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Abstract
Antigen presentation is an essential part of the adaptive immune system. MHC class
I molecules regulate the expression of antigen molecules on the surface of antigen-
presenting cells by delivering short peptide sequences to the cell surface [1]. Predicting
peptide presentation by MHC class I molecules enables us to design more specific
vaccines and immunotherapies. Understanding the MHC class I pathway helps us to
learn more about cancer and virus detection [2].

We present a novel application of the DC-Causal interpretability technique grounded in
causal theory, which was originally proposed as a technique to interpret the classification
of occluded images. We apply the DC-Causal technique to the domain of Immunology,
aiming to interpret a BERT-based model (ImmunoBERT) that takes as input a sequence
of amino acids and predicts whether a peptide will be presented by an MHC class I
molecule. DC-Causal’s interpretation of the model in a form of a ranked list of positions
enhances our understanding of the model and provides us with insights into which
parts and positions of the amino acid sequence have the highest responsibility for the
predictions made by the model. Understanding how ImmunoBERT works increases our
trust in its predictions and gives us higher confidence to use it for real-life applications.
We show that the DC-Causal technique produces sensible explanations which are
comparable to explanations from state-of-the-art interpretability techniques such as
LIME and SFL. In addition, we show that produced explanations have supporting
evidence in biological studies.
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Chapter 1

Introduction

1.1 Motivation

State-of-the-art machine learning models, which are often complex Deep Neural Net-
works (DNNs) that have anywhere from thousands to millions of parameters, are
becoming popular in various applications and revolutionizing a wide range of industries.
Recent research has seen successful applications of DNNs such as Convolutional Neural
Networks [3] and Deep Reinforcement Learning models [4]. In this work we will cover
another DNN, a specific language model - Bidirectional Encoder Representations from
Transformers (BERT) [5].

The advances in machine learning algorithms, which became more sophisticated over
time, enabled us to make breakthroughs and solve challenges that were previously
impossible to solve with the tools we had at our disposal. However, in practice, we still
often have to divert and use much simpler models that can be easily interpreted such
as linear regression or decision trees, when we apply machine learning to real-world
problems. We cannot trust and allow complex models to make life-critical decisions
without trust, transparency, and a thorough understanding of how they work.

Machine learning has changed everything - from the way we interact on social media,
do online shopping, play games, and translate text, to the way we form our opinions
based on the information which we are presented when we search on the internet.
Especially given the fast progress such as increasing prediction accuracy or decreasing
requirements for training a DNN, the space of application opportunities for DNNs is
growing exponentially. There are promising approaches to successfully apply machine
learning within fields such as medicine, banking, or autonomous cars. Given how much
impact machine learning has and will have in the future, we need to make sure we trust
this technology before we allow it to make important decisions that shape our lives.

To trust a DNN, we need to understand the processes inside the network - which involves
a series of computations and algorithms that capture patterns and relationships from
the input data. The challenging aspect is, that there is no established way that would
enable us to gain an understanding of these networks. Observing the computations
inside the network provides transparency but not necessarily a sufficient understanding
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Chapter 1. Introduction 2

of the processes. There is a need to interpret these models in such a way that humans
can understand this interpretation which will increase their trust and confidence in these
models.

To address this trust requirement, some techniques try to provide insight into how the
algorithms arrive at the solutions. One of the approaches is to produce an explanation
that interprets and explains a model in a sufficient and meaningful way that increases
our trust and confidence in the model.

1.2 Application domain

This work will address the interpretability of a DNN in the field of Immunology. DNNs
have an immense potential to help with tasks such as improving treatments, designing
vaccines, and early diagnosis of diseases. To fulfill this ambition of making AI useful,
it is necessary that the medical practitioners who are working with these systems, the
immunology research scientists, and other stakeholders in the domain trust the decisions
made by the DNNs and that can only be achieved through sufficient interpretation. The
goal of interpreting a model should be to explain the model such that the experts trust
and understand how it works and produces outputs without them having background
knowledge about DNNs or machine learning.

Antigen presentation is an important research problem in Immunology [1]. More
specifically, this work will explore antigen presentation by major histocompatibility
complex (MHC) class I proteins, which is an important process in the human adaptive
immune response. The process starts with peptide generation from proteins. The
MHC-I molecule can present peptides on the cell surface. In the case of MHC-I
molecules, peptide-MHC class I (pMHC) complexes are presented on the surfaces of
cells for recognition by the T cells. The interaction between T cell receptors and pMHC
complexes triggers T cells to start a cellular immune response [2].

This biological process above can be split into the following parts:

• Antigen (peptide) presentation by MHC-I proteins

• Recognition of the presented antigens by the T cell receptors

• Cellular immune response

We will restrict our work to the first part of this process which is antigen presentation
by the MHC-I molecules. In machine learning terms, we translate this to a classification
task - a machine learning model (ImmunoBERT) is trained on a dataset of experimentally
collected samples and classifies new unseen samples to categories 0 and 1 based on
whether a peptide will be presented by MHC-I molecule or not. Classification of
peptides into categories by the model which was trained on a large and representative
dataset aims to provide insights based on data about antigen presentation and enhance
our understanding of the process.
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1.3 Aims

By applying the DC-Causal technique grounded in causal theory, which was proposed
as a potential interpretability technique in the field of image classification, we aim
to explore a novel application to interpret a machine learning model (ImmunoBERT)
that classifies amino acid sequences. The analysis of the explanations produced by the
technique will allow us to gain an insight into how ImmunoBERT makes classification
decisions, what patterns the model captured from the training data and whether there
is an agreement between what ImmunoBERT has learnt about peptide presentation by
MHC-I molecules and the findings in biological research.

Further, we aim to evaluate the interpretability coverage and efficiency of applying
the DC-Causal algorithm and assess its suitability for interpreting ImmunoBERT. We
will evaluate the technique by statistical analysis of the explanations produced by
it and compare the explanations to explanations produced by other state-of-the-art
interpretability techniques.

1.4 Project contributions

1. We implement the DC-Causal interpretability technique from the field of im-
age classification as a novel application for the task of explaining the model’s
(ImmunoBERT’s) classification of amino acid sequences.

2. We conduct experiments to analyse the explanations produced by the technique
to understand ImmunoBERT’s decision making and evaluate what the model has
learnt from the data about the process of antigen presentation.

3. We assess the coverage, quality, and validity of the explanations produced by the
DC-Causal technique.

4. We design and conduct experiments to compare the explanations produced by
the DC-Causal technique to the explanations obtained from other state-of-the-art
interpretability techniques.

5. We use a similarity measure to compare ranked explanations.



Chapter 2

Background

This chapter describes the basics of the biological and machine learning concepts that
are relevant to our work. We provide a brief introduction of amino acids, peptides,
proteins, antigens, and the MHC-I pathway, which we believe are useful to know for
understanding the context of the application of the model and reasoning about the
model’s interpretation. We will introduce the machine learning model, ImmunoBERT,
that will be used to classify amino acid sequences. Finally, we will introduce the concept
of causality which is the foundation for the DC-Causal technique.

2.1 Biological concepts

It is useful for the reader to understand some of the basics of the underlying biology. In
particular, that strings of amino acids are used to build peptides and proteins. In general,
peptides are shorter than proteins, and proteins are built up from hundreds to thousands
of amino acids.

Proteins are essential for the function of our body and the immune system. They
are complex molecules created by chaining together amino acids that are connected
via peptide bonds [6]. Depending on the 3D structure of the molecule, proteins have
numerous essential functions. Examples of proteins include antibodies, hormones,
enzymes, and many others. Hormones are messenger proteins that coordinate processes
between cells, tissues, and organs. Enzymes are proteins that facilitate and speed up
chemical reactions in cells and help with the formation of new molecules [7]. Proteins
that have a similar function to T cells are antibodies - they are involved in the immune
response, they bind to specific foreign substances to protect the body and control which
proteins will enter the cells. In particular, they can protect the cells against substances
that come from cancer or viruses. The 3D molecular structure of proteins is determined
by the way how the sequence of amino acids is arranged [8].

The organic molecules that are used to build proteins are amino acids. They are small
organic molecules linked together by peptide bonds to create one or more chains called
polypeptides. There are 20 amino acids occurring in nature. Amino acids are coded by
combinations of three DNA nucleotides, determined by the sequence of genes. Each
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Chapter 2. Background 5

amino acid consists of a central carbon atom linked to an amino group (—NH2), a
carboxyl group (—COOH), a hydrogen atom, and a variable side chain (organic R
group) which determines the properties of the amino acid [9]. Amino acids are the
basic building blocks of proteins, the longest linear sequence of amino acids within any
protein is the primary structure of that protein [6].

Knowing what proteins and peptides are will enable us to understand the MHC-I
pathway which is an antigen presentation pathway to which we are applying machine
learning to gain some insights into the process of peptide presentation by MHC-I
proteins. The pathway enables the detection of antigens like cancer cells and viruses
by the immune system. It presents parts of antigen proteins (peptides) from inside a
cell on its membrane surface, allowing immune cells, one example of such cells being
T cells, to detect these peptides and terminate the cell. It is essential for notifying the
immune system that there are infected cells present. MHC-I molecules are expressed
on the cells’ surfaces and present peptide fragments derived from proteins [10].

Further, we would like to clarify that the literature often mentions ’antigen presentation’
but we more specifically refer to ’peptide presentation’ throughout this work. An antigen
is any molecule or substance capable of stimulating an immune response. Each antigen
has different surface features and epitopes, which are parts of the antigen molecule that
are being recognized by the T cells or antibodies [11]. Antigens can be very small, only
containing a few amino acids, and in this case, the whole antigen is in contact with the
T cell or antibody - these small chains of amino acids can be referred to as peptides and
this is the kind of antigens we will consider in our work. In contrast, other antigens can
be bacteria, viruses, or other substances. We are only considering the small peptides
which correspond to the epitopes of protein antigens.

MHC-I is a molecule that spans the cell membrane. Its function is to bind fragments
of peptides derived from substances like pathogens and code for proteins displayed on
the cell surfaces. It helps the immune system to detect viruses, cancer, or macrophages
that have ingested infectious microorganisms [12]. The cell can recognize a foreign
fragment attached to the MHC-I molecule and binds to it. MHC-I molecules are one of
two classes of major histocompatibility complex. The human leukocyte antigen (HLA)
complex is a human equivalent of the MHC complex. The HLAs corresponding to MHC
class I are HLA-A, HLA-B, and HLA-C [13]. MHC is polygenic as it contains a variety
of MHC genes [14]. Every individual possesses a different set of MHC molecules with
different ranges of peptide-binding abilities. MHC is also polymorphic so the gene
tends to vary in the population [15].

2.2 Machine Learning: ImmunoBERT

Bidirectional Encoder Representations from Transformers (BERT) is a multi-layer
transformer encoder. It uses bidirectional pre-training on unlabeled textual data and
masked models to improve approaches to solving tasks in the domain of Natural
Language Processing (NLP). The attention model which can learn contextual relations
between words enables BERT to gain a deeper insight into the dependencies in text.
BERT is associated with the novel ’Masked language modeling’ technique where a
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proportion of words in each sequence are replaced with < MASK > token before
training the model. The model predicts the original words based on the other words
in the word sequence. It has been shown that fine-tuning a pre-trained BERT model
only requires 1 additional output layer to create state-of-the-art DNNs which have been
applied to solve NLP challenges such as language inference [16].

The BERT language model outlined above was used as a base model to create Im-
munoBERT [17] which is the machine learning model we use. The model takes as
input an amino acid sequence of variable lengths which is comprised of 4 parts: peptide,
MHC-I protein sequence, N-flank, and C-flank. ImmunoBERT uses a pre-trained Tasks
Assessing Protein Embeddings (TAPE) transformer [18] that facilitates transfer learning
and allows the model to predict whether a peptide will be presented by MHC-I protein.
Each input sequence is represented as an embedded vector and passed through the
TAPE encoder with 12 self-attention layers and 12 heads per each attention layer. The
model uses a multi-layer perceptron with two fully connected layers with a hidden
dimension of 512. It has one output neuron that uses a sigmoid activation function for
the presentation probability [17]. The prediction is a continuous value in the interval
[0,1] but a threshold is applied at 0.5 which splits the sequences into two classes: class
0 for negative sequences where the peptide is not presented and class 1 for positive
sequences where the model predicts that peptide is presented. The threshold enables
us to convert the prediction probability to a class representing whether a peptide will
be presented. The conversion from prediction to classification task is necessary for
applying our explored DC-Causal technique and the other interpretability techniques
that we use for comparison.

2.3 Explainability and causality

Explainable AI involves approaches and techniques which attempt to increase our trust
in AI models and ease the comprehension of results produced by machine learning
algorithms. Explaining a model not only allows us to interpret its decisions but is useful
for improving its accuracy, testing the model, and debugging purposes. When we do not
understand how a model makes decisions, we cannot ensure representative inclusion of
all groups in the training data or detect and resolve bias. One of the common criticisms
of explainability is that the techniques under this umbrella term can provide information
about how a model makes decisions but those techniques do not answer the question
of why. Explainability focuses attention on decision-relevant parts of the algorithms
that either contribute to the model’s performance on the training set, or the process of
decision making when the model encounters new unseen data [19]. In contrast, causality
attempts to find causal relationships between the input features within the training data.
Techniques grounded in causal theory such as DC-Causal which we explore in this
work are becoming an important element of explainable AI. The foundations in causal
reasoning can help the methods achieve a higher level of interpretability. Causal
approaches are the next step from solving problems of correlations and patterns in
data by finding causal relationships in the data. However, the research on this subject
suggests that it is difficult to learn causal relationships from observed data without
introducing restrictive assumptions about the model and data [20].
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More formally, causation is a relation between two events A (the cause) and B (the
effect) when A causes B. Counterfactual theories to define causation in terms of a
counterfactual relation such that [21]:

An event A causally depends on B if, and only if:

1. If B had occurred, then A would have occurred.

2. If B had not occurred, then A would not have occurred.

DC-Causal uses a framework of actual causality proposed by [22] which extends coun-
terfactual reasoning by considering contingencies which are defined as changes in the
current setting. Chockler et al. [23] define an actual cause such that it is based on
the concept of causal models, consisting of a set of variables and structural equations
describing dependencies between the variables. Actual causes are defined for a given
causal model and context (an assignment to the variables of the model), and a proposi-
tional logic formula that holds true in the model. The used definition by Halpern [24]
states that:

Definition: A subset of variables and their values in a given context is an actual cause
of a Boolean formula being True if there exists a change in the values of other values
that creates a counterfactual dependency between the values of X and φ (if we change
the values of variables in X, φ would be falsified).

Although there are many existing interpretability techniques, interpretation of models
still is a challenging research question. Many techniques increase the transparency of
the model’s working and improve our understanding of how a model makes decisions or
which features are considered most important. However, knowing how a model makes a
certain decision and looking at patterns or correlations is not enough to trust the model
if we are not sure why a decision was made. This fact has been proven many times in
research and practice. An example from the biomedical domain is a DNN which has
learnt to detect a metal token placed on the patient when an X-ray image was taken and
this feature was incorrectly correlated with disease prevalence, affecting the predictions
of the algorithm [25].
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Related work

To provide some context for our approach we introduce some state-of-the-art inter-
pretability techniques. They differ in numerous aspects such as the scope of explanations
and computational complexity. Some of the techniques are gradient-based, which use
gradients of DNNs to evaluate the contribution of a selected feature to the model’s output.
Examples are integrated gradients [26] and Grad-CAM [27]. In general, gradient-based
interpretability techniques are well-studied and have contributed to explaining DNNs,
especially in the field of computer vision. In contrast, there are perturbation-based
techniques that modify the input to a DNN and observe the changes in the output
which indicate which parts of the input are most important. The latter category of
techniques has advantages due to higher reliability and less noise in the explanations
[28]. Examples of perturbation-based techniques which we will introduce are LIME,
SHAP, SFL, and DC-Causal. Finally, we will briefly introduce the third category of
techniques that are used to interpret Natural Language Processing tasks.

3.1 Local interpretable model-agnostic explanations

Local interpretable model-agnostic explanations (LIME) is an approach that uses simpler
models to explain an individual prediction of a DNN by local approximation. The model,
which is simpler in its complexity, learns from local samples around the provided input
instance and produces a local explanation.

LIME perturbs the inputs, feeds them into the DNN, and observes the corresponding
predictions. New perturbed instances are created by randomly masking individual
features from the original instance. A feature is 1 if it is included and 0 if it has been
masked. The perturbed samples are weighted based on their distance to the original
instance. The newly generated dataset is used to train a simpler model, such as linear
regression or a decision tree, with the desire that this newly trained simpler model will
be a good local approximation of the original model. Each data point is then interpreted
with the simpler model [29].

The advantage of LIME is that it works reliably for images, text, tabular data and
provides flexibility when selecting the simpler model to produce the most suitable

8
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explanations [30]. The time requirements to run this technique are low compared to
techniques like SHAP or DC-Causal.

The disadvantage is that the technique might produce explanations that are not realistic
for a given dataset or model where the explanations of two very close instances can
be inconsistent. The random sampling of perturbed data points for the simpler model
uses a Gaussian distribution which assumes independence of features and can produce
instances that would never occur in the data. Further, [31] shows that LIME can be
used to generate models whose explanations can be controlled and manipulated to mask
biases. It concludes that LIME is not sufficient for ascertaining discriminatory behavior
in sensitive applications which makes it more difficult to trust explanations produced by
this technique.

3.2 Shapley Additive exPlanations

Shapley Additive exPlanations (SHAP) is a local interpretability technique, which
uses Shapley values to distribute scores in a fair manner among all features of an input
instance by calculating the contribution of each feature to the overall model’s prediction.

The Shapley values, which are well-known in the field of game theory, determine how
to distribute a prediction amongst features in the most optimal way by assuming that
each feature value is a player in a coalition and the prediction of the model is the payout
[30]. SHAP weighs the instances according to the weight the coalition would get in the
Shapley estimation. If a coalition consists of a single feature or a coalition consists of
all features except for one, we can isolate the effect of that particular feature and its
contribution to the model’s prediction.

SHAP considers the scenario of making an individual prediction to be a game where it
explains the gain by taking the prediction of an instance which is being explained and
subtracting the average predictions for all other instances. The feature values which
are not masked are splitting the gain (prediction value) - this is repeated for all possible
subsets of the original feature space and the Shapley value for each feature is calculated
as the average marginal contribution of that feature across all coalitions [32].

Computing all possible coalitions for models like ImmunoBERT in which we consider
larger feature and feature-value spaces is computationally infeasible since the solution
increases exponentially as a function of the features and feature values. There are
approximations available or an option to use Monte-Carlo sampling [33]. In addition to
SHAP, Lundberg et al. [34] proposed KernelSHAP which is a kernel-based approach
inspired by local surrogate models. It guarantees fair distribution of the difference
between the prediction and average prediction for the features. Similar to our explored
approach of compositional responsibility, it produces contrastive explanations and has a
grounding in theory.

Disadvantages of this approach include the need to approximate a solution due to the
computational complexity of evaluating 2k coalitions. Using an approximation decreases
the precision of Shapley values because it involves sampling random instances which
increases the variance of the estimates. This method also assumes independence of
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all features because when it marginalizes a feature, it samples a feature from its value
distribution and it might produce instances that are impossible in the real-life context
of a problem. This method is worse than our explored compositional responsibility or
LIME in the sense that we require access to all data to calculate the Shapley values
for the new instance, rather than just using the model and its prediction. It is also
questionable whether the Shapley values improve the model’s interpretability because
the outputs of the techniques themselves often tend to be complex.

3.3 Statistical Fault Localisation

Statistical Fault Localisation (SFL) is an interpretability technique taken from the
domain of software testing, proposed by the creators of the Deep Cover tool [35],
as a novel application to the field of Explainable AI. SFL is an effective method for
localizing the causes of failures in code. It ranks different parts of code according to a
score calculated by various well-known fault localisation measures such as Tarantula
and Zoltar.

Let us define a sub-part to be the smallest unit of an instance, such as a pixel of an image,
a letter in a word, or a single amino acid in a peptide sequence. Given an input instance
X and its output prediction y, the method produces a set T(x) of random mutants X’.
Each mutant masks a random subset of the input and these mutants are passed into
the DNN which predicts the output y’ for each mutant. Using this set of mutants, the
individual parts of the input are ranked according to a selected SFL measure and for
every sub-part of the input instance, the technique computes vector 〈a, b, c, d〉 where
a is the number of mutants in the set of mutants labeled with the same label as the
original input where the considered sub-part is not masked, b is the number of mutants
in the set of mutants labeled with the opposite label where the considered sub-part is not
masked, c is the number of mutants in the set of mutants labeled with the same label as
the original input where the considered sub-part is masked, d is the number of mutants
in the set of mutants labeled with the opposite label where the considered sub-part is
masked. The SFL measure is applied to a set of vectors, where each one represents
a sub-part of the original instance that is being explained, to determine and rank the
importance of each sub-part. Following the algorithm in Sen et al. [35], an explanation
is created by first masking the original input completely and then iteratively adding
sub-parts to the explanation, starting with the sub-parts with the highest importance
and continuing until a point is reached when the set of sub-parts becomes sufficient to
classify an instance.

The advantages of this method include efficient computation of a good approximation
of an explanation. The computational complexity is lower than the complexity of
SHAP and DC-Causal. This approach has been shown, with the support of benchmark
experiments, to have a higher explanation accuracy than other state-of-the-art techniques
such as LIME, SHAP, and Grad-CAM for the task of constructing an explanation of the
classification using the VGG16 model [36] which received as input randomly sampled
1000 images. SFL is model-agnostic so it can produce explanations for any DNN,
although it needs to be tested on more models and various kinds of tasks to support a
wider acceptance.
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A disadvantage of SFL is that it has not been extensively tested for explaining the
decisions of a DNN when the input data are not images. The quality of the explanations
depends on the quality of the generated mutants. To mitigate the risk of generating an
unbalanced set of mutants, the DC SFL paper proposes an algorithm that ensures the
balance between the classified and misclassified mutants. It is important to note that
this technique, similarly to SHAP and LIME, can produce mutants of the original input
which would otherwise not be possible in the real data.

3.4 Approaches taken from NLP

This section covers techniques from the field of Natural Language Processing (NLP)
to put our explored DC-Causal in the context of a wider family of interpretability
techniques. We mention approaches from NLP because they attempt to address the
view that amino acid sequences form structures in which the individual amino acids are
not necessarily independent of each other. A single change in an amino acid sequence
can entirely change the protein’s structure and function [37] so assuming independence
of amino acids in a sequence could potentially become problematic. This constraint is
similar to NLP problems because words in sentences are not independent. This group of
methods includes sample-based and semantic explanation methods which create short
explanations rather than using the entire length of input data. The reason why we do not
pursue the exploration of these techniques is that we would require a language model
trained on large amounts of annotated data which we do not have at our disposal. These
techniques tend to be computationally expensive and elaborate as they require extra
feature engineering or training of an additional model.

Language modeling is an approach that has been shown to solve challenges in NLP
such as predicting relationships between words and sentences by analysis of the context
of words. Occlusion and Language Models (OLM) is an interpretability technique that
takes advantage of language models and occlusion to sample valid and syntactically
sensible replacements with high likelihood, given that the context of the original input
is known. The focus is on the syntactic understanding of the language represented as
a discrete distribution. This approach assumes that local regions and neighborhoods
do not have to be representative of the model’s behavior and the model’s predictions
at points with zero probability are not contributing to the model’s decision-making
process [38]. The advantages include that this method was shown to perform well on
sentence classification (as a sequence of words) and was tested on the most popular
NLP models. The disadvantages include that this method was designed to consider
words in a sentence as language features whereas for our task we would need to change
language features to individual amino acids - this change of features might affect the
accuracy of the technique negatively.

The minimal Contrastive Editing (MICE) technique is an NLP-applied approach for
generating explanations by producing contrastive explanations of the model’s decisions.
The aim is to change instances such that they change model outputs to the contrast
case. The technique can be split into 2 parts: First, an editor model is trained to map
word edits with labels of the model. It is followed by the process of masking the most
important parts of the text for the given label and training the editor model to reconstruct



Chapter 3. Related work 12

these parts of text given the masked text and target label as inputs. In the second part
of this technique, contrastive edits are generated by masking different proportions of
the input instance and giving masked inputs together with contrast labels to the editor
model. The results have shown that MICE is capable of producing edits that are not
only contrastive but also minimal and in agreement with human interpretations [39].
Initially, this approach was applied to solve NLP problems such as sentiment and topic
classification. The advantage of MICE is that it can make contrastive changes for any
discriminatory predictor and since it has achieved an accuracy 95.9% on the IMDB
dataset, it might be a promising approach to apply to amino acid sequences and our
classification task of interest. MICE would be capable of creating explanations of
model predictions in the form of targeted changes that cause the ImmunoBERT model
to change its original prediction to the contrast prediction. MICE has been applied to
sentences where it had to produce insertions and deletions that would produce contrast
cases. This technique shares some similarities with DC-Causal as it also tries to change
the model outputs to the contrastive case by masking and occlusion. It might be worthy
of an argument that sentences are closer to sequences than images are, but we do not
have a language model and a sufficiently large dataset required for this approach.

3.5 DC-Causal technique

The DeepCover Causal (DC-Causal) technique proposed by Chockler et al. [23] is a
method that aims to provide causal explanations and is based on causal theory, which
was introduced in section 2.3. The technique was designed as a tool for interpreting the
classification of occluded images and was motivated by the ideas of compositionality
and responsibility. It is a perturbation-based approach that tries to address the current
limitations of other perturbation-based techniques by using the concepts of causal rea-
soning. Actual causality, apart from interpreting the model and its decisions, considers
counterfactual reasoning and contingencies. In a sense, it is a novel approach to pro-
duce explanations as there is an element of causality involved, with strong theoretical
foundations in causal theory.

The method uses the theory of actual causality and defines responsibility that quantifies
causality and expresses the degree of responsibility for any actual cause defined as the
minimal change required to create a counterfactual dependence. The responsibility is
defined as 1/(1+k) where k is the size of the smallest contingency. The responsibility
measure for an actual cause can take any value between 0 and 1, where 0 means no
causal dependency and 1 means very strong causal dependency. We will cover this
technique and its implementation in more detail in the following methodology section.
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Methodology

This chapter starts with describing data selection and encoding of input sequences.
We present the DC-Causal technique with detailed explanations of key steps of the
algorithms and justify the adaptions we made to interpret ImmunoBERT.

4.1 Data

4.1.1 Data sources

The training data used for training ImmunoBERT plays a significant role in the Im-
monoBERT’s decision-making process as everything that the model has learnt is condi-
tioned on this data. Obtaining a well-representative and inclusive dataset of sufficient
size with required samples is challenging. ImmunoBERT’s training data is comprised
of two distinct data sources, a collection of peptides from EL assays mapped to the
GRCh38 Homo sapiens reference genome combined with proteins within the Ensembl
v94 database [40] and the second source being the HLA Ligand Atlas [41]. The data
is pre-processed such that it only includes sequences with HLA proteins and where a
peptide of specified length of 7-15 amino-acids is observed. Each sample in the data
was obtained in an experiment which measured the presented peptides from a cell-line
or an individual. The experiments only provided observations which are positive sam-
ples where a peptide was presented. To achieve the best results, the dataset had to be
balanced so negative samples with no peptide presented needed to be artificially created.
For each sequence associated with a peptide presented on the MHC-I protein, there
was one decoy (negative sample) generated by randomly selecting a position within
the protein of the positive sample as the starting point of the negative sample’s peptide.
This procedure resulted in having 50/50 class split in the data and is considered to be a
standard approach proposed by J. O’Donnell et al. [42].

For interpretation, the goal was to match the distribution of the training data, maintain a
balanced dataset and produce datasets which would allow for a fair comparison which
other interpretability techniques. We follow a similar sampling procedure to the method
proposed by Gasser et al. [17] and restrict the data to 9-mer peptide observations and
decoys which results in sequences of length 73 if we ensure that n-flank and c-flank
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parts of the sequences are present. We sample the test dataset to observe the ability of
ImmunoBERT to classify unseen sequences. We created 12 experimental datasets, each
having 1000 sequences with 50/50 split of positive and negative class. Each dataset
corresponds to a particular MHC allele:

Figure 4.1: HLA alleles - data split

4.1.2 Encoding of input sequences

The inputs to the ImmunoBERT model are uniquely identified embedded vectors
represented as embedding matrix of tensors. For easier interpretation of the input
sequences, similarly to the approach taken by [17], we converted each input sequence
into an array of integers of length 73 representing each input as [n-flank, peptide, c-flank,
MHC]. The first 15 positions of the array represent n-flank, following 9 positions encode
the peptide sequence, following 15 positions encode the c-flank and the rest encodes
the MHC sequence as shown on figure 4.2. Each index represents a specific position
within the sequence array and the value in the sequence array represents unique ID
of the amino acid present at that position. Each amino acid is encoded as a specific
integer value according to TAPE vocabulary [18]. The justification for this encoded
representation of sequences is that it contains equivalent information to the original
embedding matrix with respect to what is required for the interpretation but allows for
direct interpretation of the sequences and enables us to produce ranked lists of positions.

Figure 4.2: Input sequence encoding
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4.1.3 Masking justification

The DC-Causal method involves the process of mutating sequences in which a part
of the input sequence needs to be masked. Our initial approach involved the use of
BLOSUM62 substitution matrix [43] which assigns similarity scores to all pairs of
amino acids. We explored substitution of an amino acid with the most distant and
most similar amino acid. We also explored random replacement in which we replaced
an amino acid which we wanted to mask with an amino acid randomly drawn from a
prior distribution of amino acids. In addition, we tried sampling an amino acid from a
posterior distribution of amino acids conditioned on the position in the sequence. None
of these techniques has shown to improve the performance of DC-Causal or contribute
to producing more informative explanations. The best performance according to our
specified metrics that measured the technique’s coverage and quality of explanations was
achieved when we used encoded < MASK > token. Therefore, we used this masking
approach in all of our experiments. The reason why using the < MASK > token in
mutants contributed towards better performance of the technique is supported by our
observation that ImmunoBERT is not very sensitive to small changes in individual
amino acid values and the model was trained with the use of the < MASK > token as
a part of its known vocabulary of amino acids. We noted that variation achieved by
replacing an individual amino acid X for some other amino acid X’ does not change
ImmunoBERT’s classification for small number of replacements. The original DC-
Causal paper [23] validates our approach of selecting the < MASK > token for masking
by empirically showing that the choice of masking had very little importance on the
performance of the algorithm so our approach for the evaluation was to select the
masking technique which produced the most informative results for our application of
the technique.

4.2 DC Causal algorithm

We present the implementation of the DC-Causal algorithm proposed by Chockler et al.
[23] for the task of explaining classification of amino acid sequences. We provide more
detail about the algorithm steps which follow the original implementation. We highlight
the differences and adaptations that differentiate our algorithm from the original version
and adapt it to achieve better performance when interpreting ImmunoBERT.

4.2.1 Definitions and overview

Definitions. We define the cause for the ImmunoBERT’s classification of an input
sequence X to be a group of amino acids, this group being a subset c of X, if and only if
there exists a witness subset S comprised of amino acid groups (subsets) of X such that
the following statements hold true:

1. S does not contain c (a subset c, that we are currently considering as a potential
actual cause for classification, is not contained in the witness subset S).

2. Masking any amino acid (or equivalently unmasking any already masked amino
acid) or group of amino acids in S does not change the classification of the
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sequence (where unmasking means insertion of an amino acid a to a position p
such that sequence[p]=a occurs in the original input sequence).

3. Masking the subset c which we are currently considering as a potential actual
cause, masking all unmasked amino acids and unmasking all masked amino acids
in the witness S changes the classification of the sequence X.

If 1, 2 and 3 hold, it follows that the subset of amino acid groups S is the witness to the
fact that an amino acid group c is the actual cause for the classification of the sequence X.

Assumptions. Similarly to [23], we made the following assumptions which enabled
us to apply the algorithm to the problem of explaining ImmunoBERT’s classification
decisions:

• We only consider singleton actual causes and assume that individual amino acids
in a sequence are independent. The reason is, we cannot assume any prior
dependence between the positions or individual amino acid values because there
are no known dependencies in the data between the amino acids within an input
sequence.

• The amino acids with the highest responsibility are located within the groups
of amino acids with the highest responsibility. The reasoning is that if a group
of amino acids contains one or several amino acids with a high importance
contribution towards the DNN’s decision, it follows that the entire group will
obtain a non-zero responsibility.

High-level overview. The algorithm produces smaller explanations by only including
parts with non-zero responsibility and sorting sequence positions according to their
responsibilities. It calculates responsibility of a group of amino acids (a subset of the
original sequence instance) and recursively distributes this responsibility further to all
amino acids within that group. The process can be broken down into the following
parts:

Algorithm 1: Responsibility - Takes a partitioned sequence or partitioned subset of a
sequence (where partitioned means split into s non-overlapping parts) and calcu-
lates the responsibility of each part. Let one of the parts be p. The responsibility
of p is calculated by selecting a mutated sequence from the space of mutated
sequences which satisfies the following:

1. p is not masked in the mutated sequence

2. the mutated sequence has the same classification as the original sequence

3. masking p changes the classification of the mutated sequence

4. a mutated sequence with the minimum number of masked amino acids
satisfying conditions 1,2,3 is selected

Algorithm 2: Compositional Responsibility - Given the result from the responsibility
algorithm 1, refine amino acid groups with non-zero responsibility by applying
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the Responsibility algorithm again on a more refined granular level.

Algorithm 3: Compositional Explanation - Start the Compositional Responsibility
algorithm 2 again with the same input sequence partitioned in a different way.
Repeat N times (where N is the number of iterations of the algorithm), merge the
results from all iterations and finally sort the amino acids in the descending order
of responsibility. The reason for trying different initial partitions of the sequence
is that the initial partition influences the final responsibility values given to each
amino acid due to the random nature of the partitioning process which needs to be
repeated multiple times to improve the accuracy of the responsibility assignment.
From this ranked list of amino acids, an explanation can be iteratively constructed
by masking the entire sequence and adding the amino-acids with the highest
responsibility one-by-one until the masked sequence has the same classification
as the original sequence.

4.2.2 Description of the algorithm

Responsibility
Inputs: amino-acid sequence, partition of positions, masking method
Outputs: responsibility map mapping each amino acid group to a responsibility
value

Key steps:

1. Given a partitioned sequence as an input, create a mutant space for the
partitioned input by masking the input instance using the provided masking
method - all possible mutation combinations = 2s - 1 where s is the number
of randomly chosen groups into which we split the sequence.

2. Calculate the degree of responsibility of each amino acid group in partition
by finding the minimum difference k between the mutant sequence and
original sequence such that the part which we are considering as actual
cause candidate is not masked, the class of the mutated sequence is equal
to the class of the original sequence and masking the part which we are
considering as actual cause candidate will result in a change of classification.
This minimum difference which represents the number of masked amino
acids in the selected mutant will be assigned to k.

3. The final responsibility r for a given amino acid group is calculated as
1/(1+k).

4. After computing responsibility for each amino acid group, return the respon-
sibility map which maps each group of amino acids to its r value.

Compositional Responsibility
Inputs: amino acid sequence, partition of positions, number of parts s, responsi-
bility map, masking method
Outputs: updated responsibility map mapping amino acids to respective responsi-
bility values
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Key steps:

1. Recursively apply the responsibility algorithm (1) to refine the amino
acid groups with non-zero responsibilities until the point of termination
is reached. Select positions which occurred in amino acid groups with
non-zero responsibilities, partition them again and apply the responsibility
algorithm to this new shortlisted (smaller) subset of partitioned positions.

2. Iteratively repeat on a smaller subset of amino acids in every iteration and
after every iteration update the responsibility map.

3. Refinement of shortlisted positions finishes when a termination condition
is reached. The termination condition is reached when the length of the
shortlisted positions (which need to be considered for further refinement) is
less than the number of parts s. This occurs when each part contains at most
1 singleton position.

4. Termination can also occur if all parts have equal responsibility (this includes
the common case in which all parts have responsibility value 0).

Compositional explanation
Inputs: amino acid sequence, number of tried random partitions N , number of
parts s, masking method
Outputs: an explanation (minimum subset of responsible positions)

Key steps:

1. Repeat application of compositional responsibility (algorithm 2) to a dif-
ferent random partition split in every iteration (N specifies the number of
iterations).

2. Average the degree of responsibility for each position over the set of all
introduced partitions.

3. After finishing N iterations of applying compositional responsibility al-
gorithm, rank the positions according to their degree of responsibility in
descending order.

4. Mask all 73 positions of a sequence. Iteratively add one-by-one amino-acids
at the most important positions (with the highest degree of responsibility) in
the sequence until the classification of the explanation is not equivalent to
the classification of the original sequence.

5. Return the explanation as the minimal explanation with respect to the defini-
tion introduced in the DC-Causal paper.

4.2.3 Justifications of adaptations for ImmunoBERT’s interpretation

We made several design decisions to make our algorithm more suited for explaining
classification of amino acid sequences. The decisions about value assignment to the
parameters were made after analysing the initial performance of the technique. The
following changes differentiate our algorithm from the original DC-Causal algorithm:
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Increased the number of splits - parameter s: The original algorithm split the input
images into 4 parts. We consider sequences of length 73 and this setting resulted in
individual parts being large in size. The algorithm would terminate immediately in >
90% cases. We varied the number of splits from 2 to 7 and found that the most optimal
number is 5 to minimize early termination of the algorithm that occurs when all parts
have responsibility 0. For s < 5, we frequently observed early termination without
finding an explanation for a sequence (even for larger N) because no such mutant which
would satisfy the responsibility criteria was found. In contrast, increasing s to values
greater than 5 would significantly increase time complexity of the algorithm and would
not contribute towards higher quality of explanations or higher coverage of explained
sequences.

Greedy first partition selection: The randomness of the process of splitting the
sequence into s parts implies that there are many partitioning possibilities and a reason-
ably high probability that the partitioned sequence does not produce mutant space in
which any member satisfies the responsibility criteria - given how sparse these mutants
which contain an actual cause are. As a consequence, each part of the sequence is
assigned the importance score of 0 and the algorithm terminates immediately. We
avoided early termination by trying new random initial partitions 30 times until we
let the algorithm to terminate. This has increased the average proportion of sequences
which were possible to explain by the algorithm to 63.6%, which is the highest achieved
coverage by the technique for 10 random partitions of sequence (N=10).

Combinatorial refinement: After the first 1-2 refinement iterations, the algorithm
would terminate because the amino acid groups were too small to make any difference to
the ImmunoBERT’s prediction. This is a consequence of the responsibility requirement
which is to find a mutant with the same classification as the original sequence but a
different classification after masking a single part of the sequence (the actual cause). To
avoid this problem, when the partitions were sufficiently small, we combined multiple
partitions with non-zero responsibility together to form a pool of shortlisted amino
acids which would be partitioned instead of further refining a single partition. This
adjustment has increased the interpretability coverage of the algorithm and also the
average length of an explanation. In addition, it contributed towards producing more
refined and informative explanations.

Data-parallel approach: The time complexity of the original DC-Causal algorithm is
O(2snN) where s is the number of parts into which we split the sequence, n is the number
of amino acids in each sequence and N is the number of random partitions. In our case
s=5, n=73 and N=10. To decrease running time we run the algorithm in parallel such
that we split the set of sequences into 5 batches and run the same algorithm in parallel
on multiple workers in Google Colab, ensuring that each worker has approximately the
same workload. This approach increases the speed of DC-Causal 5 times (with the use
of 5 workers) which was better performance improvement compared to parallelization
by splitting the sequence into s parts and working on each of those parts separately in
parallel.
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Experiments

This chapter presents the main research questions which we aim to address. We provide
details of design of the experiments and explain specifics of our selected metrics.

5.1 Research questions

RQ1 Do the explanations produced by DC-Causal have solid grounding in Biology?
Explores whether there are any insights provided by the DC-Causal explanations
that agree with the findings in biological experiments and studies.

RQ2 What is the coverage and quality of explanations produced by DC-Causal when
interpreting ImmunoBERT?
Analyses the suitability of DC-Causal technique for interpreting ImmunoBERT
by considering how many amino acid sequences are interpreted by the technique
and assessing the quality of provided explanations.

RQ3 How do the explanations produced by DC-Causal compare to other state-of-the-
art interpretability techniques?
Aims to compare explanations provided by DC-Causal technique to two other
state-of-the-art techniques.

5.2 Design of experiments

We designed a set of experiments to explore ImmunoBERT’s classification decisions and
evaluate the suitability of application of DC-Causal technique to explain ImmunoBERT.
We run each experiment on 12 different HLA datasets, each dataset consisting of
randomly sampled 500 positive samples and 500 decoys (negative samples). We
describe data preparation in section 4.1.1.

Experiment 1: Peptide analysis. We apply the technique exclusively to the 9 positions
of the peptide and fix the other parts of the amino acid sequence (MHC and flanks).
In this experiment, only the peptide positions can be split and masked which implies
that only the peptide positions can be considered as actual cause of classification of the
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sequence. The aim is to observe how the algorithm performs on simpler sequences. The
reason why we chose exploring peptide as our base experiment is that our hypothesis,
supported by the findings by Gasser et al. [17], is that the peptide sequence is the most
important discriminator between the classes so the peptide positions should have the
highest responsibility.

Experiment 2: Peptide with MHC analysis. We apply the technique to peptide
and MHC sequence without considering flanks. The explanations produced by this
experiment rank at most 43 positions of the peptide and MHC. Experiment 2 considers
more positions than experiment 1 but avoids the noise of having large amount of
positions which could randomly end up in the group with high responsibility and
be falsely up-ranked in the explanation if they occur in groups with most important
positions. The objective is to determine whether there are differences between the
responsibilities of peptide positions and MHC positions. We explore whether the MHC
positions which are ranked higher relative to other MHC positions are in the A,B and F
pockets in the peptide-binding groove which are the pockets determined by biological
studies as areas of great relevance for peptide binding [44].

Experiment 3: Full sequence analysis. We include all 73 amino acid positions in the
analysis to evaluate how the technique performs when it is required to explain the entire
input sequence. We explore the relative responsibilities of distinct parts of the sequence
and the quality of produced explanations.

Experiment 4: State-of-the-art comparison. We run DC-Causal technique and LIME
interpretability technique on the benchmark dataset which was sampled and used to
evaluate the interpretability of SFL technique. This experiment explores the perfor-
mance and effectiveness of the 3 techniques and allows to compare produced ranked
lists. Sequences used in comparison include peptide and MHC without surrounding
flanks.

Experiment 5: Impact of parameter values. Our hypothesis is that the quality of
the individual explanations will vary depending on the number of random partitions
of sequence we try during every iteration. We will vary the value assigned to N (the
number of random partitions of a sequence) such that N=[5,10,20,50,70,100]. We will
only include sampled 1/10 of each dataset in this experiment due to increasing time
requirements to run the technique for N > 5.

5.3 Selection of parameters and justification

The number of parts into which we split the sequence, the number of random partitions
the algorithm performs during every iteration and the number of initial attempts which
the algorithm tries when it encounters a sequence which it cannot interpret before it
moves to interpret another sequence in the dataset were determined empirically in the
initial experiments. We made the following decisions, considering the trade-off between
refinement of the explanations and the time requirements to run the technique.

For experiments 1-4 we set the number of tried partitions during each iteration (N)
to 10 because we have 12 HLA sets, each having 1000 sequences. The empirically
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measured time requirement to run the technique on 1000 sequences is 2-10 hours on
a cloud-based service Google Colab. The time varies based on the available GPUs,
the type of experiment which we are running and whether we split the sequences into
batches. Interpreting a sequence of length 9 (experiment 1) requires to split the input to
3 parts which takes less time than the other experiments which consider lengths 43 and
73 which split the input into 5 parts.

In experiment 5 we increase the number of random partitions (N) and try higher values
which significantly increases the time it takes to produce 1 explanation. This approach
should improve the explanations by further refinement and the produced ranked lists
of positions should be of a higher quality. Interpreting 12 datasets of 1000 sequences
by trying the large values for N would not be within a reasonable time scope for this
project so we only consider a 1/10 subset of each dataset which is randomly sampled
from the original dataset but kept constant throughout the experiment (such that all
N values are tried on the same subset of sequences) to ensure fair comparison of the
quality of explanations produced with different values of N.

5.4 Metrics measuring quality of interpretation

We designed the following metrics that will track the success of the interpretability
technique during evaluation.

1. Length of explanation - The length of ranked list containing amino acids with
non-zero responsibility. Measures how many positions from an individual se-
quence were occurring at least once in a group of amino acids that was determined
by the DC-Causal technique as an actual cause for the classification of that se-
quence.

2. Interpretability coverage - The % proportion of sequences from given dataset
for which the technique produced a ranked list of positions.

3. Class split - The % split of class 1 and class 0 sequences for which the technique
produced a ranked list.

4. Hits per explanation - Given that the technique produced a ranked list for a
particular instance, we report the % of partitions (out of N partitions) of that
sequence that resulted in non-zero responsibility ranked list.

5. Distinct ranks - The number of distinct responsibility values (importance scores)
produced in a ranked list. Measures the depth of refinement of an explanation and
is a proxy of quality of the produced explanation.

6. RBO score - A measure of similarity of the explanations (provided as ranked lists)
produced by the DC-Causal technique with other state-of-the art interpretability
techniques.

7. Runtime - The average time (in seconds) it takes to explain one amino acid
sequence.
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Evaluation

The evaluation section presents the analysis of the results produced by the DC-Causal
technique and assesses the explanations with respect to our research questions.

We present what patterns from the data are captured and learnt by ImmunoBERT
by analysing position responsibilities within sequences. By ranking the positions
according to their responsibilities we determine the strength of their contribution to the
classification of sequences and show which positions the model has learnt are most
important. We validate our results by comparing them with two other interpretability
techniques, namely LIME and SFL, and we show how biological studies support our
findings to answer the question of whether the results have any supportive evidence
grounded in Biology. Finally, we test our method and evaluate the coverage and quality
of explanations produced by the DC-Causal technique.

We split evaluation to the following parts:

• Peptide analysis

• Peptide with MHC analysis

• Full sequence analysis (peptide, MHC, n-flank, c-flank)

• Quality of produced explanations

• Performance of the DC-Causal technique

• State-of-the-art comparison

• Limitations

• Threats to validity

6.1 Interpretation of ImmunoBERT - RQ1

6.1.1 Peptide analysis

We display the aggregated summary analysis of responsibility rankings of peptide
positions from experiment 1 across HLA-A, HLA-B and HLA-C alleles. We show 9
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example visualisations, each displaying results for 1 dataset of 1000 input sequences
for each allele. The rest of the visualisations can be found in the appendix.

The results show that there are differences in responsibility profiles across the alleles.
The technique assigns responsibility to all 9 positions but identifies positions 9,3,2 and
1 as more responsible and therefore important relative to other peptide positions. Some
responsibility profiles, example being HLA-A*36:01, clearly distinguish positions and it
is possible to rank the positions. In contrast, responsibility profile for HLA-B*54:01 has
positions with uniform responsibility scores and assigns a particularly high responsibility
to position 2. In general, for HLA-A we observe a strong dominance of position 9
whereas for HLA-B and C, there is larger variance in the responsibility profiles - in
some cases position 1, 2 or 3 dominates and is assigned the highest responsibility.

Figure 6.1: Peptide position analysis

We averaged and normalised the responsibility scores per peptide position across all
datasets to devise an overall ranking of the peptide positions. Table 6.1 displays
normalised responsibility of each peptide position relative to other peptide positions and
median rank which represents the average rank of a particular position in an explanation
(a ranked list sorted by descending responsibility score). We report the median which
in this case better represents the true average rank of a position as it excludes outliers.
The results combining all datasets support our earlier findings that position 9 followed
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by 1,3 and 2 are most important for ImmunoBERT’s classification. These particular
peptide positions with highest responsibility scores determined by our method can be
found close to the termini of the peptide and are in agreement with the most important
positions determined by LIME interpretability technique [17].

position responsibility median rank

1 0.105 3
2 0.133 2
3 0.101 3
4 0.080 6
5 0.088 7
6 0.075 7
7 0.090 8
8 0.092 7
9 0.236 1

Table 6.1: Normalised peptide position responsibility scores

6.1.2 Peptide with MHC analysis

We present a summary of experiment 2 results. We focus on MHC positions to explore
which positions have higher responsibility relative to other MHC positions shown in
Figure 6.2. Firstly, we note that in most cases, MHC positions have lower responsibility
scores than peptide positions. Secondly, the responsibility scores of MHC positions are
more uniformly distributed and there are fewer differences and spikes in responsibility
scores compared to peptide positions.

We compare our results to biological studies. Van Deutekom HW et al. [44] used in
silico method which predicted peptide-binding of HLA molecules and measured the
effect of how much single substitutions change peptide binding. They found that MHC
positions which are situated in the A, B and F pockets are most relevant for peptide
binding and peptide presentation. Our results show that in most cases, MHC positions
which have responsibility spikes shown on the figures are situated in A, B and F pockets,
which is in agreement with this study.

HLA A: HLA-A*33:01 has spikes at MHC position 7 (corresponding to position 63
in the referenced study) that is situated in A pocket and position 12 (ref. pos 73).
HLA-A*36:01 has spikes at positions 15 (ref. pos 77) in F pocket and 29 (ref. pos 156)
in A pocket.

HLA B: HLA-B*37 has spikes at positions 2 (ref. pos 9), 4 (ref. pos 45), 9 (ref. pos
67) which are all situated in B pocket. HLA-B*46 shows an increased contribution of
MHC positions 23 (ref. pos 116) in F pocket, 28 (ref. pos 152) and 29 (ref. pos 156) in
A pocket.

HLA C: HLA-C*01:02 allele data show spikes at position 19 (ref. pos 95) in F pocket,
21 (ref. pos 99) in A pocket and 29 (ref. pos 156). HLA-C*15:02 has spikes at positions
10 (ref. pos 69), 20 (ref. pos 97) and 28 (ref. pos 152).

As we have shown, the majority of spikes in MHC correspond to the positions which
reside in the A, B and F pocket areas. This supports the theory that binding of peptides
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to MHC-I proteins is to a significant extent determined by pockets in the binding
groove. In particular, whether a peptide is presented by MHC-I molecule depends on
the structure of the MHC protein and the specific features of the binding groove. The
spikes correspond to the highlighted pockets which should be responsible for peptide
binding and antigen presentation. It is reasonable to expect that ImmunoBERT would
try to use these important positions as discriminators between the two classes and when
making decisions assign more importance to those particular positions as determinants
of peptide presentation. We found that MHC positions in other 6 datasets which we
include in appendix follow a similar pattern of spikes at the MHC positions located
in A, B and F pockets. In addition, our results are in strong agreement with LIME
interpretations of MHC positions in [17].

Figure 6.2: Peptide and MHC position analysis
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6.1.3 Full sequence analysis

The analysis in this section shows results from experiment 3 which considered all 73
positions within input sequences. There is a clear distinction between positions of
the individual parts of input sequences and their respective contributions towards an
explanation measured by responsibility score. The peptide positions dominate and are
followed by the MHC positions. The n-flank and c-flank have the lowest contribution
towards an explanation and their positions are ranked the lowest in the explanations.
This importance pattern is present throughout all HLA alleles which were included
in our experiments. We observe that there are minimal spikes in the flanks and their
importance values are always below 0.05 so the flank positions contribute towards an
explanation by small %.

Figure 6.3: Full sequence analysis
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Besides ranking the individual positions, it is useful to understand what sequence com-
ponents have the most significant contributions towards the explanations. We observed
that combined contribution towards producing an explanation of the 9 peptide positions
is approximately 40% for all alleles which confirms that ImmunoBERT has learnt from
the training data that the peptide part is the most important factor of determining whether
a peptide will be presented by MHC-I molecule. The second highest importance can
be assigned to the MHC sequence which tends to be in range 20-35 % across all HLA
alleles. The least significant contributors are the surrounding regions of the peptide,
c-flank and n-flank, that have an equal contribution of approximately 15 % towards the
ImmunoBERT’s decision. The order of contributions of different parts are supported
by LIME interpreted results [17]. The lowest importance assignment to flanks is in
agreement with the findings of J. O’Donnell et al. [42] who used a different model,
MHCflurry 2.0, to predict peptide presentation on MHC-I molecules and their published
results show that adding flanks only provides a small improvement in the model’s
performance.

Figure 6.4: Sequence components

6.2 DC Causal explanations coverage and quality - RQ2

6.2.1 Analysis of ranked lists used as explanations

We observed a significant proportion of sequences for which the algorithm did not find
any explanation and returned a responsibility map assigning 0 to each position. The
interpretability coverage varies with the number of iterations of the algorithm. The more
we increase the number of iterations N, the higher the coverage of the technique. The
reason for this behaviour is that the mutants created in the algorithm for a particular input
sequence do not meet the required conditions outlined in the definition of responsibility
(4.2.1). More specifically, for most of the random partitions of a sequence, the algorithm
was not able to find a mutated sequence of the same class as the original sequence which
after masking a group that is being considered as the ’actual cause’ would result in a
change of classification of the mutated sequence (we show an example in A.5).

Table 6.2 shows that the coverage of the technique can be improved with increasing
N. Our experiments run the algorithm with 10 random partitions where we achieve
coverage 63.6% whereas for 100 partitions the coverage increases to 86.0%. Similarly,
the average length of ranked lists increases and the explanations have more distinctly



Chapter 6. Evaluation 29

ranked positions with further refinement. For N=100, the length of a ranked list is
42.7 so the algorithm is able to assign responsibility value to all amino acids in the
sequence (of full length 43). Out of those positions on average 40.5 are assigned unique
responsibility such that the list is perfectly ranked with no positions having overlapping
ranks. In contrast, for N=10 the average length of ranked lists is only 29.0 and most of
those positions do not have a unique responsibility value because the algorithm could
not achieve sufficient refinement for such small N.

We measured the average runtime to interpret 1 sequence. If we do 5 iterations of the
algorithm, it takes approximately 1 minute to explain a sequence (without paralleliza-
tion). In contrast, for larger N it becomes infeasible to use the technique without further
parallelization if we require to interpret a larger dataset of sequences.

N % coverage avg. length avg. distinct ranks avg. runtime (s)

5 53.2 25.2 3.9 61
10 63.6 29.0 5.8 118
20 72.1 38.3 18.1 252
50 75.7 40.6 29.8 398
70 81.4 41.5 31.2 648

100 86.0 42.7 40.5 814

Table 6.2: Varying number of iterations

Table 6.3 shows that there is an imbalance in the ability to produce ranked lists for
positive and negative sequences. 73.4% of the sequences for which the technique was
able to produce a ranked list of positions, taken from HLA-B dataset, had label class 1.
In contrast, only 32.9% of sequences taken from HLA-C dataset had label class 1. We
were expecting the split to be balanced for each allele due to a perfectly balanced dataset.
Further, if we require the technique not only to produce a ranked list of positions but
also minimal explanation (defined in algorithm 3), by masking the entire sequence and
flipping its classification, we find that it cannot produce a minimal explanation for a
negative input sequence.

One of the possible reasons for imbalance could be that the negative samples are closely
similar to the positive samples and the model is unable to distinguish partially masked
sequences because there are only few discriminators - if we mask these discriminators
then the mutated sequence can never change classification with further masking. There
might be limitations in ImmonoBERT to generalise on unseen HLA-B and HLA-C
alleles because it mostly fit on the HLA-A allele data during training and that is why
we see a balance of classes for HLA-A data but not for the other alleles.

The average length of explanation shows how many positions out of 43 were assigned
non-zero responsibility and were included in the explanation. This metric is useful to
evaluate the usability of DC-Causal across different alleles or to compare produced
explanations to the explanations generated by other interpretability techniques. On
average, the explanations are of length 29 out of the maximum length of 43 which is
67% amino acid positions that were awarded a non-zero responsibility.
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HLA allele % positive avg. length

HLA A 51.3 29.4
HLA B 73.4 30.9
HLA C 32.9 26.7

AVG 52.5 29.0

Table 6.3: Analysis of produced explanations

6.2.2 Performance of DC-Causal algorithm

We show the coverage of explained instances for every HLA allele and the average
number of partitions per explained instance that resulted in a non-zero assignment to at
least 1 group of amino acids.

In contrast to the imbalance of class 1 and class 0 explained sequences that we observed
(6.2.1), other defined performance metrics such as the average number of hits per
explanation or the proportion of all sequences explained are constant throughout all
alleles. In particular, we observe that 63.6% of amino acid sequences, when interpreted
by DC-Causal, resulted in a ranked list of positions - these ranked lists include both
class 0 and class 1 sequences. The other sequences were not successfully interpreted
and resulted in an empty list because the technique assigned responsibility 0 to all
positions. The average % of hits measures the proportion of successful partitions for
explained sequences. For a successful application of this interpretability technique the
average success % of 22.7 is not what we hoped for because it means that the algorithm
succeeds to find a non-zero responsibility map only in 22.7% of computations.

HLA allele % coverage avg. % of hits per explanation

HLA A 63.5 23.1
HLA B 63.8 23.3
HLA C 63.6 21.8

AVG 63.6 22.7

Table 6.4: Performance analysis

6.2.3 Individual explanations

The DC-Causal method produces explanations of varied quality and length based on
the number of iterations before termination. An example of an individual instance
explanation from the HLA-A-33:01 dataset is shown below. This explanation was
produced in an experiment which ranked the peptide and MHC-I protein positions
where we set N=10.
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Figure 6.5: HLA-A example individual explanation

Each position is represented as a tuple (position,score) and the color-coding specifies
the part of the input sequence to which the position belongs. The first 5 positions which
all have the same score correspond to the peptide positions 2,3,5,8,9. This particular
explanation only awards 2 distinct rank scores 0.58 and 0.25. The algorithm terminated
after 2 iterations since there are only 2 distinct scores and the rest of positions are
awarded importance 0. This showcases some of the problems we will cover in the
limitations section. In particular, we notice that there is no clear distinction between
the first 24 positions and we cannot determine which of those positions has the largest
importance. This is problematic if we require a method which sufficiently explains
individual instances.

As we have shown, the individual explanations produced by the technique when N=10
do not suffice to fulfill the criteria of producing a useful explanation for every input
sequence which would be a desirable requirement for a local interpretation technique.
If we lower our expectations from the technique and do not require a local explanation
for every instance, we can gain an insight by creating a combined explanation which
considers position responsibilities across all 1000 data points per each set of input
sequences and creates an aggregated summary. This summary sums up responsibility
values for each position. We present an example summary for HLA-A33:01 dataset in
which we normalised the importance scores.

Figure 6.6: HLA-A example summary explanation
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The aggregated summary can be done in multiple ways - considering all data, consider-
ing a subset of randomly sampled instances or as shown in Figure 6.6 we consider one
HLA allele set of 1000 instances.

In contrast to the individual explanations, a summary explanation does not have ties
when ranking positions - ranks are clearly distinguished and we can determine the
position responsibilities from this rank. Another advantage is that all positions which
were considered by the DC-Causal algorithm have some non-zero responsibility and
therefore all appear in this summary explanation.

6.3 Comparison to other techniques - RQ3

We compare the explanations produced by the DC-Causal technique with the explana-
tions from two other techniques that were covered in the background section, namely
LIME and SFL. Our approach and the other two techniques produce ranked lists of
positions that we can compare by using a similarity measure.

The challenging aspect of list comparison is that the ranked lists have various lengths and
they might only have some positions in common. We need a comparison approach that
has the ability to work with non-overlapping lists and weighs the higher-ranked positions
more than the low-ranked positions. For our purposes, we selected rank-biased overlap
(RBO) similarity measure that calculates a score by weighing each position until some
specified depth d, using weights from convergent series. The measure has parameter
d which specifies the number of positions that the RBO measure considers, starting
from the top-ranked position, which we compare and parameter p which specifies the
degree of top-weightings of the resulting score. The measure is bounded by interval
[0,1] where 0 means disjoint lists and 1 means identical lists [45].

6.3.1 RBO score comparison - peptide comparison for all alleles

In the earlier parts of the evaluation (6.1.3) we found that peptide has the highest
overall responsibility score and contributes the most to ImmunoBERT’s predictions.
We compared the peptide ranking produced by DC-Causal method with the peptide
rankings produced by SFL and LIME. Across all allele datasets we found that the
ranking of the peptide positions produced by DC-Causal algorithm has similar degree of
overlap with the other 2 techniques if we only consider the 9 peptide positions (setting
parameters d=9 and p=1 to consider all 9 peptide positions). All techniques produce
explanations which highly rank the peptide positions, especially positions 9, 3, 2 and
1. The reason why the RBO score is not higher is that the order of the top positions
is rearranged and varies across the techniques - for example, LIME ranks the top 3
positions as [9,2,3] and DC-Causal as [9,3,2] - this has an effect on the RBO similarity
measure.
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Figure 6.7: Similarity of ranked peptide positions

DC-Causal and SFL peptide ranks have almost the same degree of similarity as DC-
Causal and LIME peptide ranks. The mean and median RBO scores are similar for both
compared pairs of lists. DC-Causal and SFL pair has a higher RBO score suggesting that
their ranked peptide positions tend to agree more although there is lack of significance
in the results to conclude this. We find that the distribution of RBO scores for DC-
Causal/SFL pair is more variable than the distribution for DC/LIME. The DC/SFL pair
explanations match more for certain HLA types and less for the others - there is a higher
inconsistency in the RBO scores.

method mean median std min max

DC/LIME 0.447 0.449 0.032 0.399 0.505
DC/SFL 0.468 0.475 0.048 0.390 0.532

Table 6.5: Peptide ranked lists RBO score statistics

6.3.2 RBO score comparison of peptide and MHC rankings

The results in this section show the three explanation techniques and their pair-wise
RBO scores when we included the peptide sequence with the MHC sequence so the
maximum possible length of the ranked lists is 43. We tried multiple values of parameter
d which specifies the length of the lists we compare.

We varied parameter p to show that for p < 0.9, the explanations produced by the
techniques are not very similar. When p is small, the measure weighs the top positions
very heavily. We used the formula introduced by Webber et al. [45] to calculate the
overall percentage that the d positions contribute towards the total RBO score. If we set
p=0.1, the top 3 positions contribute towards 99.9% of the RBO score. In contrast, if we
set p=0.95, the top 3 positions contribute towards 34.9% of the RBO score. We observe
that as we increase p, we are not putting as extreme weights on the top positions but
include the positions from the entire sequence of length d, which increases the strength
of similarity.
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By setting d=3 we limit the size of the lists to 3 and only include the top 3 most highly
ranked positions in the comparison. The top 3 positions achieve RBO score in range
0.27-0.38 when comparing DC-Causal technique and SFL - these 2 techniques are
the most similar. In contrast, DC Causal algorithm and LIME have the lowest RBO
similarity score. All three pairwise similarity scores are bounded by range 0.24-0.40
(when p=1) which implies that there is some overlap of the TOP 3 positions across
the techniques and different HLA alleles. The RBO score increases with increasing p
which suggests that all 3 top positions and their ordering contribute positively towards
the overall RBO score.

Figure 6.8: RBO similarity measure - top 3 positions

Explanations of length 20 include approximately the upper half of the ranked positions.
Compared to d=3, there is overall increase in the similarity of the ranked lists. The
curves are closer to each other and strictly increasing with increasing values of p so even
the lower-ranked positions still contribute towards increasing the similarity measure.
DC Causal/SFL pair continues to show the highest similarity of ranked lists. There are
signs of convergence for very high values of p which means that the techniques produce
explanations that are similar or dissimilar to each other to the same extent.

Figure 6.9: RBO similarity measure - top 20 positions

We included the entire length of the ranked lists to show that when the RBO measure
considers all 42 positions, we achieve the maximum similarity scores that tend to be
around 0.7 for both paired list comparisons DC-Causal/SFL and DC-Causal/LIME,
signaling strong positive correlation of the position orderings. Achieving similarity
score of 0.7 means that the ranked lists exhibit signs of significant similarity but they
are not necessarily co-joint. The disadvantage of considering the entire length of ranked
lists and weighing them equally (when p=1) means that we put the same weight on the
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lower-importance positions as we put on the highest-importance positions within the
ranked lists. A lower RBO score is achieved for the lower values of p in which we put
more weight on the highly ranked positions - the RBO graphs are not consistent for all
allele types because for HLA A, the SFL/LIME ranked lists are most similar and for
HLA C type data the DC-Causal/SFL ranked lists are most similar.

Figure 6.10: RBO similarity measure - full sequence

6.3.3 Limitations

The limitations of applying DC-Causal technique to explain ImmunoBERT can be
summarized into the following categories:

Low coverage: In an ideal case, a local interpretability technique would explain 100%
of valid inputs. DC-Causal technique explained on average 63.5% input sequences (for
N=10) in our experiments, which is not sufficient, but can be improved with increasing
the number of partitions during every iteration. The fact that not all instances can
be explained implies that the explainability of ImmunoBERT provided by DC-Causal
technique is not sufficient to provide full trust and transparency because large proportion
of sequences do not have any explanation. The reason for this limitation is that the
algorithm requires finding mutants of the same classification as the original sequence
which change classification with further masking of a specific group of positions that
we consider as ’actual cause candidate’. The required mutants are sparsely distributed
in the mutant space but with the correctly partitioned sequence (which can be found by
trying a lot of random partitions), they can be found.

Early termination: A challenge for DC-Causal is that ImmunoBERT is not sensitive
to small alterations in the input sequence. Masking a small proportion of the sequence
or changing values of few amino acids does not change classification of the sequence.
This insensitivity to small changes might be caused by the nature of the problem but it
could also be the curse of having small or not inclusive training dataset when training
the model. DC-Causal relies on these small changes that flip classification. This has
consequences in further refinement when the technique does not find any suitable
mutants that satisfy the responsibility condition, hence the algorithm terminates early
after the first or second refinement.

Problems related to binary classification: ImmunoBERT classifies sequences into
2 distinct classes as opposed to multi-class classification into 10+ classes of image
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classifiers which were used in the original DC-Causal paper [23]. This imposes a
challenge for the model to flip between classes which is a requirement for the technique
to work. This brings up a question whether DC-Causal is suitable for explaining DNNs
that only classify inputs into few classes. Although the technique can produce ranked
lists for positive and negative sequences, it can produce a minimal explanation with
respect to the definition in Compositional explanation algorithm (section 4.2.1) only
for the positive sequences. We cannot produce a minimal explanation for the negative
sequences because the explanation starts with all positions masked - this sequence
with all positions masked is already negative so the addition of amino acids that are
responsible for negative classification of a sequence should not flip it to become a
positive class sequence. The consequences of not being able to produce minimal
explanation for negative sequences means that we cannot use the explanations produced
by Compositional explanation (algorithm 3) because we would only be able to analyse
explanations for positive sequences. We instead do analysis of the ranked lists of
positions. There are advantages of this decision: Firstly, we do not limit our evaluation
to only class 1 sequences which would remove out 50% of the sequences from the
analysis. Secondly, we want to ensure a fair comparison with LIME interpretability
technique which produces ranked lists as explanations and not a minimal explanation.
Thirdly, there is no guarantee that the explanation found by DC-Causal is minimal
because a lot of positions share the same responsibility ranking (for N=10) so whenever
there is a tie, the algorithm randomly selects the next position and adds it to the minimal
explanation.

Inefficiency: The application of DC-Causal technique to interpret ImmunoBERT is
not efficient. On average only 22.7% of partitions of the sequences or subsets of
sequences result in further refinement. Although the technique is parallelizable which
decreases the running time of interpreting 1000 sequences, most of the computations
do not provide any contribution towards explaining a sequence. Most of the partitions
and iterations result in a zero-responsibility map. This problem is specific to the
interpretation of ImmunoBERT and is a result of the sparse amount of mutants satisfying
the responsibility criteria caused by the problem that there are only 2 classes and the
fact that ImmunoBERT is not sensitive to small changes in sequences.

Imbalance of classes: Although we provided a perfectly balanced dataset, there is an
imbalance of the classes in the distribution of explanations. In particular, there were
significantly more positive sequences explained in HLA B data and more negative
sequences in HLA C data. Ideally, we would expect an equal split of positive-class and
negative-class sequences explained by the interpretability technique. There are multiple
factors related to the data which likely caused this limitation which are addressed in the
next section 6.3.4.
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6.3.4 Threats to validity

Lack of ground truth: There is no ground truth reference that would validate our
approach, results and produced explanations. Although antigen presentation on MHC-I
proteins and peptide binding have been studied extensively [10], there are unknown
aspects of the processes within the MHC-I pathway that require further theoretical
studies and experiments. For example, it is not yet known why certain MHC alleles are
more susceptible to peptide editing than others [46].

Assumptions: In the process of experimental data collection and generation of negative
samples, an assumption was made that if a peptide sequence was not observed during
experiments then it will not be presented on the MHC-I protein [17]. This is an
assumption that other studies made [42] in their work, otherwise it would be difficult
to obtain required data. The distribution of observed peptides might not be a true
representation of the distribution of peptides which are presented by MHC-I proteins.
Similarly, the negative sequences which were randomly generated from the proteins of
the observed samples might not be representative of the distribution of peptides that are
not presented.

Representativeness of data: The sequences used for training and explaining the model
do not represent the world’s population because the observations from experiments
(positive sequences) were collected from a group of individuals who do not represent a
diverse range of demographics. The data does not include all possible MHC-I proteins
and does not take into account the variation of MHC-I proteins across the human
population.

Threshold selection: ImmunoBERT is a prediction model that outputs a value in range
[0,1] representing the likelihood that a peptide will be presented by the associated
MHC-I protein. Interpreting an output which is not discretized is not possible with
techniques such as DC-Causal, SFL or LIME. Similarly to [17], we converted the
prediction problem to a classification task by the application of a threshold 0.5 so we
assume that if ImmunoBERT predicts that the probability of peptide presentation by the
associated MHC protein sequence is greater than 0.5 then it is class 1 peptide and will
be presented by the MHC-I protein. This value needs to be tested to determine whether
it is the most suitable threshold value.

Reliability of predictions: Our produced results are conditioned on the assumption that
ImmunoBERT’s predictions are correct. It is not well-studied how robust ImmunoBERT
is because there are no comparative studies which would compare ImmunoBERT’s
predictions to some other model’s predictions on the same dataset. We cannot state the
uncertainty of the predictions. We do not know the distribution of ImmunoBERT’s errors
so we cannot reliably calculate the estimate of the standard error of ImmunoBERT’s
predictions.
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Conclusions

7.1 Contributions

The contribution of this project can be split into 3 parts:

1. We explored the application of DC-Causal to interpret ImmunoBERT and evalu-
ated the interpretation coverage, quality and validity of explanations.

2. We have demonstrated that DC-Causal can provide explanations for amino acid
sequences which are a new type of input data for the technique.

3. We have shown that the interpretation of ImmunoBERT by DC-Causal is in
agreement with the interpretations produced by other techniques and supported
by findings from biological studies.

7.2 Summary of results

In this paper we explored the application of DC-Causal for interpreting ImmunoBERT.
We have demonstrated that a technique with strong foundation in causal theory that was
originally created to explain image classification can be applied to new domains such as
Immunology and achieve comparable performance. Our experiments demonstrated that
the results are in agreement with other state-of-the-art interpretability techniques.

Our goal was to provide insights into how the model works by creating explanations
which improved our understanding of the model’s decisions. The technique was able
to identify peptide as the most important part of the sequence, especially positions
close to the termini of the peptide. In addition, some MHC positions in A, B and F
pockets were shown to be of significant importance which is supported by biological
studies. The flank positions were not ranked high because of their low contribution
towards ImmunoBERT’s predictions. We concluded that DC-Causal ranked lists are
closer to SFL than to LIME but there are only small differences. The technique has
limitations which we discussed. The coverage and quality of explanations could be
further improved by increasing the number of iterations.

38
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7.3 Future work

We answered research questions and achieved the main objectives of the project. There
are many interesting approaches in the field of explainable AI which are worthy of
further exploration and plenty of exciting applications of DNNs which need to be better
understood. We will outline some suggestions for further exploration that are relevant
to our work although this is not an exhaustive list of ideas.

Taking the project further could be done in various directions. We could address the
threats to validity of our project by training a different model and comparing it to
ImmunoBERT’s performance. We could do further analysis of the data that were used
for training ImmunoBERT and seek alternatives for decoy generation approach or
how to make the training dataset more representative of a winder range of population
demographics. We could increase the training dataset by using Generative Adversarial
Networks (GANs) which are machine learning techniques that learn from the training
set to generate synthetic data with the same distribution as the training set. Training
ImmunoBERT on this expanded dataset could improve the performance and robustness
of the model and allow it to generalise better to unseen sequences. We could investigate
what would be the best threshold to convert ImmunoBERT’s prediction to a classification
label and whether it is reasonable to use the threshold of 0.5.

7.3.1 Extension to T cell binding

The idea behind creating ImmunoBERT was to capture biologically meaningful infor-
mation about peptide presentation. Another step towards achieving the goal of designing
better immunotherapy treatments would be to consider next step in the MHC pathway.
An extension, which is not considered by ImmunoBERT, but needs to be addressed in
order to achieve the objective of helping with the design of specialized vaccines is the
second part of the process which is binding of presented antigens to T cells. T cells
are circulating cells, specifically designed to bind to antigens [2]. They circulate in our
body until they receive an antigen signal and a secondary signal along with instructions
in the form of cytokines, that will activate the T cell and start the process of binding to
presented antigen on the MHC-I complex [10]. A suggestion for future work would
be to train a classification model that explores which presented antigens in the MHC-I
complex successfully trigger T cell activation and binding.

7.3.2 Further interpretation of ImmunoBERT

There are 4 interpretability techniques, namely LIME, SHAP, SFL and DC-Causal that
were used to interpret ImmunoBERT and provide explanations. All of these methods
are perturbation-based techniques. We could compare the explanations constructed
using these techniques with a gradient-based approach, such as Grad-CAM [27] which
uses gradients computed at individual inputs to produce explanations about the model’s
decisions. It would be interesting to compare the performance of Grad-CAM with
DC-Causal because both techniques originated in the field of image classification and
were designed to interpret Convolutional Neural Networks. For amino acid sequences,
similarly to our approach, we could obtain a representation of a ranked list as an
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output from Grad-CAM and explore whether it aligns with DC-Causal and other
techniques. To make this comparison complete we could explore a well-performing NLP
interpretability technique using language models, such as MICE, which we introduced
in 3.4. Comparing a variety of approaches would give us an understanding of which
approach is suited the best to tackle amino acid sequences, which are specific to
the biomedical domain and according to our knowledge none of the interpretability
techniques was designed specifically to work on amino acid inputs.

7.3.3 Improving DC-Causal technique

We have shown limitations of DC-Causal technique, the greatest obstacle being the
time requirement to run the algorithm on many sequence inputs in our experiments
and achieving sufficient refinement. We have shown that for obtaining a high quality
explanation we require 20+ iterations of the algorithm. The technique runs slower
compared to other local interpretability techniques such as LIME and SFL that only
run for a few seconds per sequence. This could be improved by further parallelization
of the algorithm. To complement our data-parallel approach, we could parallelize the
algorithm such that it would start by splitting the sequence into N random partitions
of positions and then work on explaining all N partitions in parallel, obtaining a
responsibility map for each partition and combining those N responsibility maps into a
single map. This would significantly speed up the process, especially for larger N, as
we would not work on each random partition sequentially but would run the algorithm
on all N partitions in parallel. We could combine this approach with our data-parallel
approach and attempt to achieve hybrid-parallelization of the algorithm.

7.3.4 Exploring DC-Causal in Reinforcement Learning

Competing local interpretability techniques such as LIME and SHAP have been tested
on inputs such as images, text, tabular data and audio sources. They can provide
interpretations for a wide range of models. In contrast, our approach was not tested on
a wide range of different inputs. We could not find any research paper which would
explore application of DC-Causal technique to other problems than image classification.

Similarly to ranking amino acid positions, we could use DC-Causal to rank policy
decisions in Reinforcement Learning (RL) by the means of ranking states of a RL
environment according to the importance of the decisions made in those states. A
similar technique which originated in the field of software testing, based on spectrum-
based fault localization (SBFL), was recently used to interpret policies trained with the
use of RL algorithms. Pouget et al. [47] have shown that a ranked list of states can help
explain and understand the policies and also simplify complex trained policies while
optimizing for the expected reward provided by the environment. This would be an
interesting area of application for the DC-Causal technique because SBFL considered
correlation of the importance in the ranked list with the relative importance of state
for the performance of the policy. DC-Causal algorithm could take this further and
explore whether there is causality, not only correlation, which could contribute towards
increasing our understanding of how the policy works.
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Hans-Georg Rammensee, and Marian Christoph Neidert. The hla ligand atlas - a
resource of natural hla ligands presented on benign tissues. bioRxiv, 2020.

[42] Timothy J. O’Donnell, Alex Rubinsteyn, and Uri Laserson. Mhcflurry 2.0: Im-
proved pan-allele prediction of mhc class i-presented peptides by incorporating
antigen processing. Cell Systems, 11(1):42–48.e7, 2020.

[43] Blosum62 scoring matrix for amino acid substitutions. Accessed: 2022-02-10.

[44] Hanneke W. M. van Deutekom and Can Keşmir. Zooming into the binding groove
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Appendix A

First appendix

A.1 Sequence refinement - example

We sampled one HLA-A*33:01 sequence and show its responsibility map produced by
DC-Causal technique for varying values of parameter N. Each position is represented
as (position,score) tuple and the lists are ranked in descending order of responsibility
scores. The refinement of sequence improves with increasing the number of random
partitions N.

Figure A.1: N=10

Figure A.2: N=20
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Figure A.3: N=50

Figure A.4: N=70

Figure A.5: N=100
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A.2 Peptide full results

We present full results for 12 HLA allele datasets which relate to the analysis in section
6.1.1. We plotted these figures from experiment 1 explanations. We run the DC-Causal
interpretability technique on peptides of length 9. We set parameters N=10, s=3.

(a) HLA-A*33:01 (b) HLA-A*33:03

(c) HLA-A*36:01 (d) HLA-A*74:01

(e) HLA-B*37:01 (f) HLA-B*46:01

Figure A.6: Peptide positions - part 1
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(a) HLA-B*54:01 (b) HLA-B*58:01

(c) HLA-B*58:02 (d) HLA-C*01:02

(e) HLA-C*15:02 (f) HLA-C*17:01

Figure A.7: Peptide positions - part 2
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A.3 Peptide with MHC-I full results

We present full results for 12 HLA allele datasets which relate to the analysis in section
6.1.2. We plotted these figures from experiment 2 explanations. We run the DC-Causal
interpretability technique on peptide and MHC-I positions. We set parameters N=10,
s=5.

(a) HLA-A*33:01 (b) HLA-A*33:03

(c) HLA-A*36:01 (d) HLA-A*74:01

(e) HLA-B*37:01 (f) HLA-B*46:01

Figure A.8: Peptide and MHC-I positions - part 1
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(a) HLA-B*54:01 (b) HLA-B*58:01

(c) HLA-B*58:02 (d) HLA-C*01:02

(e) HLA-C*15:02 (f) HLA-C*17:01

Figure A.9: Peptide and MHC-I positions - part 2
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A.4 Peptide, MHC-I and flanks full results

We present full results for 12 HLA allele datasets which relate to the analysis in section
6.1.3. We plotted these figures from experiment 3 explanations. We run the DC-Causal
interpretability technique on all 73 sequence positions. We set parameters N=10, s=5.

(a) HLA-A*33:01 (b) HLA-A*33:03

(c) HLA-A*36:01 (d) HLA-A*74:01

(e) HLA-B*37:01 (f) HLA-B*46:01

Figure A.10: Peptide, MHC-I and flank positions - part 1
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(a) HLA-B*54:01 (b) HLA-B*58:01

(c) HLA-B*58:02 (d) HLA-C*01:02

(e) HLA-C*15:02 (f) HLA-C*17:01

Figure A.11: Peptide, MHC-I and flank positions - part 2
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A.5 Responsibility algorithm - example

In this section we show how we perform one random partition of a sequence. How to
create a mutant space. How to find a mutant which satisfies the responsibility criteria
described in section 4.2.1.

For simplicity we only show the responsibility algorithm on the peptide of length 9.
The peptide we consider is VVMTPPRNR.

Random partition: We split the sequence into 3 parts arbitrarily.

1. VNR

2. VTR

3. MPP

Given the split we create a space of mutants which the responsibility algorithm considers.
Each part can either be masked or not masked in the mutant space so we have 7 mutants
(not including fully masked sequence). In this example we mask using X token.

Figure A.12: Mutant space

STEP *:
We start with considering part 1 - VNR as actual cause for classification.

A. Mutants where part 1 is not masked: VVMTPPRNR, XVMXPPXNR, VVX-
TXXRNR, XVXXXXXNR

B. Mutants from A with same classification as original sequence: VVMTPPRNR,
XVMXPPXNR, VVXTXXRNR

C. Mutants from B which change classification after we mask part 1: XVMXPPXNR

D. Minimum difference mutant from C: XVMXPPXNR => k=3, r=1/(1+3)

We computed responsibility assigned to amino acids in part 1 VNR to be 0.25. Now
we repeat STEP * but consider part 2 as actual cause, then repeat considering part 3 as
actual cause.


