
Increasing User Engagement on the Archive of
Formal Proofs

Carlin MacKenzie
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

MInf Project (Part 2) Report
Master of Informatics
School of Informatics

University of Edinburgh

2022

Abstract
Isabelle is a language for formalising mathematical proofs in code and the Archive
of Formal Proofs (AFP) collects mechanically checked proofs in a similar way to an
academic journal. In Part One we redesigned the AFP and re-implemented it with the
static site generator Hugo. This effort was successful and is in the process of being
officially integrated.

In this part we aim to increase user engagement in the AFP with the introduction of
social features. We add comments, notifications, user accounts and profiles. We also
allow users to customise how they use the site with the ability to pin topics and web
feeds. This is possible with the addition of a dynamic server which provides an API
and a database. So that we can preserve user privacy we do not rely on third-party
services. Our resulting implementation was evaluated with users who found it to be an
improvement. Finally, we improved the design based upon suggestions from the user
evaluation.

The result of this project is a more social and engaging Archive of Formal Proofs which
meets the constraints as set out.

i

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

The participants’ information sheet and a consent form are included in the Appendix.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Carlin MacKenzie)

ii

Acknowledgements
I wish to thank my supervisor Jacques Fleuriot and my co-supervisor James Vaughan
for their constant support with this project. It was a pleasure to work with the both of
them. Additionally I would like to thank my mum and dad for their support which has
allowed me to be where I am today.

Finally I would like to thank PG Tips Decaf, Sainsbury’s Extra Strong Red Label, Tick
Tock Earl Grey Rooibos and Sea Dyke Brand Jasmine tea for their support. I wish I had
counted the hundreds of cups of tea that were consumed, which without doubt were
vital to the completion of this project.

iii

Table of Contents

1 Introduction 1
1.1 Previous Work . 1

1.1.1 Integration into the Official AFP 1
1.2 Part Two . 2

2 Background 4
2.1 Online Communities . 4

2.1.1 Mizar . 4
2.1.2 Lean . 4
2.1.3 Coq . 5
2.1.4 arXiv . 5
2.1.5 Wikipedia . 6

2.2 Archive of Formal Proofs . 6
2.2.1 Community . 6
2.2.2 Development Philosophy . 7

2.3 User Engagement . 8

3 Design 10
3.1 Feature Set . 10
3.2 Prototyping . 11

3.2.1 Comments . 11
3.2.2 Notifications . 12

3.3 Design Considerations . 13
3.3.1 Feedback Messages . 13
3.3.2 Icons . 13
3.3.3 Responsive Design . 14
3.3.4 Web Feeds . 14

3.4 Conclusion . 14

4 Implementation 16
4.1 Server Architecture . 16

4.1.1 Approach . 16
4.1.2 Structure . 17
4.1.3 Hosting . 18

4.2 Database . 18
4.2.1 Access . 19

iv

4.2.2 Schema . 20
4.3 API . 20

4.3.1 Routing . 21
4.4 User Accounts . 21

4.4.1 Authentication . 22
4.4.2 Profile . 22
4.4.3 User URL . 23

4.5 Statistics . 23
4.6 Commenting on Entries . 24
4.7 Notifications . 25

4.7.1 Initial Implementation . 25
4.7.2 Comment Replies . 26
4.7.3 Unread Counter . 26

4.8 Customising Topics . 27
4.9 Feedback Messages . 28
4.10 Web Feeds . 28
4.11 Error Handling . 28

4.11.1 Redundancy . 28
4.12 Privacy . 29

4.12.1 Cookies . 29
4.13 Conclusion . 29

5 Evaluation 30
5.1 User Evaluation . 30

5.1.1 Design . 30
5.1.2 Results . 31
5.1.3 Conclusion . 33
5.1.4 Resulting Changes . 33

5.2 Technical Evaluation . 33
5.3 Performance . 34
5.4 Maintenance . 35
5.5 Conclusion . 35

6 Conclusion 36
6.1 Suitability for Production . 36
6.2 Future Work . 37
6.3 Concluding Remarks . 37

Bibliography 38

A Paper Prototypes 41

B Commands to Host the Extended AFP 46

C Screenshots of the Extended AFP 47

D Evaluation 52

v

D.1 Participants’ Information Sheet . 52
D.2 Participants’ Consent Form . 56
D.3 Script for the Evaluation . 58

E Poster 60

vi

Chapter 1

Introduction

This report comprises the second part of a project to improve the Archive of Formal
Proofs (AFP). The AFP is the central repository for Isabelle mathematical proofs and
has not been visually or functionally updated since its release in 2004. We summarise
Part One before introducing our work in this report.

1.1 Previous Work

Part One [23] principally involved the recreation of the Archive of Formal Proofs website
using the static site generator Hugo and the subsequent redesign (Figure 1.2). The
resulting website was faster to generate, had a smaller file size and was more functional
for the user as we made improvements to search, navigation and code browsing. Both
the current [24] and redesigned AFP were validated by use of a survey, and the latter
was additionally evaluated using a walk-through with the users.

Figure 1.1: Current Archive of Formal Proofs Figure 1.2: Part one redesign

1.1.1 Integration into the Official AFP

After submission of the report, the redesign was announced on the Isabelle mailing list
on May 3rd1. We were already in contact with a maintainer of the Archive of Formal

1https://lists.cam.ac.uk/sympa/arc/cl-isabelle-users/2021-05/msg00011.html

1

https://lists.cam.ac.uk/sympa/arc/cl-isabelle-users/2021-05/msg00011.html

Chapter 1. Introduction 2

Proofs at the University of Munich and he informed us that they wanted to move to
a new static site generator and that they liked the work that we had done so far. We
agreed that they could use the design and that we would help with integration.

The integration has led to several changes, some implemented by us and others by them.
For example, they rewrote the Python scripts in Scala and integrated them into the
Isabelle build system. They also re-implemented the theorem viewer so that it loaded
the theories dynamically, lowering the load on the client and server. We provided help
with accessing data from Hugo and design improvements for the theory browsing page
and mobile design. As the contributions must be distinct between the two parts of this
project, we do not focus on the work done for this integration in the current report.

1.2 Part Two

The results described in the previous section provide a solid foundation for future
improvements.

Motivation While the AFP has been redesigned and re-implemented, it is functionally
the same as it was previously. Customisation of the site is not possible, and the
community is organised externally. Users email authors directly with their questions,
making the information inaccessible.

Objective We aim to make the site more engaging for users and encourage community
growth by extending the AFP with dynamic features such as comments and user profiles.
The extension should not rely on third-party services and should be congruous with the
static site nature of Part One.

Contribution We present several contributions:

• Dynamic back-end: We preserve the static Apache server [11] and add a Node.js
server [8] to provide an API. We use a SQLite database [34] to store state.

• User Profiles: We add accounts to the AFP, which allow people to make com-
ments, customise the AFP and express themselves on their profile. We authenti-
cate users using Passport.js [17].

• Comments: The comment server Isso [41] was used to provide comments on
entries and we integrated this with our account system.

• Notifications: We introduce notifications to enable users to see replies to their
comments. This is built on top of Isso, and we add a live-updating unread counter
so that they are notified promptly.

• Customisation: The ability to customise the order of topics was added to allow
users to fit the site to their needs.

• Evaluation: The extension of the AFP was evaluated by the same study group
from Part One to understand if the project was successful.

Chapter 1. Introduction 3

Organisation We start by describing the online communities of theorem provers on
the Internet in Chapter 2. Next we describe the design process and the features that
we will focus on in Chapter 3. We discuss the implementation in Chapter 4 before
evaluating it in Chapter 5. We conclude in Chapter 6.

Chapter 2

Background

This chapter provides the context for the work that follows by describing other academic
online communities before detailing the communities around the AFP. We also perform
a literature review of the research surrounding user engagement.

2.1 Online Communities

The history and mathematical libraries of Mizar, Coq, Lean and Isabelle were described
in Part One. Here we discuss the community spaces that exist for each proof assistant.

2.1.1 Mizar

Mizar was one of the first proof assistants and relies on a mailing list for community
discussion. This mailing list is called the “Mizar Forum” and in recent years is mainly
used for advertisement (“Call for Papers” and new tools). There also exists an email
address which aims to respond to help queries within 48 hours.

There does exist the “Association of Mizar Users” (SUM, in Polish), however it has little
online presence. It seems that this community exists mainly offline at its host institution,
the University of Bialistok, and one can only join the society by being introduced by
two current members1.

2.1.2 Lean

Lean uses both GitHub [15] and Zulip [22] to gather its online community. There is
one GitHub repository for the entire Lean proof library2. GitHub Issues are used to
suggest features and improvements and these are subsequently categorised with labels
and triaged with GitHub Projects. Pull requests are used to contribute to the project,
and there are 383 open to 12,402 closed pull requests.

1http://www.mizar.org/sum/
2https://github.com/leanprover-community/mathlib

4

http://www.mizar.org/sum/
https://github.com/leanprover-community/mathlib

Chapter 2. Background 5

Zulip [22] is a synchronous chat client similar to Slack [33]. It is organised into
streams, such as “#new members” and ”#Is there code for X?” and topics, such as
“#new members > zero not 0?” and ”#Is there code for X? > ring.inverse is continuous”.
Users can subscribe to streams they are interested in and mute topics that they are
not interested in within streams. Topics allow for conversations to be contained and
asynchronous. It is free and open source and can be self-hosted or hosted on Zulip’s
servers. Zulip additionally suits maths communities by allowing for MathJax and
Markdown syntax.

Lean’s use of Zulip has been highlighted in a case study by Zulip [42] and mentioned
in Wired’s profile of the community [18] (originally published in Quanta Magazine
[19]). The case study describes how Zulip allowed for ten members to co-author a paper
remotely, verifying a development in condensed mathematics by the Fields medallist
Peter Scholze. There are currently around 450 users checking Zulip at least every 15
days and there are roughly 4,000 messages sent per week.

2.1.3 Coq

Coq uses many platforms for its online community [37]. First, each package in its
library is a GitHub repository and so each has space for discussion and issues. This
means that questions and errors can be localised to the package itself.

For more general queries, there is a forum for Coq hosted by Discourse. There are
boards for help, development, Coq itself , as well as boards for specific languages like
French and Chinese.

Previously, Coq relied on IRC for synchronous chat, but has recently moved to Zulip.
There are around 180 users who check Zulip at least once every 15 days and around
1,000 messages are sent per week.

2.1.4 arXiv

arXiv [40] is an open-access e-print archive for scientific papers. While it does allow for
users to create accounts to manage their submissions and authorship, there are limited
social mechanics on the site. For example, authors do not have profiles and there are no
discussion sections.

ArXiv does provide some ways to customise the user’s experience, such as web feeds
and “catchup”. Web feeds allow users to subscribe to a feed of new preprints in an
external reader. Users can see all new papers since a certain date with the catchup
feature.

Through the arXivLabs project, external organisations can contribute interactive widgets
to be on arXiv pages. This contributes to user engagement with the site as users can
choose to explore these added features such as exploring citations or related papers.

Chapter 2. Background 6

2.1.5 Wikipedia

Wikipedia [12] is the largest and most popular reference work on the Internet [1] and
has many social features. Of most importance, every page has an associated talk page.
This serves as a space to discuss the quality of the entry and ask questions of the people
who are editing it. Users also have pages, which can be thought of as their profile.
These pages also have associated talk pages, and serve as a space to leave messages for
other members. Users also associate themselves into editing groups with Wikiprojects.
These serve to organise effort and highlight areas that need more attention.

2.2 Archive of Formal Proofs

The structure and features of the Archive of Formal Proofs were described in detail in
Part One. As there are currently no social elements on the AFP, we describe the social
spaces that exist externally.

2.2.1 Community

Since the release of the AFP in 2004, 424 authors have contributed to the AFP with an
average of thirty-five new authors per year (2017-2021). It would be nice to estimate
the size of the community by the number of downloads of each Isabelle release or the
number of subscribers to the mailing list, however these statistics are not available.

Figure 2.1: A selection of emails from the isabelle-users mailing list from March 2022

The AFP primarily communicates via two mailing lists. The primary list is isabelle-
users3 which serves as a place for asynchronous discussion about problems, solutions,
and results. Also new entries in the AFP are advertised here as well as related confer-
ences and job postings (see Figure 2.1). The number of messages to the mailing list
varies throughout the year, averaging between 40-200 emails per month. The second

3https://lists.cam.ac.uk/pipermail/cl-isabelle-users/index.html

Chapter 2. Background 7

mailing list is isabelle-dev4 which concerns itself with the development of Isabelle and
the AFP. Fewer emails are sent here, averaging between 1-50 per month.

Figure 2.2: The Isabelle Zulip showing the topics view

There also exists some communities outside the mailing lists, which are linked from
the Isabelle website. These are the Zulip and the StackExchange. As mentioned in
the Section 2.1.2, Zulip is a real-time chat client similar to IRC and Slack. It can be
preferable to discussion on a mailing list as it is immediate, and lively threads can be
muted by those not interested. There are 422 members of Zulip with around 70 active
users, defined as being online at least once every 15 days. Around 200 messages are
sent per week.

On the other hand, StackExchange [21] is a question and answer forum which has a
child website for proof assistants5. Each of the provers mentioned have a tag on the
site and there are currently 981 questions under the “isabelle” tag. Many users can
contribute to a solution to a problem and discuss it in the comments.

2.2.2 Development Philosophy

Isabelle and the AFP both have both been intentionally designed with a DIY mentality
— almost everything has been created from scratch. This means that no third-party
services are depended upon and very few libraries are used. This has impacted how we
approach this project, as we do not want to store data with third parties or introduce

4https://mailmanbroy.informatik.tu-muenchen.de/pipermail/isabelle-dev/
5https://proofassistants.stackexchange.com

https://proofassistants.stackexchange.com

Chapter 2. Background 8

Figure 2.3: The theorem proving Stack Exchange where Isabelle questions are posted

unknown points of failure. On top of this, common software engineering practices
are subverted so that they can be done in an “Isabelle” way. For example, the project
does not use the now almost universal version control software git [30] but instead uses
Mercurial [6].

In Part One we established certain practices that we aim to maintain in this part. First,
we chose Hugo as our site generator as it has a simple approach to content where data is
stored in text files. This makes data management easier as it is not tied into a proprietary
format. Second ...

2.3 User Engagement

In 2016, Garett et al. performed a literature review of web design and user engagement
by analysing the top one hundred papers under “(design) AND (usability) AND (web-
sites)” [13]. They found twenty distinct attributes which influence user engagement and
seven of them (1, 2, 3, 4, 5, 8, 17) were in at least 30% of their studies (their arbitrary
cut-off to select for a set of guidelines). Of these twenty, we addressed thirteen of these
in Part One and four were already present in the original AFP.

Chapter 2. Background 9

1. organization.

2. content utility.

3. navigation.

4. graphical
representation.

5. purpose.

6. memorable
elements

7. valid links

8. simplicity.

9. impartiality

10. credibility

11. consistency

12. accuracy

13. loading speed

14. security
/privacy

15. interactive

16. strong user
control capabilities

17. readability.

18. efficiency

19. scannability

20. learnability

Table 2.1: Design elements identified by Garett et al. Italics indicate elements which
were already provided by the current AFP. Bold indicates elements which were not
addressed in Part One

Chapter 3

Design

From our work in Part One, we have a strong design aesthetic in place and as such our
design in this part must not degrade it. We do not want to add clutter or inconsistent
design elements that make it obvious which parts have been “bolted-on” so to say. As
Nielsen identifies, more features bring more complexity and features should be carefully
chosen so as to not overwhelm the user [27]. Therefore our goal in our design is that
“everything should be made as simple as possible, but not simpler”, a quotation often
attributed to Einstein.

3.1 Feature Set

As we extended the AFP, we needed to have an idea of the features we were accounting
for, before designing how they would interact and function. In Section 2.3, we discussed
Garett et al.’s literature review which identified twenty features which contribute to user
engagement. Of these twenty, three have not yet been accounted for. These are defined
as such:

14. security/privacy - does the website securely transmit, store, and display personal
information/data,

15. interactive - can the user interact with the website (e.g., post comments or receive
recommendations for similar purchases)

16. strong user control capabilities - does the website allow individuals to customize
their experiences (such as the order of information they access and speed at which
they browse the website),

We keep our system secure by adding authentication (Section ??) and user data private
by not relying on third-party services. In terms of interactive features, we chose to add
comments (Section ??) and user profiles (Section ??). Finally, we allow users to control
their experience by customising the topics page (Section ??) and by adding web feed
support (Section ??).

While features such as email validation and management, admin features (including
moderation) and submission would bring great benefit to the project, we decided

10

Chapter 3. Design 11

that they were out of scope as they would not contribute directly to increasing user
engagement. Additionally, in Part One of the project we imagined creating a nicer
interface to edit entries after they are submitted. However this goal is misguided as
the AFP is an archive and entries are intentionally static and should not be edited after
release.

3.2 Prototyping

In Part One we almost exclusively relied on paper prototyping. In this project we have
to not only consider how each page will look, but also the user’s journey when signing
up and editing their profile. As such we used a combination of paper and interactive
prototypes using Figma (see Figure 3.1).

Figure 3.1: The final Figma artboard with the paper prototypes from Part One highlighted.
The non-paper prototypes are the six prototypes in the bottom left with the same flat
background

In the following sections we highlight the prototype and the resulting implementation
of comments and notifications. All the paper prototypes from this Part are shown in
Appendix A.

3.2.1 Comments

As the AFP is an archive, it is important that we have a clear demarcation between
content that is being preserved and content that is non-curated, like user comments, so
that users can have trust in the official information on the page. As such we considered
two options for their placement. Inspired by Wikipedia’s talk pages, we initially chose
to have the comments on a separate page linked to from the entry (Figure 3.2). This

Chapter 3. Design 12

Figure 3.2 Figure 3.3

demarcates them the most, but we felt that most users would fail to notice the links to
these pages. This would in turn render them mostly useless as the value comes from
more people engaging with them. As such, we chose to place the comments at the
bottom of the entry page with a horizontal line visually separating them from the entry
(Figure 3.3).

3.2.2 Notifications

Figure 3.4: Prototype of the notifications page

Figure 3.5: The notifications page

Figure 3.6: Notification link
and unread indicator in
menu

Figure 3.7: Unread indica-
tor in tab bar

We place the link to the notifications near to the profile link in the bottom right as this is
the area of the page which relates to the user. So that the unread counter is noticeable,
we place it in a white rounded square next to the notification icon (Figure 3.6). White is
chosen as we want the counter to not be distracting and draw the eye too much. We also
add the count of unread notifications to the <title> (Figure 3.7). This means that the
user will see that there is an unread notification even if they are not looking at the AFP
tab at the time.

Chapter 3. Design 13

The notifications page lists all user notifications split into read and unread, with each
section shown in reverse chronological order. When there are multiple unread notifi-
cations, a “Mark all read” button appears. The date is shown in a relative format (12
minutes ago, yesterday, etc.) and a preview of the reply is shown. The title of the
notification is a link to the reply itself so that users do not have to remember which
reply they clicked on.

3.3 Design Considerations

During the implementation of our features, we made many decisions outside of the
prototyping context due to the number of designs being small. We list and justify these
choices here.

3.3.1 Feedback Messages

Since their publication in 1993, Nielsen’s ten usability heuristics [28] have been widely
used in the field of human computer interaction for evaluating the usability of systems
[26]. The first heuristic is “visibility of system status”, which refers to the user’s ability
to receive feedback on their actions. As we are adding interactive features to the AFP,
we must add a mechanism for displaying adequate feedback.

Figure 3.8: Feedback messages implemented for error, warning and success cases

We follow Bootstrap’s convention [29], and add messages for success, warn and error
cases. Figure 3.8 demonstrates an example message for each case. As these are
temporary information messages, the user would potentially spend more time dismissing
the message than they would be on the page for. Therefore they can only be dismissed
by reloading the page or navigating away.

3.3.2 Icons

Figure 3.9: Part one icons Figure 3.10: Part two icons

In Part One of the project, we created the search, copy and download icons shown in
Figure 3.9. We opted to round the corners of the icons so that they would match the

Chapter 3. Design 14

softer curves of our font, Open Sans. In this project we continued this design language
and matched this style when creating the menu, notification bell, RSS, tick and pin
icons (see Figure 3.10). For all icons, we made them as intuitive and simple as possible
so that they were recognisable at small sizes.

3.3.3 Responsive Design

In Part One we made no specific considerations for larger and smaller devices. We now
motivate a responsive design by considering where people are likely to be using the AFP.
For example, people may check their notifications on their phone while they are away
from their desk, and we want to ensure that they can still access the site comfortably.

We want to preserve the same style of navigation in the mobile design. As we want
to hide it until the user needs it, we select to use a “hamburger” style menu. While it
would be more ergonomic to have the navigation bar at the bottom of the screen, this is
less traditional. It is more appropriate to keep this navigation element at the top of the
screen where our users will expect it.

We add CSS media queries targeting two viewport widths: below 875px, for example
a half desktop window and below 650px, for example mobile. The former is most
important and signals the change to hide the side navigation and display the “hamburger”
style menu instead. The latter is used for decreasing padding on the side of the screen
so that content takes up the full width. Additionally all forms display in a single column
at this width.

3.3.4 Web Feeds

Web feeds allow users to keep up to date with a site externally and so they help users
that use them to be more engaged with that site. The most popular standard is Really
Simple Syndication or RSS [2] (syndication being the ability for external readers to
subscribe to a site). Unfortunately the standard is ambiguous and due to backwards
compatibility requirements a lot of the issues cannot be fixed. Atom [20] is seen as an
evolution of RSS and fixes issues with the grammar, internationalisation and time.

In the past it was popular to have a visible orange RSS icon on the page which would
link users to the feed. However, the discontinuation of Google Reader has led to
organisations placing less emphasis and even hiding their feed links. As such it is now
inappropriate to surface this icon on the front page of the AFP, and instead we have
opted to link to these feeds from the Help page. This is similar to the strategy that
arXiv uses1. We have placed a link to both feeds in the header of all author, topic and
dependency pages.

3.4 Conclusion

This chapter presented the rationale behind our feature selection process, the design pro-
cess, and the decisions behind the features we introduce. We discuss the implementation

1https://arxiv.org/help/rss

https://arxiv.org/help/rss

Chapter 3. Design 15

of these features in the following chapter.

Chapter 4

Implementation

Our extension of the AFP features user accounts, comments, notifications, customisation
and new traffic statistics. We maintain the static nature of the site and do not store any
data with third-party services. In this chapter we describe how we achieved this and
justify the design decisions that we made.

4.1 Server Architecture

Part One focused on the front-end and simply used the built-in Hugo web server and
then eventually GitHub Pages to host the site. In this project we extend the AFP with a
dynamic API and as such we need a suitable back-end. In this section we discuss our
approach, the resulting server structure and finally how we hosted it publicly on the
web.

4.1.1 Approach

The main constraint that we have in this project is adding dynamic features to a static
site. With a dynamic site, users can request an arbitrary page to be created and served
by the server if the format of the URL is correct. However with a static site, all URLs
must correspond to a file on disk. We could generate files for each user profile, however
this would quickly get unmanageable. As such we require an alternative mechanism.

We have chosen to use a modern version of the Asynchronous JavaScript and XML
(AJAX) approach that was introduced in 2005 [14]. As shown in Figure 4.1, conven-
tional websites serve HTML and CSS in response to HTTP requests. The AJAX model
has the same first step but JavaScript is also returned and executed which requests
the server again using XMLHttpRequest. Finally data is returned in XML format and
JavaScript is used to manipulate the web page depending on the content of the data.
Both models are possible with static and dynamic servers.

Instead of using XMLHttpRequest we use the simpler and newer fetch API which
takes advantage of JavaScript promises. We use JSON as the data transfer language
instead of XML as it directly maps to a data structure in JavaScript.

16

Chapter 4. Implementation 17

Figure 4.1: The conventional model of a web application versus the AJAX model which
allows for asynchronous updating of the web page. Adapted from Ajax-vergleich-en.svg
on Wikimedia Commons

As described, many sequential HTTP requests are made and the page is updated after
page load. This is the same mechanism that is used for all features added by user
accounts. Due to our notification system, we request the API on every page load when
the user is logged in.

4.1.2 Structure

In this project we are preserving Hugo, the static site generator, which requires all pages
to have a corresponding Markdown file associated with it. We keep Apache [11] as the
primary web server as we want to preserve as much of the current site as possible. We
expose a dynamic API in the server to provide the dynamic functionality.

As well as keeping with a file-centric approach, we did not want to introduce new
programming languages or runtimes like PHP or Java. However, we did still need to
add a server and decided upon a Node.js server [8] as we were using JavaScript on the
front-end. Unfortunately, we also introduced a Python based server, and this decision is
elaborated on in Section 4.6. The structure of the final server is shown in Figure 4.2

We expose the API by passing requests to certain paths to a respective port on the local-

Chapter 4. Implementation 18

Figure 4.2: The web server structure

host. We chose ports based upon the Internet Assigned Numbers Authority procedure
[7] which dictates the private use range is 49152-65535. We could use any available
unused port in this range, but we chose 51550 for Isso (as 1550 looks like ISSO) and
51551 for Node. We use the ProxyPass directive as shown in Listing 4.1.2 to direct
the traffic to each path to each server.

1 ProxyPass /api/comments http://localhost :51550
2 ProxyPass /api http://localhost :51551

Listing 4.1: Apache configuration for passing traffic to API

4.1.3 Hosting

The architecture described was hosted on Hetzner Cloud, a Virtual Private Server (VPS)
provider based in Germany. It was chosen as it is much more affordable than the
offerings by Microsoft Azure, Google Cloud or Amazon Web Services. The cheapest
VPS tier was chosen which has 1 vCPU, 2GB RAM and 20GB of storage. It required
28 commands to install dependencies and start the servers (Appendix B). We use tmux
[39] to keep the servers running in the background as one can attach and detach from
a session at will. This provides easy access to starting, stopping and checking logs.
HTTPS was enabled using the EFF’s Certbot [9] which uses LetsEncrypt’s certificates.
Finally an A record was pointed to the public IP of the server in our DNS provider so
that it could be accessed from a subdomain https://afp.carlinmack.com/.

4.2 Database

In Part One we stored all data as JSON in Markdown files. This was appropriate for the
curated content, namely the Isabelle theories, we were dealing with. However we must
now store user generated content. We could integrate it with Hugo—it would require
an API, but requests would manipulate files on disk. For example, a user editing their

https://afp.carlinmack.com/

Chapter 4. Implementation 19

display name would cause the API to open their account’s Markdown file, edit it, and
write it to disk. This would then be rendered on the website by regenerating the site with
Hugo. Editing text files adds significant complication, especially with user generated
content. Additionally, regenerating the site creates lag until the page is updated as well
as excess computation, re-rendering pages which have not changed. Instead we decided
to keep all user generated content in a database.

There is a choice between relational (SQL) and non-relational (key–value store, docu-
ment store and graph) databases. Relational databases are well-suited to our use-case
and so it was a natural choice. In terms of which relational database to choose, we
chose SQLite [34] as it is file-based, which matches Hugo; it does not require a server
to accept queries, which makes deployment simpler; and can cope with at least 100k
requests per day [35], which is well within the amount of traffic the AFP currently
receives.

One downside of SQLite is that it is not fully SQL compliant, and as such many of the
advanced SQL features are not available. As our needs are quite simple, this has not
been an issue. Another potential weakness is that as there is no database management
system—there is no such thing as a database administrator. As such, anyone who can
read the file can also read all the data in the database. If this were to be integrated
officially, a security audit would have to be performed to ensure that only trusted people
were able to read the database.

4.2.1 Access

Initially when considering implementing the API we chose GraphQL [3] as our database
query language. This is a wrapper for SQL that allows for queries to describe the
structure that they would like to receive, demonstrated in Figure 4.3.

1 {orders {
2 id
3 productsList {
4 product {
5 name
6 price
7 }
8 }
9 }}

1 {"data": {
2 "orders": [{
3 "id": 1,
4 "productsList": [{
5 "product": {
6 "name": "orange",
7 "price": 1.5
8 },
9 }],

10]}
11 }}

Figure 4.3: An example GraphQL query and response from Wikipedia. The client does
not write SQL and instead sends the structure of the data they want to receive

We initially implemented a proof-of-concept Node.js GraphQL endpoint integrating
with our SQLite database. As we developed other features, we did not find that adding
a GraphQL wrapper would be beneficial for the few and simple queries we needed to
perform. It seems that GraphQL is most beneficial when those developing the front-end
do not know the details of the back-end. Additionally, it is beneficial for queries that

Chapter 4. Implementation 20

take advantage of a graph-like structure in the database, such as authorisation, however
we did not implement group level authorisation in this project. Consequently, we
removed the GraphQL endpoint and instead used the sqlite3 node package to read
and write to the database using SQL queries.

4.2.2 Schema

The database that we use has seven tables, four for comments, and one each for user
accounts, statistics and topics. The four comments tables are all created and managed
by Isso (Section 4.6) , but we do alter the main comments table to add a seen flag. The
schema for our tables are shown in Figure 4.4. As SQLite supports only five data types,
namely NULL, INTEGER, REAL, TEXT, and BLOB, most fields are TEXT.

1 CREATE TABLE users (
2 username TEXT UNIQUE ,
3 email TEXT UNIQUE ,
4 hashed_password BLOB ,
5 salt BLOB ,
6 name TEXT ,
7 image TEXT ,
8 affiliation TEXT ,
9 website TEXT ,

10 description TEXT
11);

1 CREATE TABLE logs (
2 status INTEGER ,
3 request_method TEXT ,
4 request_url TEXT ,
5 date TEXT
6);
7
8 CREATE TABLE topics (
9 username TEXT ,

10 topic TEXT
11);

Figure 4.4: Schemas for the users, logs and topics tables

When it came to adding pictures to user profiles, we had a choice about whether to store
these in the database as BLOBs or as TEXT file paths. According to tests performed by
the developers of SQLite, it is better to store files external to the database if the size of
the files is greater than 100kB [36]. As pictures are often larger than this, we store files
on disk and the paths to them in the database. This makes management/moderation of
the pictures easier and reduces the size of the database.

4.3 API

For our features, we require a back-end to communicate with the client. One option we
considered at the start of the project was using PHP as the interface for adding dynamic
content and responding to requests. This would be possible by adding PHP code to
the Hugo templates which would allow Hugo to generate PHP pages. Apache would
then execute the PHP when pages were requested and PHP would fill in the dynamic
content. We did not choose this as we did not want to introduce a new language, and
the complexities that it would bring to the project.

We instead chose Node.js as we would have JavaScript on both the front and back-end,
hopefully making development easier. Routing is provided by Express.js as it is the
most popular and common Node.js routing framework.

Chapter 4. Implementation 21

4.3.1 Routing

As described in Section 4.1, the Node.js API listens on port 51551 and is available at
the /api/ path. The available endpoints are:

/api/auth This is the most extensive path and has two GET paths and four POST
paths. GET signed-in returns the authentication status and POST signout logs out the
user. POST signup and POST signin use the credentials passed in the body to perform
the relevant task. POST updateSettings allows for the user profile to be edited and
POST getUser is used to return profile information for a given user. Described fully in
Section 4.4.1.

/api/pageviews POST / returns the number of views and downloads for the
list of entries provided in the body of the request. GET all returns the views and
downloads aggregated by month and year for all entries. This provides the mechanism
for Section 4.5.

/api/notifications The root endpoint returns all the notifications for the
currently logged in user, GET unread returns the number of unread notifications and
POST read changes the state for the notification IDs provided in the body. Described
fully in Section 4.7.

/api/topics GET user returns the list of topics which the currently logged in
user has pinned. POST pin and POST unpin change the state of the database, adding
and removing topics per user. See Section 4.8 for details.

/api/comment Provides a single GET path /api/comment/mostRecent which
returns the most recent comment id. This is to reduce server load and is described in
Section 4.7.

4.3.1.1 Redirection

If a user is not logged in, then they can only comment by signing in or creating an
account. By default they would be directed to their account page, but this would be
frustrating if they are intending to make a comment . As such, support has been added
for page forwarding. The page that should be directed to at the completion of the flow
is appended to the URL with a query string of the form ?next=/entries/example.
This query string is then taken from the URL by JavaScript and placed into the form on
a hidden element. This allows the back-end to receive the value of the query string and
redirect to that page after the request is satisfied.

4.4 User Accounts

It is possible to have interactive features on the client-side without an account system, for
example users could pin topics or post comments with a username attached. However

Chapter 4. Implementation 22

customisations like the former could not be synced across different browsers and
sessions and identities, like in the latter case, cannot be claimed. As such, we add
accounts so that we can enable both functionalities.

4.4.1 Authentication

Authentication is important to ensure that the user can only edit their profile, among
other reasons. Currently many services provide authentication via OAuth which allows
users to authenticate via a social account like Facebook, Google or GitHub. Additionally,
there are Identification-as-a-Service providers which allow websites to hand-off the
authentication mechanism entirely. While these are more convenient for the developer,
they come with privacy risks as these social services are given information about the user
base. As we want to preserve user data on-site, we choose to implement authentication
ourselves.

We chose Passport.js [17] as the mechanism for authentication as it is the most popular
Node.js authentication framework. While it specialises in providing authentication with
many different platforms, as we are handling the storage of credentials ourselves we
use its local strategy.

4.4.1.1 Authorisation

While there is authorisation which allows users to edit their settings, we did not imple-
ment admin or author authorisation as outlined in Section 3.1.

4.4.1.2 Creating an Account

As one of the primary purposes of creating a profile is to make a comment, we wanted to
make creating an account to make a comment as simple as possible. As such, we present
the minimum amount of input necessary on the “Create an Account” page — username,
email, password and confirm password. Originally only an email and password were
required, however we need a way to serve a user’s profile. It is inappropriate to surface
the user’s email address and so a username is necessary. We could generate a username
for the users, however these are unlikely to be memorable or informative when sharing
a link.

4.4.2 Profile

In terms of user engagement, profiles enable users to express themselves and find
more about others. As such, we extended the current author profiles with a picture,
a description and an affiliation. Unfortunately as we chose not to implement email
verification (see Section 3.1) we did not enable the ability to claim an author profile as
a user, as it would be trivial to impersonate someone.

Chapter 4. Implementation 23

4.4.3 User URL

As Hugo requires a file to back each page of the website, if we were to give each user a
URL we would have to create a text file with their details that could then be rendered
by Hugo. If the user then wanted to change any of their details, we would have to edit
the file on disk and re-render the site. We would then also need to consider if we check
these changes into version control. As such, we chose to have a generic account page
and display other user profiles via the query string portion of the URL.

4.5 Statistics

We felt that users would be more engaged with the AFP if they could see the effect that
their entries were having. However we did not want to add tracking to the site as this
has privacy implications and would add data management responsibilities. As such
we generate statistics via server-side logging. We parse the Apache server logs using
apache log parser [25] and insert them into the database using sqlite3 from the
Python standard library. As shown in Figure 4.4 we do not keep IP addresses in the
database, only which pages were requested, status, request method and the date. This
means that summary statistics can be queried without compromising user privacy.

Figure 4.5: Chart showing views and downloads on an author’s page

On all author pages we display an aggregate of the total number of entry views for their
articles as well as individual views per entry. If they have three or more entries, we
also display an interactive graph using Chart.js [38] (an inherited dependency from the
current AFP) as shown in Figure 4.5. We display this as an overlapping bar chart, as the
number of downloads will be less than or equal to the number of views. We display a
similar interactive graph of the global page views and downloads on the statistics page
(see Figure 4.6). Unlike the other charts on this page which are aggregated by year, this
chart is aggregated by month and year as not enough time has passed to make a by year
chart interesting.

Chapter 4. Implementation 24

Figure 4.6: Chart showing views and downloads for the AFP as a whole

We update these statistics daily using a cron job which executes logs.py once a day.
This ingests the logs created by Apache and inserts them into the database. For longevity
of the project in production, a script could be created to aggregate the logs so that the
database does not increase with the number of page views.

4.6 Commenting on Entries

One of the primary ways that we wish to promote community on the AFP is through
the addition of comments. Not only do these allow space for people to ask questions
and thank authors for their entries, but it also allows for the solutions to problems to be
recorded next to the entry itself.

There are many options for providing comments on the Internet, currently the most
popular being Disqus with over a billion monthly pageviews [31]. This service is easy
to integrate for developers as it is free to use and only requires a single line of JavaScript
to add it to the page. Hugo even ships with support for Disqus, allowing it to be enabled
with an addition to the site’s config file. Additionally, it is easy to use for the user as it
provides sign-in with sites such as Facebook and Google. Unfortunately it is owned
by Zeta Global which is a for-profit data-driven marketing company. Disqus serves to
enrich their datasets which they sell to other companies.

Accordingly, there are many alternatives to Disqus with different features for different
needs. We surveyed a number of available options in terms of the structural challenges
they would pose to the project:

• Commento, Graph Comment, Hyvor Talk, Muut: These are paid services and we
do not want to introduce any monetary costs.

Chapter 4. Implementation 25

• Valine: This cannot be self-hosted and we would like to keep our data on-site.

• IntenseDebate: Requires a WordPress website.

• Staticman: Requires Git, the AFP uses Mercurial.

• Utterances: Requires GitHub, the AFP uses a Mercurial repository service.

• Remark42, Talkyard, Cactus Comments: These require Docker which would be a
significant introduction to this project.

• Cusdis, Mouthful: These do not provide Markdown support which makes them
too simple for our needs. Markdown allows users to format their messages [16]
which helps people to create messages which are easier to read.

• Isso: Requires Python.

• Schnack.js: This is almost the perfect solution, but it is no longer maintained.

As such we chose Isso [41] as the introduction of a Python server is the least impactful
option. We installed Isso using pip and configured it to use our SQLite database. We
then added the JavaScript file to all the entry pages using Hugo, and added the container
where we wanted it to the entry pages according to our design in Section 3.2.1.

We had two main options to integrate it with our account system, editing Isso’s code or
building on top of it. We chose the latter as we would like to be able to upgrade Isso
easily in the future.

Figure 4.7: Default Isso comment box
Figure 4.8: Our implemented comment
box

By default, Isso presents users with an input as shown in Figure 4.7. We added a
function to our entries.js script which hides them from the user but does not remove
them as they need to be submitted with the form (Figure 4.8). Our function then checks
if the user is logged in and if they are not the whole Isso form is replaced with a link to
sign in. If they are logged in, the user’s information is placed in the correct boxes.

4.7 Notifications

For a commenting system to be successful, users need to be notified of replies so that
they have the opportunity to respond. As such we implemented notifications and a live
updating notification counter.

4.7.1 Initial Implementation

Before figuring out the mechanism to integrate comment replies into the notifications,
an announcement system was created so that the front-end could be implemented and

Chapter 4. Implementation 26

demonstrated. This was a simple table that stored a message, URL, date, user and a
seen boolean. It was thought that an interface could be created for an admin to make
an announcement, such as for the release of a new version of Isabelle, which would
create a message for all users. However as we chose not to add authorisation (see
Section 4.4.1.1), we ended up scrapping this table and functionality.

4.7.2 Comment Replies

Before any integration was done with Isso, the development documentation was re-
viewed to ensure that there was no preferable mechanism. By default, Isso has support
for email notifications, however we have chosen to stay away from email in this project.
Additionally in this review we found that there is a pull request to add support for
webhooks1 which would allow for direct integration. Alas, as neither option suits us,
we build our notifications on top of Isso.

1 CREATE TABLE comments (
2 id INTEGER PRIMARY KEY
3 parent INTEGER ,
4 text VARCHAR
5 author VARCHAR
6 email VARCHAR
7 website VARCHAR ,
8);

1
2 36
3 35
4 Agreed!
5 Carlin MacKenzie
6 carlin.mackenzie@gmail.com
7 https://afp.carlinmack.com/account

/?user=carlin

Figure 4.9: Left: comments schema. Right: Example record. Only relevant columns are
shown

Isso stores comments in the comments table as shown in Figure 4.9. The parent field
stores the ID of the comment which it is replying to. We can therefore find all the replies
to the comments of a user by finding all the comments which have parent comments
written by our user of interest. We cannot use the name field to search on, as names are
not guaranteed to be unique. We also cannot use emails as we do not surface these to
the user, so therefore we match on the website which includes the username. Finally
to store the state of whether the notification has been read, we add a seen boolean to
Isso’s comments table.

4.7.3 Unread Counter

To ensure that people are notified in a timely manner, it is important to add a live
updating unread counter. It is therefore expected that the API will be pinged often by
every single person that is currently on the AFP. Finally, as the SQL statement to request
comments requires a subquery, it could potentially overload the server. As such, the first
request of the user finds if there are any current unread messages. The response contains
the number of unread messages, the number of comments the user has made and the
most recent comment ID. If the user has not made any comments yet, the script stops.
Otherwise, the /api/comment/mostRecent endpoint is queried repeatedly after a one

1https://github.com/posativ/isso/pull/724

https://github.com/posativ/isso/pull/724

Chapter 4. Implementation 27

second delay. If there has been a comment then the unread endpoint is requested again
and the cycle continues. If there is now an unread message the counter is displayed or
updated, and the cycle continues. If the number of unread messages is greater than nine,
a “+” is displayed instead so that it does not create layout problems.

4.8 Customising Topics

In their literature review, Garett et al. [13] identified customisation as a feature which
increases user engagement. Such customisation is not possible with our previous fully
static site as all users are shown the same content. We chose topic pinning as the
customisation to add as the topic page is long and dense, meaning that it can be difficult
to find what one is looking for. In addition to this, we imagined that we could publicly
display the topics that a user has pinned on their profile, as a sort of “Interested in”.
However we decided against this as it would be an unexpected side effect, difficult to
communicate that pinning and the topics displayed on their profile were linked and
potentially unwanted by the user.

Figure 4.10: The topics page with two pinned topics. Sections can be moved with the
pin and unpin buttons

We add “pin” buttons to all second level headings (for example, Computer Science/Net-
works or Logic/Set Theory) as shown in Figure 4.10. We chose to have a first level
“Pinned topics” section rather than moving the first level sections around as this would
cause duplication of headings which may confuse the user. The unpin button is the
same as the pin button, but with a score through it to depict that it is the opposite effect.

When clicked, the pin button triggers a POST request to the server which adds a row to
the topics table with their username and the topic. The unpin button works similarly.
When we display the page, we send a GET request to receive all the topics which the
user has previously pinned. This mechanism is generic and could be used for other
customisations on the site. For example, if we were to allow users to star favourite
authors we could use a similar approach, only changing the HTML that is manipulated
in the final step.

Chapter 4. Implementation 28

4.9 Feedback Messages

Passport.js has default support for displaying so-called “flash” messages to users,
however this functionality is only available if one is using a fully dynamic back-end.
As such we implement our own flash mechanism.

When the server reaches a state which the user would want confirmation or no-
tice of, it sends a cookie with the HTTP request. This cookie will have the name
successMessage, warnMessage or errorMessage and the value will be the message
to display to the user. On the front-end, we place a function which checks for the
presence of such a cookie and then creates and displays it.

4.10 Web Feeds

Hugo provides an RSS feed template by default but it is not valid RSS. As such, the
RSS feed was corrected and the Atom feed was created. These were then enabled for
the home page and all author, topic and dependency pages (known as taxonomy term
pages in Hugo). We added a small dropdown to the header of these pages using the
recognisable RSS icon as the label which expands to a list of the feeds available when it
is clicked. A new section on the Help page was written explaining these feeds and how
to access them. We also link to this information in the dropdown as we recognise that
this technology is not as familiar as it once was.

4.11 Error Handling

In terms of the web servers, the Apache server must always run for the website to
function. If the Isso server is down, then the comments will not be rendered but the
user will not be notified. If the Node.js server is down, then a flash message will be
displayed noting that the API is down.

If a URL that does not exist is requested, Apache will show a 404 page which is styled
the same as the rest of the AFP and the user can either search or use the menu to navigate
away.

If JavaScript is disabled, then the site degrades gracefully. For example using the
<noscript> HTML tag, a “functionality does not work” message is displayed on forms
and a “content will not display” message is placed where dynamic content should be.
Additionally we serve forms with disabled inputs by default, and then enable them with
JavaScript. This means that a user cannot accidentally submit a “Create an account”
form and not be able to use that account. These considerations mean that the website is
still functional and users are aware of what is missing.

4.11.1 Redundancy

As users can disable JavaScript we need to have server-side validation on all requests.
We also need to have validation on the client-side to improve user experience as users
can be notified of invalid input before sending the form.

Chapter 4. Implementation 29

4.12 Privacy

As the AFP is a project of both UK and European universities, we are bound by the
General Data Protection Regulation (GDPR) [5]. GDPR is a directive which dictates
how organisations handle users’ data, especially in regards to privacy, security and
control. We store user data in two places, for our account system and in our comments
system, Isso.

For each comment that is made, Isso stores an IP address, name (which could be
their username), email and website (which points to their profile on the AFP). The IP
address is pseudo-anonymised as the last byte is dropped and is stored for basic spam
prevention reasons (rate-limiting number of comments made). The name and email are
both volunteered by the user and can be anything as these are not verified.

In terms of users requesting their information, this would be possible via a simple SQL
query. Deletion of information would be a little trickier. Deleting all replies by a user is
easy and not problematic. Deleting comments that are at the top level however results in
all children comments being deleted. In this case, it would be best to blank the comment
by replacing all fields with standard values indicating that they have been deleted. The
SQL queries to request and delete information have not been created as part of this
project.

Unfortunately security of the data storage is lacking with our implementation which
is a violation of GDPR which demands that user data be encrypted. SQLite does not
support access control or encryption by default. In production we could remedy this by
using the SQLite Encryption Extension however careful consideration would be needed
for key management.

4.12.1 Cookies

Cookies are only mentioned once in the GDPR, in which it states that cookies that are
used to identify users are personal information and should be treated accordingly. The
policy which relates to cookie banners is the ePrivacy Directive [4]. Cookies which
are strictly necessary, i.e., the user is requesting a behaviour or if the site would not
function without it, do not require a banner to be shown.

We use cookies in three places. First, our accounts system stores a session cookie
to keep the user logged in, which is necessary otherwise users would have to send
authentication details with each request. Second, Isso stores an encrypted cookie on
the user’s device to enable them to edit comments. Third, we store cookies to display
feedback messages (see Section 4.9).

4.13 Conclusion

This chapter presented the implementation of the new back-end of the AFP and the
features that were built on top of it such as user accounts, comments, notifications and
statistics. In the next chapter we evaluate whether users find this to be an improvement.

Chapter 5

Evaluation

As our project concerns user engagement, it can only be evaluated by the target audience
itself. Along with a user evaluation, we also evaluate the project technically, critically
discussing the approach that we chose.

5.1 User Evaluation

In Part One we performed three formal user evaluations of the AFP, two before the start
of the project and one after implementation. As we have this previous evaluation as a
baseline, we chose to only evaluate this project after implementation.

5.1.1 Design

So that we can compare our results with the evaluation from Part One, we use it as our
baseline, keeping the structure of the evaluation the same: a think aloud evaluation,
followed by a multiple-choice survey and finally a long-form interview about areas
of interest. The final script that was used during the evaluation can be found in Ap-
pendix D.3, along with the participant information sheet (Appendix D.1) and consent
form (Appendix D.2).

One structural change that was made to the evaluation was that the order of tasks was
changed between runs. One group (participants 1 and 3) was asked to create an account
before creating a comment. The other group (participants 2 and 4) was asked to make a
comment on the AFP, which implies creating an account. Both groups therefore perform
the same tasks, but changing the order of the tasks allows us to compare the different
paths to this goal. Additionally, each participant was asked to comment on a different
entry so that they were not biased by the comments of previous participants.

Before performing the evaluation, the website and evaluation were tested with the fellow
University of Edinburgh student who tested the version of the AFP from Part One of
the project. They completed all tasks without difficulty and surfaced some final bugs
which had been missed.

30

Chapter 5. Evaluation 31

5.1.2 Results

As we wanted the participants to compare this extension with the redesign, we were
constrained to asking the four people from the Artificial Intelligence Modelling Lab
who participated in our evaluation in Part One. All four participants were available. The
evaluations were not performed in the same order and so the feedback is not directly
comparable between both parts. The evaluations were performed on the 4th, 7th and
14th of March and in order lasted 30 minutes, 16 minutes, 21 minutes and 15 minutes.

The think aloud section was successful, however there were some problems. During the
first task with the first participant, there was a server error which crashed the page. This
was very unfortunate and unexpected since a test run had been done beforehand. The
error was promptly fixed as it was due to code that had erroneously been uncommented,
and the think aloud continued as normal. During the “Add an affiliation” task with the
third participant, there was an error as Chrome had auto-filled part of the form causing it
to fail client-side validation. The participant eventually realised what had happened and
cleared the input so that the form could be submitted. As we were on a call, Participant
2 chose to split his screen and have the call on one side and the website on the other
half. Fortunately due to our work on making the site responsive (see Section 3.3.3),
the subject was able to complete the evaluation in this configuration. They were the
only participant to not see the unread notification indicator as it is hidden on the smaller
viewport width.

Figure 5.1: Short survey results

The results of the short survey can be seen in Figure 5.1. Unlike in Part One, there is
one response which is not “Agree” or “Strongly Agree”. They explained that they felt
that the user interface was only intuitive if you are used to similar design conventions
from other websites. This did not prevent them from using the interface adequately, but
that less experienced users might struggle. All other responses were positive.

Chapter 5. Evaluation 32

Last, the participants answered the long-form questions.

Do these features appeal to you?

Participant 1 Overall they felt that these features were justified, but that they would
appeal more with the addition of the author profiles. They suggested that the comments
might be used for extra information which would be inappropriate for the abstract (links
to a GitHub repository or a valuable StackExchange discussion) rather than long-form
discussions.

Participant 2 They felt that they would rather use the Mailing List or Stack Exchange
rather than the comments feature.

Participant 3 They liked the addition of comments as this provides a place to ask
informal questions. They felt that they would email any detailed questions directly.

Participant 4 They felt that these features were good to have and that people would
want to talk about the features on the site.

Would you be likely to create an account on the AFP?

Participant 1 They would create an account and possibly comment if they had a
solution to a common problem that someone may have with an entry.

Participant 2 Even though they would not use the comments feature, they would
create an account on the AFP. In general, creating an account on a website has a low
overhead for them as they have a password manager and so prefers to log in if the option
is there.

Participant 3 They would if they wanted to comment or if they were an author.
Interestingly they thought that authors would have to create a profile, but this would be
optional.

Participant 4 They would, but felt like they may only comment after they have
submitted something themselves.

Is this an improvement over the redesigned AFP?

All participants felt that it was an improvement over the redesigned AFP from last year.

Participant 2 They felt that as the features are opt-in, the extension is either neutral
or an improvement.

Participant 3 It’s useful to be able to ask informal questions so they think that it is an
improvement.

Are there any features that are lacking or missing?

Participant 1 As the AFP is an archive, they would not expect there to be social
features. It might be nice to follow an author, however it is likely that one would see it
on the mailing list anyway. Pinned comments would be useful so that authors could pin
any notes to the top of the comments.

Participant 2 They suggested that it would be good to be able to search comments
as it might be difficult to find information that in the comments of an entry. They also

Chapter 5. Evaluation 33

would like to be able to see a history of their comments.

Participant 3 They felt that email notifications would be a good addition so that users
do not have to rely on going to the website. In terms of comments, they asked if there
was a length limit or perhaps if it is possible to hide replies from lengthy comment
chains.

Participant 4 They did not think other social media features would be appropriate in
this case. They would like some improvements to the profile as it was not immediately
apparent that there were fields that they could fill in. They suggested having placeholder
text like “No affiliation” that signalled that information could be added.

5.1.3 Conclusion

Similarly to Part One, all participants were able to complete the tasks and felt that it
was an improvement. In contrast to Part One where all responses to the survey were
positive, this time we had one neutral response. Also in Part One all improvements
suggested were for the search feature, in this evaluation suggested improvements were
across different areas.

In conclusion, the extension was well received and the features were seen as useful.

5.1.4 Resulting Changes

As a result of the evaluation we made changes to user profiles and the behaviour of
notifications. For user profiles we add default values for the affiliation and profile
picture. We also split the settings page and create an “Edit profile” page. This is simpler
to implement than the original implementation and is simpler for the user to understand.
Finally, to fix a bug with the settings page we disable autofill.

5.2 Technical Evaluation

The main challenge of this project was to introduce dynamic content onto a static site.
As such, all dynamic content is fetched after page load and is not served by the primary
web server. There are several limitations with this approach:

• While we can redirect users after page load and subsequent request to the server,
we cannot prevent them from visiting any page with JavaScript disabled. This is
not harmful, but it would be much nicer if parts of the website could be walled
off completely. For example if admin pages were added, it would be much easier
to figure out where to attack as a non-privileged user as the admin pages would
be visible.

• In a similar way, we cannot enforce users to follow a multi-step flow through our
app either. For example, we direct users to a page to fill in their name, affiliation,
description, etc. however the user can click away and never come back to that
page.

Chapter 5. Evaluation 34

• Almost all of the extensions added by this project are unusable if JavaScript is
disabled. If we had a dynamic server we could serve pages rendered with the
dynamic content so that JavaScript was not required.

• As we are manipulating the DOM with JavaScript, the dynamic content added by
JavaScript is brittle when changes are made to the structure of the page. This is
fairly unavoidable with the approach we have chosen, however we can mitigate
against this by ensuring the HTML and JavaScript match by versioning our source
files. This works by appending a unique string to any resource’s file name so that
it is not loaded from the browser’s cache [32].

• As our web server is static, we must rely on cookies to store state in the browser.
If the user or their browser clears the cookies, a common thing to do for user
privacy, all corresponding state will be removed from the site.

• For users with very slow or unstable connections, the page will take some time
to become fully functional. Additionally, content loaded with JavaScript is not
cached by the browser. This is because only HTTP requests are cached [10].
However this does mean that all data on the dynamic AFP pages are always fresh.

• We are constrained by what URLs we can use by Hugo. For example, user pages
are accessed using the URL query string instead of a URL. This is not harmful
in practice, but it would be nice if there were a way to map arbitrary content to
URLs with Hugo. Due to its static nature this is not possible, so we would need
to give Apache control over some of the URL space. This is possible, but we
chose not to do it as it would add complexity.

Were this project to be implemented again, it would be good to investigate replacing
Node.js with Python, potentially using the Flask framework. This would have complied
with the principle of not introducing new languages, but potentially would be simpler.
Node.js has added significant developer overhead and a rewrite was considered at one
point to change from the CommonJS syntax to the Module based syntax .

In conclusion, our approach results in pages that are fast to load and robust. There are
some shortcomings and complexity which come at the cost of satisfying our constraints.
Nonetheless, this AJAX-style approach is still popular across the web, with most Web
2.0 websites changing the page after load (compare searching Google with JavaScript
disabled).

5.3 Performance

In terms of serving HTML it is unlikely that the uptime of the website would degrade
as the website is still fundamentally static. In fact, the HTML and CSS of the AFP are
now smaller as they are minimised by Hugo. Apache only serves static files and directs
traffic to the other API endpoints and so should remain performant compared to if it
were rendering pages with PHP.

Node.js is optimised for I/O bound applications (rather than computationally bound)
and so is a suitable choice for our API. If the Node.js API were to become unresponsive,

Chapter 5. Evaluation 35

the AFP would remain available but users would not be able to sign in or comment—it
would be read-only.

Isso is designed for small, self-hosted sites and so is not specifically optimised for
performance. Even so, it is unlikely that enough comments would be made to cause
performance issues.

Both Node.js and Isso rely on the SQLite database which can serve at least 100k
requests per day [35] and so should be sufficient for the amount of traffic the AFP would
realistically receive.

Even though we have not stress-tested our extension of the AFP with real traffic, due to
the challenges of creating a realistic scenario, we can expect that it will be as performant
as the current AFP and be able to handle the required load.

5.4 Maintenance

As this extension brings dynamic elements into play, we necessarily add maintenance
complexity. The following summarises the technologies we have introduced and the
amount of added complexity:

• Apache - While not new to the AFP, we have enabled two new modules. Apache
is a slow-moving project and it is unlikely that it would break of its own accord
or introduce backwards incompatible changes.

• Isso - Isso v0.5 was released in 2013 and is now on version v0.12.6.1 (last updated
March 2022). It is fortunate that the project is still improved but it is unlikely it
will add significant maintenance cost as it only receives a few updates per year.

• Node.js - Node is by far the biggest maintenance burden introduced in this project.
While we can fix version numbers to ensure that things do not break, Node is
notorious for needing frequent security upgrades.

5.5 Conclusion

In this chapter we have presented four evaluations of the AFP. First and foremost, our
user evaluation was successful with users and their feedback has helped improve the
final product. We did present some of the challenges with this approach, however
they do not impact on the user experience. In terms of maintenance, this extension
necessarily introduces complexity with its dynamic features. In the final chapter we
conclude the project as a whole, summarising our contribution before elaborating on
areas of future development.

Chapter 6

Conclusion

In this project we have extended the AFP with social features to increase user engage-
ment. Users can now ask questions on articles, express themselves on their profile and
authors can see the popularity of their work with statistics. We evaluated this with
a group of users who found this extension to be an improvement, and subsequently
adjusted the site based upon their feedback.

This project was less straightforward than Part One as we were more constrained and
less familiar with the approach. I learned a great deal about back-end development and
the additional workload it adds to a project.

Finally, this project was presented at the Honours Project Day and the poster that was
created for it can be found in Appendix E.

6.1 Suitability for Production

While the set of features we have implemented are complete and our extension as a
whole is functional, there are some features which would be necessary before official
integration.

Resilient authentication Currently when the Node server is restarted all state is lost
about logged in users. This would add unnecessary friction in a production environment
and would have to be remedied. It is likely the solution lies in better API management
with Apache.

Author Profiles As authorisation was not implemented in this project, authors cannot
have a profile associated with them. Security of the site would have to be improved
and emails would have to be validated so that someone could not impersonate another
author which would be destructive.

Administration As the AFP would now accept user generated content in comments,
it would be necessary to add sufficient moderator tooling to ensure that content is
acceptable. Isso provides an admin interface and so comment moderation should be

36

Chapter 6. Conclusion 37

acceptable at low volumes of comments. Attention would be needed to ensure that only
editors of the AFP could access the admin page.

6.2 Future Work

There are many suitable features which would continue to advance this project:

Improvements to Comments Our evaluation with users resulted in many suggestions
for improvements to comments—pinning, searching, collapsing and viewing a history
of their comments. Isso is still being updated and merges pull requests so it would be
possible to contribute these features.

Additional Social Features There are many social features which could provide
benefits to the AFP. For example, users could like entries, bookmark them, or follow
authors. Users would need to be consulted to understand if they want these features, as
it is possible that these would be unhelpful or unused in practice.

Decentralised Web In development of our web feeds, we realised that it might be
possible to create an ActivityPub endpoint. This is the protocol that decentralised
social networks such as Mastodon use, and would allow a member of any decentralised
social media to subscribe to the AFP. This would be akin to automatically posting new
AFP entries on the decentralised versions of Twitter, Facebook, Instagram, YouTube
etc. but comes with the benefit that we do not need accounts and/or API keys for
each of them. There is discussion of adding support to Hugo1, and adding static site
support to the ActivityPub standard2, however at the moment we would need to add an
API endpoint and cryptographically sign our posts. This is possible, however is quite
complex compared to an RSS feed where one only needs to host an XML file.

6.3 Concluding Remarks

Over the two parts which comprise this report, we have recreated, redesigned, improved,
and extended the Archive of Formal Proofs. Both parts were evaluated by users of the
AFP and found to be successful. It is therefore exciting that the community at large will
benefit from our work as Part One is being integrated into the official AFP.

1https://github.com/gohugoio/hugo/issues/8135
2https://github.com/w3c/activitypub/issues/310

https://github.com/gohugoio/hugo/issues/8135
https://github.com/w3c/activitypub/issues/310

Bibliography

[1] Alex Woodson. Wikipedia remains go-to site for online news.
https://www.reuters.com/article/us-media-wikipedia/
wikipedia-remains-go-to-site-for-online-news-idUSN0819429120070708,
2007. [Accessed 5-May-2020].

[2] RSS Advisory Board. RSS 2.0 Specification (Version 2.0.11), March 2009.
https://www.rssboard.org/rss-specification.

[3] Lee Byron. GraphQL: A data query language, September
2015. https://engineering.fb.com/2015/09/14/core-data/
graphql-a-data-query-language/ Accessed: 2022-03-22.

[4] European Commission. Privacy and electronic communications directive 2002,
2002.

[5] European Commission. General data protection regulation, 2016.

[6] Mercurial Community. Mercurial. https://www.mercurial-scm.org.

[7] Michelle Cotton, Lars Eggert, Joseph D. Touch, Magnus Westerlund, and Stuart
Cheshire. Internet assigned numbers authority (Iana) procedures for the man-
agement of the service name and transport protocol port number registry. Re-
quest for Comments RFC 6335, Internet Engineering Task Force, August 2011.
https://www.rfc-editor.org/rfc/rfc6335.html.

[8] Mathias Dahl. Node JS. JSConf 2009, 2009.

[9] EFF. Certbot. https://certbot-prod.eff.org/.

[10] Roy T. Fielding, Mark Nottingham, and Julian Reschke. Hypertext transfer proto-
col (HTTP/1.1): caching. Request for Comments RFC 7234, Internet Engineering
Task Force, June 2014. Available at https://datatracker.ietf.org/doc/
rfc7234/.

[11] The Apache Software Foundation. The Apache HTTP Server Project. https:
//httpd.apache.org/.

[12] Wikimedia Foundation. Wikipedia. https://en.wikipedia.org/wiki/Main_
Page.

[13] Renee Garett, Jason Chiu, Ly Zhang, and Sean D. Young. A literature review:
website design and user engagement. Online journal of communication and media

38

https://www.reuters.com/article/us-media-wikipedia/wikipedia-remains-go-to-site-for-online-news-idUSN0819429120070708
https://www.reuters.com/article/us-media-wikipedia/wikipedia-remains-go-to-site-for-online-news-idUSN0819429120070708
https://www.rssboard.org/rss-specification
https://engineering.fb.com/2015/09/14/core-data/graphql-a-data-query-language/
https://engineering.fb.com/2015/09/14/core-data/graphql-a-data-query-language/
https://www.mercurial-scm.org
https://www.rfc-editor.org/rfc/rfc6335.html
https://certbot-prod.eff.org/
https://datatracker.ietf.org/doc/rfc7234/
https://datatracker.ietf.org/doc/rfc7234/
https://httpd.apache.org/
https://httpd.apache.org/
https://en.wikipedia.org/wiki/Main_Page
https://en.wikipedia.org/wiki/Main_Page

Bibliography 39

technologies, 6(3):1–14, July 2016. https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC4974011/.

[14] Jesse James Garrett. Ajax: A new approach to web applications. Adap-
tive Path, 2005. https://web.archive.org/web/20150910072359/http:
//adaptivepath.org/ideas/ajax-new-approach-web-applications/.

[15] Inc. GitHub. GitHub, 2022. https://github.com/.

[16] John Gruber. Markdown Syntax Documentation. Available at https://
daringfireball.net/projects/markdown/syntax, March 2004. Accessed:
2021-04-10.

[17] Jared Hanson. Passport.js, December 2021. https://github.com/
jaredhanson/passport.

[18] Kevin Hartnett. Building the mathematical library of the
future, October 2020. https://www.wired.com/story/
the-effort-to-build-the-mathematical-library-of-the-future/.

[19] Kevin Hartnett. Building the mathematical library of the fu-
ture, October 2020. https://www.quantamagazine.org/
building-the-mathematical-library-of-the-future-20201001/.

[20] Bill de hÓra and Joe Gregorio. The Atom publishing protocol. Request for
Comments RFC 5023, Internet Engineering Task Force, October 2007. https:
//datatracker.ietf.org/doc/rfc5023/.

[21] StackExchange Inc. Stackexchange. https://stackexchange.com.

[22] Inc. Kandra Labs. Zulip, 2022. https://zulipchat.com/.

[23] Carlin MacKenzie. Developing a New Web Application for the Archive of For-
mal Proofs. MInf Project (Part 1) Report, School of Informatics, University of
Edinburgh, 2021.

[24] Carlin MacKenzie, Jacques Fleuriot, and James Vaughan. An evaluation of the
Archive of Formal Proofs. Available at https://arxiv.org/abs/2104.01052,
2021.

[25] Amanda McCann. apache-log-parser, March 2015. https://github.com/
amandasaurus/apache-log-parser.

[26] Jakob Nielsen. Usability engineering. Academic Press, Boston, 1993.

[27] Jakob Nielsen. Feature richness and user engagement, August 2007. https://
www.nngroup.com/articles/feature-richness-and-user-engagement/.

[28] Jakob Nielsen. 10 usability heuristics for user interface design, November 2020.
https://www.nngroup.com/articles/ten-usability-heuristics/.

[29] Mark Otto and Jacob Thornton. Alerts, January 2012. https://getbootstrap.
com/2.3.2/components.html#alerts.

[30] The Git Project. Git. http://git-scm.com.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4974011/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4974011/
https://web.archive.org/web/20150910072359/http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
https://web.archive.org/web/20150910072359/http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
https://github.com/
https://daringfireball.net/projects/markdown/syntax
https://daringfireball.net/projects/markdown/syntax
https://github.com/jaredhanson/passport
https://github.com/jaredhanson/passport
https://www.wired.com/story/the-effort-to-build-the-mathematical-library-of-the-future/
https://www.wired.com/story/the-effort-to-build-the-mathematical-library-of-the-future/
https://www.quantamagazine.org/building-the-mathematical-library-of-the-future-20201001/
https://www.quantamagazine.org/building-the-mathematical-library-of-the-future-20201001/
https://datatracker.ietf.org/doc/rfc5023/
https://datatracker.ietf.org/doc/rfc5023/
https://stackexchange.com
https://zulipchat.com/
https://arxiv.org/abs/2104.01052
https://github.com/amandasaurus/apache-log-parser
https://github.com/amandasaurus/apache-log-parser
https://www.nngroup.com/articles/feature-richness-and-user-engagement/
https://www.nngroup.com/articles/feature-richness-and-user-engagement/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://getbootstrap.com/2.3.2/components.html#alerts
https://getbootstrap.com/2.3.2/components.html#alerts
http://git-scm.com

Bibliography 40

[31] Steve Roy. What’s Cooler Than a Billion Monthly Uniques?, May 2013. https:
//blog.disqus.com/whats-cooler-than-a-billion-monthly-uniques.

[32] Nathan Sebhastian. Versioning CSS files to invalidate browser cache.

[33] LLC Slack Technologies. Slack. https://slack.com/.

[34] SQLite. About SQLite, 2000. Available at https://www.sqlite.org/about.
html.

[35] SQLite. Appropriate uses for SQLite, 2015. Available at https://www.sqlite.
org/whentouse.html Accessed: 2022-03-22.

[36] SQLite. Internal Versus External BLOBs, May 2017. Available at https://www.
sqlite.org/intern-v-extern-blob.html Accessed: 2022-03-22.

[37] The Coq Proof Assistant. Community.

[38] Evert Timberg and contributors. Chart.js. https://www.chartjs.org.

[39] tmux Community. tmux, March 2015. https://github.com/tmux/tmux/wiki.

[40] Cornell University. arXiv. https://arxiv.org.

[41] Martin Zimmermann. Isso, March 2022. https://posativ.org/isso/docs/.

[42] Zulip. Case study: Lean theorem prover community, November 2021. https:
//zulipchat.com/case-studies/lean/.

https://blog.disqus.com/whats-cooler-than-a-billion-monthly-uniques
https://blog.disqus.com/whats-cooler-than-a-billion-monthly-uniques
https://slack.com/
https://www.sqlite.org/about.html
https://www.sqlite.org/about.html
https://www.sqlite.org/whentouse.html
https://www.sqlite.org/whentouse.html
https://www.sqlite.org/intern-v-extern-blob.html
https://www.sqlite.org/intern-v-extern-blob.html
https://www.chartjs.org
https://github.com/tmux/tmux/wiki
https://arxiv.org
https://posativ.org/isso/docs/
https://zulipchat.com/case-studies/lean/
https://zulipchat.com/case-studies/lean/

Appendix A

Paper Prototypes

Figure A.1: The sign-up page. The link to this page is in the lower left

41

Appendix A. Paper Prototypes 42

Figure A.2: The sign in page

Figure A.3: An example user profile page

Appendix A. Paper Prototypes 43

Figure A.4: The edit profile page

Figure A.5: The settings page. We combined this with the edit profile page in the
implementation before user feedback told us they should be separate

Appendix A. Paper Prototypes 44

Figure A.6: A comments page. We decided to place this content at the bottom of the
entry page (Section 3.2.1)

Appendix A. Paper Prototypes 45

Figure A.7: The notifications page with unread notifications. In our implementation we
placed a preview of the comment alongside the notification. We did not implement the
RSS feed for notifications as it would need to be authenticated

Figure A.8: The notifications page when all notifications are read

Appendix B

Commands to Host the Extended AFP

1 client: scp /etc/apache2/conf -enabled/node.conf root@65 .21.55.61:/
etc/apache2/conf -enabled/

2 client: ssh -i .ssh/id_ed25519 root@65 .21.55.61
3
4 sudo apt update
5 sudo apt install apache2
6 sudo apt upgrade
7 git clone -b minf --depth 1 https://github.com/carlinmack/afp.git
8 cd afp/src/afp-devel/admin/hugo
9 wget -P /root/ https://github.com/gohugoio/hugo/releases/download/v0

.92.2/ hugo_extended_0 .92.2_Linux -64bit.deb
10 sudo dpkg -i /root/hugo_extended_0 .92.2_Linux -64bit.deb
11 sudo hugo --minify -d /var/www/html/
12 a2enmod proxy
13 apt install snapd
14 sudo snap install core; sudo snap refresh core
15 snap install --classic certbot
16 sudo certbot --apache
17 apt install isso
18 curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.1/

install.sh | bash
19 nvm install --lts
20 cd ˜/afp/src/afp-devel/admin/
21 wget -P /root/ https://bootstrap.pypa.io/get-pip.py
22 python3 /root/get-pip.py
23 python3 -m pip install -r requirements.txt
24 apt install sqlite3
25 mkdir /var/lib/sqlite
26 cd ˜/afp/src/afp-devel/admin/hugo/api
27 npm install
28 npm start
29 cd ˜/afp/src/afp-devel/admin/isso
30 isso -c isso.cfg run
31 service apache2 start

46

Appendix C

Screenshots of the Extended AFP

At time of submission, the redesigned AFP shown below can be viewed at https:
//afp.carlinmack.com

Figure C.1: The sign-up page

47

https://afp.carlinmack.com
https://afp.carlinmack.com

Appendix C. Screenshots of the Extended AFP 48

Figure C.2: The sign in page

Figure C.3: An example user profile page

Appendix C. Screenshots of the Extended AFP 49

Figure C.4: The edit profile page

Figure C.5: The settings page. We combined this with the edit profile page in the
implementation before user feedback told us they should be separate

Appendix C. Screenshots of the Extended AFP 50

Figure C.6: The comments section on an example entry)

Figure C.7: The notifications page with unread notifications. In our implementation we
placed a preview of the comment alongside the notification. We did not implement the
RSS feed for notifications as it would need to be authenticated

Appendix C. Screenshots of the Extended AFP 51

Figure C.8: The notifications page when all notifications are read

Appendix D

Evaluation

D.1 Participants’ Information Sheet

52

Page 1 of 3

Participant Information Sheet

Project title: Evaluating an extension of the Archive of Formal

Proofs

Principal investigator: Carlin MacKenzie

Please take time to read the following information carefully. You should keep this

page for your records.

Who are the researchers?

The research is being carried out as part of the Informatics Honours Project at the

University of Edinburgh. This project is supervised by Jacques Fleuriot and James

Vaughan. Today’s study is designed and run by Carlin MacKenzie who is the primary

researcher.

What is the purpose of the study?

The goal of the project as a whole is to design a new interface for the Archive of

Formal Proofs and the purpose of this study is to evaluate a redesign of the AFP to

understand if it meets the needs of users.

Why have I been asked to take part?

We are looking for people who have experience with Archive of Formal Proofs. You

have been asked to participate because we believe that you have this type of

experience.

Do I have to take part?

No – participation in this study is entirely up to you. You can withdraw from the study

at any time, up until March 31 2022 without giving a reason. After this point, personal

data will be deleted and anonymised data will be combined such that it is impossible

to remove individual information from the analysis. Your rights will not be affected. If

you wish to withdraw, contact the PI. We will keep copies of your original consent,

and of your withdrawal request.

What will happen if I decide to take part?

Page 2 of 3

You will be interacting with the redesigned website and the session should take

about 30 minutes. We will ask you to do some normal activities such as finding

entries and browsing the theory code. During the session we will ask you to share

your screen with us so that we can watch you interact with the prototype. If you

agree, we will video record the session so that we can review it in more detail later.

Our goal is to understand if this design is successful, so seeing you interact with it

will greatly help us understand where it supports you well and where it can be

improved.

After interacting with the prototype, you will answer some multiple-choice questions

and a couple long answer questions about the redesign.

Are there any risks associated with taking part?

There are no significant risks associated with participation.

Are there any benefits associated with taking part?

There are no direct benefits from taking part in this study other than the knowledge

that you have helped us complete my honours project and possibly also help

improve the live Archive of Formal Proofs site.

What will happen to the results of this study?

The results of this study may be summarised in published articles, reports and

presentations. Quotes or key findings will be anonymized: We will remove any

information that could, in our assessment, allow anyone to identify you. With your

consent, information can also be used for future research. Your data may be

archived for a maximum of 1 year. All potentially identifiable data including consent

forms will be deleted within this timeframe if it has not already been deleted as part

of anonymization.

Data protection and confidentiality.

Your data will be processed in accordance with Data Protection Law. All information

collected about you will be kept strictly confidential. Your data will only be viewed by

the research team: Carlin MacKenzie, Jacques Fleuriot and James Vaughan.

What are my data protection rights?

Page 3 of 3

The University of Edinburgh is a Data Controller for the information you provide. You

have the right to access information held about you. Your right of access can be

exercised in accordance Data Protection Law. You also have other rights including

rights of correction, erasure and objection. For more details, including the right to

lodge a complaint with the Information Commissioner’s Office, please visit

www.ico.org.uk. Questions, comments and requests about your personal data can

also be sent to the University Data Protection Officer at dpo@ed.ac.uk.

Who can I contact?

If you have any further questions about the study, please contact the lead

researcher, Carlin MacKenzie <s1724780@ed.ac.uk>. Or the supervisors of the

honours project, Jacques Fleuriot <jdf@inf.ed.ac.uk> and James Vaughan

<s0952880@ed.ac.uk >.

If you wish to make a complaint about the study, please contact

inf-ethics@inf.ed.ac.uk. When you contact us, please provide the study title and

detail the nature of your complaint.

Updated information.

If the research project changes in any way, an updated Participant Information Sheet

will be made available on https://web.inf.ed.ac.uk/infweb/research/study-updates.

Alternative formats.

To request this document in an alternative format, such as large print or on coloured

paper, please contact Carlin MacKenzie <s1724780@ed.ac.uk>.

General information.

For general information about how we use your data, go to: edin.ac/privacy-research

Appendix D. Evaluation 56

D.2 Participants’ Consent Form

Participant number:_______________________

Participant Consent Form

Project title: Evaluating an extension of the Archive of Formal Proofs

Principal investigator (PI): Carlin MacKenzie (s1724780@ed.ac.uk)

By participating in the study you agree that:

• I have read and understood the Participant Information Sheet for the above study,
that I have had the opportunity to ask questions, and that any questions I had were
answered to my satisfaction.

• My participation is voluntary, and that I can withdraw at any time without giving a
reason. Withdrawing will not affect any of my rights.

• I consent to my anonymised data being used in academic publications and
presentations.

• I understand that my anonymised data will be stored for the duration outlined in the
Participant Information Sheet.

Please tick yes or no for each of these statements.

1. I agree to being audio recorded.

 Yes No

2. I agree to my screen being recorded by the researchers.

 Yes No

3. I agree to take part in this study.

 Yes No

Name of person giving consent Date Signature (ok to type it)

Appendix D. Evaluation 58

D.3 Script for the Evaluation

Hello, I’m Carlin and today we will be evaluating an extension of the Archive of Formal
Proofs. Your participation today is purely voluntary, you may stop at any time.

Before we start, I just want to confirm that you’ve read the participation sheet and signed
the consent from. If not, you can do that now. [After they have confirmed/signed] Is it
okay for me to start recording the call now?

Similarly to last time, we’ll first be doing a talk aloud evaluation. Do you remember and
understand what I mean by talk aloud? [If yes, skip to “If you have any questions...”]
So in this observation, I am interested in what you think about, as you perform the tasks
you’re asked to do. To do this, I am going to ask you to talk aloud as you work on the
task.

What I mean by “talk aloud” is that I want you to tell me everything you are thinking
from the first time you see the statement of the task till you finish the task. I would like
you to talk aloud constantly from the time I give you the task till you have completed it.
I do not want you to try and plan out what you say or try to explain to me what you are
saying. Just act as if you were alone, speaking to yourself. It is most important that you
keep talking and I will prompt you if you are silent for a long period of time. Do you
understand what I want you to do?

Good. We’ll start with a simple practice problem first. I will demonstrate by thinking
aloud while I solve a simple problem: “How many pillows are there in my parents’
house?” [Demonstrate thinking aloud.] Please verbalise like this as you are doing the
tasks. If you have any questions, feel free to ask them and I will answer them after the
session. Is this all clear?

First, I would like you to open a browser and go to the link which I will send in the chat.
[When they have confirmed they have done so] Thank you, could you now share your
screen?

https://afp.carlinmack.com/

I have prepared 5 [or 4] tasks for you to do which I’ll send over Teams. For each one
please read it aloud, complete it to the best of your ability and say “done” when you
feel that you have completed the task. Lastly take your time, remember that I’m testing
the interface, not you!

1. Create an account on the AFP using a dummy password.

2. Make a comment on the “Topology” entry and return to the home page

3. Add an affiliation to your profile [If they did already, Update your affiliation on
your profile or Add a description to your profile]

4. Respond to my reply on your comment.

5. View my profile

OR

https://afp.carlinmack.com/

Appendix D. Evaluation 59

1. Make a comment on the “Completeness Theorem” entry and return to the home
page

2. Add an affiliation to your profile [If they did already, Update your affiliation on
your profile or Add a description to your profile]

3. Respond to my reply on your comment.

4. View my profile

Now that you have completed the tasks, I will send you a link to a survey which I would
like you to answer. You can stop sharing your screen now, and please feel free to take
your time and click around the website if you need a reminder. Let me know when you
have completed it.

[Visit the survey summary page while they fill in and see if you can see their submission]

Optional: Before the final section, I’d like to hear a little bit about why you answered X
for Y?

Lastly, I’d like you to answer some final open-ended questions.

1. Do these features appeal to you? How so/how not?

2. Would you be likely to create an account on the AFP?

3. Is this an improvement over the redesigned AFP? How so/how not?

4. Are there any features that are lacking or missing?

This is the end of experiment, thank you so much for your time, it was really appreciated.

Appendix E

Poster

Figure E.1: Honours Project Day poster

60

	Introduction
	Previous Work
	Integration into the Official AFP

	Part Two

	Background
	Online Communities
	Mizar
	Lean
	Coq
	arXiv
	Wikipedia

	Archive of Formal Proofs
	Community
	Development Philosophy

	User Engagement

	Design
	Feature Set
	Prototyping
	Comments
	Notifications

	Design Considerations
	Feedback Messages
	Icons
	Responsive Design
	Web Feeds

	Conclusion

	Implementation
	Server Architecture
	Approach
	Structure
	Hosting

	Database
	Access
	Schema

	API
	Routing

	User Accounts
	Authentication
	Profile
	User URL

	Statistics
	Commenting on Entries
	Notifications
	Initial Implementation
	Comment Replies
	Unread Counter

	Customising Topics
	Feedback Messages
	Web Feeds
	Error Handling
	Redundancy

	Privacy
	Cookies

	Conclusion

	Evaluation
	User Evaluation
	Design
	Results
	Conclusion
	Resulting Changes

	Technical Evaluation
	Performance
	Maintenance
	Conclusion

	Conclusion
	Suitability for Production
	Future Work
	Concluding Remarks

	Bibliography
	Paper Prototypes
	Commands to Host the Extended AFP
	Screenshots of the Extended AFP
	Evaluation
	Participants' Information Sheet
	Participants' Consent Form
	Script for the Evaluation

	Poster

