze, and
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Appendix A

KDE for Raw Data

Figure A.1: Kernel density estimation distribution plots for each metric in the raw
dataset. Matched (blue) and unmatched (red) populations are represented separately.



Appendix B

VIF scores

Feature
VIF

Metrics only case Metrics and sorter case
Firing rate 1.78 2.30
Presence ratio 3.82 4.55
ISI violations 1.38 1.40
Amplitude cutoff 3.33 3.34
SNR 1.76 1.79
Silhouette score 1.77 1.84
Isolation distance 1.00 1.01
L-ratio 2.04 2.04
NN-hit rate 2.74 3.81
NN-miss rate 2.91 4.38
D-prime 1.01 1.01
MountainSort4 2.74
Ironclust 3.32

Table B.1: Table showing VIF scores for all metrics in the two possible feature sets. All
values are below an acceptable threshold of 10 and a stricter threshold of 5.
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