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Abstract
Probabilistic programming is a tool for statistical modelling that automatically infers
statistical information to extract the data pattern and supports experts in analysing the
surrounding world by observing the current world of knowledge without hypotheses.
Probabilistic programming languages (PPLs) are the intuitional programming languages
for probabilistic programming. Compared with other general-purpose programming
languages like C, Java and Python, PPLs naturally infer based on the data distribution
and the prior possibilities that experts define and grasp the data pattern for research
and applications purposes. Like machine learning models (e.g., deep neural networks
(DNNs)), model training with PPLs has an analogous process by replacing the machine
learning model with the graphical model. However, although PPLs seem to be essential
tools in modern machine learning, there has been no sufficient research into PPLs in
the last decades. Recently, PPLs were anew raising researchers’ interests in exploring
them. In this case, helping researchers find the most efficient PPL with an adequate
trade-off of accuracy becomes crucial. This project examined four PPLs based on three
Bayesian Networks (BNs), mainly based on a Cardinality Estimation (CardEst) use case
called BayesCard. We focus on making exact inferences on BNs. By experiments, we
found that the PPL named dice has outperformed our baseline, BayesCard, in terms of
latencies on the Census dataset while achieving almost the same accuracy as BayesCard.
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Chapter 1

Introduction

In this chapter, an overview of this project is presented to explain the thesis of this
project and inform readers main sections related and the experimentation process taken
to support our results in high-level aspects.

1.1 Motivation

Using probabilistic models to capture data patterns, Model-based machine learning
has continuously raised interest in the research community for years. Probabilistic
programming languages (PPLs) are essential frameworks used to declare such proba-
bilistic models and perform automatic probabilistic inference. As there is an increasing
number of probabilistic programming languages developed and a boost in research
interests in probabilistic models, it is crucial to help researchers find the most efficient
and appropriate programming framework for their research. This project focuses on
comparing probabilistic programming languages in criteria of accuracy and inference
time based on a database application called Cardinality Estimation (CardEst).

CardEst is a fundamental and essential component of modern database usage. Figure
1.1 describes the modern DBMS usage workflow in aspects of querying. In this project,
we mainly focus on CardEst, and in our plan for next year, we pursue exploring the
approximate query processing (AQP) based on the implementation of this year. The
overview of our CardEst implementation is presented in figure 1.2. Our main contribu-
tions are the PPLs programs generator and the query evaluation with PPLs inference
based on the benchmarks of the corresponding training dataset. We do not always
include the training PPLs models due to different PPLs syntaxes. A detailed version of
the demonstration in 1.2 refers to figure 3.1.

By reviewing state-of-art, we decide to choose BayesCard [36] as our baseline be-
cause it outperforms almost all existing CardEst methods. Besides, BayesCard has
achieved all Algorithm-Data-System (ADS) criteria while no state-of-art has accom-
plished, shown in table 1.1. However, BayesCard has limitations about not much
implementation with different PPLs. As a result, we are curious about the performance
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Chapter 1. Introduction 2

of BayesCard CardEst method in our selected PPLs: Infer.NET [22], Dice [15] and
SPPL [28].

Approximate Query 
Processing

Cardinality Estimation

Translation
Generate optimal 
execution plan Actual query

SQL
Relational 
Algebra 

Expression

Modern DBMS

Users

Input SQL quer ies Send results of quer ies

Figure 1.1: Overview of DBMS usage

PPLs programs 
generator

Train PPLs models Query in PPLs

Benchmark of training 
datasets

Training 
datasets

automate Bayesian 
Network definition in 

PPLs

Figure 1.2: Overview of our implementation with CardEst
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Table 1.1: Simplified version of status of CardEst methods [36].

CardEst methods Accuracy Latency Updating Interpret Predict Reproduce
Historgram - ✓ ✓ ✓ ✓ ✓
Sampling - - ✓ - ✓ -

Naru ✓ - - - ✓ -
DeepDB ✓ ✓ ✓ - ✓ ✓

... ... ... ... ... ... ...
BayesCard ✓ ✓ ✓ ✓ ✓ ✓

1.2 Problem statement

As graphical models are naturally designed for statistic modelling and probabilistic
programming, probabilistic programming languages (PPLs) are tools that automatically
make inferences from graphical models and learn the data patterns in an intuitional way.
Although PPLs have existed for a decade, there is not much benchmarking about PPLs.
Instead, most papers and projects related are targeted to solve real-world problems
and emphasise applications of PPLs. Under such a situation, we aim to focus on
evaluating the efficiency of PPLs based on three datasets which include a variety of data
distributions.

1.3 Solution

Our main objective is to evaluate four PPLs with three Bayesian Networks(BNs) in
terms of accuracy and latencies: Pgmpy [1], Infer.NET [22], Dice [15] and SPPL [28].

The PPLs evaluated in this project are composed of two PPLs (Infer.NET and Pgmpy)
presented from 2011 to 2015 and two PPLs (Dice and SPPL) from recent research in
2020 and 2021, respectively. In experiments, we use the same datasets (Census, DMV
and IMDB) as BayesCard. For each dataset, we build a BN with each of our PPLs.
To examine PPLs performance, we translate CardEst methods for single and joined
tables based on BayesCard paper into our PPLs. We construct the evaluation process
by adapting the decoding queries from BayesCard implementation for each dataset by
combining the four PPLs selected and Python.

1.4 Contribution

Our contributions are shown as following:

1. We implement PPLs program generator in Python based on each PPLs syntax.
We automate the BNs construction for each PPLs.

2. We construct BNs inlcuding adapting structure learning results from BayesCard,
parameter learning and making inference.
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3. We translate CardEst approaches of BayesCard into other three PPLs: Infer.NET,
Dice and SPPL.

4. We adapt benchmarking resources from BayesCard to support implementations
of the other three PPLs.

5. We evaluate the performance of four PPLs in terms of accuracy and latencies.

1.5 Dissertation structure

This dissertation comprises five main chapters, expounding important information about
the project implementation.

Chapter 2: This chapter explains the literature review of the CardEst and the funda-
mental background knowledge needed to understand this project implementation.

Chapter 3: This chapter presents the design of this project and the detailed cod-
ing decision made during the implementation.

Chapter 4: This chapter aims to show how to set up experiments and the associ-
ated workflow of our evaluation process. This chapter includes our evaluation of four
PPLs and detailed information about their performance.

Chapter 5: This chapter concludes the dissertation in the above aspects (Chap-
ters 2, 3 and 4) via analysing the results given in chapter 4.

Chapter 6: This chapter evaluates our work and describes the plan we will take
for next-year work and decisions made to complement and integrate our existing work.



Chapter 2

Background Chapter

In this chapter, we will review state-of-art approaches about CardEst with related use
cases and existing PPLs.

2.1 Probabilistic Programming Languages

Probabilistic programming languages (PPLs) are programming languages used to do
probabilistic programming. PPLs encode the probabilistic models and perform the
inference of these models automatically. Because of this characteristic, implementing
Bayesian networks with PPLs are more efficient and less expensive to infer than tradi-
tional methods. Examples of PPLs are below (table 2.1):

PPL name Extends from Host language

Picture [18] Julia Julia
PyMC [26] Python Python

Infer.NET [22] .NET Framework .NET Framework
Stan [2] - C++

Table 2.1: Examples of Probabilistic programming languages (PPLs)

As table 2.1 shows, there are a wide range of PPLs that can be used. As the machine
learning process with general programming languages like python, the workflow of
machine learning using PPLs is similar. Instead of using a traditional machine learning
model (e.g., neural networks), PPLs first specify the structure of a probabilistic model
based on the specific task that the model is designed for. Then, this probabilistic model
will be trained with training datasets to learn parameters in order to make predictions.
With the trained model, probabilistic programming inference methods will be selectively
applied to the test datasets and perform evaluation for that specific task. The general
workflow of probabilistic programming is shown in figure 2.1 below:

5
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Specify the structure 
of Probabilistic 

Model

Training Set

Testing Set

Model 
training

PPL 
Inference

Predictions

Figure 2.1: Simplified workflow of probabilistic programming

2.2 Bayesian Networks

Graphical models are a kind of probabilistic models which represent the dependencies
among random variables in a structure of graphs. There are two main kinds of graphical
models: Markov Hidden Fields and Bayesian Networks (BNs). In this project, we only
focus on BNs.

Bayesian Network is a type of graphical model that demonstrates the joint proba-
bility of all random variables. It is a directed acyclic graph (DAG) where each node in
the graph declares a variable and each directed edge represents the relationship between
two connected nodes as parent and children. A parent node is a node which has an
arrow line pointing out to another node, and the node that is pointed towards is the
corresponding children node. Each parent node will have at least one children node and
each children node can have at least one parent node.

In the Bayesian Network, besides the relationship, each directed edge is allocated
a probability to indicate how likely will children node happen dependent on its parent
node. The formula of the joint probability of a Bayesian Network is:

IP(X1,X2, ...,Xn) =
n∏

i=1

IP(Xi|Par(Xi)) (2.1)

where Par(Xi) is the parent node(s) of Xi.

For example, the figure 2.2 at below is an example of the Bayesian Networks. In
figure 2.2, there are five nodes A, B, C, D and E. For node A, since there are three
directed edges out from node A pointing to nodes B, C and D, A is the parent node of
nodes B, C and D. In other words, nodes B, C and D are children nodes of node A.
Also for node D, because there are three directed edges pointing to node D from nodes
A, B and C respectively, node D has 3 parent nodes which are nodes A, B and C. Node
D has one children node E as it has a directed edge connected towards the node E. The
overall relationships in figure 2.2 are summarised in table 2.2.
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A B

C D

E

Figure 2.2: An example of Bayesian
Networks

Node Parent node(s) Children node(s)

A - B, C, D
B A D, E
C A D
D A, B, C E
E B, D -

Table 2.2: Relationships of nodes in figure
1

BNs and Bayesian techniques are proved to have remarkable achievements on some
data-analysis problems such as image processing [21], database query optimization [36]
[33], medical diagnosis [7] and so on. BNs have following properties [12] [36]:

1. BNs can handle incomplete observations on data by encoding variables based on
dependencies among variables.

2. BNs explore casual relationships among random variables. This allows to answer
questions like "To increase A, what should be done to B?" or "To increase A, is it
worth increasing B?", which are useful in tackling real-world problems.

3. BNs can be easily updated using the Bayes theorem and have stable performances
because they capture the intrinsic data pattern at a general level.

All these shreds of evidence prove that BNs are practical, predictable, easy to be updated
and maintained. Because of above advantages, BNs can be applied to applications in
lots of fields and thus have a great development potential.

In this project, our benchmarking is developed based on the baseline model BayesCard
[36], a BN model implemented in probabilistic programming languages Pomegranate
[31] and Pgmpy [1] to do CardEst.

2.3 Database

As mentioned in section 2.2, there is a wide range of fields that Bayesian Networks can
be used. This project will explore the use in database field in the following sub-sections,
including the Cardinality Estimation (CardEst). An introduction to the database and
Database Management Systems (DBMS) is described below.

A database is a collection of data or information that is managed in structure and
stored inside a computer system. A database usually has two components: Entities and
relationships among entities. For example, a database of a Google branch office can have
entities such as staffs, offices, products and research programmes. The relationships
among entities in this database can be the participation of staff members in a research
programme, products’ design attendance of staff members and so on.

Database Management Systems (DBMS) are software systems that are used to manage
the databases. DBMS enable the users to access the databases to store information and
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enable information to be retrieved, deleted or updated for users’ purposes. DBMS can
be used by multiple users simultaneously. The examples of DBMS are MySQL, Google
PostgreSQL, Microsoft Azure and Oracle. In DBMS, the process of running queries
will be:

1. The user codes the queries and submits to run these queries with the user interface
of DBMS software.

2. The DBMS software sends an API request with all details of the queries to the
DBMS server. API request managements such as authenticating and authorising
the API request, and build the metadata such as SQL statements and query
parameters during this stage.

3. Lexing and parsing the SQL statements. In other words, scanning raw SQL
statements which are the arrays of bytes and converting those arrays into a series
of tokens. And then, build up an syntactical tree representation of arrays with the
tokens, which can be understood by the DBMS software.

4. The parsed queries will be passed to a query optimiser. Query optimisers will
generate efficient execution plans for running the query based on how data are
stored in DBMS. An execution plan is a tree of relational operators that will
be used in running queries, including information about how will the data be
accessed for satisfying queries.

5. By comparing and evaluating all query plans, query optimisers generate the most
optimal query execution plan to run.

6. Results of running queries will be returned to users based on that optimal query
execution plan.

The illustration of the above description is shown in figures 2.3 (the red circle denotes
where CardEst should happen in usage) and 2.4, and 2.5 is an example of an execution
plan that can be viewed in DBMS softwares (e.g., Microsoft Azure Data Studio).

2.3.1 Cardinality Estimation

This sub-section is about the work done related to the Cardinality Estimation (CardEst),
which is an essential component of the query optimiser. In practical use, it is always
expected to obtain the most efficient execution of SQL statements at the lowest cost. A
query optimiser is designed to reduce the loss and cost. The query optimiser determines
the optimal execution strategy in two aspects:

1. The number of rows that will be accessed to satisfy what query requests. This
seems as the cardinality of the execution plan.

2. The cost model that estimates the run time of CardEst of the performing execution
query plan with inference algorithms.

To ensure the optimal execution strategy, the query optimiser compares all query execu-
tion plans. Each query execution plan has its cardinality estimator which estimate the
cardinality of that query plan with inference algorithms. These inference algorithms
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Figure 2.3: DBMS Query Process [27]
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SELECT  *   FROM Customer.ID

SELECT

Cost: 0%

Hash Match with Database

Cost: 45% Cost: 46%

Execution plan

Actual Number of Rows:         12000

Estimated Number of Rows:    12000

Estimated Row Size:                   20 B

Estimated Data Size:              400 KB

Input

Figure 2.5: The possible execution plan review in real-world DBMS softwares

estimate the number of rows that will be considered to contain relative information
requested by a query and seems them as the cardinality of that execution plan. The
optimal execution plan will be generated based on the previous estimation.

In recent years, Cardinality Estimation is extensively explored by researchers. Ta-
ble 2.3 below lists the Cardinality Estimation methods designed recently:

Model Name Year Real-world Application

Histogram [32] - PostgreSQL, SQL Server
MSCN [17] 2019 -
Naru [38] 2019 -

DeepDB [13] 2019 -
FLAT [40] 2020 -

Sampling [6] 2020 MySQL, MariaDB
BayesCard [36] 2020 -

Table 2.3: Cardinality estimation methods in recent years

In this project, only the BayesCard method will be benchmarked and BayesCard is the
only CardEst method in construction of Bayesian Networks.

2.3.2 BayesCard

BayesCard [36] is a CardEst method that estimates the joint probability of each query
with Bayesian Networks. It is designed with a data-driven probabilistic model called
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BN-Ensemble, which organises the DBMS in terms of Bayesian Networks.

To construct a BN-Ensemble, BayesCard method takes a database DB as the input
which contains n tables and a join scheme J of the DB. The join schema J in BayesCard
is a tree of nodes where each node represents as a table and each edge represents the
relationship between two tables. By this join scheme, the full outer join table of all
tables will be generated from the join scheme J and based on this full outer join table,
some unbiased samples will be generated to build up a Bayesian Network [37]. In
BayesCard, the BayesCard model might not only contain one Bayesian Network but an
ensemble of Bayesian Networks (see sections 3.3 and 3.4).

To understand this, the process of how can the full outer join table be produced is
important. For example, assume that there are two tables C (2.4) and E (2.5):

C.key C1 C2 C3

1 100 50 90
2 40 50 70

Table 2.4: Table C

E.key E1 E2 E3

1 110 40 80
1 0 10 0
2 20 10 20
3 40 50 70

Table 2.5: Table E

Based on table C and E, a full outer join table Ω can be produced as below (table
2.6), which includes both the matched and unmatched tuples in two tables. In table
2.6, the third row in full outer join table Ω is produced by matching C.key and E.key
when they are both equal to two and combining the corresponding rows in table C
and E into one row. When a table has multiple records for the same key, like in the
table E, there are two records when E.key equals to one. At this case, each row that
has E.key equal to one will be matched to each row in table C that has C.key equal to one.

In the full outer join table Ω, if table E has n records when E.key equals to a cer-
tain value v and table C has m records when C.key equals to the same value v, then
the number of full outer join records when C.key = E.key = v will be mn, which is m
multiplied by n.

C.key C1 C2 C3 E.key E1 E2 E3

1 100 50 90 1 110 40 80
1 100 50 90 1 0 10 0
2 40 50 70 2 20 10 20
∅ ∅ ∅ ∅ 3 40 50 70

Table 2.6: Full outer join table Ω of tables C and E

Let us have a look at how to contruct the BN-ensemble in BayesCard paper and 1
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describes the construction algorithm from the paper [36].

Algorithm 1 BN Ensemble Construction Algorithm
Input: a DB schema with n tables T1, ...,Tn and a budget k

1: Create the join tree T = (V,E) for the schema
2: Generate unbiased samples S for full outer join of the entire schema
3: Initialize a dependence matrix M ∈ Rn×n

4: for Each pair of tables e = (Ti,T j) do
5: Calculate the RDC dependence level scores between all attributes in Ti and

attributes in T j
6: we← average RDC scores
7: end for
8: if k = 1 then then
9: return T and learn a single PRM for each table

10: end if
11: for k

′

← 2, ...,k do
12: Sort E in decreasing order based on we
13: for e = (u,v) ∈ E do
14: if u and v contain exactly k

′

tables in total then
15: Update T by contracting nodes u,v to a single node u,v
16: end if
17: end for
18: end forreturn T and learn a single PRM for each node in T

Looking at 1, from line 3 to line 7, BayesCard calculates the dependency level be-
tween each two of the tables in terms of Randomised dependence coefficient (RDC)
values [20]. RDC values measure the level of dependence between two attributes, which
reflects the likelihood when attribute A happens while the attribute B co-occurs. RDC
values help to optimise CardEst by variable elimination (VE). In 1, BayesCard takes in
a budget k to limit the number of tables can be taken into produce one full outer join
table. If the budget equals to one, then a Bayesian Network will be constructed at each
node, for each table. Otherwise, with a f or loop iterating from two to the value of the
budget, BayesCard applies the VE based on the highest dependency level among the
connected tables. This is done to join the tables. Finally, BayesCard produces several
Bayesian Networks, which is an ensemble of Bayesian Networks.

Having the BayesCard probabilistic model, inference algorithms can then be run with
the test datasets. To understand how can the BayesCard estimate the cardinality of a
query for joined tables, the process of applying fanout method is needed to know first.

BayesCard uses the fanout method for calculating the joint probability of a query,
based on the example of full outer join table Ω shown above (table 2.6). In each full
outer join table, the number of tuples in the full outer join table that matches the tuples
in the original tables will be counted at each row, and this number is called a fanout
attribute. For example, for full outer join table Ω of tables C and E mentioned above,
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we have the table 2.7 below:

C.key C1 C2 C3 E.key E1 E2 E3 FC→Ω FE→Ω

1 100 50 90 1 110 40 80 2 1
1 100 50 90 1 0 10 0 2 1
2 40 50 70 2 20 10 20 1 1
∅ ∅ ∅ ∅ 3 40 50 70 0 1

Table 2.7: Adding fanout attributes to full outer join table Ω

Fanout attributes in full outer join table Ω are the FC→Ω and FE→Ω. In table 2.7, fanout
attributes are marked in blue. Looking into table 2.7 (figures in magenta), the value
of FC→Ω is two at first row. This is because the corresponding tuple from table C has
appeared twice in this join table Ω: On the first row and the second row. By using fanout
method, the dependencies between tables can therefore be represented in a simpler
way in terms of fanout attributes. Fanout attributes will be used to estimate the joint
probability of the query which captures the intrinsic pattern of the relations between
tables in a database.

As a result, referring to theorem 2 in [36], we can calculate the joint probability
for each attribute in the joined table query as following:

pi =
|νi|

|ν|
∗
∑
f ,3

(
PVi(Qi∧F = f ∧FVi ,V = 3)∗

max{3,1}
dlm

)
(2.2)

and the cardinality of query Q is

Cardinality = |ν| ∗
d∏

i=1

pi (2.3)

where

1. i represents which attribute is queried.

2. V = {V1,V2,V3, . . . ,Vd} is the BN graph (join tree) vertices touched during query.

3. ν is the full outer join of all tables in V .

4. For each node, (A j,B j) is a distinct join in the F = {FA1,B1 ,FA2,B2 , . . . ,FAn,Bn}

where B j is not in Q.

5. f = ( f1, f2, . . . , fn) represents as assignments to F as FA j,B j = f j when 1 ≤ i ≤ n,
and dlm( f ) =

∏n
j=1 max{3,1}

The BN-ensemble model also conducts graph reduction to ensure faster and more effi-
cient estimation. When doing CardEst, BayesCard preprocesses each query and collects
its predicates as a domain and does estimation on full outer join tables with fanout
attributes. BayesCard’s inference algorithms are based on inference methods defined
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in a PPL package called Pgmpy [1]. BayesCard re-implement the original variable
elimination (VE) inference method with just-in-time compilation (JIT) to maintain
efficient estimation and progressive sampling [38] to compute the joint probability of
query Q over tables T1,T2, ...,Tn. BayesCard first uses progressive sampling to compute
the probability if a table (children node) is related to query Q if its dependent table
(parent node) is relevant to Q. Then by this probability, it selects the fanout attributes
that will be looked at and calculates the probabilities of how likely tables relevant to
fanout attributes are related to query Q by compiled variable elimination (VE+JIT). The
overall joint probability of the query Q is the multiplication of factorised results from
progressive sampling and results from compiled variable elimination 2.3.2.



Chapter 3

Implementation

As all our implementations are based on BayesCard, we translate the approach BayesCard
to evaluate CardEst on single tables and the BayesCard fanout method into Infer.NET,
Dice and SPPL, where the fanout method estimates the cardinality of joined tables.

Specifically, although we have supported three PPLs, we mainly focus on Dice imple-
mentation in the following sections. The descriptions of other PPLs implementations
refer to section 3.5.

3.1 Overview

Referring to figure 2.1 in section 2.1, to construct, train and evaluate graphical models,
we need to define our graphical models, which are BNs. We train BNs to learn from data
and evaluate with test datasets, in our case, which are queries, by making inferences
for CardEst. Mainly, we use structural learning to define our BNs, and by parameters
learning, we train our BNs to learn the data distribution.

The illustration of our implementation is in figure 3.1.

3.1.1 Structural Learning

Stucture learning is the process that helps to learn the structure of a BN, including
learning the way how nodes connect.

Treated as the baseline, Pgmpy does not provide any structural learning method. As a
result, the baseline uses the probabilistic modelling package Pomegranate to learn its
BN structures. Pomegranate has a method called "BayesianNetwork.from_samples",
which automatically learn the links of a specific BN from the given data. For example,
assuming we have the following BN 3.2a and corresponding data to represent such
relationships.

By Pomegranate, the relationship between nodes will be learnt as 3.2b at below.

15
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Figure 3.1: Overview of this project implementation
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Sprinkler

Cloudy

WetGrass

Rainy

(a) Kevin Murphy’s wet grass/sprinkler/rain example

1 [(Cloudy,Rainy),(Rainy,WetGrass),(Cloudy,Sprinkler),(Sprinkler
↪→ , WetGrass)]

(b) The corresponding BN structural learning result

Figure 3.2: An example of BN structural learning

By sturctural learning, the links we learn enables the Pgmpy to do the parameters
learning.

3.1.1.1 Chow-liu tree

Chow-Liu tree is a tree structure first proposed by Chow and Liu [5] in 1968. This
tree structure can efficiently estimate the joint distribution as a product of second-order
conditional and marginal distributions by sacrificing accuracy.

An example of Chow-Liu tree is presented in figure 3.3. The joint distribution of
this Chow-Liu tree can be seemed as

IP(A,B, ...,F,G) = IP(E|C)∗ IP(F|C)∗ IP(g|C)∗ IP(C|A)∗ IP(B|A)∗ IP(D|A) (3.1)

Pomegranate package has the Chow-Liu tree algorithm for constructing BN links by
learning the structure from data, and the results of learnt BN links are in a similar way
described in 3.2b. By adapting the BN structure from Pomegranate to Pgmpy or other
PPLs, BNs with Chow-Liu tree structure can then be constructed.

In order to assist project implementation and provide a better presentation to help
readers understand the project, we provide the visualisation of each BNs with the
Python package Anytree. Anytree package can help build up almost any kind of tree
structure and provide decent visualisations with the Python package networkx. Figure
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A

C D

F

B

E G

Figure 3.3: An example of Chow-Liu tree

3.4 demonstrates an example of the visualisation functionality in our implementation,
which presents one of the BNs constructed based on the joined table dataset IMDB.

title_kind_id

movie_companies_company_id

title_mul_movie_companies_movie_id_nn movie_companies_company_type_id

title_mul_movie_info_movie_id

title_mul_movie_keyword_movie_id title_mul_cast_info_movie_id title_production_year title_mul_movie_info_idx_movie_id

movie_companies_movie_companies_nn

Figure 3.4: Visualisation of Chow-Liu Bayesian Network provided in implementation

To optimise the efficiency of the BN inference, we support the graph reduction in making
inferences for the evaluation process. Chris Wadsworth first developed this technique
in 1971. The main idea of graph reduction is that when making inference, we ignore
the partial structure of the BN, which will not be used by probability inference. Graph
reduction reduces the time for BN inferring the joint distribution for query evaluation
[36].

3.1.2 Parameters Learning

Parameters learning is the process that helps to learn the distribution of each attribute/n-
ode from the data given. In our case, the parameters learning enables our BNs to learn
probabilities from the training data. Package Pgmpy has a "BayesianModel.fit" method
for Bayesian Networks parameters learning.

However, there is no parameters learning process for Dice and SPPL. As a result,
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we adapt the BayesCard parameters learning results to these two PPLs. Compared to
the baseline BayesCard, the implementation of Dice and SPPL does not include any
structural learning and parameters learning process. Although Infer.NET does not have
structural learning implemented, Infer.NET syntax enables us to implement parameters
learning from the given training data.

3.1.3 Inference

Making Inference with graphical models is that by conditioning on specific attributes/n-
odes, graphical models return the joint distribution of the query results based on the
parameters learnt from training data.

Each PPL has a different programming syntax for its inference method. For instance,
Pgmpy has an Inference module that provides Variable Elimination and Maximum
Likelihood to query BNs about probabilities. Compared to Pgmpy, it is more straight-
forward for Dice since Dice is a PPL focusing on the exact inference of discrete BN
only. Details about how Dice does inference are explained in the following section.

3.2 Dice

Dice is a PPL proposed by Holtzen et al. in 2020 [15]. Even though Dice paper itself
includes benchmarking with different PPLs like Psi [9] and the Bayesian Network
solver ACE [4], its evaluation does not obtain benchmarks based on complex real-world
datasets and specific use cases. Since Dice is recently proposed, we believe that explor-
ing the usage of Dice is potential. Although Dice does not provide any Python API, it
has Dice compilers that can be invoked from the command line for use. Dice provides
two compilers: Dice compiler from the Github master branch and native Dice compiler
from Github oopsla-artifact branch. We find that the native Dice compiler sacrifices
inference accuracy for efficiency by observation and testing while the Dice compiler
does the opposite. Looking at the Dice syntax (3.5a), Dice provides neither structural
learning nor parameters learning. Instead, to query Dice the joint distribution, we need
to define the data distribution learnt from the parameters learning process and specify
the attributes we would like to query in the same .dice file and run it with the Dice
compiler.

In 3.5a, this BN has five attributes: Pollution, Smoker, Cancer, Dyspnoea and Xray. The
Dice program 3.5a actually defines the BN relationships in 3.5b. In Dice syntax, "if
((attribute_name == int(N, X))) then ... else ...", N is the binary bitwidth of the attribute
value range for Dice compiler (while for native Dice compiler, N is the attribute value
range in decimal) and X is the attribute value to condition. The syntax "discrete(...,
..., ...)" defines the data distribution of the attribute following behind the syntax word
"let". In the example 3.5a, we make a query for asking the joint distribution when all
attributes occur at the same time by "(Xray,(Dyspnoea,(Cancer,(Smoker,Pollution))))"
and the result of this query is shown in 3.5c.
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1 let Pollution = discrete(0.5,0.4,0.1) in
2 let Smoker = discrete(0.3,0.7) in
3 let Cancer = if ((Pollution == int(2, 0))) then (if ((Smoker

↪→ == int(1, 0))) then (discrete(0.03,0.97)) else (
↪→ discrete(0.001,0.999))) else (if ((Pollution == int(2,
↪→ 1))) then (if ((Smoker == int(1, 0))) then (discrete
↪→ (0.03,0.97)) else (discrete(0.001,0.999))) else (if ((
↪→ Smoker == int(1, 0))) then (discrete(0.05,0.95)) else (
↪→ discrete(0.02,0.98)))) in

4 let Dyspnoea = if ((Cancer == int(1, 0))) then (discrete
↪→ (0.65,0.35)) else (discrete(0.3,0.7)) in

5 let Xray = if ((Cancer == int(1, 0))) then (discrete(0.9,0.1))
↪→ else (discrete(0.2,0.8)) in

6
7 (Xray,(Dyspnoea,(Cancer,(Smoker,Pollution))))

(a) The BN definition in Dice

Pollution Smoker

Cancer

Dyspnoea Xray

(b) Corresponding visualisation of the Bayesian Network

1 ================[ Joint Distribution ]================
2 Value Probability
3 (0, (0, (0, (0, 0)))) 0.0026325
4 (0, (0, (0, (0, 1)))) 0.002106
5 (0, (0, (0, (0, 2)))) 0.0008775
6 (0, (0, (0, (0, 3)))) 0
7 (0, (0, (0, (1, 0)))) 0.00020475
8 (0, (0, (0, (1, 1)))) 0.0001638
9 .......

(c) The corresponding inference result of BN "Cancer" 3.5a in Dice

Figure 3.5: The BN example "Cancer" in Dice
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However, when querying for joint distribution, both Dice compilers will compute
all combinations of the joints and thus leading to inefficiency when querying probabili-
ties for a list of attributes based on their specific values. As a consequence, we adapt
the Dice syntax to do queries described in 3.6a.

1 let q = if (((dHours == int(6,3))||(dHours == int(6,0))||(
↪→ dHours == int(6,5)))&&(dIncome4 == int(2,0))&&(
↪→ dIncome5 == int(2,0))&&((iMobility == int(3,1))||(
↪→ iMobility == int(3,0)))&&((dPwgt1 == int(4,0))||(
↪→ dPwgt1 == int(4,1)))&&(iSex == int(2,1))&&(iSubfam1
↪→ == int(4,0))) then (discrete(1.0, 0.0)) else (
↪→ discrete(0.0, 1.0)) in

2
3 q

(a) Second example query in Dice

1 Value Probability
2 0 0.160781
3 1 0.839219
4 Final compiled size: 3490
5 Live: 37468

(b) The corresponding query result

Figure 3.6: An example of Dice query optimisation

The query in 3.6a is one of the queries we have with the single dataset Census. This
query syntax describes how to query the Dice about the joint distribution when attributes
dHours values zero, five and six, dIncome4 values zero, dIncome5 values zero, iMobility
values zero and one, dPwgt1 values zero or one, iSex values one and iSubfam1 values
zero. The probability syntax "then discrete(1.0, 0.0) else discrete(0.0, 1.0)" means that
we only query for the situation q is true or not. The query result of 3.6a is shown in
3.6b.

The result in 3.6b describes that the probability that query q is true is 0.160781, and there
is a probability of 0.839219 that query situation q might not occur. Obviously, instead
of having a long list of joint distributions that requires us to do more computations for
our evaluation process, the joint distribution of specific situations can be directly given
by the Dice compilers. This kind of query syntax optimises Dice compiler processing
time and the convenience for processing data for further operations when needed.

When dealing with joined tables, due to BayesCard implementation with fanout meth-
ods, we need to know the probability of each combination that made up the joint
distribution for the evaluation data processing, similar to the result in 3.5c. At this time,
although the query syntax is similar to 3.5a, this syntax does not satisfy us when we ask
for the joint distribution conditioning on other attributes. Consequently, we combine
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the Dice syntax "observe" to indicate the conditions when querying. The example is
below (3.1):

Listing 3.1: Dice query third example
1 let _ = observe (((title_production_year == int(7,15))||(

↪→ title_production_year == int(7,16))||(title_production_year
↪→ == int(7,17))|| ...... ||(title_production_year == int
↪→ (7,75)))&&(movie_companies_movie_companies_nn == int(1,0))
↪→ &&(movie_companies_company_type_id == int(2,1))) in

2
3 (title_mul_movie_keyword_movie_id,(title_mul_movie_info_movie_id)

↪→ )

In 3.1, we not only query for the joint distribution of attributes title_mul_movie_keyword
_movie_id and title_mul_movie_info_movie_id but also query this joint distribution
based on the occurrence of other attributes. The syntax "let _ = observe ..." indicates that
the following conditions will be counted in computing the final joint distribution, where
syntax "_" represents ignoring the name of this situation as we do not use this name in the
query sentence "(title_mul_movie_keyword_movie_id,(title_mul_movie_info_movie
_id))".

The above syntaxes are the foremost syntaxes we use for our implementation. We then
think about how to combine Python with Dice to do the same evaluation as BayesCard.
Since there are limitations about Dice, like no structure and parameters learning imple-
mented, we adapt the results of those learning processes from Pomegranate (Structural
learning) and the Pgmpy (Parameters learning) to define syntaxes like 3.5a in Dice.
Meanwhile, we also reuse the query decoding from BayesCard and use that information
to generate the Dice program by using Python to write .dice files. Then we invoke these
Dice programs from the command line by "subprocess.getoutput" and processed the
results with Python. In our case, we implement the CardEst. As a result, we need to
multiply the probability results from Dice with the number of data we have to predict
the number of rows that might be visited by queries. We reuse the same testing datasets
for querying on tables Census, DMV and IMDB from BayesCard, where each query
uses the symbol "||" to differentiate the query content and true cardinality for this query.
Example of the query in Structured Query Language (SQL) is in 4.1c and its true
cardinality is 148552.

After getting the predicted CardEst results, in order to maintain consistency with
BayesCard, we evaluated our predictions by q-error, i.e.,

Q-error = max(
Estimated Cardinality

True Cardinality
,

True Cardinality
Estimated Cardinality

) (3.2)

BayesCard and recent research about CardEst have widely used this evaluation metric
for evaluation. Although there are other evaluation metrics for CardEst, we believe that
q-error is reliable since it has been examined over the years. The more that the value of
q-error is closed to 1, the better accuracy results we have.
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3.3 Single tables

To bring into correspondence with BayesCard, we reuse the BayesCard training datasets:
Census, DMV and IMDB. This section focuses on describing the single tables: Census
and DMV. A single table is where all data and distribution relevant to the query are
included in one table only. In database querying, sometimes we need complicated oper-
ations like the "join" operation to query combined with multiple tables simultaneously
as data we would like to query can be stored in different tables, and we have more
conditions for querying. The single table does not obtain any "join" operations because
all data are stored together as a single table. For querying a single table, we can have all
the information we want from that table unless attributes in queries do not exist in the
database storage. As a result, we only construct one BN for each single table during
model construction and evaluation implementation.

3.4 Joined tables

By starting from doing CardEst on single tables, the CardEst method for joined tables
can be developed upon that. Joined tables are tables that have multiple outgoing con-
nections. Referring to Chapter 2, section 2.3.2, we have gone through how BayesCard
implements its fanout methods for multi-tables, which are also called joined tables.
Referring to 1, by looking at the BN-ensemble construction algorithm, we need to
generate different BNs for different joined tables. BayesCard already provides the im-
plementation for discretising the IMDB dataset and categorises possible full outer joined
tables. We adapt the generated structures of full outer joined tables from BayesCard,
and for each full outer joined table, we construct a single BN for querying. During
the evaluation, BayesCard has the query decoding method implemented. The query
decoding method analyses the joined table queries into multiple single BN queries and is
treated as a dictionary regarding each BN used for the query. By adapting this dictionary
to our PPLs evaluation process, we enable to accomplish querying to multi-tables with
the "join" operation.

3.5 Other Probabilistic Programming Languages

Despite the Dice, we have evaluated the Infer.NET and SPPL as well. Since both PPLs
do not significantly improve performance compared to baseline Pgmpy, in the following
section, we will briefly explain how we implement BayesCard CardEst methods in these
two PPLs.

3.5.1 Infer.NET

Infer.NET is the probabilistic programming framework proposed by Microsoft in 2008,
aiming for machine learning. Infer.NET is developed based on the .NET framework
and the C# to run Bayesian inference in graphical models. Since Infer.NET is a .NET
framework, we try to find a Python API for convenience. This refers to the IronPython
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developed by Microsoft. However, in late 2010, the official development and main-
tenance of the IronPython were terminated. During implementation, several kinds of
compatibility problems occurred among Python, Mono (a platform that helps .NET
framework run on Python interface) and IronPython. In order to maintain reliable
results, we directly use the Csharp (C#) to develop the BayesCard CardEst methods.

Infer.NET has three inference algorithms: Expectation Propagation [23], Variational
Message Passing [35] and Gibbs sampling [16]. To construct BNs in Infer.NET, for
each attribute, the syntax of Infer.NET requires us to define global primary random
variables for the observed occurrence record of this attribute, prior probability, posterior
probability, and the learnt BN parameters as an N-D array of variable length. The
dimensions of the array N depend on the number of values that an attribute can have,
and the type of value stored in the array is determined by what the variable stores. An
example of the Infer.NET random variable definition is below:

Listing 3.2: An example of Infer.NET random variable definition
1 ......
2 public Variable<int> TotalNumberOfExamples;
3 public InferenceEngine Engine = new InferenceEngine();
4
5 public VariableArray<int> dAge;
6 public Variable<Vector> ProbdAge;
7 public Variable<Dirichlet> ProbdAgePrior;
8 public Dirichlet ProbdAgePosterior;
9 ......

Other than that, we need to specify our BN model. The Infer.NET syntax requires us to
define our inference engine with an inference algorithm, and the BN links similarly to
the primary variables. For example, to construct BN for the Census dataset, we need
to define 4 * 68 = 272 variables to specify the BN parameters, excluding defining the
BN links, which leads to duplication of defining the syntax and the consumption of
time. As a result, we decide to automatically generate the C# code for constructing BNs
dependent on the dataset with Python. Because Infer.NET does not provide structural
learning, we adapt the BN structure learnt by Pomegranate from BayesCard to automate
C# code with Python. Since Infer.NET requires defining BN attributes in order, we solve
this with the anytree package in Python and generate the BN model definition in C#
based on the Chow-Liu tree depth. We implement a method for parameters learning by
reading the training dataset and using the inference engine to infer the data distribution
of attributes in BN.

Since the automated generation of BN construction obtains thousands of lines of
C# code, for better visualisation and debugging, we separate the BN model defini-
tion and the query evaluation into two C# files (figure 3.1). As BN construction, we
also automate generating the Infer.NET query process with Python. After reading the
training dataset and training our BN model, we adapt the query decoding results from
BayesCard stored as a JSON file and read them into C#. We support the BayesCard
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CardEst method [36] for point queries of the single table benchmark, in which each
attribute is queried with one value only. However, we do not successfully support the
CardEst method with ranged queries in an efficient way. Ranged queries are queries in
which each attribute can be conditioned on a list of values. We have tried to implement
the variable elimination and the cartesian product methods to realise this solution (The
result of this solution is explained in section 4.3.1.1).

3.5.2 SPPL

Sum-Product Probabilistic Language (SPPL) [29] is a probabilistic programming lan-
guage infer with sum-product expressions, proposed in 2021. Compared to Dice which
only provide exact inference with discrete BNs, SPPL supports exact solutions to graph-
ical models with discrete, continuous and mix-typed data distributions. SPPL provides
multi-stage workflow (Figure 7(a) in [29]). In our implementation, similar to Infer.NET
and Dice, we automate to generate SPPL program of BN definition with Python with
anytree package. For query evaluation, we invoke the SPPL compiler provided from
SPPL Python API to compile and query our BN model. As mentioned before, SPPL
does not provide structure and parameters learning. We again adapt the BN structure
learnt by Pomegranate and the data distributions learnt by Pgmpy from BayesCard to
define our BN models in SPPL. An instance of SPPL BN definition is in 3.7a.

For each attribute, we defines its data distribution as 3.7a. In the example 3.7a, the
attribute dOccup has two children: dIncome3 and dIndustry. The syntax "∼= choice("0":
..., "1": ..., ...)" defines the data distribution of a specific attribute in terms of attribute
value as a string following semicolon and the probability in float. For example, dIn-
come3 has the probability of around 1.0 being zero, when dOccup values zero.

We used the SPPL compiler to translate and construct our BN for later usage and
Python API to evaluate queries. Different from Dice (Dice has both BN definition and
query in .dice file), for each query, we generate a python file including defining the
above SPPL program 3.7a and compiled the corresponding BN to query our SPPL BN
model with the SPPL Python API. For instance, a query evaluation is executed as 3.7b.

In the 3.7b, with SPPL python API, we define our SPPL compiler to compile our
BN construction called source and refer our variables namespace and our BN to vari-
ables "namespace" and "model" for querying. The SPPL syntax "X.Y.prob(X.attribute «
"1","2",......)" helps us query our BN model, where X is the name of variables names-
pace and Y is our BN name. The symbol "«" can be seemed as equivalence symbol. In
the 3.7b, we query the joint probability when attribute dOccup values zero to two and
four to six, and so on.
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1 ......
2 if (dOccup == "0"):
3 dIncome3 ~= choice({"0":0.9999620006459891,"1"

↪→ :3.799935401098181e-05})
4 dIndustry ~= choice({"0":1.0,"1":0.0,"2":0.0,"3":0.0,"4"

↪→ :0.0,"5":0.0,"6":0.0,"7":0.0,"8":0.0,"9":0.0,"10"
↪→ :0.0,"11":0.0,"12":0.0})

5 elif (dOccup == "1"):
6 dIncome3 ~= choice({"0":0.993047758585807,"1"

↪→ :0.006952241414193067})
7 ......

(a) BN definition in SPPL

1 ......
2 from sppl.compilers.sppl_to_python import SPPL_Compiler
3 compiler = SPPL_Compiler(source)
4 namespace = compiler.execute_module()
5 model = namespace.model
6 prob = namespace.model.prob(namespace.dOccup << {"4","1","6","

↪→ 0","2","5"} & namespace.dPwgt1 << {"0"} & namespace.
↪→ iRelat1 << {"0","2","1"} & namespace.iYearwrk << {"0","
↪→ 1","6","3","7"})

7 predict = round(p * 2458285) # Census table has 2,458,285 rows

(b) The corresponding query evaluation of the example 3.7a

Figure 3.7: An example of SPPL BN definition and evaluation of Census dataset



Chapter 4

Experiment

In this chapter, we will go through experiments taken to support our findings.

4.1 Experimental setups

In this section, we mainly focus on how to set up experiments about Dice, and briefly
explain how to build Infer.NET and SPPL. The installation about how to establish
BayesCard with Pgmpy refers to [36].

4.1.1 Datasets and query workloads

Our experiments are performed with the following three datasets: single table experi-
ments on Census and DMV and multi-table experiments on IMDB.

4.1.1.1 Census

The Census dataset is part of US census survey results collected in 1990 and donated by
Microsoft members. This dataset has 2,458,285 instances and 68 attributes, including
multivariate data distribution. By experiments, BayesCard finds that the data in Census
dataset are highly correlated. As this dataset is large in scale and obtains considerable
data distribution complexity, it can better examine the inference performance of PPLs.

4.1.1.2 DMV

The DMV dataset contains the real-world registration information of the vehicle, snow-
mobile and boat in New York State (NYS). We reuse the same attributes as BayesCard
[36]. However, we use the latest DMV instead of the same snapshot as BayesCard.
Compared to the DMV snapshot that BayesCard uses, the data distribution of our
DMV dataset has some shift, and there are out-of-order 794,873 instances added to
the original dataset. Considering we reuse the BayesCard DMV benchmark, we use
the first 11,575,483 tuples of our DMV dataset to ensure we will get similar CardEst
q-error results as the BayesCard for successful evaluation, maintaining the consistency
with the number of instances that BayesCard DMV has used.

27
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4.1.1.3 IMDB

The Internet Movie Database (IMDB) dataset is a multi-table dataset. Based on IMDB,
JOB (Join Order Benchmark) is published for research purposes as a standard testing
dataset for researching the database field, query optimizer and is first used by the
original paper [19]. Prior work [19] states that the IMDB has considerably complicated
data distribution. We evaluate our Dice CardEst programs with the first 65 queries
in the Job-light benchmark, which obtains six tables: title, cast_info, movie_info,
movie_companies, movie_keyword and movie_info_idx, where only the primary table
"title" can be joined by other five tables.

4.1.2 Experimental environment

For Dice and SPPL, all models are evaluated with 2.6 GHz 6-Core Intel Core i7 CPU, 16
GB 2667 MHz DDR4 main memory. We have also built Dice and SPPL successfully on
Ubuntu 20.04 and Ubuntu 18.04 on Virtual Machine (VM) Software UTM, respectively.
However, considering the evaluation efficiency with VM, we choose to build Dice
on Mac. The installation information of Dice and SPPL refer to the official Github
repositories. However, for the official version of Dice (Ubuntu 20.04), the installation
on Mac OS cannot be successfully built from the source. This is because the installation
guide generates file "../rsdd/target/release/librsdd.dylib" on Mac and the same file with
suffix ".so" on Ubuntu, which makes the installation process cannot find "librsdd.so"
needed. To solve this problem and successfully build Dice on Mac, when installing on
Mac, add the instruction at line 3 between lines 2-4 as follows:

Listing 4.1: Dice installation setups
1 ......
2 (chdir ../rsdd (run cargo build --release))
3 (copy ../rsdd/target/release/librsdd.dylib ../rsdd/target/release

↪→ /librsdd.so)
4 (copy ../rsdd/target/release/librsdd.so dllrsdd.so)
5 ......

For Infer.NET, experiments are built with Visual Studio 2019 for Mac, which is the
natural platform for running C# and .NET framework officially developed by Microsoft.
All .NET packages using in our implementation can be installed and referenced by
Visual Studio directly.

4.2 Baseline model

Our baseline BayesCard was recent research in 2021. There are several reasons why we
consider BayesCard as our baseline:

1. By reviewing state-of-art, BayesCard almost has the overall optimal performance
on CardEst, while other methods could be better in specific tasks.
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2. When considering our graphical model to be BNs, in the existing research about
CardEst, BayesCard is the only open-sourced CardEst method building with the
Bayesian Network structure.

3. BayesCard implementation is naturally built with Python, and packages that
BayesCard uses have developed for years, which are stable.

4.2.1 Pgmpy

Our baseline model, BayesCard, is implemented with Pgmpy [1], by learning parameters
with the maximum likelihood estimator from Pgmpy, which maximums the likelihood
of the parameters of the graphical model based on the observation [1] [10]. For the
inference in BNs, Pgmpy supports several inference algorithms such as Variable Elimi-
nation (VE) [3], Belief Propagation [39] and Casual Inference [11]. BayesCard mainly
focuses on using VE with the elimination ordering method from Pgmpy, which helps
find the order of attributes for efficient VE.

In addition, one of the main achievements that BayesCard holds is that it supports
the JIT version of VE. JIT compilation translates the python program into linear algebra
for faster read speed in binary, and JIT improves the efficiency of the compilation by
remembering the VE orders of the previous query and reusing them for the next query
during the evaluation [36].

4.3 Evaluation

1 SELECT COUNT(*) FROM climate WHERE iKorean = 0 AND dPoverty =
↪→ 2||2043794

(a) Benchmarking query from Census

1 SELECT COUNT(*) FROM DMV WHERE Registration_Class IN [PAS, COM
↪→ , LTR, BOT, MOT, TRL] AND Fuel_Type IN [GAS, NONE
↪→ ]||10033557

(b) Benchmarking query from DMV

1 SELECT COUNT(*) FROM movie_companies mc,title t,movie_keyword
↪→ mk WHERE t.id=mc.movie_id AND t.id=mk.movie_id AND mk.
↪→ keyword_id=117||148552

(c) Benchmarking query from IMDB

Figure 4.1: Examples of queries from our benchmarks

In this section, we will explore our observations and analyse the results of our experi-
ments. In the previous section 4.1.1, we describe the datasets used for model training.
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For all three datasets benchmarking, we reuse the benchmarks from BayesCard. For
Census, we evaluate our CardEst implementation in PPLs with 468 queries in total,
combining 55 point queries and 413 ranged queries. DMV benchmark supports 1965
queries which cannot be directly defined as the point or ranged queries for evaluation.
As previously mentioned in 4.1.1.3, we reuse the IMDB benchmark job-light from [19]
as BayesCard, which includes 70 queries in total. During the evaluation, there are five
queries in the job-light that Dice cannot recognise. As a result, we exclude these queries
and finally maintain to evaluate with 65 queries. Example queries from Census, DMV
and IMDB can refer to 4.1.

4.3.1 Experiments Results

This section analyses our experiment results presented in tables and discusses why we
observe such phenomenons. Each table in this section mainly focuses on q-error and
the averaged latency each query takes during the evaluation. All results presented below
are averaged over five runs.

4.3.1.1 Census

Tables 4.1 and 4.2 present the experiment results averaged over five runs on the Mac
OS X and Ubuntu 20.04, respectively. For each experiment of Dice and SPPL, we first
build our experiments on Ubuntu, and if the results are ideal, we move our build to Mac
OS X to further improve the performance of our programs.

Table 4.1: Ablation study of different inference algorithms of BayesCard and Dice
on CENSUS (run on Mac OS X).

BayesCard Dice (master) Dice (oopsla-artifact)
VE+GR VE+GR+JIT No GR GR No GR GR

95% q-error 2.04 2.05 2.04 2.05 2.04 2.04
Latency (ms) 390 2.6 1624.6 705.8 88.1 46.1

Table 4.1 compares the results between BayesCard, the Dice compiler from the Github
master branch, and the native Dice compiler from the Github oopsla-artifact branch.
In table 4.1, there is not much difference in accuracy among BayesCard and two Dice
compilers, while the performance in terms of latency varies. Chapter 3 mentions that
we implement graph reduction (GR). For the Census dataset, the averaged compilation
latency of both Dice compilers with GR is around half less than the implementation
without GR. Especially, the native Dice compiler (oopsla-artifact) with GR can achieve
approximately the same accuracy as BayesCard results, while the averaged compilation
latency (46.1ms) is about eight times less than that of the BayesCard VE+GR (390ms).
Although Dice still cannot outperform the BayesCard VE+GR+JIT (2.6ms), the result
given by Dice oopsla-artifact with GR is impressive.



Chapter 4. Experiment 31

Table 4.2: Ablation study of different inference algorithms of BayesCard and Dice
and SPPL on Census (run on Ubuntu 20.04).

BayesCard Dice (oopsla-artifact) SPPL
VE+GR VE+GR+JIT No GR GR No GR

95% q-error 2.06 2.05 2.05 2.05 2.06
Latency (ms) 461 3.0 106.5 51.4 11275.1 ≈ 11.3 s

In Table 4.2, we examine the results of the experiments among BayesCard VE+GR and
VE+GR+JIT, Dice oopsla-artifact and the SPPL on Ubuntu 20.04. The is not much
difference in Dice results unless the performance latencies are higher than the results in
table 4.1. To run on Ubuntu, we use the virtual machine (VM) software UTM, which
leads to losses in our machine and results in higher averaged compilation latency. Table
4.2 includes the performance of SPPL. However, although SPPL has almost the same
accuracy as BayesCard and Dice, the average compilation latency of SPPL is terrible, at
around 11.3 seconds (shown in 4.2). By previous observation, the GR implementation
will reduce the averaged compilation time by half less, but even for each query of
SPPL takes around 5 seconds, this result is still bad. Therefore, we did not continue
further experiments with SPPL, including moving to Mac OS X and supporting GR and
datasets DMV and IMDB.
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Figure 4.2: BayesCard(SPPL) query time distribution on Census

As mentioned before in Chapter 3, section 3.5.1, we try to support the evaluation im-
plementation to ranged queries of Infer.NET with the Census dataset. Nevertheless, at
the same time, during the implementation, the efficiency of the current manipulation is
terrible. The evaluation result to point queries of each inference algorithm is between
86 and 117 seconds, while BayesCard VE results in 134ms. Considering that the
performance of Infer.NET with point queries of the single table is not ideal, we stop our
implementation of Infer.NET and reschedule our plan to move to the subsequent PPL
implementation, Dice.
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4.3.1.2 DMV

We present our experimental results among BayesCard and Dice of the DMV dataset in
table 4.3.

Table 4.3: Ablation study of different inference algorithms of BayesCard and Dice
on DMV (run on Mac OS X).

BayesCard Dice (master) Dice (oopsla-artifact)
VE+GR VE+GR+JIT No GR GR No GR GR

95% q-error 1.38 1.39 1.47 1.47 1.47 1.47
Latency (ms) 223.7 1.77 3140 1731 726.1 342.0

Compared to Census dataset, the performance of both versions of Dice is not as good as
the BayesCard. In terms of accuracy, there is no difference between the two versions of
Dice. However, both Dice compilers result in a q-error of 1.47 while BayesCard results
are around 1.38. We have not found a reasonable explanation for this observation and
we need to experiment with more datasets like DMV to support our guess. We think
that this can be caused by DMV BN structure which can have affect the inference in
Dice.

Being focus on the average compilation latency only, the influence of GR in perfor-
mance is consistent with the results in tables 4.1 and 4.2. However, for DMV evaluation,
none of our results outperform any BayesCard results. In future, we seek solutions to
improve the performance of Dice.

4.3.1.3 IMDB

Table 4.4 shows the experiment results of the IMDB dataset running on Mac OS X.

Table 4.4: Ablation study of different inference algorithms of BayesCard and Dice
on IMDB (run on Mac OS X).

BayesCard Dice (master) Dice (oopsla-artifact)
VE+GR VE+GR+JIT No GR GR No GR GR

95% q-error 4.98 4.90 13.5 13.5 6.60 6.60
Latency (ms) 225.4 6.30 1752268 1625360 64562 71334

It is evident that Dice results are all worse than BayesCard results. We show the compar-
ison of average query time distribution between BayesCard Pgmpy VE+GR and Dice
oopsla-artifact in 4.3b. Especially for Dice master, the q-error is apparently higher
than both BayesCard and Dice oopsla-artifact results. We have broken up the query
evaluation experiment and analysed this observation stepwise. We find that, for some
queries, Dice master has better q-error results, while for some queries, oopsla-artifact
has better q-error results. Compared to Dice master, Dice oopsla-artifact obtains more
queries with q-errors lower than 2.0, shown in 4.3a.

For some queries inference by Dice oopsla-artifact, the probability of some attributes
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could be tiny, approximating zero. Dice oopsla-artifact then generalise this kind of
results to zero. Until now, we cannot adequately explain why Dice master results are so
terrible. More multi-table evaluation experiments should be undertaken to explore the
trade-off between accuracy and inference latency for both Dice compilers. Also, for
average inference latency, the results of Dice master are underestimated. We guess that
this could be caused by the heat up of the system due to running several experiments
continuously over time, thus resulting in such unacceptable results. In table 4.4, it
seems that the GR does not fasten the inference compilation process. This is because of
the IMDB BNs structures and the corresponding benchmark. It looks like that queries
visit every attribute of IMDB BNs During the evaluation. As a result, GR does not have
influence in table 4.4.
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Figure 4.3: CardEst evaluation results distribution on IMDB
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4.4 Productivity

This section describes our productivity during the project. Table 4.5 demonstrates our
productivity events by timeline. We first reproduce the BayesCard results, and based
on those results, we try to support the Infer.NET with Census dataset. However, since
Infer.NET seems to have no proper support for Bayesian Networks (details in section
4.3.1.1), we move to support Dice and SPPL with Census dataset. Nevertheless, SPPL
performance is not ideal yet. Consequently, we decide to integrate our support with
Dice by implementing with single dataset DMV and multi-table dataset IMDB in Dice.

System Datasets Coding effort

Reproduce BayesCard all datasets 1 week
Infer.NET Census 2 months

Dice Census 1 week
SPPL Census 1 week
Dice DMV 1 week
Dice IMDB 2 weeks

Table 4.5: Productivity of our project

As database (DB) components like CardEst, the results of those DB components are
dependent on the data distribution. Using PPLs and generating PPLs programs, DB
developers do not need to implement probability inference from scratch since PPLs
handle such problems automatically. DB developers can rely on the infrastructure
provided by PPLs and directly use the inference results from PPLs.
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Conclusions

5.1 Project Contributions

This project contributes to four main parts:

1. We reproduce the BayesCard results reported in the [36].

2. We implement the PPLs program generator to automate our graphical models
definition and query in PPLs

3. We construct BNs based on three different datset to support the Cardinality
Estimation, obtaining three different BNs in total.

4. We evaluate our BNs performances implemented in four PPLs built with diversi-
fied data distributions in terms of accuracy and latencies.

5. Our finding suggests that the native Dice compiler of oopsla-artifact version
with graph reduction (GR) outperforms the BayesCard VE+GR, evaluating with
Census dataset.

5.2 Results overview

In this project, we have examined the performance of four PPLs (Pgmpy, Infer.NET,
Dice and SPPL) in the database component, Cardinality Estimation, with the current
best state-of-art CardEst approach, BayesCard. Our project idea is to explore the
inference performance of PPLs on different types of Bayesian networks in terms of
inference time in milliseconds and the accuracy measured in Q-error. We evaluate
whether other PPLs (e.g., Dice, SPPL and Infer.NET) will be more adaptive or not to
the BayesCard inference process in terms of inference time and accuracy compared to
baseline implementation Pgmpy.

Overall we find that neither Infer.NET nor the SPPL results outperform the BayesCard
results. Our best CardEst performance is inference by Dice oopsla-artifact with GR
on Census dataset, which achieves around eight times less than BayesCard VE+GR

35
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in terms of average inference latency. Looking at all performances of Dice with three
datasets (Census, DMV and IMDB), although the inference latencies of Dice with DMV
and IMDB are higher than that of BayesCard, Dice achieves to obtain similar accuracy
as BayesCard always. Since Dice is recently proposed, the development of Dice is still
ongoing. We keep in touch with Dice authors, and they plan to support a python API to
Dice, which could vastly improve the efficiency of calling Dice with Python.



Chapter 6

Future Plan

During this project, we have reviewed the literature for both CardEst approach and the
Approximate Query Processing (AQP) (but AQP is not presented in this dissertation
because it is not the main implementation at present). Due to time limitations, we plan
to support the AQP functionality with Dice as an extension of the existing CardEst
implementations as the next-year project.

We have reviewed several AQP state-of-art approaches as the following:

Publication Year Paper Title Approach

2017
Revisiting Reuse for

Bayes theorem
Approximate Query Processing [8]

2018 VerdictDB [25] Sampling
2019 DeepDB [13] RSPN

2020
EntropyDB [24] Multi-linear polynomial

Deep Generative Models [34] Variational Auto-encoders
ML-AQP [30] Sampling

Table 6.1: Literature review of AQP

By literature review, we intend to implement our next-year work based on [14] and this
project. Despite that, we are seeking solutions to improve the current Dice performance,
especially on IMDB dataset, which is much worse than expected compared to results
with Census and DMV dataset.
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